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ABSTRACT
Off-policy reinforcement learning has many applications in-
cluding: learning from demonstration, learning multiple goal
seeking policies in parallel, and representing predictive knowl-
edge. Recently there has been an proliferation of new policy-
evaluation algorithms that fill a longstanding algorithmic
void in reinforcement learning: combining robustness to off-
policy sampling, function approximation, linear complexity,
and temporal difference (TD) updates. This paper contains
two main contributions. First, we derive two new hybrid
TD policy-evaluation algorithms, which fill a gap in this
collection of algorithms. Second, we perform an empirical
comparison to elicit which of these new linear TD methods
should be preferred in different situations, and make con-
crete suggestions about practical use.

Keywords
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policy learning

1. INTRODUCTION
Until recently, using temporal difference (TD) methods

to approximate a value function from off-policy samples was
potentially unstable without resorting to quadratic (in the
number of features) computation and storage, even in the
case of linear approximations. Off-policy learning involves
learning an estimate of total future reward that we would
expect to observe if the agent followed some target policy,
while learning from samples generated by a different behav-
ior policy. This off-policy, policy-evaluation problem, when
combined with a policy improvement step, can can be used
to model many different learning scenarios, such as learning
from many policies in parallel [18], learning from demon-
strations [1], learning from batch data [8], or simply learning
about the optimal policy while following an exploratory pol-
icy, as in the case of Q-learning [25]. In this paper, we focus
exclusively on the off-policy, policy evaluation problem, com-
monly referred to as value function approximation or simply
the prediction problem. Over the past decade there has been
an proliferation of new linear-complexity, policy-evaluation
methods designed to be convergent in the off-policy case.
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These novel algorithmic contributions have focused on dif-
ferent ways of achieving stable off-policy prediction learn-
ing. The first such methods were the gradient TD family
of algorithms that perform approximate stochastic gradi-
ent descent on the mean squared projected Bellman error
(MSPBE). The primary drawback of these methods is the
requirement for a second set of learned weights, a second
step size parameter, and potentially high variance updates
due to importance sampling. Empirically the results have
been mixed, with some results indicating that TD can be
superior in on-policy settings[17], and others concluding the
exact opposite [4].

Later, provisional TD (PTD) was introduced [20] to rec-
tify the issue that the bootstrap parameter λ, used in gradi-
ent TD methods[11] does not correspond well with the same
parameter used by conventional TD learning [19]. Specifi-
cally, for λ = 1, gradient TD methods do not correspond to
any known variant of off-policy Monte Carlo. The PTD algo-
rithm fixes this issue, and in on-policy prediction is exactly
equivalent to the conventional TD algorithm. PTD does not
use gradient corrections, and is only guaranteed to converge
in the tabular off-policy prediction setting. Its empirical
performance relative to TD and gradient TD, however, is
completely unknown.

Recently Sutton et al. [21] observed that conventional TD
does not correct its update based on the notion of a follow-
on distribution. This distributional mis-match provides an-
other way to understand the off-policy divergence of conven-
tional off-policy TD. They derive the Emphatic TD (ETD)
algorithm that surprisingly achieves convergence [27] with-
out the need for a second set of weights, like those used by
gradient TD methods. Like gradient TD methods, however,
it seems that this algorithm also suffers from high variance
due to importance sampling. Hallak et al. [7] introduced
a variant ETD that utilizes a scaling parameter β, which is
meant to reduce the magnitude of the follow-on trace. Com-
parative empirical studies for ETD and ETD(β), however,
have been limited.

The most recent contribution to this line of work explores
a mirror-prox approach to minimizing the MSPBE [12, 13,
9]. The main benefit of this work was that it enabled the first
finite sample analysis of an off-policy TD-based method with
function approximation, and the application of advanced
stochastic gradient optimizations. Liu et al. [9] introduced
two mirror-prox TD algorithms, one based on the GTD2
algorithm [17] the other based on TDC [17]1 and showed

1The GTD2 and TDC algorithms are gradient TD methods
that do not use eligibility traces; λ = 0.



that these methods outperform their base counter-parts on
Baird’s counterexample [2], but did not extend their new
methods with eligibility traces.

A less widely known approach to the off-policy prediction
problem is based on algorithms that perform precisely TD
updates when the data is sampled on-policy, and corrected
gradient-TD style updates when the data is generated off-
policy. The idea is to exploit the supposed superior efficiency
of TD in on-policy learning, while maintaining robustness
in the off-policy case. These “hybrid” TD methods were in-
troduced for state value-function based prediction [11], and
state-action value-function based prediction [6], but have
not been extended to utilize eligibility traces, nor compared
with the recent developments in linear off-policy TD learn-
ing (many developed since 2014).

Meanwhile a separate but related thread of algorithmic de-
velopment has sought to improve the operation of eligibility
traces used in both on- and off-policy TD algorithms. This
direction is based on another nonequivalence observation:
the update performed by the forward view variant of the
conventional TD is only equivalent to its backward view up-
date at the end of sampling trajectories. The proposed true-
online TD (TO-TD) prediction algorithm [24], and true-
online GTD (TO-GTD) prediction algorithm [23] remedy
this issue, and have been shown to outperform conventional
TD and gradient TD methods respectively on chain do-
mains. The TO-TD algorithm requires only a modest in-
crease in computational complexity over TD, however, the
TO-GTD algorithm is significantly more complex to im-
plement and requires three eligibility traces compared to
GTD. Nevertheless, both TO-TD and TO-GTD achieve lin-
ear complexity, and can be implemented in a completely
incremental way.

Although there asymptotic convergence properties of many
of these methods has been rigorously characterized, but em-
pirically there is still much we do not understand about this
now large collection of methods. A frequent criticism of
gradient TD methods, for example, is that they are hard to
tune and not well-understood empirically. It is somewhat
disappointing that perhaps the most famous application of
reinforcement learning—learning to play Atari games [15]—
uses potentially divergent off-policy Q-learning. In addition,
we have very little understanding of how these methods com-
pare in terms of learning speed, robustness, and parameter
sensitivity. By clarifying some of the empirical properties
of these algorithms, we hope to promote more wide-spread
adoption of these theoretically sound and computationally
efficient algorithms.

This paper has two primary contributions. First, we in-
troduce a novel extension of hybrid methods to eligibility
traces resulting in two new algorithms, HTD(λ) and true-
online HTD(λ). Second, we provide an empirical study of
TD-based prediction learning with linear function approxi-
mation. The conclusions of our experiments are surprisingly
clear:

1. GTD(λ) and TO-GTD(λ) should be preferred if robust-
ness to off-policy sampling is required

2. Between the two GTD(λ) should be preferred if com-
putation time is at a premium

3. Otherwise, TO-ETD(λ, β) was clearly the best across
our experiments except on Baird’s counterexample.

2. BACKGROUND
This paper investigates the problem of estimating the dis-

counted sum of future rewards online and with function ap-
proximation. In the context of reinforcement learning we
take online to mean that the agent makes decisions, the en-
vironment produces outcomes, and the agent updates its
parameters in a continual, real-time interaction stream. We
model the agent’s interaction as Markov decision process de-
fined by a countably infinite set of states S, a finite set of
actions A, and a scalar discount function γ : S → R. The
agent’s observation of the current situation is summarized
by the feature vector x(St) ∈ Rd, where St ∈ S is the current
state and d� |S|. On each time step t, the agent selects an
action according to it’s behavior policy At ∼ µ(St, ·), where
µ : S × A → [0, 1]. The environment then transitions into
a new state St+1 ∼ P (St, At, ·), and emits a scalar reward
Rt+1 ∈ R. The agent’s objective is to evaluate a fixed target
policy π : S × A → [0, 1], or estimate the expected return
for policy π:

vπ(s)
def
= E[Gt|St = s,At ∼ π]

for return Gt
def
=

∞∑
i=0

(
i∏

j=1

γt+j

)
Rt+i+1 . γj

def
= γ(sj).

where vπ(s) is called the state-value function for policy π.
All the methods evaluated in this study perform tem-

poral difference updates, and most utilize eligibility traces.
The TD(λ) algorithm is the prototypical example of these
concepts and is useful for understanding all the other al-
gorithms discussed in the remainder of this paper. TD(λ)
estimates vπ as a linear function of the weight vector w ∈
Rd, where the estimate is formed as an inner product be-
tween the weight vector and the features of the current state:
w>x(s) ≈ vπ(s). The algorithm maintains a memory trace
of recently experienced features, called the eligibility trace
e ∈ Rd, allowing updates to assign credit to previously vis-
ited states. The TD(λ) algorithm requires linear computa-
tion and storage O(d), and can be implemented incremen-
tally as follows:

δt ← Rt+1 + γt+1w
>
t x(St+1)−w>t x(St)

et ← λtγtet−1 + x(St)

∆w← αδtet .wt+1 ← wt + ∆w.

In the case when the data is generated by a behavior
policy, µ, with π 6= µ, we say that the data is generated
off-policy. In the off-policy setting we must estimate vπ

with samples generated by selecting actions according to µ.
This setting can cause the TD(λ) algorithm to diverge. The
GTD(λ) algorithm solves the divergence issue by minimizing
the MSPBE, resulting in a stochastic gradient descent algo-
rithm that looks similar to TD(λ), with some important dif-

ferences. GTD(λ) uses importance weights, ρt
def
= π(s,a)

µ(s,a)
∈ R

in the eligibility trace to reweight the data and obtain an un-
biased estimate of E[Gt]. Note, in the policy iteration case—
not studied here—it is still reasonable to assume knowl-
edge of π(s, a) for all s ∈ S, a ∈ A; for example when π
is near greedy with respect to the current estimate of the
state-action value function. The GTD(λ) has a auxiliary
set of learned weights, h ∈ Rd, in addition to the primary
weights w, which maintain a quasi-stationary estimate of
a part of the MSPBE. Like the TD(λ) algorithm, GTD(λ)



requires only linear computation and storage and can be
implemented fully incrementally as follows:

δt ← Rt+1 + γt+1w
>
t x(St+1)−w>t x(St)

et ← ρt(λtγtet−1 + x(St)) . weighted by ρt

∆w← αδtet − αγt+1(1− λt+1)(e>t ht)x(St+1)︸ ︷︷ ︸
correction term

∆h← αh[δtet − (x(St)
>ht)x(St)] . auxiliary weights

The auxiliary weights also make use of a step-size parameter,
αh which is usually not equal to α.

Due to space constraints we do not describe the other
TD-based linear learning algorithms found in the literature
and investigated in our study. We provide each algorithm’s
pseudo code in the appendix, and in the next section de-
scribe two new off-policy, gradient TD methods, before turn-
ing to empirical questions.

3. HTD DERIVATION
Conventional temporal difference updating can be more

data efficient than gradient temporal difference updating,
but the correction term used by gradient-TD methods helps
prevent divergence. Previous empirical studies[17] demon-
strated situations (specifically on-policy) where linear TD(0)
can outperform gradient TD methods, and others [6] demon-
strated that Expected Sarsa(0) can outperform multiple vari-
ants of the GQ(0) algorithm, even under off-policy sampling.
On the other hand, TD(λ) can diverge on small, though
somewhat contrived counterexamples.

The idea of hybrid-TD methods is to achieve sample effi-
ciency closer to TD(λ) during on-policy sampling, while en-
suring non-divergence under off-policy sampling. To achieve
this, a hybrid algorithm could do conventional, uncorrected
TD updates when the data is sampled on-policy, and use gra-
dient corrections when the data is sampled off-policy. This
approach was pioneered by Maei [11], leading to the deriva-
tion of the Hybrid Temporal Difference learning algorithm,
or HTD(0). Later, Hackman[6] produced a hybrid version
of the GQ(0) algorithm, estimating state-action value func-
tions rather than state-value functions as we do here. In this
paper, we derive the first hybrid temporal difference method
to make use of eligibility traces, called HTD(λ).

The key idea behind the derivation of HTD learning meth-
ods is to modify the gradient of the MSPBE to produce a
new learning algorithm. Let Eµ represent the expectation
according to samples generated under the behavior policy,
µ. The MSPBE[17] can be written as

MSPBE(w) = Eµ[δtet]
>︸ ︷︷ ︸

−Aπw+bπ

Eµ[x(St)x(St)
>︸ ︷︷ ︸

C

]
−1Eµ[δtet],

where et = ρt(λtγtet−1 + x(St)) and

Aπ
def
= Eµ[et(x(St)− γt+1x(St+1))>] (1)

=
∑
st∈S

dµ(st)
∑
at∈A

µ(st, at)ρt︸ ︷︷ ︸
π(st,at)

(γtλEµ[et−1|st] + x(st))

∑
st+1∈S

P (st, at, st+1)(x(st)− γt+1x(st+1))>

bπ
def
= Eµ[Rt+1et]

=
∑
st∈S

dµ(st)
∑
at∈A

π(st, at)(γtλEµ[et−1|st] + x(st))∑
st+1∈S

π(st, at)P (st, at, st+1)rt+1.

Therefore, the relative importance given to states in the
MSPBE is weighted by the stationary distribution of the be-
havior policy, dµ : S → R, (since it is generating samples),
but the transitions are reweighted to reflect the returns that
π would produce.

The gradient of the MSPBE is:

− 1

2
∇wMSPBE(w) = −A>πC−1(−Aπw + bπ). (2)

Assuming A−1
π is non-singular, we get the TD-fixed point

solution:

0 = −1

2
∇wMSPBE(w) =⇒ −Aπw + bπ = 0. (3)

The value of w, for which (3) is zero, is the solution found
by linear TD(λ) and LSTD(λ) where π = µ. The gradient
of the MSPBE yields an incremental learning rule with the
following general form (see [3]):

wt+1 ← wt + α(Mwt + b), (4)

where M = −A>πC−1Aπ and b = A>πC
−1bπ. The update

rule, in the case of TD(λ), will yield stable convergence if
Aπ is positive definite (as shown by Tsitsiklis and van Roy
[22]). In off-policy learning, we require A>πC

−1Aπ to be
positive definite to satisfy the conditions of the ordinary
differential equation proof of convergence [10], which holds
because C−1 is positive definite and therefore A>πC

−1Aπ is
positive definite, because Aπ is full rank (true by assump-
tion). See Sutton et al. [21] for a nice discussion on why the
Aπ matrix must be positive definite to ensure stable, non-
divergent iterations. The C matrix in Equation (3), can be
replaced by any positive definite matrix and the fixed point
will be unaffected, but the rate of convergence will almost
surely change.

Instead of following the usual recipe for deriving GTD, let
us try replacing C−1 with

A−>µ
def
= Eµ[(x(St)− γtx(St+1))eµt

>],

where eµ is the regular on-policy trace for the behavior pol-
icy (i.e., no importance weights)

eµt = γtλeµt−1 + x(St).

The matrix A−>µ is a positive definite matrix (proved by

Tsitsiklis and van Roy [22]). Plugging A−>µ into (2) results
in the following expected update:

1

α
E[∆wt] = A>πA

−>
µ (−Aπwt + bπ)

= (A>µ −A>µ +A>π )A−>µ (−Aπwt + bπ)

= (A>µA
−>
µ )(−Aπwt + bπ) + (A>π −A>µ )A−>µ (−Aπwt + bπ)

= (−Aπwt + bπ) + (A>π −A>µ )A−>µ (−Aπwt + bπ)

= (−Aπwt + bπ) + (5)

Eµ
[
(x(St)− γt+1x(St+1)) (et − eµt )>

]
A−>µ (−Aπwt + bπ)



As in the derivation of GTD(λ) [11], let the vector ht form
a quasi-stationary estimate of the final term,

A−>µ (−Aπwt + bπ).

Getting back to the primary weight update, we can sample
the first term using the fact that (−Aπwt + bπ) = Eµ[δtet]
(see [11]) and use (1) to get the final stochastic update

∆wt ← α
(
δtet + (xt − γt+1xt+1) (et − eµt )> ht

)
. (6)

Notice that when the data is generated on-policy (π = µ),
et = eµt , and thus the correction term disappears and we
are left with precisely linear TD(λ). When π 6= µ, the TD
update is corrected as in GTD: unsurprisingly, the correction
is slightly different but has the same basic form.

To complete the derivation, we must derive an incremental
update rule for ht. We have a linear system, because

ht = A−>µ (−Aπwt + bπ) =⇒ A>µ ht = −Aπwt + bπ.

Following the general expected update in (4),

ht+1 ← ht + αh

(
(−Aπwt + bπ)−A>µ ht

)
(7)

which converges if A>µ is positive definite for any fixed wt

and αh is chosen appropriately (see Sutton et al.’s recent
paper[21] for an extensive discussion of convergence in ex-
pectation). To sample this update, recall

A>µ ht = Eµ[(x(St)− x(St+1))eµt
>]ht

giving stochastic update rule for ht:

∆ht ← αh

[
δtet − (xt − γt+1xt+1)eµt

>ht
]
.

As in GTD, α ∈ R and αh ∈ R are step-size parameters,

and δt
def
= Rt+1 + γt+1w

>
t xt+1 − w>t xt. This hybrid-TD

algorithm should converge under off-policy sampling using a
proof technique similar to the one used for GQ(λ) (see Maei
& Sutton’s proof [10]), but we leave this to future work. The
HTD(λ) algorithm is completely specified by the following
equations:

et ← ρt(λtγtet−1 + xt)

eµt ← λtγte
µ
t−1 + xt

∆wt ← α
[
δtet + (γt+1xt+1 − xt)(e

µ
t − et)

>ht
]

∆ht ← αh

[
δtet + (γt+1xt+1 − xt)e

µ>
t ht

]
This algorithm can be made more efficient by exploiting the
common terms in ∆wt and ∆ht, as shown in the appendix.

4. TRUE ONLINE HTD
Recently, a new forward-backward view equivalence has

been proposed for online TD methods, resulting in true-
online TD [24] and true-online GTD [23] algorithms. The
original forward-backward equivalence was for offline TD(λ)2.
To derive a forward-backward equivalence under online up-
dating, a new truncated return was proposed, which uses

2The idea of defining a forward view objective and then con-
verting this computationally impractical forward-view into
an efficiently implementable algorithm using traces is exten-
sively treated in Sutton and Barto’s introductory text [16].

the online weight vector that changes into the future,

Gλ,ρk,t
def
= ρk(Rk+1 + γk+1[(1− λk+1)x>t+1wk + λk+1G

λ,ρ
k+1,t]),

with Gλ,ρt,t
def
= ρtx

>
t wt−1. A forward-view algorithm can be

defined that computes wk online assuming access to fu-
ture samples, and then an exactly equivalent incremental
backward-view algorithm can be derived that does not re-
quire access to future samples. This framework was used to
derive the TO-TD algorithm for the on-policy setting, and
TO-GTD for the more general off-policy setting. This new
true-online equivalence is not only interesting theoretically,
but also translates into improved prediction and control per-
formance [24, 23].

In this section, we derive a true-online variant of HTD(λ).
When used on-policy HTD(λ) behaves similarly to TO-TD(λ).
Our goal in this section is to combine the benefits of both
hybrid learning and true-online traces in a single algorithm.
We proceed with a similar derivation to TO-GTD(λ) [23,
Theorem 4], with the main difference appearing in the up-
date of the auxiliary weights. Notice that the primary weights
w, and the auxiliary weights h, of HTD(λ) have a simi-
lar structure. Recall from (5), the modified gradient of the
MSPBE, or expected primary-weight update can be written
as:

1

α
E[∆wt] = (−Aπwt + bπ)

+ Eµ
[
(x(St)− γt+1x(St+1)) (et − eµt )>

]
ht

Similarly, we can rewrite the expected update of the auxil-
iary weights by plugging A>µ into (7):

1

αh
E[∆ht] = (−Aπwt + bπ)

+ Eµ
[
(x(St)− γt+1x(St+1)) eµt

>
]
ht

As in the derivation of TO-GTD [23, Equation 17,18]), for
TO-HTD we will sample the second part of the update us-
ing a backward-view and obtain forward-view samples for
(−Aπwt+bπ). The resulting TO-HTD(λ) algorithm is com-
pletely specified by the following equations

et ← ρt(λtγtet−1 + xt)

eµt ← λtγte
µ
t−1 + xt

eot ← ρt(λtγte
o
t−1 + αt(1− ρtγtλtx>t eot−1)xt)

d = δte
o
t + (eot − αtρtxt)(wt −wt−1)>xt (8)

wt+1 ← wt + d + αt(γt+1xt+1 − xt)(e
µ
t − et)

>ht

ht+1 ← ht + d + αh(γt+1xt+1 − xt)e
µ>
t ht

In order to prove that this is a true-online update, we use
the constructive theorem due to van Hasselt et al. [23].

Theorem 1 (True-online HTD(λ)). For any t, the
weight vectors wt

t,h
t
t as defined by the forward view

wt
k+1 = wt

k + αk(Gλ,ρk,t − ρkx
>
t wt

k)xk

+ αk(xt − γt+1xt+1)(et − eµt )>htk

htk+1 = htk + αh,k(Gλ,ρk,t − ρkx
>
t wt

k)xk

+ αh,k(xt − γt+1xt+1)eµt
>htk

are equal to wt, ht as defined by the backward view in (8).



Proof. We apply [23, Theorem 1]. The substitutions are

ηt = ρtαt

gw,k = αk(xk − γk+1xk+1)(ek − eµk)>hk

gh,k = αh,k(xk − γk+1xk+1)eµk
>hk

Y tt = w>t−1xt

Y tk = Rk+1 + γk+1(1− λk+1ρk+1)w>k xk+1 + γk+1λk+1G
λ,ρ
k+1,t

where gw,k is called xk in van Hasselt’s Theorem 1 [23].
The proof then follows through in the same way as in van
Hasselt’s Theorem 4 [23], where we apply Theorem 1 to w
and h separately.

Our TO-HTD(0) algorithm is equivalent to HTD(0), but
TO-HTD(λ) is not equivalent to TO-TD(λ) under on-policy

sampling. To achieve the later equivalence, replace δt
def
=

Rt+1 + γt+1w
>
t xt+1 + w>t−1xt and d

def
= δte

o
t − αtρtxt(wt −

wt−1)>xt. We opted for the first equivalence for two rea-
sons. In preliminary experiments, TO-HTD(λ) described
in Equation (8) already exhibited similar performance com-
pared to TO-TD(λ), and so designing for the second equiva-
lence was unnecessary. Further, TO-GTD(λ) was derived to
ensure equivalence between TO-GTD(0) and GTD(0); this
choice, therefore, better parallels that equivalence.

Given our two new hybrid methods, and the long list of
existing linear prediction algorithms we now focus on how
these algorithms perform in practice.

5. EXPERIMENTAL STUDY
Our empirical study focused on three main aspects: (1)

early learning performance with different feature representa-
tions, (2) parameter sensitivity, and, (3) efficacy in on and
off-policy learning. The majority of our experiments were
conducted on random MDPs (variants of those used in pre-
vious studies[14, 5]). Each random MDP contains 30 states,
and three actions in each state. From each state, and for
each action, the agent can transition to one of four next
states, assigned randomly from the entire set without re-
placement. Transition probabilities for each MDP instance
are randomly sampled from [0, 1] and the transitions were
normalized to sum to one. The expected reward for each
transition is also generated randomly in [0, 1] and the reward
on each transition was sampled without noise. Two transi-
tions are randomly selected to terminate: γ(si, sj) = 0 for
i 6= j. Each problem instance is held fixed during learning.

We experimented with three different feature representa-
tions. The first, a tabular representation where each state
is represented with a binary vector with a single one cor-
responding the current state index. This encoding allows
perfect representation of the value function with no general-
ization over states. The second representation is computed
by taking the tabular representation and aliasing five states
to all have the same feature vector, so the agent cannot
differentiate these states. These five states were selected
randomly without replacement for each MDP instance. The
third representation is a dense binary encoding where the
feature vector for each state is the binary encoding of the
state index, and thus the feature vector for a 30 state MDP
requires just five components. Although the binary rep-
resentation appears to exhibit an inappropriate amount of
generalization, we believe it to be more realistic that a tab-
ular representation, because access to MDP state is rare in

real-world domains (e.g., a robotic with continuous sensor
values). The binary representation should be viewed as an
approximation to the poor, and relatively low-dimensional
(compared to the number of states in the world) representa-
tions common in real applications. All feature encoding we
normalized. Experiments conducted with the binary repre-
sentation use γ = 0.99, and the rest use γ = 0.9.

To generate policies with purposeful behavior, we forced
the agent to favor a single action in each state. The tar-
get policy is generated by randomly selecting an action and
assigning it probability 0.9 (i.e., π(s, ai) = 0.9) in each
state, and then assigning the remaining actions the remain-
ing probability evenly. In the off-policy experiments the
behavior policy is modified to be slightly different than the
target policy, by selecting the same base action, but instead
assigning a probability of 0.8 (i.e., µ(s, ai) = 0.8) . This
choice ensures that the policies are related, but guarantees
that ρt is never greater than 1.5 thus avoiding inappropri-
ately large variance due to importance sampling3.

Our experiment compared 12 different linear complex-
ity value function learning algorithms, including: GTD(λ),
HTD(λ), true-online GTD(λ), true-online HTD(λ), true-
online ETD(λ), true-online ETD(λ, β), PTD(λ), GTD2 -
mp(λ), TDC - mp(λ), linear off-policy TD(0), TD(λ), true-
online TD(λ). The later two being only applicable in on-
policy domains, and the two mirror-prox methods are straight-
forward extensions (and described in the appendix) of the
GTD2-mp and TDC-mp methods [13] to handle traces (λ >
0). We drop the λ designation of each method in the figure
labels to reduce clutter.

Our results were generated by performing a large param-
eter sweep, averaged over many independent runs, for each
random MDP instance, and then averaging the results over
the entire set of MDPs. We tested 14 different values of
the step-size parameter α ∈ {0.1 × 2j |j = −8,−7, ..., 6},
seven values of η ∈ {2j |j = −4,−2,−1, 0, 1, 2, 4} (αh

def
= αη),

and 20 values of λ = {0, 0.1, ..., 0.9, 0.91, ..., 1.0}. We inten-
tionally precluded smaller values of αh from the parame-
ter sweep because many of the gradient TD methods sim-
ply become their on-policy variants as αh approaches zero,
whereas in some off-policy domains values of αh > α are
required to avoid divergence [26]. We believe this range of η
fairly reflects how the algorithms would be used in practice if
avoiding divergence was a priority. The β parameter of TO-
ETD(λ, β) was set equal to 0.5γt. Each algorithm instance,
defined by one combination of α, η, and λ was evaluated
using the mean absolute value error on each time step,

εt
def
=
∑
s∈S

dµ(s)

∣∣∣∣x(s)>wt − V ∗(s)
V ∗(s)

∣∣∣∣ ,
averaged over 30 MDPs, each with 100 runs. Here V ∗ : S →
R denotes the true state-value function, which can be easily
computed with access to the parameters of the MDP.

The graphs in Figures 1 and 2 include (a) learning curves
with α, η, and λ selected to minimize the mean absolute
value error, for each of the three different feature represen-
tations, and (b) parameter sensitivity graphs for α, η, and
λ, in which the mean absolute value error is plotted against
the parameter value, while the remaining two parameters

3See the recent study by Mahmood & Sutton [14] for an
extensive treatment of off-policy learning domains with large
variance due to importance sampling.



are selected to minimize mean absolute value error. These
graphs are included across feature representations, for on
and off-policy learning. Across all results the parameters
are selected to optimize performance over the last half of the
experiment to ensure stable learning throughout the run.

To analyze large variance due to importance sampling and
off-policy learning we also investigated Baird’s counterexam-
ple [2], a simple MDP that causes TD learning to diverge.
This seven state MDP uses a target policy that is very differ-
ent from the behavior policy, a feature representation that
allows perfect representation of the value function, but also
causes inappropriate generalization. We used the variant of
this problem described by Maei [11] and White [26, Figure
7.1]. We present results with the root mean squared error 4,

εt
def
=
∑
s∈S

dµ(s)
(
x(s)>wt − V ∗(s)

)2
,

in Figure 1. The experiment was conducted in the same
way was the random MDPs, except we did not average over
MDPs—there is only one—and we used different parameter
ranges. We tested 11 different values of the step-size pa-
rameter α ∈ {0.1 × 2j |j = −10,−9, ...,−1, 0}, 12 values of

η ∈ {2j |j = −16,−8, . . . ,−2,−1, 0, 1, 2, . . . , 32} (αh
def
= αη),

and the same 20 values of λ. We did not evaluate TD(0) on
this domain because the algorithm will diverge and that has
been shown many times before.

In addition to performance results in Figures 1 and 2,
Table 1 summarizes the runtime comparison for these algo-
rithms. Though the algorithms are all linear in storage and
computation, they do differ in both implementation and run-
time, particularly due to true-online traces. The appendix
contains several plots of runtime verses value error illustrat-
ing the trade-off between computation and sample complex-
ity for each algorithm. Due to space constraints, we have
included the aliased tabular representation results for on-
policy learning in the appendix, since they are similar to
the tabular representation results in on-policy learning.

6. DISCUSSION
There are three broad conclusions suggested by our re-

sults. First, we could not clearly demonstrate the sup-
posed superiority of TD(λ) over gradient TD methods in
the on-policy setting. In both tabular and aliased feature
settings GTD(λ) achieved faster learning and superior pa-
rameter sensitivity compared to TD, PTD, and HTD. No-
tably, the η-sensitivity of the GTD algorithm was very rea-
sonable in both domains, however, large η were required to
achieve good performance on Baird’s for both GTD(λ) and
TO-GTD(λ). Our on-policy experiments with binary fea-
tures did indicate a slight advantage for TD(λ), PTD, and
HTD, and that PTD and HTD exhibit zero sensitivity to
the choice of αh as expected. In off-policy learning there is
little difference between GTD(λ) and PTD and HTD. Our
results combined with the prior work of Dann et al. [4] sug-
gest that the advantage of conventional TD(λ) over gradient
TD methods, in on-policy learning, is limited to specific do-
mains.

4In this counterexample the mean absolute value error is not
appropriate because the optimal values for this task are zero.
The MSPBE is often used as a performance measure, but
the MSPBE changes with λ; for completeness, we include
results with the MSPBE in the appendix.

Our second conclusion, is that the new mirror prox meth-
ods achieved poor performance in most settings except Baird’s
counterexample. Both GTD2-mp and TDC-mp achieved the
best performance in Baird’s counterexample. We hypothe-
size that the two-step gradient computation more effectively
uses the transition to state 7, and so is ideally suited to the
structure of the domain5. However, the GTD2-MP method
performed worse than off-policy TD(0) in all off-policy ran-
dom MDP domains, while the learning curves of TDC-mp
exhibited higher variance than other methods in all but the
on-policy binary case and high parameter sensitivity across
all settings except Baird’s. This does not seem to be a
consequence of the extension to eligibility traces because in
all cases except Baird’s, both TDC-mp and GTD2-mp per-
formed best with λ > 0. Like GTD and HTD, the mirror
prox methods would likely have performed better with val-
ues of αh > α, however, this is undesirable because larger
αh is required to ensure good performance in some off policy
domains, such as Baird’s (e.g., η = 28).

Third and finally, several methods exhibited non-convergent
behavior on Baird’s counterexample. All methods that ex-
hibited reliable error reduce in Baird’s did so with λ near
zero, suggesting that eligibility traces are of limited use
in these more extreme off-policy domains. In the case of
PTD, non-convergent behavior is not surprising since our
implementation of this algorithm does not include gradi-
ent correction—a possible extension suggested by the au-
thors [20]—and thus is only guaranteed to converge under
off-policy sampling in the tabular case. For the emphatic
TD methods the performance on Baird’s remains a concern,
especially considering how well TO-ETD(λ, β) performed in
all our other experiments. The addition of the β parameter
appears to significantly improve TO-ETD in the off-policy
domain with binary features, but could not mitigate the
large variance in ρ produced by the counterexample. It is
not clear if this bad behavior is inherent to emphatic TD
methods6, or could be solved by more careful specification
of the state-based interest function. In our implementation,
we followed the original author’s recommendation of setting
the interest for each state to 1.0 [21], because all our do-
mains were discounted and continuing. Additionally, both
HTD(λ) and TO-HTD(λ) did not diverge on Baird’s, but
performance was less than satisfactory to say the least.

Overall, the conclusions implied by our empirical study
are surprisingly clear. If guarding against large variance due
to off-policy sampling is a chief concern, then GTD(λ) and
TO-GTD(λ) should be preferred. Between the two, GTD(λ)
should be preferred if computation is at a premium. If poor
performance in problems like Baird’s is not a concern, then
TO-ETD(λ, β) was clearly the best across our experiments,
and exhibited nearly the best runtime results. TO-ETD(λ)
on the other hand, exhibited high variance in off-policy do-
mains, and sharp parameter sensitivity, indicating parame-
ter turnng of emphatic methods may be an issue in practice.

7. APPENDIX
Additional results and analysis can be found in the full

version of the paper: http://arxiv.org/abs/1602.08771.

5Baird’s counterexample uses a specific initialization of the
primary weights: far from one of the true solutions w = 0.
6The variance of TO-ETD has been examined before in two
state domains [21]. ETD is thought to have higher variance
that other TD algorithms due to the emphasis weighting.



TD(0) TD(λ) TO-TD PTD GTD TO-ETD TO-ETD(β) HTD TO-GTD GTD-MP TDC-MP TO-HTD
On-policy 120.0 132.7 150.1 172.4 204.6 287.8 286.0 311.8 366.2 467.4 466.2 466.0
Off-policy 108.3 - - 158.7 175.2 249.65 254.7 267.5 316.2 407.8 395.7 403.3

Table 1: Average runtime in microseconds for 500 steps of learning, averaged over 30 MDPS, with 100 runs each, with
30-dimensional tabular features.
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Figure 1: Off-policy performance on random MDPs with three different representations. All plots report mean absolute
value error averaged over 100 runs and 30 MDPs. The plots are organized in columns left to right corresponding to tabular,
aliased, and binary features. The plots are organized in rows from top to bottom corresponding to learning curves, α, η, and
λ sensitivity. The error bars are standard errors (s/

√
(n)) computed from 100 independent runs.
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Figure 2: On-policy performance on random MDPs with two different representations and off-policy performance on Baird’s
counterexample. All plots report mean absolute value error averaged over 100 runs and 30 random MDPs, and 500 runs for
Baird’s. The plots are organized in columns left to right corresponding to results on random MDPs with tabular and binary
features, and results on Baird’s counterexample. The plots are also organized in rows from top to bottom corresponding to
learning curves, α, η, and λ sensitivity.
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APPENDIX
A. ALGORITHMS

The original ETD(λ) algorithm as proposed by Sutton et
al. (2015) is an not entirely obvious manipulation of the true
online ETD(λ) described above and used in our experiments.
The difference is in the definition of the eligibility trace and
the primary weight update. To achieve the original ETD(λ)
algorithm modify the above true-online ETD(λ) algorithm
to use

et ← ρt(γtλet−1 +Mtxt),

and

∆w← αδtet.

In all the algorithms that follow, we assume w0, h0 are
initialized arbitrarily, and eligibility traces are initialized to
a vector of zeros (e.g., e−1 = 0).

TD(λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

et ← λtγtet−1 + xt

∆w← αδtet

True-online TD(λ)

v′
def
= w>t xt+1

δt
def
= Rt+1 + γt+1v

′ − v

et ← γtλtet−1 + α
[
1− γtλte>t−1xt

]
xt

∆w← δtet + α[v −w>t xt]xt

v ← v′ . v initialized to 0

GTD(λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

et ← ρt(λtγtet−1 + xt)

∆w← α
[
δtet − γt+1(1− λt+1)(e>t ht)xt+1

]
∆h← αh

[
δtet − (x>t ht)xt

]
True-online GTD(λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

et ← ρt
[
λtγtet−1 + αt

(
1− ρtγtλt(x>t et−1)

)
xt
]

eµt ← ρt(λtγte
µ
t−1 + xt)

eht ← ρt−1λtγte
h
t−1 + αh

(
1− ρt−1γtλt(x

>
t eht−1)

)
xt

d
def
= δtet + (et − αρtxt)(wt −wt−1)>xt

∆wt ← d− αγt+1(1− λt+1)(h>t eµt )xt+1

∆ht ← ρtδte
h
t − αh(x>t ht)xt

PTD(λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

et ← ρt(λtγtet−1 + xt)

∆wt ← αδtet + (ρt − 1)ht

ht+1 ← γtλt(ρtht + αδ̄tet)

δ̄t
def
= Rt+1 + w>t xt+1 −w>t xt

True-Online ETD(λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

Ft ← ρt−1γtFt−1 + It . F−1 = 0

Mt
def
= λtIt + (1− λt)Ft

et ← ρtγtλtet−1 + ρtαMt(1− ρtγtλt(x>t et−1))xt

∆w← δtet + (et − αMtρtxt)(wt −wt−1)>xt

True-Online ETD(β, λ)

δt
def
= Rt+1 + γt+1x

>
t+1wt − x>t wt

Ft ← ρt−1βtFt−1 + It . F−1 = 0

Mt
def
= λtIt + (1− λt)Ft

et ← ρtγtλtet−1 + ρtαMt(1− ρtγtλt(x>t et−1))xt

∆w← δtet + (et − αMtρtxt)(wt −wt−1)>xt

GTD2(λ)-MP

δt
def
= Rt+1 + γt+1w

>
t xt+1 −w>t xt

et ← ρt(λtγtet−1 + xt)

ht+ 1
2
← ht + αh

[
δet − (h>t xt)xt

]
wt+ 1

2
← wt + α

[
(h>t xt)xt − γt+1(1− λt+1)(h>t et)xt+1

]
δt+ 1

2

def
= Rt+1 + γt+1w

>
t+ 1

2
xt+1 −w>t+ 1

2
xt

∆w← α
[
(h>t+ 1

2
xt)xt − γt+1(1− λt+1)(h>t+ 1

2
et)xt+1

]
∆h← αh

[
δt+ 1

2
et − (x>t ht+ 1

2
)xt
]

w
def
=

∑t+1
i=1 αiwi∑t+1
i=1 αi

. polyak averaging, final weights for prediction

TDC(λ)-MP
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def
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>
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et ← ρt(λtγtet−1 + xt)

ht+ 1
2
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[
δet − (h>t xt)xt

]
wt+ 1

2
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2
xt

∆w← α
[
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2
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]
∆h← αh
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2
)xt
]

w
def
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. polyak averaging, final weights for prediction



HTD(λ)

δt
def
= Rt+1 + γt+1w

>
t xt+1 −w>t xt

et ← ρt(λtγtet−1 + xt)

eµt ← λtγte
µ
t−1 + xt

∆wt ← α
[
δtet + (xt − γt+1xt+1)(et − eµt )>ht

]
∆ht ← αh

[
δtet − (xt − γt+1xt+1)(eµ>t ht)

]
True-online HTD(λ)

δt
def
= Rt+1 + γt+1w

>
t xt+1 −w>t xt

et ← ρt(λtγtet−1 + xt)

eµt ← λtγte
µ
t−1 + xt

eot ← ρt(λtγte
o
t−1 + α(1− ρtγtλtx>t eot−1)xt)

d
def
= δte

o
t + (eot − αρtxt)(wt −wt−1)>xt

∆wt ← d + α(xt − γt+1xt+1)(et − eµt )>ht

∆ht ← d− αh(xt − γt+1xt+1)eµ>t ht

B. ADDITIONAL EXPERIMENTS
This section includes additional results further analyzing

the relative performance of linear TD-based policy evalua-
tion algorithms. The runtime results are as follows, for Fig-
ures 5 and Figure 6. The graphs indicate a sample efficiency
versus time trade-off. For increasing c, the algorithms are
given more time per sample to finish computing. If compu-
tation is not done within the allotted time c, then the agent
continues to finish computation but has essentially paused
interaction. Several possible iterations may be required by
the algorithm, if it is slow, until it is done computing on that
one sample, at which point it is given a new sample. This
simulates a real-time decision making tasks, such as mobile
robot control. New samples cannot be processed or buffered
for off-line computation while the previous sample is being
process. However, multiple samples can be processed per
iteration, where the iteration duration is denoted by c ∈ R.
Typically computationally frugal learning methods perform
well when c is smaller, because more samples can be pro-
cessed per iteration. For example, for c = 0.1 on-policy
TD(0) processes 101 samples, TD(λ) processes 97 samples,
TO-TD processes 85 samples and TO-HTD processes 31
samples. Even though the TD(0) algorithm was allowed
to process more samples per iteration, it did not achieve the
best performance trade-off, because TO-TD is both sample
efficient and computationally efficient. For larger c more
time is available to each algorithm on each iteration. In this
case some of the other algorithms have better performance
trade-offs. For example, in off-policy learning, HTD with
c = 1.25 effectively ties PTD for the best performance.
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Figure 3: On-policy performance on random MDPs with aliased tabular features. All plots report mean absolute value error
averaged over 100 runs and 30 MDPs. The top left plot depicts the learning curves with the best parameters found averaged
over all random MDP instances. The remaining graphs depict each algorithms parameter sensitivity in mean absolute value
error for α, η, and λ.
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Figure 4: Off-policy performance on a variant of Baird’s 7-state counterexample. All plots report the root mean square
projected Bellman error (RMSPBE). See White’s thesis (2015) for a detailed explanation of how to compute the MSPBE
from the parameters of an MDP. The top left graph reports the RMSPBE is averaged 200 plotted against time, under the
best parameter setting found over an extensive sweep. The remaining plots depict the parameter sensitivity, in RMSPBE, of
each method with respect to the key algorithm parametersα, η, and λ.
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Figure 5: Runtime analysis in on-policy random MDPs, with tabular features. Once the time per iteration is increased to 1.75
milliseconds, we obtain the original learning curve graphs: there are no runtime restrictions on the algorithms at that point
since they are all fast enough with so much time per second. The line style and colors correspond exactly with the labels in
the main paper. For a detailed discussion of the figure see the appendix text.
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Figure 6: Runtime analysis in off-policy random MDPs, with tabular features. Once the time per iteration is increased to 2
milliseconds, we obtain the original learning curve graphs: there are no runtime restrictions on the algorithms at that point
since they are all fast enough with the time allotted . The line style and colors correspond exactly with the labels in the main
paper. For a detailed discussion of the figure see the appendix text.
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