
Interval Estimation for Reinforcement-Learning
Algorithms in Continuous-State Domains

Martha White
Department of Computing Science

University of Alberta
whitem@cs.ualberta.ca

Adam White
Department of Computing Science

University of Alberta
awhite@cs.ualberta.ca

Abstract

The reinforcement learning community has explored many approaches to obtain-
ing value estimates and models to guide decision making; these approaches, how-
ever, do not usually provide a measure of confidence in the estimate. Accurate
estimates of an agent’s confidence are useful for many applications, such as bi-
asing exploration and automatically adjusting parameters to reduce dependence
on parameter-tuning. Computing confidence intervals on reinforcement learning
value estimates, however, is challenging because data generated by the agent-
environment interaction rarely satisfies traditional assumptions. Samples of value-
estimates are dependent, likely non-normally distributed and often limited, partic-
ularly in early learning when confidence estimates are pivotal. In this work, we
investigate how to compute robust confidences for value estimates in continuous

Markov decision processes. We illustrate how to use bootstrapping to compute
confidence intervals online under a changing policy (previously not possible) and
prove validity under a few reasonable assumptions. We demonstrate the applica-
bility of our confidence estimation algorithms with experiments on exploration,
parameter estimation and tracking.

1 Introduction

In reinforcement learning, an agent interacts with the environment, learning through trial-and-error
based on scalar reward signals. Many reinforcement learning algorithms estimate values for states to
enable selection of maximally rewarding actions. Obtaining confidence intervals on these estimates
has been shown to be useful in practice, including directing exploration [17, 19] and deciding when
to exploit learned models of the environment [3]. Moreover, there are several potential applications
using confidence estimates, such as teaching interactive agents (using confidence estimates as feed-
back), adjusting behaviour in non-stationary environments and controlling behaviour in a parallel
multi-task reinforcement learning setting.

Computing confidence intervals was first studied by Kaelbling for finite-state Markov decision pro-
cesses (MDPs) [11]. Since this preliminary work, many model-based algorithms have been proposed
for evaluating confidences for discrete-state MDPs. The extension to continuous-state spaces with
model-free learning algorithms, however, has yet to be undertaken. In this work we focus on con-
structing confidence intervals for online model-free reinforcement learning agents.

The agent-environment interaction in reinforcement learning does not satisfy classical assumptions
typically used for computing confidence intervals, making accurate confidence estimation challeng-
ing. In the discrete case, certain simplifying assumptions make classical normal intervals more
appropriate; in the continuous setting, we will need a different approach.

The main contribution of this work is a method to robustly construct confidence intervals for approx-
imated value functions in continuous-state reinforcement learning setting. We first describe boot-

1

strapping, a non-parametric approach to estimating confidence intervals from data. We then prove
that bootstrapping can be applied to our setting, addressing challenges due to sample dependencies,
changing policies and non-stationarity (because of learning). Then, we discuss how to address com-
plications in computing confidence intervals for sparse or local linear representations, common in
reinforcement learning, such as tile coding, radial basis functions, tree-based representations and
sparse distributed memories. Finally, we propose several potential applications of confidence inter-
vals in reinforcement learning and conclude with an empirical investigation of the practicality of our
confidence estimation algorithm for exploration, tuning the temporal credit parameter and tracking.

2 Related Work

Kaelbling was the first to employ confidence interval estimation method for exploration in finite-
state MDPs [11]. The agent estimates the probability of receiving a reward of 1.0 for a given state-
action pair and constructs an upper confidence bound on this estimate using a Bernoulli confidence
interval. Exploration is directed by selecting the action with the highest upper confidence bound,
which corresponds to actions for which it has high uncertainty or high value estimates [11].

Interval estimation for model-based reinforcement learning with discrete state spaces has been quite
extensively studied. Mannor et al. (2004) investigated confidence estimates for the parameters of the
learned transition and reward models, assuming Gaussian rewards [5, 16]. The Model Based Interval
Estimation Algorithm (MBIE) uses upper confidence bounds on the model transition probabilities to
select the model that gives the maximal reward [22]. The Rmax algorithm uses a heuristic notion of
confidence (state visitiation counts) to determine when to explore, or exploit the learned model [3].
Both Rmax and MBIE are guaranteed to converge to the optimal policy in polynomially many steps.
These guarantees, however, become difficult for continuous state spaces.

A recently proposed framework, KWIK (“Knows What It Knows”), is a formal framework for algo-
rithms that explore efficiently by minimizing the number of times an agent must return the response
“I do not know” [23]. For example, for reinforcement learning domains, KWIK-RMAX biases ex-
ploration toward states that the algorithm currently does not “know” an accurate estimate of the
value [23]. KWIK-RMAX provides an uncertainty estimate (not a confidence interval) on a linear
model by evaluating if the current feature vector is contained in the span of previously observed
feature vectors. Though quite general, the algorithm remains theoretical due to the requirement of a
solution to the model.

Bayesian methods (e.g., GPTD [6]) provide a natural measure of confidence: one can use the poste-
rior distribution to form credible intervals for the mean value of a state-action pair. However, if one
wants to use non-Gaussian priors and likelihoods, then the Bayesian approach is intractable without
appropriate approximations. Although this approach is promising, we are interested in computing
classical frequentist confidence intervals for agents, while not restricting the underlying learning
algorithm to use a model or particular update mechanism.

Several papers have demonstrated the empirical benefits of using heuristic confidence estimates to
bias exploration [14, 17, 19] and guide data collection in model learning [9, 18]. For example, Nouri
et al. [19] discretize the state space with a KD-tree and mark the state as “known” after reaching a
visitation count threshold.

In the remainder of this work, we provide the first study of estimating confidence intervals for
model-free, online reinforcement learning value estimates in the continuous-state setting.

3 Background

In this section, we will introduce the reinforcement learning model of sequential decision making
and bootstrapping, a family of techniques used to compute confidence intervals for means of depen-
dent data from an unknown (likely non-normal) underlying distribution.

3.1 Reinforcement Learning

In reinforcement learning, an agent interacts with its environment, receiving observations and se-
lecting actions to maximize a scalar reward signal provided by the environment. This interaction is

2

usually modeled by a Markov decision process (MDP). An MDP consists of (S,A, P,R) where S is
the set of states; A is a finite set of actions; P , the transition function, which describes the probability
of reaching a state s� from a given state and action (s, a); and finally the reward function R(s, a, s�),
which returns a scalar value for transitioning from state-action (s, a) to state s�. The state of the
environment is said to be Markov if Pr(st+1, rt+1|st, at) = Pr(st+1, rt+1|st, at, . . . , s0, a0). The
agent’s objective is to learn a policy, π : S → A, such that R is maximized for all s ∈ S.

Many reinforcement learning algorithms maintain an state-action value function, Qπ(s, a), equal
to the expected discounted sum of future rewards for a given state-action pair: Qπ(s, a) =
Eπ

��∞
k=0 γ

krt+k+1|st = s, at = a
�
, where γ ∈ [0 1] discounts the contribution of future rewards.

The optimal state-action value function, Q∗(s, a), is the maximum achievable value given the agent
starts in state s and selects action a. The optimal policy, π∗, is greedy with respect to the opti-
mal value function: π∗(s) = argmaxa∈A Q∗(s, a) for all s ∈ S. During learning the agent must
balance selecting actions to achieve high reward (according to Q̂(s, a)) or selecting actions to gain
more information about the environment. This is called the exploration-exploitation trade-off.

In many practical applications, the state space is too large to store in a table. In this case, a function
approximator is used to estimate the value of a state-action pair. A linear function approximator
produces a value prediction using a linear combination of basis units: Q̂(s, a) = θTφ(s, a). We
refer the reader to the introductory text [25] for a more detailed discussion on reinforcement learning.

3.2 Bootstrapping a confidence interval for dependent data

Bootstrapping is a statistical procedure for estimating the distribution of a statistic (such as the
sample mean), particularly when the underlying distribution is complicated or unknown, samples
are dependent and power calculations (e.g. variance) are estimated with limited sample sizes [21].
This estimate can then be used to approximate a 1 − α confidence interval around the statistic: an
interval for which the probability of seeing the statistic outside of the interval is low (probability α).
For example, for potentially dependent data sampled from an unknown distribution P (X1, X2, . . .),
we can use bootstrapping to compute a confidence interval around the mean, Tn = n−1

�n
i=1 xn.

The key idea behind bootstrapping is that the data is an appropriate approximation, Pn, of the true
distribution: resampling from the data represents sampling from Pn. Samples are “drawn” from Pn

to produce a bootstrap sample, x∗
1, . . . , x

∗
n ⊂ {x1, . . . , xn}, and an estimate, T ∗

n , of the statistic.
This process is repeated B times, giving B samples of the statistic, T ∗

n,1, . . . , T
∗
n,B . These, for

example, can be used to estimate VarP (Tn) ≈ VarPn(Tn) =
�

(T ∗
n,b − T

∗
n)

2/(B − 1).

Bootstrapped intervals have been shown to have a lower coverage error than normal intervals for
dependent, non-normal data. A normal interval has a coverage error of O(1/

√
n), whereas boot-

strapping has a coverage error of O(n−3/2) [29]. The coverage error represents how quickly the
estimated interval converges to the true interval: higher order coverage error indicates faster con-
vergence1. Though the theoretical conditions for these guarantees are somewhat restrictive [29],
bootstrapping has nevertheless proved very useful in practice for more general data [4, 21].

With the bootstrapped samples, a percentile-t (studentized) interval is constructed by

P (T ∈ (2Tn − T
∗
1−α/2, 2Tn − T

∗
α/2)) ≥ 1− α

where T ∗
β is the β sample quantile of T ∗

n,1, . . . , T
∗
n,B . Usually, the β-quantile of an ordered popula-

tion of size n is the continuous sample quantile:

(1− r)T ∗
n,j + rT

∗
n,j+1 where j = �nβ�+m, r = nβ − j +m

where m is dependent on quantile type, with m = β+1
3 common for non-normal distributions.

The remaining question is how to bootstrap from the sequence of samples. In the next section, we
describe the block bootstrap, applicable to Markov processes, which we will show represents the
structure of data for value estimates in reinforcement learning.

1More theoretically, coverage error is the approximation error in the Edgeworth expansions used to approx-
imate the distribution in bootstrap proofs.

3

3.2.1 Moving Block Bootstrap

In the moving block bootstrap method, blocks of consecutive samples are drawn with replacement
from a set of overlapping blocks, making the k-th block {xk−1+t : t = 1 . . . , l}. The bootstrap
resample is the concatenation of n/l blocks chosen randomly with replacement, making a time
series of length n; B of these concatenated resamples are used in the bootstrap estimate. The
block bootstrap is appropriate for sequential processes because the blocks implicitly maintain a
time-dependent structure. An common heuristic for the block length, l, is n1/3 [8].

The moving block bootstrap was designed for stationary, dependent data; however, our scenario
involves nonstationary data. Lahiri [12] proved a coverage error of o(n−1/2) when applying the
moving block bootstrap to nonstationary, dependent data, better than the normal coverage error.
Fortunately, the conditions are not restrictive for our scenario, described further in the next section.

Note that there are other bootstrapping techniques applicable to sequential, dependent data with
lower coverage error, such as the double bootstrap [13], block-block bootstrap [1] and Markov or
Sieve bootstrap [28]. In particular, the Markov bootstrap has been shown to have a lower cover-
age error for Markov data than the block bootstrap under certain restricted conditions [10]. These
techniques, however, have not been shown to be valid for nonstationary data.

4 Confidence intervals for continuous-state Markov decision processes

In this section, we present a theoretically sound approach to constructing confidence intervals for
parametrized Q(s, a) using bootstrapping for dependent data. We then discuss how to address sparse
representations, such as tile coding, which make confidence estimation more complicated.

4.1 Bootstrapped Confidence Intervals for Global Representations

The goal is to compute a confidence estimate for Q(st, at) on time step t. Assume that we are
learning a parametrized value function Q(s, a) = f(θ, s, a), with θ ∈ Rd and a smooth function
f : Rd × S × A → R. A common example is a linear value function Q(s, a) = θTφ(s, a), with
φ : S × A → Rd. During learning, we have a sequence of changing weights, {θ1,θ2, . . . ,θn} up
to time step n, corresponding to the random process {Θ1, . . . ,Θn}. If this process were stationary,
then we could compute an interval around the mean of the process. In almost all cases, however, the
process will be nonstationary with means {µ1, . . . , µn}. Instead, our goal is to estimate

f̄n(s, a) = n
−1

n�

t=1

E[f(Θt, s, a)]

which represents the variability in the current estimation of the function Q̂ for any given state-action
pair, (s, a) ∈ S × A. Because Q is parametrized, the sequence of weights, {Θt}, represents the
variability for the uncountably many state-action pairs.

Assume that the weight vector on time step t + 1 is drawn from the unknown distribution
Pa[(Θt+1, st+1)|(θt, st), . . . , (θt−k, st−k)], giving a k-order Markov dependence on previous
states and weight vectors. Notice that Pa incorporates P and R, using st, θt (giving the policy
π) and R to determine the reward passed to the algorithm to then obtain θt+1. This allows the learn-
ing algorithm to select actions using confidence estimates based on the history of the k most recent
θ, without invalidating that the sequence of weights are drawn from Pa. In practice, the length of
the dependence, k, can be estimated using auto-correlation [2].

Applying the Moving Block Bootstrap method to a non-stationary sequence of θ’s requires several
assumptions on the underlying MDP and the learning algorithm. We require two assumptions on the
underlying MDP: a bounded density function and a strong mixing requirement. The assumptions
on the algorithm are less strict, only requiring that the algorithm be non-divergent and produce a
sequence of {Qt(s, a)} that 1) satisfy a smoothness condition (a dependent Cramer condition), 2)
have a bounded twelfth moment and 3) satisfy an m-dependence relation where sufficiently sepa-
rated Qi(s, a), Qj(s, a) are independent. Based on these assumptions (stated formally in the sup-
plement), we can prove that the moving block bootstrap produces an interval with a coverage error
of o(n−1/2 for the studentized interval on fn(s, a).

4

Theorem 1 Given that Assumption 1-7 are satisfied and there exists constants C1, C2 > 0, 0 <

α ≤ β < 1/4 such that C1n
α < l < C2n

β
(i.e. l increases with n), then the moving block bootstrap

produces a one-sided confidence interval that is consistent and has a coverage error of o(n−1/2) for

the studentization of the mean of the process {f(θt, s, a)}, where Qt(s, a) = f(θt, s, a).

The proof for the above theorem follows Lahiri’s proof [12] for the coverage error of the moving
block bootstrap for nonstationary data. The general approach for coverage error proofs involve
approximating the unknown distribution with an Edgeworth expansion (see [7]), with the coverage
error dependent on the order of the expansion, similar to the the idea of a Taylor series expansion.

Assuming Pa is k-order Markov results in two important practical implications on the learning
algorithm: 1) inability to use eligibility traces and 2) restrictions on updates to parameters (such
as the learning rate). These potential issues, however, are actually not restrictive. First, the tail of
eligibility traces has little effect, particularly for larger k; the most recent k weights incorporate the
most important information for the eligibility traces. Second, the learning rate, for example, cannot
be updated based on time. The learning rate, however, can still be adapted based on changes between
weight vectors, a more principled approach taken, by the meta-learning algorithm, IDBD [24].

The final algorithm is summarized in the pseudocode below. In practice, a window of data of length
w is stored due to memory restrictions; other data selection techniques are possible. Corresponding
to the notation in Section 3.2, Qi represents the data samples (of Q̂(s, a)), (Q∗

i,1, . . . , Q
∗i,M) the

dependently sampled blocks for the ith resample and T ∗
i the mean of the i resample.

Algorithm 1 GetUpperConfidence(f(·, s, a), {θn−w, . . .θn},α)
l = block length, B = num bootstrap resamples
last w weights and confidence level α (= 0.05)

1: QN ← {f(θn−w, s, a), . . . f(θn, s, a)}
2: Blocks = {[Qn−w, . . . , Qn−w+l−1], [Qn−w+1, . . . , Qn−w+l], . . . , [Qn−l+1, . . . , Qn]}
3: M ← �w/l� the number of length lblocks to sample with replacement and concatenate
4: for all i = 1 to B do
5: (Q∗

1, Q
∗
2, . . . , Q

∗
M∗l) ← concatMRandomBlocks(Blocks, M)

6: T ∗
i = 1

M∗l
�

Q∗
j

7: end for
8: sort({T ∗

1 , . . . , T
∗
B})

9: j ← �Bα
2 + α+2

6 �, r ← Bα
2 + α+2

6 − j

10: T ∗
α/2 ← (1− r)T ∗

j + rT ∗
j+1

11: Return 2mean(QN)− T ∗
α/2

4.2 Bootstrapped Confidence Intervals for Sparse Representations

We have shown that bootstrapping is a principled approach for computing intervals for global rep-
resentations; sparse representations, however, complicate the solution. In an extreme case, for ex-
ample, for linear representations, features active on time step t may have never been active before.
Samples Q1(st, at), . . . , Qt(st, at) would therefore all equal Q0(st, at), because the weights would
have never been updated for those features. Consequently, the samples erroneously indicate low
variance for Q(st, at).

We propose that, for sparse linear representations, the samples for the weights can be treated inde-
pendently and still produce a reasonable, though currently unproven, bootstrap interval. Notice that
for θ(i) the ith feature

Pa[(θt, st)|(θt−1, st−1), . . . , (θt−k, st−k)] = Πd
i=1Pa[(θt(i), st)|(θt−1, st−1), . . . , (θt−k, st−k)]

because updates to weights θ(i), θ(j) are independent given the previous states and weights vectors
for all i, j ∈ {1, . . . , d}. We could, therefore, estimate upper confidence bounds on the individual
weights, ucbi(s, a), and then combine them, via ucb(s, a) =

�d
i=1 ucbi(s, a) ∗ φi(s, a), to produce

an upper confidence bound on Q(st, at). To approximate the variance of θ(i) on time step t, we can
use the last w samples of θ(i) where θ(i) changed.

5

Proving coverage error results for sparse representations will require analyzing the covariance be-
tween components of θ over time. The above approach for sparse representations does not capture
this covariance; due to sparsity, however, the dependence between many of the samples for θ(i)
and θ(j) will likely be weak. We could potentially extend the theoretical results by bounding the
covariance between the samples and exploiting independencies. The means for individual weights
could likely be estimated separately, therefore, and still enable a valid confidence interval. In future
work, a potential extension is to estimate the covariances between the individual weights to improve
the interval estimate.

5 Applications of confidence intervals for reinforcement learning

The most obvious application of interval estimation is to bias exploration to select actions with
high uncertainty. Confidence-based exploration should be comparable to optimistic initialization
in domains where exhaustive search is required and find better policies in domains where noisy
rewards and noisy dynamics can cause the optimistic initialization to be prematurely decreased and
inhibit exploration. Furthermore, confidence-based exploration reduces parameter tuning because
the policy does not require knowledge of the reward range, as in softmax and optimistic initialization.

Confidence-based exploration could be beneficial in domains where the problem dynamics and re-
ward function change over time. In an extreme case, the agent may converge to a near-optimal policy
before the goal is teleported to another portion of the space. If the agent continues to act greedily
with respect to its action-value estimates without re-exploring, it may act sub-optimally indefinitely.
These tracking domains require that the agent “notice” that its predictions are incorrect and begin
searching for a better policy. AN example of a changing reward signals arises in interactive teaching.
In this scenario, the a human teaching shapes the agent by providing a drifting reward signal. Even
in stationary domains, tracking the optimal policy may be more effective than converging due to the
non-stationarity introduced by imperfect function approximation [26].

Another potential application of confidence estimation is to automate parameter tuning online. For
example, many TD-based reinforcement learning algorithms use an eligibility parameter (λ) to ad-
dress the credit assignment problem. Learning performance can be sensitive to γ. There has been
little work, however, exploring the effects of different decay functions for λ; using different λ values
for each state/feature; or for meta-learning λ. Confidence estimates could be used to increase λ

when the agent is uncertain, reflecting and decrease λ for confident value estimates [25].

Confidence estimates could also be used to guide the behaviour policy for a parallel multi-task
reinforcement learning system. Due to recent theoretical developments [15], several target value
functions can be learned in parallel, off-policy, based on a single stream of data from a behaviour
policy. The behaviour policy should explore to provide samples that generalize well between the
various target policies, speeding overall convergence. For example, if one-sided intervals are main-
tained for each target value functions, the behaviour policy could select an action corresponding to
the maximal sum of those intervals. Exploration is then biased to highly uncertain areas where more
samples are required.

Finally, confidence estimates could be used to determine when features should be evaluated in a
feature construction algorithm. Many feature construction algorithms, such as cascade correlation
networks, interleave proposing candidate features and evaluation. In an online reinforcement learn-
ing setting, these methods freeze the representation for a fixed window of time to accurately evaluate
the candidate [20]. Instead of using a fixed window, a more principled approach is to evaluate the
features after the confidence on the weights of the candidate features reached some threshold.

6 Experimental Results

In this section, we provide a preliminary experimental investigation into the practicality of confi-
dence estimation in continuous-state MDPs. We evaluate a naive implementation of the block boot-
strap method for (1) exploration in a noisy reward domain, (2) automatically tuning λ in the Cartpole
domain and (3) tracking a moving goal in a navigation task. In all tests we used the Sarsa(λ) learn-
ing algorithm with tile coding function approximation (see Sutton and Barto [25]). All experiments
were evaluated using RL-Glue [27] and averaged over 30 independent runs.

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 st
ep

s u
nt

il
te

rm
in

at
io

n

Episode Number

Confidence Exploration

Normal
e-greedy

Optimistic

softmax

(a) Exploration: convergence

e-greedy

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180 200

C
um

m
ul

at
iv

e
R

ew
ar

d

Episode Number

Confidence Exploration

Normal

Optimistic

softMax

(b) Exploration: comparison
Figure 1: Results showing (a) convergence of various exploration techniques in the navigation task
and (b) average cumulative reward of various exploration techniques on the navigation task.

6.1 Exploration

To evaluate the effectiveness of confidence-based exploration, we use a simple two-goal continuous
navigation task. The small goal yields a reward of 1.0 on every visit. The flashing goal yields a
reward selected uniformly from {100,−100, 5,−5, 50}. The reward on all other steps is zero and
γ = 0.99 (similar results for -1 per step and γ = 1.0). The agent’s observation is a continuous (x, y)
position and actions move the agent {N,S,E,W} perturbed by uniform noise 10% of the time. We
present only the first 200 episodes to highlight early learning performance.

Similar to Kaelbling, we select the action with the highest upper confidence in each state. We
compare our confidence exploration algorithm to three baselines commonly used in continuous state
MDPs: (1) �-greedy (selecting the highest-value action with probability 1 − �, random otherwise),
(2) optimistic initialization (initializing all weights to a high fixed value to encourage exploration)
and (3) softmax (choosing actions probabilistically according to their values). We also compare our
algorithm to an exploration policy using normal (instead of bootstrapped) intervals to investigate the
effectiveness of making simplifying assumptions on the data distribution. We present the results for
the best parameter setting for each exploration policy for clarity. Figure 1 summarizes the results.

The �-greedy policy convergences slowly to the small goal. The optimistic policy slowly converges
to the small goal for lower initializations and does not favour either goal for higher initializations.
The softmax policy navigates to the small goal on most runs and also convergences slowly. The
normal-interval exploration policy does prefer the flashing goal but not as quickly as the bootstrap
policy. Finally, the bootstrap-interval exploration policy achieves highest cumulative reward and is
the only policy that converges to the flashing goal, despite the large variance in the reward signal.

6.2 Adjusting Lambda

To illustrate the effect of adjusting λ based on confidence intervals, we study the Cartpole problem.
We selected Cartpole because the performance of Sarsa is particularly sensitive to λ in this domain.
The objective in Cartpole is to apply forces to a cart on a track to keep a pole from falling over.
An episode ends when the pole falls past a given angle or the cart reaches the end of the track.
The reward is +1 for each step of the episode. The agent’s observations are the cart position and
velocity and the poles’ angle and angular velocity. The Cartpole environment is based on Sutton and
Barto’s [25] pole-balancing task and is available in RL-library [27].

To adjust the λ value, we reset λ on every time step: λ = normalized(ucb) where ucb = 0.9 ∗
ucb+0.1∗getUpperConfidence(φ(s, a), θ,α). The confidence estimates were only used to adjust λ
for clarity: exploration was performed using optimistic initialization. Figure 2 presents the average
balancing time on the last episode for various values of λ. The flat line depicts the average balancing
time for Sarsa with λ tuned via confidence estimates. Setting λ via confidence estimates achieves
performance near the best value of λ. We also tested adjusting λ using normal confidence intervals,
however, the normal confidence intervals resulted in worse performance then any fixed value of λ.

7

 300

 400

 500

 600

 700

 800

 900

 1000
0.0 0.1 0.5 0.9 1.0

A
ve

ra
ge

 st
ep

s u
nt

il
te

rm
in

at
io

n
Lambda

Figure 2: Performance of Sarsa(λ) on
Cartpole for various values of λ. The
straight line depicts the performance
of Sarsa with λ adjusted using the
confidence estimation algorithm.

6.3 Non-stationary Navigation Task

One natural source of non-stationarity is introduced by shaping a robot through successive approx-
imations to a goal task (e.g., changing the reward function). We studied the effects of this form
of non-stationarity, where the agent learns to go to a goal and then another, better goal becomes
available (near the first goal to better guide it to the next goal). In our domain, the agent receives -1
reward per step and +10 at termination in a goal region. After 150 episodes, the goal region is tele-
ported to a new location within 50 steps of the previous goal. The agent receives +10 in the new goal
and now 0 in the old goal. We used � = 0 to enable exploration only with optimistic initialization.

We recorded the number of times the agent converged to the new goal with the change after an
initial learning period of 150 episodes. The bootstrap-based explorer found the new goal 70% of
the time. It did not always find the new goal because the -1 structure biased it to stay with the
safe 0 goal. Interestingly, optimistic initialization was unable to find the new goal because of this
bias, illustrating that the confidence-based explorer detected the increase in variance and promoted
re-exploration automatically.

7 Conclusion

In this work, we investigated constructing confidence intervals on value estimates in the continuous-
state reinforcement learning setting. We presented a robust approach to computing confidence es-
timates for function approximation using bootstrapping, a nonparametric estimation technique. We
proved that our confidence estimate has low coverage error under mild assumptions on the learning
algorithm. In particular, we did so even for a changing policy that uses the confidence estimates. We
illustrated the usefulness of our estimates for three applications: exploration, tuning λ and tracking.

We are currently exploring several directions for future work. We have begun testing the confidence-
based exploration on a mobile robot platform. Despite the results presented in this work, many
traditional deterministic, negative cost-to-goal problems (e.g., Mountain Car, Acrobot and Puddle
World) are efficiently solved using optimistic exploration. Robotic tasks, however, are often more
naturally formulated as continual learning tasks with a sparse reward signal, such as negative reward
for bumping into objects, or a positive reward for reaching some goal. We expect confidence based
techniques to perform better in these settings where the reward range may be truly unknown (e.g.
generated dynamically by a human teacher) and under natural variability in the environment (noisy
sensors and imperfect motion control). We have also begun evaluating confidence-interval driven
behaviour for large-scale, parallel off-policy learning on the same robot platform.

There are several potential algorithmic directions, in addition to those mentioned throughout this
work. We could potentially improve coverage error by extending other bootstrapping techniques,
such as the Markov bootstrap, to non-stationary data. We could also explore the theoretical work
on exponential bounds, such as the Azuma-Hoeffding inequality, to obtain different confidence es-
timates with low coverage error. Finally, it would be interesting to extend the theoretical results in
the paper to sparse representations.

Acknowledgements: We would like to thank Csaba Szepesvári, Narasimha Prasad and Daniel Li-
zotte for their helpful comments and NSERC, Alberta Innovates and the University of Alberta for
funding the research.

8

References
[1] D.W.K. Andrews. The block-block bootstrap: Improved asymptotic refinements. Econometrica,

72(3):673–700, 2004.
[2] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. Time series analysis: forecasting and control. Holden-day

San Francisco, 1976.
[3] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-optimal rein-

forcement learning. Journal of Machine Learning Research, 3:213–231, 2002.
[4] A.C. Davison and DV Hinkley. Bootstrap methods and their application. Cambridge Univ Pr, 1997.
[5] E. Delage and S. Mannor. Percentile optimization for Markov decision processes with parameter uncer-

tainty. Operations Research, 58(1):203, 2010.
[6] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In Proceedings of

the 22nd international conference on Machine learning, page 208. ACM, 2005.
[7] P Hall. The bootstrap and Edgeworth expansion. Springer Series in Statistics, Jan 1997.
[8] Peter Hall, Joel L. Horowitz, and Bing-Yi Jing. On blocking rules for the bootstrap with dependent data.

Biometrika, 82(3):561–74, 1995.
[9] Todd Hester and Peter Stone. Generalized model learning for reinforcement learning in factored domains.

In The Eighth International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2009.
[10] J.L. Horowitz. Bootstrap methods for Markov processes. Econometrica, 71(4):1049–1082, 2003.
[11] Leslie P. Kaelbling. Learning in Embedded Systems (Bradford Books). The MIT Press, May 1993.
[12] SN Lahiri. Edgeworth correction by moving blockbootstrap for stationary and nonstationary data. Ex-

ploring the Limits of Bootstrap, pages 183–214, 1992.
[13] S. Lee and PY Lai. Double block bootstrap confidence intervals for dependent data. Biometrika, 2009.
[14] L. Li, M.L. Littman, and C.R. Mansley. Online exploration in least-squares policy iteration. In Proc. of

The 8th Int. Conf. on Autonomous Agents and Multiagent Systems, volume 2, pages 733–739, 2009.
[15] H.R. Maei, C. Szepesvári, S. Bhatnagar, and R.S. Sutton. Toward off-policy learning control with function

approximation. ICM (2010), 50, 2010.
[16] S. Mannor, D. Simester, P. Sun, and J.N. Tsitsiklis. Bias and variance in value function estimation. In

Proceedings of the twenty-first international conference on Machine learning, page 72. ACM, 2004.
[17] Lilyana Mihalkova and Raymond J. Mooney. Using active relocation to aid reinforcement learning. In

FLAIRS Conference, pages 580–585, 2006.
[18] Peter Stone Nicholas K. Jong. Model-based exploration in continuous state spaces. In The 7th Symposium

on Abstraction, Reformulation, and Approximation, July 2007.
[19] A. Nouri and M.L. Littman. Multi-resolution exploration in continuous spaces. In NIPS, pages 1209–

1216, 2008.
[20] François Rivest and Doina Precup. Combining td-learning with cascade-correlation networks. In ICML,

pages 632–639, 2003.
[21] J. Shao and D. Tu. The jackknife and bootstrap. Springer, 1995.
[22] A.L. Strehl and M.L. Littman. An empirical evaluation of interval estimation for markov decision pro-

cesses. In Proc. of the 16th Int. Conf. on Tools with Artificial Intelligence (ICTAI04), 2004.
[23] Alexander L. Strehl and Michael L. Littman. Online linear regression and its application to model-based

reinforcement learning. In NIPS, 2007.
[24] R.S. Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In Proceedings

of the National Conference on Artificial Intelligence, pages 171–171, 1992.
[25] R.S. Sutton and A.G. Barto. Introduction to reinforcement learning. MIT Press Cambridge, USA, 1998.
[26] R.S. Sutton, A. Koop, and D. Silver. On the role of tracking in stationary environments. In Proceedings

of the 24th international conference on Machine learning, page 878. ACM, 2007.
[27] Brian Tanner and Adam White. RL-Glue : Language-independent software for reinforcement-learning

experiments. JMLR, 10:2133–2136, September 2009.
[28] B A. Turlach. Bandwidth selection in kernel density estimation: A review. In CORE and Institut de

Statistique, 1993.
[29] J. Zvingelis. On bootstrap coverage probability with dependent data. Computer-Aided Econ., 2001.

9

Interval Estimation for Reinforcement-Learning
Algorithms in Continuous-State Domains:

Supplementary Material

Martha White
Department of Computing Science

University of Alberta
whitem@cs.ualberta.ca

Adam White
Department of Computing Science

University of Alberta
awhite@cs.ualberta.ca

Applicability Proofs for Block Bootstrapping in Reinforcement Learning

We prove the consistency and coverage error for the bootstrapped studentized interval around our
the sample mean of the sequence of parameters for global function approximation. Each parameter
vector θt on time step t corresponds to the action-value function Qt on that time step, with Q(s, a) =
f(θ, s, a) for some bounded function f . A common example of f is a linear function f(θ, s, a) =
θTφ(s, a) with features given by the function φ : S ×A → Rd.

Let {θt} be the sequence of weight vectors, drawn from probability distributions Pa(< Θt, st > | <
θt−1, st−1 >, . . . , < θt−k−1, st−k−1) with means µt. For a given state-action pair (s, a) ∈ S × A,
with g(θ) = f(θ, s, a), we are estimating

ḡn = n−1
n�

i=1

gi

where gi = E[(g(Θi)].

In order to prove a coverage error of o(n−1/2) for the studentized interval on f(µn, s, a) for any
given (s, a) ∈ S × A, we will need the following assumptions, simplified from Lahiri’s Theorem
4.1 [5] for our scenario. The proof will be for any (s, a), so we fix an (s, a) ∈ S × A and let
g(θ) = f(θ, s, a).

Let Yn =< Sn, An, Rn >, the triplet obtained from acting in the given MDP, G = (S,A, P,R).
The triplets are drawn from the implicit from the probability distribution PR(s, a, r) computed using
P (s, a, s�) and R(s, a, s�), giving the probability of receiving reward r after taking action a in state
s. Let Dj = σ(Yj), the σ-fields of the random variables Yn.

Assumption 1 For any (s, a) ∈ S×A, the density function, PR(s, a, ·) : R → R is continuous and
bounded.

This assumption is required so that we can approximate this (continuous) density function with
infinitely many samples from Yn. This in turn enables us to define the σ-fields in terms of the Yn,
placing the strong mixing assumptions instead on Yn, rather than on our sequence, {θt}. The next
two assumptions are the typical assumptions placed on the sequence of σ-fields for bootstrapping
proofs. Essentially, Assumptions 2 and 3 both place a strong mixing assumptions on Yn. Mixing
assumptions are a common restriction in reinforcement learning, related to ergodicity of an MDP [2,
7]. Any MDP satisfying the above mixing assumptions is ergodic [3]. Any stationary positive
recurrent Markov chain (essentially ergodic) with trivial tail field is strongly mixing [6](Page 553).

Assumption 2 There exists d > 0 such that for all m,n ∈ N, A ∈ Dn
−∞ and B ∈ D∞

n+m,

|P (A ∩B)− P (A)P (B)| ≤ d−1e−dm

1

Assumption 3 There exists d > 0 such that for all m,n, q ∈ N, A ∈ Dm+q
m−q ,

E|P (A|Dj : j �= n)− P (A|Dj : 0 < |n− j| ≤ m+ q)| ≤ d−1e−dm

The remaining assumptions are on the sequence of function values, {g(θt)} (implicitly assumptions
on the sequence of weights {θt}). The assumptions include boundedness assumptions on certain
moments of the sequence, a smoothness condition and an m-dependence requirement.

Assumption 4 g is a continuos bounded function and supj≥1 E||g(θj)||12 < ∞

Assumption 5 (Conditional Cramer condition) There exists d > 0 such that for all m,n ∈ N,
d−1 < m < n and all t ∈ R with t ≥ d,

E|E[eit(g(θn−m)+...+g(θn+m)|Dj : j �= n]| ≤ e−d

Assumption 6 For |s− t| > m, Cov(g(θs), g(θt)) = 0

We expect our Q-values to change smoothly and to remain reasonably bounded, so Assumptions 4
and 5 are unrestrictive assumptions. The m-dependence assumption is slightly stronger, though m
can be quite large, so we can still have quite long-range dependence.

Finally, we want to say something about the properties of the algorithm, essentially restricting to
non-divergent algorithms and those that have a measurable update function.

Assumption 7 Mn = Var(n−1/2(g(θ1)+. . .+g(θn))) is non-singular ∀ n and M = limn→∞ Mn

exists and is non-singular.

This assumptions is necessary to ensure that we reach a normal distribution in the limit and can
therefore use an Edgeworth expansion to approximate the true distribution. Notice therefore that for
non-convergent (but not divergent) sequences of θn, we can still apply the bootstrap, as long as the
conditions on Mn are met. For convergent sequences, Mn → 0, because the weights stop changing;
however, in practice, the weights will always oscillate around the true θ0. Therefore, assuming the
above does not practically restrict convergence. We expect that we can drop this condition and in
fact expect many of the conditions to simplify assuming θt → θ0, but we leave this to future work.

Assumption 8 For the algorithm update function U : R × Rk×d → Rd which takes the reward
and last k weight vectors as input to produce the next weight vector, for given k weight vectors,
U(·,θt,θt−1, . . . ,θt−k) is a measurable function.

This assumption is not restrictive, as most algorithm will smoothly update θ based on the reward.

With just these assumptions, we can proof the main result.

Theorem 1 Given that Assumption 1-8 are satisfied and there exists constants C1, C2 > 0, 0 <
α ≤ β < 1/4 such that C1nα < l < C2nβ (i.e. l increases with n), then the moving block bootstrap
produces a one-sided confidence interval that is consistent and has a coverage error of o(n−1/2) for
the studentization of the mean of the process {Q1(s, a) = f(θ1, s, a), Q2(s, a) = f(θ2, s, a), . . .}.

Proof: For the proof, we need to satisfy the seven assumptions in Lahiri’s Theorem 4.1 [5]. We
will call these assumptions requirements to distinguish them from our assumptions. The proof will
be organized based on these requirements (which will be stated below). The statements of the
requirements will be italicized with justification of how that requirement is satisfied following the
italicized statement.

Requirement 1 (C.1’): supj≥1 E||g(θj)||4 < ∞ and M = limn−>∞ Mn exists and is non-
singular Satisfied by Assumptions 4 and 8

Requirement 2 (C.2): There exists a d > 0 such that for n,m ∈ N with m > d−1, there exists a
Dn+m

n−m measurable p-variate random vector Ȳn,m for which

E||g(θn)− Ȳn,m|| ≤ d−1e−dm

2

C.2 is satisfied by Assumption 1 and by the construction of Yn, which we justify in the following.
Essentially, this requirement says that for infinitely many Yn, we can accurately approximate g(θn).
In Theorem 1 [4], an exponential decrease rate is proved for a kernel density estimator. Choose a
kernel K satisfying:

1. The kernel function K is a probability density of bounded variation such that
�
K2(u)du <

∞; further, the derivative K � exists and is integrable.

2. For the parameters hn, pn defined in [4], nhn/pn → ∞.

Now, by the theorem, because PR is bounded and continuous and Yn is strongly mixing, the error in
the approximation of PR using samples from Yn decreases exponentially with n for some constants
c1, c2 (based on norms on K, some constants, etc.), at a rate of

err ≤ c1e
−c2n (1)

With an accurate PR distribution for a given (s, a), we can exactly compute the mean for the dis-
tribution Pa(< Θt, st > | < θt−1, st−1 >, . . . , < θt−k, st−k >). Let Ȳn,m be the function g
applied to the approximation of this distribution using the current approximation of PR with the
2m samples, Yn−m, . . . , Yn+m. The construction of Ȳn,m is possible because we have a measur-
able function (Borel function) between the σ-fields (on Yn−m, . . . , Yn+m) and the σ-field on g(Θ)
drawn from Pa(< g(Θt), st > | < θt−1, st−1 >, . . . , < θt−k, st−k >). We have this measurable
function because the kernel estimator is continuous, the update from a given reward to weight is
measurable and g is continuous, making the composition measurable. Therefore, the error between
this approximated mean and the L2 norm of the random variable will decrease with the some C
times the above rate (Equation 1), for some large enough C (which exists because PR and g are
bounded).

Setting d = min{(C × c1)−1, c2}, we obtain the desired result.

Requirement 2 (C.2 (ii)): supj≥1 E||g(θj)||12 < ∞
The twelfth moment is bounded by Assumption 4.

Requirements 3 and 5 (C.3 and C.5) correspond exactly to our Assumptions 2 and 3.

Requirement 4 (C.4) corresponds exactly to our smoothness Cramer condition, Assumption 5.

Finally, there are two more requirements that restrict the heterogeneity of the means µt asymptoti-
cally. Let

mt = EUt = l−1
l�

j=1

gt+j−1

Mnt = Var(
√
lUt)

Ut = l−1
l�

j=1

g(Θt+j−1)

where l is the block length and 1 ≤ t ≤ b. Recall Mn = Var(n−1/2(g(Θ1) + . . . + g(Θn))) and
ḡ(µn) = n−1(g1, . . . , gn), where gi = E[g(Θi].

Since the sequence of µt eventually reaches it’s limiting distribution (stationary) with mean µ and
variance σ, for n0 ∈ N, µ = µt = µt+1 = . . . for all t > n0. Note that this Markov chain becomes
stationary because the θt are drawn from a time-homogenous Markov chain, and time-homogenous
Markov chains always reach a limiting distribution [1]. This fact enables us to satisfy the asymptotic
heterogeneity conditions.

Requirement 6 (C.6):

lim
n→∞

max{l2||mt − µ̄n|| : 1 ≤ t ≤ b} = 0

3

Requirement 7 (C.7):1

lim
n→∞

max{l2||Mnt −Mn|| : 1 ≤ t ≤ b} = 0

Note that as n → ∞, then by the assumption that C1nα < l < C2nβ , l also goes to ∞. As l → ∞,
the finite initial number of samples with means different from µ (the stationary distribution) will
be dominated by the infinite tail of samples in the stationary distribution with mean µ. Therefore,
clearly both mt → g(µ) and µ̄n → g(µ)as n → ∞. Similarly, the tail has the same variances;
therefore, the difference between Mn,t and Mn goes to zero.

Therefore, because our data meets the assumptions in [5], we know that the bootstrap is consistent
and the coverage error for the studentized confidence interval on {Qn} is o(n−1/2).

References
[1] D. Aldous. Random walks on finite groups and rapidly mixing Markov chains. Séminaire de

Probabilités XVII 1981/82, pages 243–297, 1983.
[2] P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted reinforcement learn-

ing. Advances in Neural Information Processing Systems, 19:49, 2007.
[3] R.M. Gray. Probability, random processes, and ergodic properties. Springer Verlag, 2009.
[4] C Henriques and P Oliveira. Exponential rates for kernel density estimation under association.

Statistica Neerlandica, Jan 2005.
[5] SN Lahiri. Edgeworth correction by moving blockbootstrap for stationary and nonstationary

data. Exploring the Limits of Bootstrap, pages 183–214, 1992.
[6] T. Orchard, MA Woodbury, L.M. Le Cam, J. Neyman, and E.L. Scott. Proceedings of the 6th

Berkeley Symposium on Mathematical Statistics and Probability, 1972.
[7] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelli-

gence and Machine Learning, 4(1):1–103, 2010.

1Note that C.7 is slightly different in the theorem, but Lahiri mentions that it can be simplified to what we
have here because of requirement C.1

4

