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Abstract— A fundamental difficulty in robotics arises from
changes in the experienced environment—periods when the
robot’s current situation differs from past experience. We present
an architecture whereby many independent reinforcement learn-
ing agents (or demons) observe the behaviour of a single robot.
Each demon learns one piece of world knowledge represented
with a generalized value function. This architecture allows the
demons to update their knowledge online and off-policy from the
robot’s behaviour. We present one approach to active exploration
using curiosity—an internal measure of learning progress—and
conclude with a preliminary result showing how a robot can
adapt its prediction of the time needed to come to a full stop.

I. INTRODUCTION

Adapting to unanticipated situations presents a considerable
challenge for robots. When robots are trained extensively in
one particular environment or distribution of states (for exam-
ple, driving on a hardwood floor), many traditional learning
and control approaches will fail to explore and update their
world knowledge when faced with a new distribution—e.g.
driving on thick carpet, or in more extreme situations, ice or
mud. The key challenge is to detect that modelling errors exist
and to learn about the change. One insight is that to detect
modelling errors, the robot’s knowledge must be in a form
that is verifiable, so that the robot can test the knowledge
directly from experience. When the knowledge has errors and
the robot can learn about it, then it is worthwhile for the robot
to spend time learning about a new phenomenon.

There are two common approaches for generating models.
One approach generates models in the lab, carefully describing
all expected phenomena. When this approach is feasible, it
will often result in models that are overly cautious, and
these models still will not adapt to unanticipated changes.
Another approach is to assume that the expected distribution
is well-modelled by the robot’s initial experience or training
distribution. A dataset is gathered for the training distribution,
with the hope that all the real-world experience will match the
training distribution. These approaches will work to a point,
but will often fail dramatically when environmental conditions
change, for example when the robot veers off a paved road and
encounters a new kind of terrain (dirt and grass). Standard
methods, such as on-policy reinforcement learning, attempt
to correct the behaviour but do not acquire knowledge about
other policies on this new road condition.

We propose off-policy knowledge maintenance as a viable
approach to this problem of learning about (and adapting to)
changing environmental conditions. It would be advantageous
for a robot to acquire knowledge about a new environment
while still performing and learning about its original be-
haviour. Additional benefits might arise if some measure of
off-policy learning progress was used to influence behaviour
in a way that causes the robot to explore changing dynamics—
in essence, becoming “curious” about its new environment.

The notion that curiosity-like behaviour of this kind arises
from rewarding learning progress—and can be used to shape
learning—has a rich history[1, 2, 3] and has been applied
successfully to a robotic task [4]. Curiosity will reward actions
that induce changes to the learned knowledge. In some sense,
this is akin to detecting that the current knowledge has errors,
and responding by performing the same action in similar
circumstances to learn more about it.

II. FORMULATION

Using the recently introduced GQ(λ) reinforcement learning
algorithm of Maei et al. [5], it is now possible for an agent
to behave using one policy and at the same time update
its knowledge about other policies. The GQ(λ) algorithm is
online, off-policy, stable under function approximation, and
efficient with a time complexity that is linear in the size of
the representation. It is therefore well suited to agents that
must adapt and explore complex real-world environments,
where function approximation is required to make tractable
the essentially infinite variability of real-world dynamics.

Using the GQ(λ) algorithm as a framework, we propose
that learned world knowledge can be effectively represented
as answers to questions about following some policy. For
example, one question could be “If I slammed on the brakes,
then how long will it be before I come to a complete
stop?” The answer is learned in the form of a generalized
value function, represented as a linear function of the state
representation. As the learning algorithm is off-policy, the
system can learn answers even when the robot’s behaviour
does not match the exact sequence of actions (policy) being
explored by the question.

The learning architecture presented in this work has the
robot’s single sensory-motor stream being used to train mul-
tiple learners (termed “demons”) in parallel. Each demon
is an independent reinforcement learning agent updating a
generalized value function that estimates the expected return
from following a policy π. The return comes from an in-
stantaneous reward function r, continuing at each time step
with probability γ until termination, and finally collecting the
outcome reward of z. The question q asked by a demon is thus
represented by a tuple: q =< r, z, γ, π >. This formulation
provides a unified approach to modelling both discounted and
episodic tasks.

The generalized value function computes the expected re-
turn from following π for a duration T governed by γ:

Qq(s, a) = E[rt+1 + . . . + rt+T + zt+T |st = s, at = a]

Each demon approximates its answer using a linear function,
namely the dot product of a parameter vector w with the state-
action feature representation φ(s, a).

Qw(s, a) = wT · φ(s, a) ≈ Qq(s, a).
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Thus the demon d can be represented in the form of a question
and an answer: d =<q, w>. This representation allows many
bits of knowledge to be represented, and the algorithms allow
the internal models to updated online.

In this framework, a curiosity driven behaviour can detect
the demons are learning and actively guide the behaviour to
learn more. We define an instantaneous curiosity reward rt

c for
learning progress as the sum over all demons of changes in
parameter weight wd at time t (Eq. 1). This reward function
can be used alone for curiosity, or it can be combined with
external reward to provide a blended behaviour.

rt
c =

∑
d

||wt
d − wt−1

d ||. (1)

III. EXAMPLE

We describe a small but concrete example to demonstrate
how an off-policy demon updates a robot’s knowledge. We use
a physical three-wheeled robot as our experimental platform.
For simplicity, we define a single demon that is predicting the
time required for the robot’s wheels to come to a complete stop
under current environmental conditions. Initially the robot is
driving on wood, but at some point the robot is suspended in
the air and the demon must update its predictions.

The robot has two possible actions, specified in terms of
applied motor voltages: ROTATE at full speed and STOP. The
robot’s state is represented by a 16 bit vector, combining
eight discretized velocity levels for one wheel (vwheel) with a
Boolean variable mspinning for the desired command (ROTATE
or STOP). The desired command is provided by the environ-
ment. At each timestep, one state bit is active, indicating the
current combination of desired mode and observed velocity.

The robot’s behaviour is not influenced by the demon. The
desired mode mspinning is set as a square wave, with periods
of maximum and zero wheel velocity each lasting 5 seconds.
The desired mode is used to define a task reward, and a learned
robot behaviour quickly converges to the optimal policy of
spinning and stopping according to the desired mode. We
define a single demon that learns the number of time steps
required for the wheels to come to a complete stop.

q =<r = 1, z = 0, γ = 1{vwheel 6=0}, π = STOP > .

Note the demon’s policy differs from the robot’s behaviour
policy. However, the behaviour regularly provides relevant
experience for the demon to learn accurate predictions.

For the experiment, the value function for the demon was
initialized to zero, and the robot was placed on a wood floor.
As the robot followed its optimal task policy, the demon
learned until value function convergence. The robot was then
suspended in the air—where stopping characteristics are dif-
ferent due to greatly reduced friction and inertia—and run
again until demon convergence. During the robot’s task-based
behaviour, the demon was maintaining its knowledge of the
world, in this case updating its estimates of the time needed for
this wheel to come to a complete stop from different internal
states. The learned value function Qw(s, a) represents the
demon’s stopping time estimates. The time-varying progress
of the value function entry for stopping from maximum wheel

Fig. 1. Plot of the predicted stopping time for two different environments,
wood floor and suspended, measured from the value function Qw(s, a). While
the robot is following its behaviour policy, the off-policy learner updates its
predictions about the time needed to come to a full stop. True times were
empirically acquired, and agreed with the demon’s estimates once converged.

speed in its current environment is shown in Fig. 1. While
this study was conducted for a single question, an off-policy
demon framework allows many such questions to be answered
in parallel, and a study of this will be presented in future work.

Experiments with curiosity-based learning are ongoing, to
explore how active learning can improve the rate of demon
convergence. For this problem, there are behaviours that
provide faster demon convergence (rapid alternation between
ROTATE and STOP). We expect that curiosity should be able to
find learning behaviours that are at least as efficient as these.

IV. DISCUSSION

By using off-policy demons to maintain knowledge, the
robot is continually learning about its current environment.
Models that are defined in the lab and not subject to revision
from experience are fundamentally not correctable by the
system. A key aspect of this approach is that knowledge must
be in a form that can be updated directly from the robot’s
experience. This requires that knowledge about the world is
expressed in terms of a robot’s subjective experience.

In summary, we present a new architecture that allows the
robot to continually update its knowledge online using off-
policy demons. We also describe a method whereby a robot
can actively adapt its behaviour by incorporating a curiosity-
based reward to examine those aspects of world that are
changing and learnable. We expect these ideas will lead to
flexible, continually adapting robot learning systems.
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