
SMAI-JCM
SMAI Journal of
Computational Mathematics

Theoretical and Practical Aspects of
Space-Time DG-SEM

Implementations

Lea Miko Versbach, Viktor Linders,
Robert Klöfkorn & Philipp Birken
Volume 9 (2023), p. 61-93.
https://doi.org/10.5802/smai-jcm.95
© The authors, 2023.

The SMAI Journal of Computational Mathematics is a member
of the Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
Submissions at https://smai-jcm.centre-mersenne.org/ojs/submission

e-ISSN: 2426-8399

https://doi.org/10.5802/smai-jcm.95
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/
https://smai-jcm.centre-mersenne.org/ojs/submission

SMAI Journal of Computational Mathematics
Vol. 9, 61-93 (2023)

Theoretical and Practical Aspects of Space-Time DG-SEM
Implementations

Lea Miko Versbach 1

Viktor Linders 2

Robert Klöfkorn 3

Philipp Birken 4

1 Centre for Mathematical Sciences, Numerical Analysis, Lund University, Lund, Sweden
E-mail address: lea_miko.versbach@math.lu.se
2 Centre for Mathematical Sciences, Numerical Analysis, Lund University, Lund, Sweden
E-mail address: viktor.linders@math.lu.se
3 Centre for Mathematical Sciences, Numerical Analysis, Lund University, Lund, Sweden
E-mail address: robertk@math.lu.se
4 Centre for Mathematical Sciences, Numerical Analysis, Lund University, Lund, Sweden
E-mail address: philipp.birken@math.lu.se.

Abstract. We discuss two approaches for the formulation and implementation of space-time discontinuous Galerkin
spectral element methods (DG-SEM). In one, time is treated as an additional coordinate direction and a Galerkin
procedure is applied to the entire problem. In the other, the method of lines is used with DG-SEM in space and
the fully implicit Runge–Kutta method Lobatto IIIC in time. The two approaches are mathematically equivalent
in the sense that they lead to the same discrete solution. However, in practice they differ in several important
respects, including the terminology used to describe them, the structure of the resulting software, and the interaction
with nonlinear solvers. Challenges and merits of the two approaches are discussed with the goal of providing the
practitioner with sufficient consideration to choose which path to follow. Additionally, implementations of the two
methods are provided as a starting point for further development. Numerical experiments validate the theoretical
accuracy of these codes and demonstrate their utility, even for 4D problems.

2020 Mathematics Subject Classification. 65M60, 65M99.
Keywords. Space-time, Discontinuous Galerkin, DG-SEM.

1. Introduction

Typically, partial differential equations are numerically treated with a method of lines ansatz; the
spatial directions are discretized first, leaving the time variable continuous. The resulting system of
ordinary differential equations is then solved using a numerical method for initial value problems.

An alternative ansatz is to treat the time dimension simply as another coordinate direction, and
discretize the whole space-time problem simultaneously. This approach has several advantages: Moving
boundaries can be treated more easily [89] and parallelization in time is made possible [33]. However,
it also imposes new challenges since the temporal direction is special and needs to follow a causality
principle: The solution at a given time is affected and determined only by the solution at earlier
times, never the other way around. An overview of space-time computations in practical engineering
applications during the last 25 years can be found in [88].

Here, we consider the discontinuous Galerkin spectral element method (DG-SEM); see e.g. [8] for an
overview and [58] for a detailed exposition. This method has been very successful for spatial discretiza-
tions as it is unstructured, of high order and is very suitable for high performance computing [61].

https://doi.org/10.5802/smai-jcm.95
© The authors, 2023

61

mailto:lea_miko.versbach@math.lu.se
mailto:viktor.linders@math.lu.se
mailto:robertk@math.lu.se
mailto:philipp.birken@math.lu.se
https://doi.org/10.5802/smai-jcm.95

L.M. Versbach, V. Linders, et al.

Further, DG-SEM fits the so-called Summation-By-Parts Simultaneous-Approximation-Term (SBP-
SAT) framework [16, 35], implying L2 stability for linear problems. Further, in the last decade, work
within this framework has resulted in the development of entropy stable discretizations of arbitrarily
high order [27, 28]. Such methods are provably stable for nonlinear time-dependent partial differential
equations adjoined with a convex entropy, e.g. the compressible Euler and Navier–Stokes equations.
Under the assumption of nonnegative density and pressure, no additional mechanisms such as filters
or artificial dissipation are required for stability (although there may be other reasons for incorpo-
rating such techniques in a solver). This makes DG-SEM a very attractive choice for applications in
computational fluid dynamics (CFD).

Our motivation to consider DG-SEM in a space-time formulation is twofold: Firstly, entropy stability
can be extended to incorporate the temporal discretization [31], thereby resulting in a nonlinearly
stable, fully discrete scheme. This stability propery would generally be lost if instead a generic time
marching scheme were to be used. Secondly, the formulation naturally allows for perfectly scaling
parallelization in time, with a speedup equal to the number of discretization points within a time
element. There are other approaches for parallelization in time that allow for much larger speedups,
but need an initial factor of additional processors before giving any speedup at all [74].

There is a strong connection between DG discretizations in time and fully implicit Runge–Kutta
(RK) methods: DG-SEM in time using an upwind numerical flux is equivalent to the Lobatto IIIC
family of RK methods, in the sense that the two methods give the same numerical solution [10, 69, 80].
This observation lends itself to two very different strategies for implementing DG-SEM in space and
time. We can either use the method of lines with DG-SEM in space and Lobatto IIIC in time, or we
can use space-time DG-SEM.

While mathematically equivalent, there are important differences between these two approaches:

• DG and RK methods have been developed largely independently. Hence, there is a language
barrier between these communities, where different terminology is used, e.g. when it comes to
the various concepts of order.

• The two approaches leads to different algebraic systems of linear or nonlinear equation. If solved
exactly, these systems have the same solutions. However, in practice these solutions must be
approximated, typically using iterative solvers. The interplay between iterative methods and
the algebraic systems will in general be different, thus the two methods yield unequal numerical
solutions.

• Implementing the two approaches lead to very different software structure, in particular if we
wish to reuse existing software. This implies that various numerical tools and techniques may
be more readily accessible in one implementation than the other, depending on whether the
DG or the RK approach is chosen.

In this paper, we discuss these differences in detail so that practitioners can make an educated choice
about which path to follow. Further, we present a code base for the two approaches that may be used
as a basis for further development of the methods. In particular, we make use of the open source
softwares Dune, the Distributed and Unified Numerics Environment, which is a modular toolbox
for solving partial differential equations (PDEs) with grid-based methods [21]. We also make use of
Assimulo [2], a solver package for initial value problems.

This paper is organized as follows: Following a brief literature review below, our target equation
and choice of software is introduced in Section 2. In Section 3 we introduce the method of lines
approach using DG-SEM with Lobatto IIIC for time stepping. In Section 4 the space-time DG-SEM
is described. Throughout, code snippets are included to illustrate the details of the implementations.
Theoretical aspects of the two approaches are discussed in Section 5. In particular, we demonstrate the

62

Aspects of Space-Time DGSEM

mathematical equivalence of DG-SEM in time and Lobatto IIIC methods, and relate the terminology
employed by the DG and RK communities. Practical aspects of the respective implementations are
the subject of Section 6. Here we compare algorithmic and implementation specific requirements and
merits of the two approaches. In Section 7 we present numerical experiments that validate some of
our discussion points before we finish the article with some concluding remarks in Section 8.

The material in this paper is part of the thesis [96]. For full disclaimer, see Author Contributions.

1.1. Further reading

For the practitioner who wishes to delve deeper into various aspects of the topics discussed in this
paper, we here suggest a few places to start for further reading.

The book [58] provides a background on spatial DG-SEM as well as a guide to its implementation.
An overview of entropy stable DG-SEM is given in [36] and full mathematical detail is provided in [15].
The theory builds upon the SBP-SAT framework, reviews of which are found in [24, 87].

For a broad background on implicit Runge–Kutta methods, see [40]. An overview of the properties of
DG-SEM and other SBP-SAT methods for time integration viewed from the Runge–Kutta perspective
is given in [67]; see also [76]. An evaluation of fully implicit RK methods for use in computational
fluid dynamics is given in [48], including discussions of how to solve the nonlinear algebraic systems.

An overview of space-time finite element (FE) methods (with particular focus on polynomial-based
methods such as DG) is provided in [32, Section 1]. See the references therein for a broad perspective
on unstructured meshes, choices of basis functions, interpolation and integration.

There is an extensive literature on applications of space-time FE/DG methods for particular classes
of partial differential equations. For application to hyperbolic problems, see e.g. [26, 31, 47], advection-
diffusion problems [56, 86], the compressible Euler equations [92, 94], wave equations [32, 57, 93], the
Schrödinger equation [52], the Navier–Stokes equations [55, 56, 73] and fractional PDEs [63].

Several nonlinear solvers with application to implicit RK and DG methods have recently been
presented in the literature. For Newton-type methods, see e.g. [25, 79] and the references therein.
Solvers utilizing multigrid techniques are discussed and analyzed in [29, 34, 97].

Preconditioners for space-time solvers have been studied for the advection, Euler, and Navier–
Stokes equations [79], compressible Navier–Stokes equations [25, 29, 98], different parabolic PDEs [51,
70], convection-diffusion problems in particular [30, 38, 95], elliptic problems [41, 42], and linearized
versions of the compressible Euler equations [90, 91].

2. Governing Equations and Simulation Software

We consider a general class of time dependent nonlinear advection-diffusion-reaction problems
∂tu = L(u) := −∇ ·

(
Fc(u) − Fv(u,∇u)

)
+ S(u) in Ω × (0, T), (2.1)

for a vector valued function u : Ω × (0, T) → Rr with r ∈ N+ components. Here, Ω ⊂ Rd, d = 1, 2, 3.
Suitable initial and boundary conditions are assumed to be available. Fc and Fv describe the convective
and viscous fluxes respectively, and S is a source term. We allow for the possibility that any of the
coefficients in the partial differential equation (PDE) (2.1) depend explicitly on the spatial variable x
and on time t, but to simplify the presentation we suppress this dependency in our notation.

For the discretization of (2.1) we consider two approaches: The first is a method of lines approach,
in which the spatial differential operator is discretized using a DG-SEM approximation, yielding a
system of ordinary differential equations (ODEs). This system is then solved using a time stepping
scheme. In particular, we consider the Lobatto IIIC family of implicit Runge–Kutta methods.

The second approach is to apply the DG-SEM methodology to the entire equation (2.1), thereby
obtaining a fully implicit DG space-time discretization.

63

L.M. Versbach, V. Linders, et al.

In the following we will include code snippets to clarify the overall structure of the mathematical
formulations at hand and to illustrate how the two approaches can be implemented in an existing
code base. We utilize Dune [6], which is a free and open source software framework for the grid-based
numerical solution of PDEs. Dune provides one of the most flexible and comprehensive grid interfaces
available, allowing n-dimensional grids, which we will use in this paper. Additionally, state-of-the-art
features such as parallelization, grid adaptivity and load balancing, and moving grids are supported.
From the variety of Dune modules available we will make use of the Python based front-end for
Dune-Fem [22] and Dune-Fem-DG [19], which is able to handle weak forms of PDEs described in
the Unified Form Language (UFL) [1]. As shown in the next section, the description of weak forms
with UFL is straight forward and easy to use. Internally, PDEs described in UFL are translated into
C++ code just-in-time, to ensure that the resulting simulation code is performant. For a more detailed
description we refer to [19, 22] and the tutorial [20].

The implementation of the Lobatto IIIC method (see [64]) has been done in Assimulo [2], a Python
package that can be readily used together with Dune-Fem. Assimulo provides a high-level interface
for a wide variety of classic and modern solvers of ordinary differential equations. e.g. SUNDIALS [45]
and implicit Runge–Kutta solvers [39, 40]. The original codes, which are written in FORTRAN, C or
Python, are wrapped into Assimulo keeping their original form. The user only needs to interact with
the Python interface to provide the ODE and the initial condition, and possible additional information
such as the Jacobian if needed by the solver. Solver options in Assimulo include explicit and implicit
Euler, Runge–Kutta34, RADAU5ODE, CVODE, IDA, ODASSL, LSODAR and GLIMDA.

The appendix “Installation of Dune and Assimulo” contains instructions on how to install Dune-
Fem-DG and Assimulo.

3. Method of Lines DG-SEM

In this section we describe the method of lines (MOL) approach to discretizing (2.1). A generic DG
method is first presented, followed by the specifications needed to obtain the DG-SEM. Finally, the
Lobatto IIIC time stepping method is specified.

3.1. DG-SEM in Space

Given a tessellation Th of the computational domain Ω into open elements E with
⋃

E∈Th
E ⊂ Ω,

consider the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rr) : v|E ∈ [Pp(E)]r, E ∈ Th}, p ∈ N, (3.1)

where Pp(E) is the space of polynomials whose degree do not exceed p. We let Γi denote the set of
intersections between all pairs of elements in Th and accordingly Γ the set of all intersections including
the boundary of Ω. In Dune, the following commands generate the tessellation Th and the space Vh:

d = 2 # 1,2,3
from dune.grid import cartesianDomain , structuredGrid as leafGrid
create grid that tessellates [0, 1]d with 10 elements in each coordinate direction
T_h = leafGrid (cartesianDomain ([0]*d, [1]*d, [10]*d))

from dune.fem.space import dglagrangelobatto
p = 3 # polynomial degree
create DG space with Lagrange basis and Gauss–Lobatto interpolation points
V_h = dglagrangelobatto (T_h , order=p)

64

Aspects of Space-Time DGSEM

We seek an approximate solution uh ∈ Vh by discretizing the spatial operator L(u) in (2.1). To this
end we define for all test functions ψ ∈ Vh,

⟨ψ,Lh(uh)⟩ := ⟨ψ,Kh(uh)⟩ + ⟨ψ, Ih(uh)⟩. (3.2)
Here, the element integrals are given by

⟨ψ,Kh(uh)⟩ :=
∑

E∈Th

∫
E

(
(Fc(uh) − Fv(uh,∇uh)) : ∇ψ + S(uh) ·ψ

)
dx, (3.3)

where : denotes the inner product of two second order tensors. In the code this looks as follows:

from ufl import TrialFunction , TestFunction , inner , grad , dx
trial and test function
u = TrialFunction (V_h)
psi = TestFunction (V_h)
element integral from equation (3.3)
K_h = inner(F_c(u) - F_v(u)*grad(u)), grad(psi)) * dx \ # fluxes

+ inner(S(u), psi) * dx # source term

The surface integrals are given by

⟨ψ, Ih(uh)⟩ :=
∑
e∈Γi

∫
e

(
{{Fv(uh, [[uh]]e)T : ∇ψ}}e + {{Fv(uh,∇uh)}}e : [[ψ]]e

)
dS

−
∑
e∈Γ

∫
e

(
Hc(uh) −Hv(uh,∇uh)

)
: [[ψ]]e dS. (3.4)

Here, {{uh}}e and [[uh]]e denote the average and jump of uh over interface e between neighbouring
elements E and K. Specifically,

{{uh}}e := 1
2(uE + uK) and [[uh]]e :≠=: (uE − uK), (3.5)

where ̸= is the outward pointing normal vector from the point of view of element E. This formulation
arises from considering the weak form of the problem: Replace u by uh in (2.1), multiply by the test
function ψ and integrate the spatial terms by parts. Here, Hc and Hv are suitable numerical fluxes
imposed at e, approximating Fc and Fv respectively. Details of the derivation are found in [3].

The convective numerical flux Hc can be any flux known for standard finite volume methods. Among
other options available in Dune-Fem-DG [18, 19], we use the local Lax–Friedrichs (Rusanov) flux

Hc
LLF(uh)|e := {{Fc(uh)}}e + λe

2 [[uh]]e (3.6)

where λe is an estimate of the maximum wave speed on the interface e.
A wide range of diffusion fluxes Hv can be found in the literature; see [11] and the references

therein. However, only fluxes from the Interior Penalty family can currently be described in UFL due
to the missing description and implementation in UFL of lifting terms needed for other fluxes. For the
Interior Penalty method the flux is chosen to be

Hv
IP(u,∇u) = {{∇u}}e − η

he
{{Fv(u,∇u)}}e[[u]]e (3.7)

with η being the penalty parameter. The corresponding code reads:

from ufl import FacetNormal , FacetArea , CellVolume , avg , jump , dS , ds
normal and mesh width
n = FacetNormal (V_h)
h_e = avg(CellVolume (V_h)) / FacetArea (V_h)
surface integral from equation (3.4)

65

L.M. Versbach, V. Linders, et al.

I_h = inner(jump(H_c(u), jump(psi)) * dS \ # interior skeleton for convective part
+ H_cb(u)*psi*ds \ # domain boundary for convective part
- inner(jump(F_v(u),n),avg(grad(psi))) * dS \ # symmetry term
- inner(avg(F_v(u)*grad(u)),jump(psi ,n)) * dS \ # consistency term
+ eta/h_e*inner(jump(u, avg(F_v(u))*n),jump(psi ,n)) * dS # penalty term

To obtain the DG-SEM we follow [59, 60]. First, we restrict our focus to cuboid meshes and map
each element E ∈ Th to a reference element using an affine mapping. In the Dune implementation,
the reference element is [0, 1]d. This is due to a generic construction of reference elements of different
shapes in arbitrary dimensions in Dune; see [23] for details.

In each spatial dimension, a set of p+ 1 Legendre–Gauss–Lobatto (LGL) nodes are introduced and
a corresponding set of Lagrange basis polynomials are defined. The discrete solution uh(t) ∈ Vh takes
the form

uh(t, x) =
∑

i

ui(t)ψi(x),

where the sum is taken over all tensor product LGL nodes in d dimensions and ψi(x) is constructed
as the product of Lagrange basis polynomials along each dimension. This is achieved through the
command

create discrete function given a discrete space
u_h = V_h. function (name="u_h")

The convective flux Fc and the viscous flux Fv are similarly approximated in the Lagrange basis. A
variety of implementations for Fc and Fv is provided by the dolfin_dg package (see [46]), which we
use for the Euler equations.

Finally, the element and surface integrals in (3.3) and (3.4) are approximated using Gauss–Lobatto
quadrature rules. The collocation of the quadrature with the LGL nodes results in a diagonal positive
definite local mass matrix. The choice of a cuboid mesh and a tensor product formulation of the basis
functions ensures that the global mass matrix remains diagonal positive definite and is consequently
trivially invertible.

3.2. Temporal Discretization

After spatial discretization, we obtain a system of ODEs for the coefficient functions u(t) =
(u1(t), u2(t), . . .)⊤, which reads

u′(t) = F (t,u(t)), t ∈ (0, T), u(0) = u0. (3.8)

Here, F (t,u(t)) = M−1Lh(uh(t)), where Lh is defined in (3.2) and M is the (diagonal) global mass
matrix of the DG-SEM discretization. The initial data u0 for (3.8) is given by the projection of u0
onto Vh.

Any Runge–Kutta method can in principle be used to solve (3.8). Explicit methods are easy to
implement but suffer from severe time step restrictions for stiff systems.

Consider instead an implicit RK method with Butcher tableau

c A

b⊤

The stage equations of the RK method take the form

u = 1 ⊗ un + ∆tn(A⊗ Iξ)F , (3.9)

66

Aspects of Space-Time DGSEM

where the vector u⊤ = (u1, . . . ,uNτ) contains the Nτ intermediate solution stages and F⊤ = (F (tn +
∆tnc1,u

1), . . . ,F (tn + ∆tncNτ ,u
Nτ))⊤. Here, un denotes the RK solution in the previous time step

and ∆tn = tn+1 − tn is the time step. The new solution is given by

un+1 = un + ∆tn(b⊤ ⊗ Iξ)F . (3.10)

Herein we consider a particular family of implicit RK methods, namely Lobatto IIIC [49, 64]. These
methods are A-, L- and B-stable and are thus suitable for stiff and nonlinear problems. The order of the
Nτ -stage Lobatto IIIC method is 2(Nτ − 1) and the order of the individual stages is Nτ − 1. However,
this choice of method is also motivated by its equivalence to a space-time DG-SEM formulation, which
is described in the next section. The Butcher tableaus for the 2-, 3- and 4-stage Lobatto IIIC methods
are found in the appendix “Butcher tableaus”.

The following code is an example how to use the Lobatto IIIC solvers in Assimulo:

import solver form assimulo
import assimulo .ode as aode
import assimulo . solvers as aso
import Lobatto IIIC solvers
from Lobatto_IIIC_2s import Lobatto2ODE
from Lobatto_IIIC_3s import Lobatto3ODE
from Lobatto_IIIC_4s import Lobatto4ODE

set up explicit problem, user-defined rhs
prob = aode. Explicit_Problem (rhs , y0 , t0)
user-defined Jacobian
prob.jac = jacobian
choose solver
solver = Lobatto2ODE (prob)
run solver until endTime
t, y = solver . simulate (endTime)

4. Space-Time DG-SEM

We now consider DG-SEM applied to (2.1) with the time variable t treated simply as an additional
dimension. The result is space-time DG-SEM.

Defining the gradient ∇ :=
(
∇, ∂

∂t

)
and the new convective and viscous fluxes

F c =
[
Fc u

]
, F v =

[
Fv 0

]
,

we rewrite (2.1) as a d+ 1-dimensional problem on the space-time domain Ω := Ω × (0, T) ⊂ Rd+1 as

∇ ·
(
F c(u) − F v(u,∇u)

)
= S(u) in Ω. (4.1)

Given a tessellation Th of Ω we introduce the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rr) : v|E ∈ [Pp(E)]r, E ∈ Th}, p ∈ N. (4.2)

Then the space-time DG-SEM discretization of (4.1) follows analogously to (3.3) and (3.4):

⟨ψ,Lh(uh)⟩ := ⟨ψ,Kh(uh)⟩ + ⟨ψ, Ih(uh)⟩, (4.3)

with the element integrals

⟨ψ,Kh(uh)⟩ :=
∑

E∈Th

∫
E

(
(F c(uh) − F v(uh,∇uh)) : ∇ψ + S(uh) ·ψ

)
dx, (4.4)

67

L.M. Versbach, V. Linders, et al.

and the surface integrals

⟨ψ, Ih(uh)⟩ :=
∑
e∈Γi

∫
e

(
{{F v(uh, [[uh]]e)⊤ : ∇ψ}}e + {{F v(uh,∇uh)}}e : [[ψ]]e

)
dS

−
∑
e∈Γ

∫
e

(
Hc(uh) −Hv(uh,∇uh)

)
: [[ψ]]e dS. (4.5)

Here, Γi and Γ have analogous meanings to their spatial counterparts Γi and Γ. The numerical fluxes
are given by

Hc =
[
Hc u∗] , Hv =

[
Hv 0

]
,

where u∗ is a simple upwind flux in time. The reason for using the upwind flux is that it is the only
choice that decouples the temporal elements into time slabs. Effectively, the space-time problem on
Ω × (0, T) is replaced by a sequence of considerably smaller problems, each defined on Ω × (tn, tn+1)
for n = 0, 1, . . .

In our framework, (4.3) can be implemented quite nicely by increasing the dimension and applying
the above discussed modifications1.

d = 2 # 1,2,3 is the spatial dimension
from dune.grid import cartesianDomain , structuredGrid as leafGrid
t_end , timeSteps = 1.0, 10
dt = t_end / timeSteps
create grid that tessellates [0, 1]d × [0, ∆t] with 10 elements in space and 1 element in time
T_h = leafGrid (cartesianDomain ([0]*d + [0], [1]*d + [dt], [10]*d + [1])) # create a space-time grid
p = 3 # polynomial degree
create DG space with Lagrange basis and Gauss–Lobatto interpolation points
V_h = dglagrangelobatto (T_h , order=p)

def appendTime (F, u):
return ufl. as_tensor ([*[[F[k,i] if i<d else u[k] for i in range(d+1)] for k in range(len(u))]])

def F_c(u):
from molspacediscr import F_c # import Fc used in MOL discretization
F_spc = F_c(u) # compute spatial fluxes
append time derivative as last column
return appendTime (F_spc , u)

def F_v(u):
from molspacediscr import F_v # import Fv used in MOL discretization
F_spc = F_v(u) # compute spatial fluxes
append column of zeros since there is no diffusion in time
return appendTime (F_spc , [0.]*len(u))

trial and test function
u = TrialFunction (V_h)
psi = TestFunction (V_h)
element integral from equation (4.4)
K_h = inner(F_c(u) - F_v(u)*grad(u)), grad(psi)) * dx \ # fluxes

+ inner(S(u), psi) * dx # source term

normal and mesh width
n = FacetNormal (V_h)
h_e = avg(CellVolume (V_h)) / FacetArea (V_h)
penalty parameter for Symmetric Interior Penalty scheme
eta = Constant (10*V_h.order**2 if V_h.order > 0 else 1, " penalty ")
surface integral from equation (4.5)

1Note that in 4D (i.e. 3D + time) a UFL patch has been added to introduce the 4D reference elements to UFL code.
See the appendix “UFL patch”.

68

Aspects of Space-Time DGSEM

I_h = inner(jump(H_c(u), jump(psi)) * dS \ # interior skeleton for convective part
+ H_cb(u)*psi*ds \ # domain boundary for convective part
- inner(jump(F_v(u),n),avg(grad(psi))) * dS \ # symmetry term
- inner(avg(F_v(u)*grad(u)),jump(psi ,n)) * dS \ # consistency term
+ eta/h_e*inner(jump(u, avg(F_v(u))*n),jump(psi ,n)) * dS # penalty term

Remark 4.1. It is of practical interest to generalize the space Vh so that the time dimension may
be discretized by polynomials of a different degree than the spatial dimensions. We will henceforth
refer to the number of temporal nodes in each element as Nτ so that the polynomial degree in time
is Nτ − 1. This notation contrasts standard DG terminology, where nodes are typically indexed from
0 to p. Additionally, note that this is the same notation used for the number of stages of the Lobatto
IIIC method in Section 3. Stages are typically indexed from 1 to s. However, to minimize the use of
notation and to make the connection between the two viewpoints clearer, we write Nτ to count the
degrees of freedom within a time element, whether this pertains to the DG or RK interpretation.

The discrete solution uh ∈ Vh takes the form uh(t, x) =
∑

i,n u
n
i ψi(x)ψn(t). Here, the sum is taken

over all tensor product LGL nodes in d+ 1 dimensions. The vector of coefficients is now given by

u = (u1, . . . ,uNτ)⊤, (4.6)

where ui contains all the spatial unknowns in the ith time element.
The space-time discretization (4.3) can alternatively be derived by starting from (3.8) and discretiz-

ing in time with DG-SEM. Multiplying (3.8) by a test function ψ(t) and integrating over the nth time
element results in ∫ tn+1

tn

utψdt =
∫ tn+1

tn

F (t,u(t))ψ(t)dt.

We transform this equation to the reference element [−1, 1] using the mapping t = tn + ∆tn
2 (1 + τ),

where ∆tn = tn+1 − tn. After integration by parts the resulting equation reads

[uψ]1−1 −
∫ 1

−1
uψτ dτ = 2

∆tn

∫ 1

−1
F (τ,u(τ))ψ(τ)dτ.

We now follow the steps of DG-SEM, i.e. approximating u and F by interpolants

u ≈
Nτ∑
j=1
ujψj(τ), F ≈

Nτ∑
j=1
F jψj(τ),

and the integrals by Gauss–Lobatto quadrature with nodes τj and weights ωj . Using the cardinal
property of the Lagrange basis polynomials ψ, the resulting DG-SEM discretization becomes

δiNτu
∗ − δi1u

∗ −
Nτ∑
j=1

ωju
j dψi

dτ

∣∣∣∣
τj

= 2
∆tn

ωiF
i, i = 1, . . . , Nτ . (4.7)

Here, we have replaced the boundary terms with numerical fluxes u∗. As previously, an upwind flux
is chosen, which has the advantage of decoupling the temporal elements. Thus, (4.8) can be solved as
a stand-alone nonlinear system on the nth time element.

Defining the boundary, mass and differentiation matrices

Bτ = diag([−1, 0, . . . , 0, 1]) ∈ RNτ ×Nτ ,

M τ = diag([ω1, . . . , ωNτ]) ∈ RNτ ×Nτ ,

(Dτ)ji = dψi

dτ

∣∣∣∣
τj

∈ RNτ ×Nτ ,

69

L.M. Versbach, V. Linders, et al.

we can write (4.7) in matrix form on each reference element as

(Bτ ⊗ Iξ)u∗ −
(
D⊤

τ M τ ⊗ Iξ

)
u = ∆tn

2 (M τ ⊗ Iξ)F (u). (4.8)

Here, u∗ = (un,0, . . . ,0,uNτ)⊤ where un is the numerical solution from the previous time element.
Further, M τ is the local temporal mass matrix and M τDτ defines the corresponding stiffness matrix.
Here, F⊤(u) = (F⊤(tn + ∆tn

2 (1 + τ1),u1), . . . ,F⊤(tn + ∆tn
2 (1 + τNτ),uNτ)), where u is given by (4.6)

and τk is the kth LGL node; see [35] for details. The operation ⊗ denotes the Kronecker product and
Iξ is the identity matrix whose dimension is given by the number of spatial nodes.

We finish this section by remarking that while (4.3) describes the global space-time DG-SEM
discretization, the alternative formulation (4.8) pertains to a single time element.

5. Theoretical Aspects of Space-Time DG-SEM

In this section we discuss important properties of the space-time DG-SEM, in particular the equivalence
of the temporal discretization and the Lobatto IIIC family of Runge–Kutta methods. To make the
connection between DG-SEM and Runge–Kutta methods clear, we consider the solution at the final
point in the time element, i.e.

uNτ ≡ (e⊤
Nτ

⊗ Iξ)u, (5.1)
where e⊤

Nτ
= (0, . . . , 0, 1) ∈ RNτ . We will also make use of the vector e⊤

1 = (1, 0, . . . , 0) ∈ RNτ .
Following [10], we set out to show that uNτ = un+1, where un+1 is the numerical solution arising from
the Lobatto IIIC method in (3.10).

The DG-SEM discretization (4.8) constitutes a so called Summation-By-Parts (SBP) method [35],
meaning that the following conditions are satisfied:

M τ = M⊤
τ > 0, M τDτ + (M τDτ)⊤ = Bτ . (5.2)

The SBP property (5.2) is at the heart of the connection of DG-SEM in time to implicit Runge–Kutta
methods.

5.1. DG-SEM and Lobatto IIIC

SBP methods were historically developed to be used as spatial discretizations [62, 85]. For an overview
of these techniques, see [24, 87]. In recent years, their use as time stepping schemes has been ex-
plored [77] and connections to implicit Runge–Kutta methods have been discovered [10, 69]. Here we
summarize the steps showing that (4.8) can be reformulated as an implicit RK method applied to the
system of ODEs (3.8).

We begin by using the SBP property (5.2) in the second term of (4.8) and then multiplying by
(M−1

τ ⊗ Iξ) to obtain the so called strong form,

(Dτ ⊗ Iξ)u = (M−1
τ Bτ ⊗ Iξ)(u− u∗) + ∆tn

2 F . (5.3)

Note that Bτ = eNτe
⊤
Nτ

− e1e
⊤
1 and (e⊤

Nτ
⊗ Iξ)(u− u∗) = (uNτ − uNτ) = 0. Using (5.1), the second

term in (5.3) can therefore be expressed as

(M−1
τ Bτ ⊗ Iξ)(u− u∗) = −(M−1

τ ⊗ Iξ)[(e1e
⊤
1 ⊗ Iξ)u− (e1 ⊗ un)].

Grouping together terms that multiply the solution u, we rewrite (5.3) as

((Dτ +M−1
τ e1e

⊤
1) ⊗ Iξ)u = (M−1

τ e1 ⊗ un) + ∆tn
2 F . (5.4)

70

Aspects of Space-Time DGSEM

Next, we multiply (5.4) by ((Dτ +M−1
τ e1e

⊤
1) ⊗ Iξ)−1. Upon doing this, first note that

(Dτ +M−1
τ e1e

⊤
1)−1M−1

τ e1 = 1 := (1, . . . , 1)⊤ ∈ RNτ ,

which follows from observing that (Dτ +M−1
τ e1e

⊤
1)1 = M−1

τ e1 since Dτ 1 = 0 by consistency. Thus,
the following system arises:

u = 1 ⊗ un + ∆tn
1
2((Dτ +M−1

τ e1e
⊤
1) ⊗ Iξ)−1F

= 1 ⊗ un + ∆tn
1
2((Dτ +M−1

τ e1e
⊤
1)−1 ⊗ Iξ)F .

(5.5)

The equation system (5.5) should be compared with the stage equations (3.9) that arose from the
MOL discretization using implicit RK. We see that the temporal DG-SEM discretization defines an
RK method with coefficient matrix A = 1

2(Dτ + M−1
τ e1e

⊤
1)−1 and nodes c = (1 + τ)/2, where

τ = (τ1, . . . , τNτ)⊤ is the vector of LGL nodes. Further, the vector u, which in the DG-SEM context
contains the interpolation coefficients un

i , has adopted the role of the stage vectors of the RK method.
To complete the transition from DG-SEM to RK, we compute the numerical solution at the final

time node, uNτ = (e⊤
Nτ

⊗ Iξ)u. To this end we observe that the SBP property (5.2) gives the relation

1⊤M τ (Dτ +M−1
τ e1e

⊤
1) = 1⊤(eNτe

⊤
Nτ

−D⊤
τ M τ) = e⊤

Nτ
,

so that
e⊤

Nτ
(Dτ +M−1

τ e1e
⊤
1)−1 = 1⊤M τ .

Consequently, multiplying (5.5) by (e⊤
Nτ

⊗ Iξ) yields

uNτ = un + ∆tn
1
2(1⊤M τ ⊗ Iξ)F . (5.6)

Comparing (5.6) with the solution (3.10) of the implicit RK method, we see that the vector b in the
Butcher tableau is related to the DG-SEM discretization by b⊤ = 1⊤M τ/2, and that the RK solution
is simply the Nτ th component of the DG solution u.

To summarize, a DG-SEM time discretization is equivalent to an implicit RK method whose Butcher
tableau is defined in terms of the DG method as

A = 1
2(Dτ +M−1

τ e1e
⊤
1)−1, b = 1

2M τ 1, c = 1 + τ
2 . (5.7)

The two methods yield two different nonlinear systems; for DG-SEM and RK they are respectively
given by

(Bτ ⊗ Iξ)u∗ −
(
D⊤

τ M τ ⊗ Iξ

)
u = ∆tn

2 (M τ ⊗ Iξ)F , (5.8a)

u = 1 ⊗ un + ∆tn(A⊗ Iξ)F . (5.8b)

These systems have the same solution u since we can transition from (5.8a) to (5.8b) in a series
of algebraic steps. More precisely, the connection is made by rewriting (5.8a) in strong form, then
multiplying by (Dτ +M−1

τ e1e
⊤
1 ⊗ Iξ)−1. Note that the last step demands that Dτ +M−1

τ e1e
⊤
1 is

invertible. This is the case if and only if Dτ is null-space consistent, i.e. if ker(Dτ) = span(1) [67].
This is known to hold for all Nτ > 1 [65, 82].

Finally, the Butcher tableau formed from (5.7) coincides with that of the Lobatto IIIC family of
implicit Runge–Kutta methods. This follows from the use of LGL nodes and quadrature weights,
together with a set of accuracy conditions satisfied by the two formulations [80]. We will detail these
in the next section. The derivation above therefore shows that DG-SEM in time and the Lobatto IIIC
methods are mathematically equivalent, and that we in fact have uNτ = un+1. The coefficients for the
DG-SEM matrices with Nτ ∈ {2, 3, 4} are listed in the appendix “DG-SEM operators”.

71

L.M. Versbach, V. Linders, et al.

5.2. Comparison of terminology

While DG-SEM in time and Lobatto IIIC are algebraically equivalent methods, they have been devel-
oped in different research communities and disparities have consequently arisen in terms of terminology.
This pertains in particular to the notions of order and stability.

Beginning with RK methods, we take as our starting point the system of ODEs (3.8). The (classical)
notion of order is defined as follows:

Definition 5.1. A Runge–Kutta method is of order p if
∥un+1 − u(tn+1)∥ = O(∆tp), ∆t → 0

holds, whenever problem (3.8) is sufficiently smooth.

The norm can be any vector norm and un+1 −u(tn+1) is called the global error. The classical order
of RK methods is determined by certain order conditions. To make the connection with DG-SEM as
clear as possible, we present here a set of simplified conditions that are sufficient for the method to
be of order p [12]:

Theorem 5.2. Suppose that an implicit Runge–Kutta method satisfies the conditions

B(pB): b⊤cj−1 = 1
j , j = 1, . . . , pB,

C(pC): Acj−1 = cj

j , j = 1, . . . , pC ,

D(pD): A⊤ diag(b)cj−1 = 1
j diag(b)(1 − cj), j = 1, . . . , pD,

where pB ≤ 2(pC + 1) and pB ≤ pC + pD + 1. Then the method is of order p = pB.

Remark 5.3. Here and elsewhere, cj should be understood as an elementwise exponentiation. That
is, the elements of cj are the jth powers of the elements of c.

The conditions C(pC) play a particularly important role in the context of stiff problems and have
its own moniker:

Definition 5.4. A Runge–Kutta method that satisfies the order conditions C(pC) is said to have
stage order pC .

The stage order of the RK method describes the accuracy with which the intermediate stages are
approximated. We will delve into the meanings of the conditions B, C and D shortly. However, first
we summarize the various order concepts for Lobatto IIIC; see [40, Chapter IV.5].

Theorem 5.5. The Lobatto IIIC method with Nτ stages satisfies B(2Nτ −2), C(Nτ −1) and D(Nτ −1).
Consequently it has stage order Nτ − 1 and is of order 2Nτ − 2.

We momentarily leave the RK viewpoint and focus on DG methods. DG-SEM was developed for
spatial discretizations of time-dependent PDEs. Errors are measured in an L2 norm over a spatial
domain. For a discrete solution uh, this norm can be computed via the quadrature rule exactly:

∥uh∥L2(Ω) =
∑

k

(
u⊤

hk
M ξk

uhk

) 1
2 . (5.9)

The sum is taken over all elements and M ξk
is the local spatial mass matrix on element i. Assuming

vanishingly small errors from the time discretization, the order of convergence measured in this norm
is typically p + 1 or p + 1

2 , depending on the nature of problem (2.1), the choice of numerical fluxes,
and sometimes on whether p is odd or even [43, 100].

72

Aspects of Space-Time DGSEM

Conversely, when using DG-SEM as a time integration method, one works in the space L2((0, T)).
With an upwind flux in time, for sufficiently smooth and nonstiff problems, the order of convergence
in this norm is Nτ [68]. This order is much smaller than the one of the Lobatto IIIC method, which
requires some discussion.

There are several other order concepts in the DG literature. Here we follow [10] and relate these to
the corresponding concepts in the RK framework.

• The order of the operator is the highest degree q for which Dττ
q = qτ q−1. The exponentiation

should be interpreted elementwise, and we take τ 0 = 1 as a definition. For DG-SEM we have
q = Nτ − 1.
Multiplying C(pC) by A−1 as given in (5.7) and utilizing the fact that the first element in
c is zero, we see that the RK order condition C(pC) actually describes precisely the order
of the operator Dτ . A transformation of the reference element to [0, 1] is necessary in this
step. In other words, the order of the operator is a concept identical to the stage order of the
corresponding Lobatto IIIC method.

• The order of the norm/quadrature/mass matrix [66] is the highest degree m such that
(m+ 1)1⊤M ττ

m = 1 − (−1)m+1,

i.e. for whichM τ exactly integrates polynomials. For DG-SEM, 1⊤M τ is a row vector with the
Nτ weights of the Gauss–Lobatto quadrature rule and we consequently have m = 2(Nτ − 1).
Using (5.7) we note that the condition B(pB) simply describes the order of the quadrature,
although applied to c rather than τ . Again, this amounts to a transformation from τ ∈ [−1, 1]
to [0, 1].

• Pertinently, it turns out that the order of accuracy of the final component uNτ ≡ un+1 is
2(Nτ − 1) [68], at least for smooth nonstiff problems. This superconvergence can be proven
using the theory of dual consistent SBP methods [44]. Here it suffices to say that it is a
consequence of the order of the quadrature and choosing the upwind numerical flux in time.
The superconvergence result pertaining to DG-SEM corresponds to the classical order of Lo-
batto IIIC as introduced in Definition 5.1. Note that this is a consequence of considering the
pointwise error in time rather than ∥ · ∥L2([0,T]).

To the best of our knowledge, conditions D(pD) have no clear interpretation in the language of DG.
Nevertheless, using the SBP property (5.2) and the fact that M τ is diagonal it is shown in [10] that
C(pC) is satisfied with pC = Nτ − 1, which is consistent with Theorem 5.5.

The convergence theory for RK methods relies on certain regularity properties of the problem being
solved. In particular, it is assumed that the right-hand side of the system of ODEs (3.8) satisfies a
one-sided Lipschitz condition,

⟨u− v,F (·,u) − F (·,v)⟩ ≤ β∥u− v∥2, (5.10)
where ⟨·, ·⟩ denotes some inner product and ∥ · ∥ the corresponding norm. If β ≤ 0, the problem is
contractive. DG-SEM in time, and hence Lobatto IIIC, is stable for contractive problems, i.e. they are
B-stable methods. Convergence for contractive problems is correspondingly known as B-convergence.
B-convergence can be shown for Lobatto IIIC if β < 0, but in general not if β = 0 and Nτ > 2; see [83]
for details.

Regularity of the type (5.10) is not standard in the literature on spatial discretization using high
order DG methods. Rather, estimates of the form ⟨u,F (·,u)⟩ ≤ 0 are common. Such discretizations
are referred to as semi-bounded, or in Runge–Kutta parlance, as monotonic. They arise particularly for

73

L.M. Versbach, V. Linders, et al.

discretizations of linear, homogeneous hyperbolic or parabolic problems, but also e.g. for the velocity
components of the incompressible Navier–Stokes equations [75].

If F (·,0) = 0, then semi-boundedness is a special case of contractivity and results on B-stability
and B-convergence apply. However, for e.g. the equations of compressible flow, semi-boundedness must
typically be replaced by entropy stability, i.e. regularity of the form ⟨η′(u),F (·,u)⟩ ≤ 0. Here, η is
some convex function of u referred to as an entropy [27, 28]. A convergence theory for implicit RK
methods applied to entropy stable problems is desirable but currently appears to be missing from the
literature.

Finally, for a space-time DG-SEM method, no general theoretical results on convergence order have
been obtained yet as it depends on an interplay between spatial and temporal errors in ways that
depend on the specifics of the problem and numerical setup. We will test the convergence rate on the
compressible Euler equations in section 7.

6. Practical Aspects of Space-Time DG-SEM

In this section we discuss two archetypal implementations: On the one hand, the method of lines
approach with Lobatto IIIC as discussed in Section 3 and on the other hand the space-time DG
approach, as discussed in Section 4. We will refer to these as LoDG and STDG, respectively.

It is of course possible to produce a code that uses elements from both the LoDG and STDG
formulation and thereby falls somewhere in between these approaches. However, here we adopt the
point of view of a user who seeks to use an already available code base rather than producing a brand
new solver.

Even though STDG and LoDG are mathematically equivalent methods, their respective implemen-
tations differ in several key aspects, each with particular requirements and accompanying merits. Here
we will outline several such differences, and the choices a user will inevitably face when deciding on
which implementation to select.

Several multi-dimensional DG-SEM solvers exist, such as Nektar++ [53], Fluxo, Flexi and the
latest iteration Trixi [81], and others. In particular, this approach is popular for weather and climate
prediction and has been used e.g. in NUMA [71] and HOMAM [72]. Thus, in the following discussion
we assume that the user has access to a multi-dimensional DG solver for spatial discretization.

Our work here is based on the Dune-Fem framework, hence the challenges outlined below are
flavoured by this choice. Depending on the software framework at hand, a user may find that one
approach is easier to implement than the other.

6.1. STDG

As described in Section 4, the defining feature of STDG is the treatment of the d-dimensional time-
dependent problem as a d+ 1-dimensional stationary problem.

Requirements. The problem description in the code must be extended to a d+1-dimensional station-
ary PDE, which requires the software to be able to handle such problems. In particular, this includes
the assembly of mass and stiffness matrices as well as having access to appropriate solvers for the
resulting nonlinear system.

This new stationary PDE requires the use of different numerical fluxes in space and time; the
temporal direction follows a causality principle, enforced by the upwind flux, which may not be the
best choice for the spatial directions.

It is desirable to be able to choose different orders of accuracy in space and time, which then needs
to be made possible in the DG code. In Dune this is implemented for certain DG spaces [37] but not
yet available for the Lagrange basis used in this work.

74

Aspects of Space-Time DGSEM

The numerical solution should be accessible at specific time points in order for the user to visualize
intermediate results and the final solution. For d = 3, this includes extracting 3-dimensional slices
from 4-dimensional data sets. Related to this issue is the problem of 4-dimensional mesh generation.
An example of how to handle this for the STDG ansatz in Dune-Fem is found in Section 4.

Merits. If the requirements above are met, then existing software can be reused to solve the problem,
which implies full control over the code. Moreover, only one code is needed. This code closely follows
the mathematical derivation of the space-time method and may therefore be more intuitive than
alternatives.

Due to the relatively simple adaption of an existing code for spatial problems of dimension d < 3,
the STDG approach is fast for preliminary testing. An existing DG code is most likely optimized for
computational resources and might even allow for parallelization in time by solving for several time
steps at once.

In summary, this technique allows re-usability and full control over the code.

6.2. LoDG

The defining feature of LoDG is the method of lines approach outlined in Section 3. In this DG-SEM
solver, each time step is solved individually.

Requirements. The (spatial) DG-SEM code needs to be coupled with an ODE solver with an im-
plementation of a Lobatto IIIC method, most likely coming from another code. Difficulties may arise
from the particular requirements of the two codes, such as interfaces for time and space adaptivity,
parallelization etc.

The ODE solver might require input in a specific format not native to the DG code. Further, an
efficient solution procedure may require information from the DG-SEM solver not directly available,
such as the Jacobian of the spatial discretization.

An example of a Lobatto IIIC solver implemented in Assimulo [2] is found at the end of Section 3.

Merits. No adaption of the DG code with respect to the PDE or its dimension is necessary. There are
no additional difficulties arising in the treatment of 3-dimensional problems, and the resulting solution
can be visualized in a straightforward way.

Most existing ODE solvers are optimized and equipped with several options, for instance adaptive
time stepping. Intermediate results are easy to access and the order of accuracy in space and time can
be chosen independently.

In summary, this technique provides flexibility and allows reuse of existing simulation workflows.

6.3. Algorithmic Aspects

In the following we suppose that we have overcome the most important challenges of the two approaches
presented in the previous subsections. Thus we now have access to

(a) a code that generates a d+ 1-dimensional space-time DG-SEM discretization by following the
steps in Section 4 (STDG).

(b) a code that generates a d-dimensional spatial DG-SEM discretization by following the steps in
Section 3, and a code for time marching using Lobatto IIIC (LoDG).

In each time step, the LoDG code (approximately) solves (5.8b) while the STDG code solves (5.8a),
or equivalently solves Lh(uh) = 0 from (4.3). We now discuss the impact of choosing LoDG or STDG
on a variety of algorithmic aspects.

75

L.M. Versbach, V. Linders, et al.

Accessing time steps and stages. Accessing the numerical solution at a particular time is straight-
forward in most ODE solvers. The solution is computed either by aligning the step sizes with the target
times or through accurate interpolation.

While it is possible to implement such techniques with STDG, they are unlikely to be available in
a pre-existing DG code. Further, the code will return the numerical solution at all points in one (or
several) time elements simultaneously. In fact, it is not obvious that the STDG code will be able to
return un+1 in a simple way since this requires the extraction of a specific subset of coefficients from
the numerical solution vector u. Yet, this may be necessary e.g. for visualization, to use adaptive time
stepping, or in case the solution needs to be filtered or otherwise modified between time steps. The
solution can in principle be constructed using un+1 = (e⊤

Nτ
⊗ Iξ)u with e⊤

Nτ
= (0, . . . , 0, 1), as was

done in Section 5. However, this assumes that the ordering of the unknowns in u is identical to the
one used in that analysis. If not, (e⊤

Nτ
⊗ Iξ) must be suitably permuted into some matrix ENτ before

application. Finding the appropriate permutation matrix may be a nontrivial task, in particular in 4D.
On the other hand, with STDG we have access to all intermediate time stages by default, something

that may be challenging with LoDG. This may be useful to compute L2 errors of the numerical solution
and has the additional advantage of allowing visualization of the solution away from the main time
steps.

Adaptive time-stepping. Adaptive time-stepping for RK methods is standard in modern software
and thus will be available in an implementation of LoDG. It requires a way of estimating the numerical
error in the next time step. This information is used to adapt the time step to fit a predefined tolerance.
Embedding techniques use a vector b̂ to compute a second numerical solution ûn+1 from (3.10) whose
accuracy is one order lower than that of un+1. The difference un+1 − ûn+1 can be used to estimate the
local error without the need to solve the nonlinear system (5.8b) more than once. A detailed strategy
for estimating the error and choosing the time step based on the embedding technique is available
in [40, Chapter IV.8] for the Radau IIA method, but can be easily adapted to Lobatto IIIC [64].

An STDG code that follows the steps outlined in Section 4 will not have an embedded method.
However, if the matrix ENτ can be found that extracts un+1, then it is also possible to construct a
matrix ÊNτ that extracts ûn+1 such that an embedding technique can be used. This procedure may
be more invasive than desirable.

Alternatively, the numerical error can be estimated using Richardson extrapolation [39, Chap-
ter II.4]. This procedure requires solving the nonlinear system (5.8a) three times; once with a step size
2∆t and twice with a step size ∆t. The difference between the two solutions yields an error estimate.
Due to its expense, this approach hardly seems feasible for a 4D problem.

Adaptive Mesh Refinement (AMR). Since STDG uses a 4D mesh it is straightforward to set up
a system that accounts for multiple temporal elements at once, which is not possible with LoDG. This
introduces the possibility of using AMR in time in addition to space; see [17, 50] and the references
therein. Like with Richardson extrapolation, using AMR forces us to solve the nonlinear system
multiple times. Additionally, the system now consists of multiple coupled time steps. However, the
additional cost may be offset by two factors: Firstly, we expect that the number of degrees of freedom
necessary to achieve a given accuracy is significantly reduced by the AMR. Secondly, parallelism can
be employed in the temporal direction.

Space-time AMR is not likely to be simple to set up with commercially available software. However, if
the initial hurdles can be circumvented, then it is in principle possible to use completely unstructured
space-time grids with h/p-refinement. The technique requires a generator for unstructured cuboid
meshes in 4D (tesseracts) [14] and a way of estimating the numerical error in the final time. Such tools
have been developed for 4D simplex meshes in [14, 99], but appear to be missing for other mesh types.

76

Aspects of Space-Time DGSEM

Shock capturing and limiting. The DG spatial discretizations used with RK time stepping are
stable when applied to linear problems such as linear hyperbolic systems. However, for nonlinear
problems spurious oscillations occur near strong shocks or steep gradients. In this case the DG method
requires some extra stabilization unless a first order scheme (p = 0) is used that produces a monotonic
structure in the shock region. For higher order schemes many approaches have been suggested to
make this property available without introducing an excessive amount of numerical viscosity, which
is a characteristic feature of first order schemes. Several approaches exist, including slope limiters,
artificial diffusion (viscosity) techniques, and even a posteriori techniques and order reduction methods.
A comprehensive literature list is presented in [84].

In Dune-Fem-DG [19], both limiter based approaches and artificial diffusion are available to stabi-
lize a DG scheme. The slope limiter based approach implemented in Dune-Fem-DG is coupled with
a troubled cell indicator which makes the overall scheme highly non-linear and therefore not suitable
for implicit methods, since the selection of troubled cells could change between linear iterations and
lead to divergence of the linear solver. On the other hand, artificial diffusion approaches require a dis-
cretization of a diffusion term. Stabilization diffusion coefficients only need to be re-computed every
time step. A standard approach is available in Dune-Fem-DG. Thus, it is more suitable to apply
artificial diffusion techniques for problems where strong shocks occur.

Nonlinear solvers and preconditioning. The solutions of the nonlinear systems (5.8a) and (5.8b)
must be approximated, typically by iterative methods for large systems. There have been a multitude
of suggestions on how to design such methods; early solvers for implicit Runge–Kutta methods based
on modified Newton iterations were introduced in [13] and [7]. A more optimized algorithm is described
in [40], and many later developments use this as a starting point. These can be considered black box
solvers in the sense that they do not utilize information about the spatial terms in the solution process.

Methods designed specifically for spatial DG discretizations and implicit Runge–Kutta methods are
found in e.g. [78, 79]. Likewise, nonlinear solvers designed for space-time DG and FEM discretizations
have been developed [56, 86].

Unless the user is willing to make the (possibly considerable) effort to develop and/or implement
a nonlinear solver specifically designed for LoDG or STDG, the natural recourse is to use a black
box solver. Efficiency gains can possibly be made by introducing a preconditioner designed for DG
discretizations; see e.g. [9, 54, 79] for recent developments. However, attention must be payed to the
fact that the systems (5.8a) and (5.8b) have different algebraic properties and therefore likely will
respond differently to preconditioners and nonlinear solvers.

For the nonlinear LoDG system (5.8b), the Jacobian is given by
I − ∆tn(A⊗ Iξ)J (F), (6.1)

where J (F) contains the Jacobian of the spatial discretization. The solver in [40], and many recent
developments that build upon it, instead use the mathematically equivalent

(∆tnA)−1 ⊗ Iξ − J (F). (6.2)

For the nonlinear STDG system (5.8a), the Jacobian is given by(
D⊤

τ M τ − eNτe
⊤
Nτ

)
⊗ Iξ + ∆tn

2 (M τ ⊗ Iξ)J (F). (6.3)

Note from (5.7) that (6.2) arises by multiplying (6.1) by (Dτ +M−1
τ e1e

⊤
1) ⊗ Iξ. This formulation is

therefore very closely related to the STDG Jacobian (6.3). In fact, they only differ by an application
of the SBP property (5.2) and a multiplication by the temporal mass matrix.

Consider the 1D linear advection equation ut + ux = 0 discretized using a single element in space
and time. With STDG, the discretization is generated using Dune. With LoDG, the spatial terms
are generated with Dune whereas the temporal terms are set up manually as in Section 5. Figure 6.1

77

L.M. Versbach, V. Linders, et al.

shows the sparsity patterns of the Jacobians using order 1,2 and 3 in space and time. In each figure
quadruplet, the Jacobian (6.3) of STDG is shown in the top left and the Jacobian (6.1) of LoDG in
the top right. In the bottom right, the alternative formulation (6.2) is shown.

The first thing to note is that the straightforward LoDG formulation leads to a dense discretization
whereas STDG is sparse. The LoDG formulation using A−1 is also sparse. It has the same number
of nonzero elements as STDG, although their distribution is different. The explanation for this lies in
the ordering of the unknowns. With LoDG, the node order is lexicographic in the temporal direction.
However, the space-time element generated by Dune is as shown in the bottom right of Figure 6.1,
here with Nτ = 4. This ordering is the result of a generic construction of the reference elements,
which is based on a recursion over the spatial dimension d starting at the 0-dimensional reference
element, i.e. a point. This recursion also generates a natural ordering for the basis functions, starting
with the basis functions located at points in an element and recursively down to the basis functions
located inside the element. A detailed description of this construction is found in [23]. With a suitable
permutation of the unknowns, the sparsity pattern of LoDG using A−1 coincides with STDG as seen
in the bottom left of each figure quadruplet.

These observations suggest that the LoDG system (5.8b) is more expensive to work with than the
STDG system (5.8a), and that the A−1 formulation (6.2) is a better choice. However, the interaction
of particular preconditioners and solvers with these systems may also depend on the node ordering in
ways that must be deduced through careful testing.

7. Experiments

We now perform a series of numerical tests. We start with solving the linear test equation to validate the
temporal convergence rates of the two solvers. A two-dimensional advection-diffusion test case follows,
with the purpose of highlighting slight differences in the numerical solutions and particular challenges
with respect to visualizing the solutions. Finally, the two and three dimensional Euler equations of
gas dynamics are solved to demonstrate that both codes are capable of handling nonlinear space-time
dynamics in multiple dimensions.

As mentioned previously, the spatial parts of both LoDG and STDG are generated using Dune-
Fem. The temporal part of LoDG is implemented in Assimulo whereas Dune-Fem is used for the
entire space-time discretization in STDG.

7.1. Validation of Convergence Rates

To verify that the temporal discretizations converge as expected we perform a simple test on the linear
test equation,

ut = −u, t ∈ (0, 1),
u(0) = 4.

(7.1)

Python’s sparse linear solver is used to solve any algebraic systems arising from the discretizations. The
experimental order of convergence (EOC) of the pointwise error |un+1 − u(1)| is shown for LoDG and
STDG in Table 7.1. Here, N denotes the number of time steps/time elements and Nτ ∈ {2, 3, 4}. Recall
from Section 5 that the classical order of LoDG, and correspondingly the superconvergence of STDG,
is 2(Nτ − 1). This is indeed what we observe in Table 7.1. With Nτ = 3, the errors are approaching
machine precision when N = 29, hence a drop in the convergence rate is seen in Table 7.1b. The STDG
appears to be more sensitive in this respect than LoDG. The same thing happens when Nτ = 4 and
N = 25, as seen in Table 7.1c.

We now repeat the experiment but measure the EOC via the L2 norm ∥ · ∥L2[0,1]. This type of error
measurement is straightforward to perform with the STDG code. However, the LoDG implementation

78

Aspects of Space-Time DGSEM

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 1

2 3

4

5

6

7

89

1011

1213

1415

Figure 6.1. Sparsity patterns Jacobian of the advection problem for STDG and
LoDG. Node order for one space-time element (p = 3) for STDG as generated by
Dune-Fem (bottom right).

Table 7.1. EOC of pointwise error for LoDG and STDG applied to the test equa-
tion (7.1).

(a) Nτ = 2

N Lobatto DG-SEM
24 1.93 1.93
25 1.97 1.97
26 1.98 1.98
27 1.99 1.99
28 1.99 1.99
29 1.99 1.99

(b) Nτ = 3

N Lobatto DG-SEM
24 3.96 3.96
25 3.98 3.98
26 3.99 3.99
27 3.99 4.01
28 3.99 4.28
29 4.05 0.47

(c) Nτ = 4

N Lobatto DG-SEM
24 5.98 5.96
25 6.64 4.22

does not by default save the intermediate RK stages necessary to perform the computation of the L2
error. We expect the EOC to be given by Nτ . Table 7.2 shows that this indeed is observed. For Nτ = 4

79

L.M. Versbach, V. Linders, et al.

with N = 28 time elements the convergence rate drops due to very small errors, as seen in Table 7.2c.
Again, STDG appears to be more sensitive to this phenomenon than LoDG.

Table 7.2. EOC of L2 error for LoDG and STDG applied to the test equation (7.1).

(a) Nτ = 2

N Lobatto DG-SEM
24 1.96 1.96
25 1.98 1.98
26 1.99 1.99
27 2.0 2.0
28 2.0 2.0
29 2.0 2.0

(b) Nτ = 3

N Lobatto DG-SEM
24 2.98 2.98
25 2.99 2.99
26 2.99 2.99
27 3.0 3.0
28 3.0 3.0
29 3.0 3.0

(c) Nτ = 4

N Lobatto DG-SEM
24 3.99 3.99
25 4.0 4.0
26 4.0 4.0
27 4.0 4.0
28 4.0 3.6

7.2. Advection-Diffusion

The next test case is the linear advection-diffusion problem in two dimensions;
∂tu+ b · ∇u− ε∆u = 0 in (Ω × (0, T)), Ω ⊂ R2,

u(0) = u0 in Ω.
(7.2)

We test both implementations for the rotating pulse problem with analytic solution

u(t,x) = 0.004
0.004 + 4εt exp

(
−

x2
q + y2

q

0.004 + 4εt

)
,

xq = x0 cos(4t) + y0 sin(4t) + 0.25,
yq = −x0 sin(4t) + y0 cos(4t).

Here, x0 = x − 0.5, y0 = y − 0.5, b = [−4y0, 4x0], ε = 0.001, and (t,x) ∈ [0, 1] × [0, 1]2. The initial
condition is given by u(0,x) and we apply periodic boundary conditions in space. The linear systems
arising from the discretizations are solved using built-in routines in Dune and Assimulo. Thus,
despite the mathematical equivalence of LoDG and STDG, we do not expect the two codes to yield
identical solutions.

The numerical solutions obtained by the two codes with Nτ ∈ {2, 3, 4} are shown in Figure 7.1.
Here, a uniform mesh is used in space with ∆x = ∆y = 0.04. Time steps of uniform size ∆t = 0.1 are
used throughout the simulation. With Nτ = 2 the problem is significantly under-resolved, leading to a
smeared solution. As Nτ is increased, this phenomenon is reduced. To the eye, the numerical solutions
using the two codes are barely distinguishable.

To get a more detailed comparison of the numerical results obtained by the two implementations
we compare their spatial L2 error in the final time point, t = 1. This time we vary the space-time grid
with ∆x = ∆y = ∆t = 1/N . The errors and the EOC are shown in Table 7.3. Notice that the L2
errors are very similar, although not identical, testifying to the influence of the different solvers of the
algebraic equations. Note also that the EOC is less clear than it was for the linear test equation. In this
experiment we have refined space and time simultaneously, and therefore do not have a theoretical
convergence result to rely on, as mentioned in section 5.2. The results indicate a convergence rate
higher than Nτ , although not quite as high as 2(Nτ − 1).

Finally, we highlight a feature of the STDG code that may be of use in certain situations. Since
this code returns all points in a given time element (or equivalently, all intermediate RK stages in

80

Aspects of Space-Time DGSEM

(a) LoDG, Nτ = 2 (b) LoDG, Nτ = 3 (c) LoDG, Nτ = 4

(d) STDG, Nτ = 2 (e) STDG, Nτ = 3 (f) STDG, Nτ = 4

Figure 7.1. Numerical solution of a rotating pulse subject to the advection-diffusion
equation (7.2) using LoDG (top) and STDG (bottom).

each time step), these can be visualized using a 3D plotting software, thereby obtaining a space-time
visualization of the solution. These stages are usually discarded by ODE solvers for efficiency reasons.
The visualization is done for a single time step in Figure 7.2. Here, the exact solution over the whole
space-time domain is also shown for reference.

7.3. Euler Equations

A prime example for evolution equations are the Euler equations of gas dynamics. They are derived
from the conservation of mass, momentum, and energy of a compressible inviscid fluid. In Eulerian
coordinates they have the form:

∂tu+ ∇ · Fc(u) = 0 in Ω × (0, T), Ω ⊂ Rd, d ∈ {1, 2, 3},
u(0) = u0 in Ω,

(7.3)

where the vector of the conservative variables has the form

u =

 ρ
ρv
ε

 , ρv = (ρv1, . . . , ρvd)T , ε = ρE , (7.4)

augmented with suitable boundary conditions (which are discussed in detail in [8]). Here, ρ denotes
the density of the fluid, v the velocity, ε the internal energy, and E the total energy.

81

L.M. Versbach, V. Linders, et al.

Table 7.3. Errors and EOC for the advection-diffusion problem (7.2) when refining
space and time simultaneously. The results indicate a convergence rate higher than Nτ ,
although not quite as high as 2(Nτ − 1).

(a) Error

Nτ = 2 Nτ = 3 Nτ = 4
N LoDG STDG LoDG STDG LoDG STDG
22 8.94E-2 7.28E-2 4.45E-2 4.37E-2 2.68E-2 2.69E-2
23 4.66E-2 4.46E-2 2.42E-2 2.41E-2 6.05E-3 6.04E-3
24 3.49E-2 3.39E-2 5.36E-3 5.38E-3 4.92E-4 4.93E-4
25 1.86E-2 1.84E-2 5.85E-4 5.94E-4 1.06E-5 9.88E-6

(b) EOC

Nτ = 2 Nτ = 3 Nτ = 4
N LoDG STDG LoDG STDG LoDG STDG
23 0.9 0.7 0.9 0.9 2.1 2.2
24 0.4 0.4 2.2 2.2 3.6 3.6
25 0.9 0.9 3.2 3.2 5.5 5.6

The convective flux function Fc(u) := (f1(u), . . . ,fd(u)) has for i = 1, . . . , d the form

f i(u) :=


ui+1

ui+1u2/u1 + δi,1 P (u)
...

ui+1ud+1/u1 + δi,d P (u)
(ud+2 + P (u))ui+1/u1

 ,

where δi,j is the Kronecker delta. For example, choosing d = 3 and directly using u from (7.4) we
obtain the three flux functions

f1(u) =


ρv1

ρv2
1 + P
ρv1v2
ρv1v3

(ε+ P)v1

 , f2(u) =


ρv2
ρv2v1
ρv2

2 + P
ρv2v3

(ε+ P)v2

 , f3(u) =


ρv3
ρv3v1
ρv3v2
ρv2

3 + P
(ε+ P)v3

 .
We first consider the two-dimensional Euler equations with periodic boundary conditions and vortex

initial condition

ρ =
(

1 − S2(γ − 1)M2 exp(f)
(8π2)

) 1
γ−1

,

v1 = 1 − Sx2
exp

(
f
2

)
2π , v2 = Sx1

exp
(

f
2

)
2π ,

ε = P

γ − 1 + 0.5v
2
1 + v2

2
ρ

, P = ργ

γM2 ,

with vortex strength S = 5, Mach number M = 0.5, γ = 1.4 and f = 1 − x2
1 − x2

2, where xi denotes
the ith coordinate axis.

82

Aspects of Space-Time DGSEM

(a) Nτ = 2 (b) Nτ = 3

(c) Nτ = 4 (d) Exact solution in space-time

Figure 7.2. 3D space-time visualization of the rotating pulse produced with the
STDG code. In (A), (B) and (C), intermediate stages of a single time step are shown,
while (D) shows the solution across the full time domain.

The numerical solutions obtained by the two codes with Nτ ∈ {2, 3} are shown in Figure 7.3. Here,
a uniform mesh on the space-time domain [−10, 10]2 × (0, 2.5] is used in space with ∆x = ∆y = 0.04.
Time steps of uniform size ∆t = 0.01 are used throughout the simulation. Again, the problem is signifi-
cantly under-resolved with Nτ = 2, leading to a smeared solution. As Nτ is increased, this phenomenon
is reduced. Some differences can be seen in the numerical results for the two implementations. This is
likely caused by the fact that two different solvers, inherent to Assimulo and Dune respectively, are
used for the nonlinear systems arising from the discretizations. Due to the differences between these
solvers we can in general not expect identical numerical solutions despite the mathematical equivalence
of the two algorithms.

83

L.M. Versbach, V. Linders, et al.

(a) Exact, Nτ = 2 (b) LoDG, Nτ = 2 (c) STDG, Nτ = 2

(d) Exact, Nτ = 3 (e) LoDG, Nτ = 3 (f) STDG, Nτ = 3

Figure 7.3. Numerical solution of ρ for a vortex problem subject to the 2D Euler
equations (7.3) using LoDG and STDG.

To show the potential of our STDG code we present a 3D Euler test case with Nτ = 3. We use
periodic boundary conditions and a smooth bubble advection initial condition

ρ =
{

0.5, x̂ > 1.0,
0.25(cos(x̂π) + 1)2 + 0.5, x̂ ≤ 1.0,

v1 = cos
(π

5
)
, v2 = sin

(π
5
)
, v3 = sin

(π
5
)

ε = P

γ − 1 + 0.5ρ(v2
1 + v2

2 + v2
3),

with P = 0.3, γ = 1.4 and x̂ = 16
∑d

i=1(xi − 0.25 − tvi)2.
We consider the space-time domain [0, 1]3 × (0, 0.6] and use a uniform mesh in space with ∆x =

∆y = ∆z = 0.05 and time steps of uniform size ∆t = 0.2 and ∆t = 0.05 throughout the simulation.
The results have been computed on the LUNARC Aurora cluster at Lund University using 640 Intel
Xeon E5-2650 v3 processors and a Newton-GRMES solver with SOR preconditioning based on the
PETSc library [4, 5]. On average we observe 3 Newton iterations and about 25 linear iterations per
timestep for ∆t = 0.05 and about 50 linear iterations per timestep for ∆t = 0.2. The initial condition
and the final time element of the density can be seen in Figure 7.4. They show that some care must
be taken for the numerical solution to be properly resolved in time, with a time step size ∆t = 0.2
resulting in a smeared out solution with an L2 error of 0.05 in the last time point. When decreasing the
time step to ∆t = 0.05 the numerical solution is more accurate with an L2 error of 0.007. These results

84

Aspects of Space-Time DGSEM

show the potential of the Dune code even for 4D problems. Recently, 4D problems have been taken
into consideration [32], but to the best of our knowledge this is the first 4D DG-SEM implementation
available publicly.

(a) Nτ = 3, ∆t = 0.2 (b) Nτ = 3, ∆t = 0.05

Figure 7.4. Numerical solution of ρ for a smooth bubble advection problem subject
to the 3D Euler equations (7.3) using STDG. Initial condition (lower right bubble) and
numerical solution (upper left bubble).

8. Conclusions

In this paper we have presented a comparison of the theoretical and practical aspects of two different
space-time DG-SEM implementations. DG-SEM in time using an upwind numerical flux is equivalent
to the Lobatto IIIC family of Runge–Kutta methods in the sense that they yield the same numerical
solution when solved exactly. The two methods consequently have identical order, stability and conver-
gence properties. However, since they emanate from different research communities, the terminology
used to describe them are different. In this article we have made an effort to bridge this gap and to
clarify the mathematical connections between the two methods.

Having two equivalent formulations of the same discretization raises the question of which path to
take towards its implementation. Two strategies are immediately obvious: Either use the method of
lines with DG-SEM in space and Lobatto IIIC in time (LoDG) or use a space-time DG-SEM approach
(STDG). LoDG and STDG have been implemented using Dune-Fem and Assimulo and the codes
are available as supplementary material to this paper; see the appendix Installation of Dune and
Assimulo for details.

Despite the mathematical equivalence, there are important differences between the approaches. Not
only are they described by different terminology in the literature. Additionally, the approaches lead
to different systems of linear or nonlinear algebraic equations. When approximating their solutions
using iterative methods, the solvers interact with these systems in different ways that are difficult to
predict.

On the practical side, the two approaches lead to very different software structures that lend them-
selves to an assortment of opportunities and challenges. An overview of algorithmic capabilities has

85

L.M. Versbach, V. Linders, et al.

been given, that will be useful in different simulation contexts. These include adaptive time-stepping,
adaptive mesh refinement, shock capturing, preconditioning, and other computational techniques.
Some of these are likely to be more readily available in one implementation than the other, especially
when reusing pre-existing code. The choice of an appropriate implementation thus depends on the
needs of the user as well as on the software already available.

Several general conclusions about the two implementations can be drawn: For an STDG-type imple-
mentation, the code must be able to handle stationary 4D problems. It is desirable that the temporal
dimension can be discretized with a different order of accuracy than the spatial dimensions. Further,
adaptive time-stepping is nontrivial. On the other hand, this approach opens the door to paralleliza-
tion in the time domain in ways that are usually not available. For problems in fewer than three spatial
dimensions, software packages are already available and likely highly optimized.

For an LoDG-type implementation, black-box time-stepping routines are readily availble that im-
plement Lobatto IIIC. Adaptive time-stepping is thus no issue, and the solution can easily be obtained
at any desired intermediate times. There is no extension to 4D necessary and the order of accuracy in
time can be set independently of the spatial discretization. On the other hand, this approach requires
the coupling of two different codes. Parallelization in time also becomes less flexible.

Appendix A. Installation of Dune and Assimulo

The simulations presented here are based on Dune version 2.8 and Assimulo version 3.2.9. There are
different ways to install Dune and Assimulo. Here, we only describe the simplest and most straight
forward way to install both, which is to use a Conda environment. Then the installation is done in
the following way:

conda create -n duneproject # create a new Conda environment

conda activate duneproject # activate the Conda environment

conda install -c conda-forge assimulo # install Assimulo

pip install -U dune-fem-dg # install DUNE using pip, no Conda package yet

conda install -c conda-forge scipy # install scipy

git clone https:// bitbucket .org/nate-sime/ dolfin_dg .git # install dolfin_dg. No pip or Conda package yet
cd dolfin_dg
python3 setup.py install

The space-time DG-SEM code is available online at https://gitlab.maths.lth.se/dune/
spacetimelobattocode.

Appendix B. Butcher tableaus

The Butcher tableaus for the Nτ -stage Lobatto IIIC methods with Nτ = 2, 3, 4 are seen in Table B.1.

Appendix C. UFL patch

This patch adds 4D simplex and cuboid reference elements to UFL needed for the 3D+time simulations.
This patch is implemented in Dune-Fem and will be discussed with the UFL community.

86

https://gitlab.maths.lth.se/dune/spacetimelobattocode
https://gitlab.maths.lth.se/dune/spacetimelobattocode

Aspects of Space-Time DGSEM

Table B.1. Butcher tableaus for Lobatto IIIC.

(a) Nτ = 2

0 1
2 −1

2
1 1

2
1
2

1
2

1
2

(b) Nτ = 3

0 1
6 −1

3
1
61

2
1
6

5
12 − 1

12
1 1

6
2
3

1
6

1
6

2
3

1
6

(c) Nτ = 4

0 1
12 −

√
5

12

√
5

12 − 1
12

1
2 −

√
5

10
1
12

1
4

10−7
√

5
60

√
5

60
1
2 +

√
5

10
1
12

10+7
√

5
60

1
4 −

√
5

60
1 1

12
5
12

5
12

1
12

1
12

5
12

5
12

1
12

4d patching of reference elements
def _patchufl4d ():

from ufl. sobolevspace import H1
from ufl. finiteelement . elementlist import ufl_elements , any_cell , register_element
from ufl.cell import num_cell_entities , cellname2facetname ,
from ufl.cell import _simplex_dim2cellname , _hypercube_dim2cellname

check if this has been added before
if not ’pentatope ’ in ufl.cell. num_cell_entities :

4d-simplex
ufl.cell. num_cell_entities [" pentatope "] = (5, 10 , 10 , 5, 1)
4d-cube
ufl.cell. num_cell_entities [" tesseract "] = (16 , 32 , 24 , 8, 1)

recompute cell name to dimension mapping
ufl.cell. cellname2dim = dict ((k, len(v) - 1) for k, v \

in ufl.cell. num_cell_entities .items ())

ufl.cell. cellname2facetname [" pentatope "] = " tetrahedron "
ufl.cell. cellname2facetname [" tesseract "] = " hexahedron "

ufl.cell. _simplex_dim2cellname [4] = " pentatope "
ufl.cell. _hypercube_dim2cellname [4] = " tesseract "

add types to element lists
ufl. finiteelement . elementlist . simplices =\

ufl. finiteelement . elementlist . simplices + (" pentatope " ,)
ufl. finiteelement . elementlist .cubes = \

ufl. finiteelement . elementlist .cubes + (" tesseract " ,)
ufl. finiteelement . elementlist . any_cell =\

ufl. finiteelement . elementlist . any_cell + (" pentatope ", " tesseract ",)

register Lagrange again with new element type list
ufl_elements .pop(" Lagrange ")
ufl_elements .pop("CG")
register_element (" Lagrange ", "CG", 0, H1 , " identity ", (1, None), \

ufl. finiteelement . elementlist . any_cell)

selecting a cell based on the dimension of the domain and or grid
def cell(dimDomainOrGrid):

if isinstance (dimDomainOrGrid ,ufl.Cell):
return dimDomainOrGrid

try:
dimWorld = int(dimDomainOrGrid . dimWorld)
dimDomain = int(dimDomainOrGrid . dimGrid)

except :
dimDomain = dimDomainOrGrid

87

L.M. Versbach, V. Linders, et al.

if isinstance (dimDomain , tuple):
if len(dimDomain) != 2:

raise Exception (’dimDomain tuple must contain exactly two elements .’)
dimWorld = int(dimDomain [1])
dimDomain = dimDomain [0]

else:
dimWorld = int(dimDomain)

if dimDomain == 1:
return ufl.Cell(" interval ", dimWorld)

elif dimDomain == 2:
return ufl.Cell(" triangle ", dimWorld)

elif dimDomain == 3:
return ufl.Cell(" tetrahedron ", dimWorld)

elif dimDomain == 4:
add 4d cell types to ufl data structures
_patchufl4d ()
return ufl.Cell(" pentatope ", dimWorld)

else:
raise NotImplementedError (’UFL cell not implemented for dimension ’\

+ str(dimDomain) + ’.’)

Appendix D. DG-SEM operators

For Nτ = 2,

Bτ =
(

−1 0
0 1

)
, M τ =

(
1 0
0 1

)
, Dτ =

(
−1

2
1
2

−1
2

1
2

)
. (D.1)

For Nτ = 3,

Bτ =

−1 0 0
0 0 0
0 0 1

 , Mτ =

1
3 0 0
0 4

3 0
0 0 1

3

 , Dτ =

−3
2 2 −1

2
−1

2 0 1
21

2 −2 3
2

 . (D.2)

For Nτ = 4,

Bτ =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , M τ =


1
6 0 0 0
0 5

6 0 0
0 0 5

6 0
0 0 0 1

6

 , Dτ =


−3 5+5

√
5

4
5−5

√
5

4
1
2

−1−
√

5
4 0 −

√
5

2
1−

√
5

4
−1+

√
5

4
−

√
5

2 0 1+
√

5
4

−1
2

5
√

5−5
4

−5−5
√

5
4 3

 . (D.3)

Author contributions

This paper, in full, is part of the PhD thesis [96]. The paper was conceptualized jointly by the au-
thors. Likewise, all authors contributed to the research, writing and editing of the manuscript. The
preparation of the code and production of the graphics was done by Lea Versbach and Robert Klöfkorn.

References

[1] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified Form Language: A Domain-
Specific Language for Weak Formulations of Partial Differential Equations. ACM Trans. Math. Softw.,
40(2), 2014.

[2] C. Andersson, C. Führer, and J. Åkesson. Assimulo: A unified framework for ODE solvers. Math. Comput.
Simul., 116(0):26–43, 2015.

88

Aspects of Space-Time DGSEM

[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[4] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constan-
tinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev,
D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell,
T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang,
and J. Zhang. PETSc Web page. https://petsc.org/, 2021.

[5] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constan-
tinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev,
D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell,
T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang,
and J. Zhang. PETSc/TAO Users Manual. Technical Report ANL-21/39 - Revision 3.16, Argonne National
Laboratory, 2021.

[6] P. Bastian, M. Blatt, M. Dedner, N.-A. Dreier, R. Engwer, Ch. Fritze, C. Gräser, Ch. Grüninger, D. Kempf,
R. Klöfkorn, M. Ohlberger, and O. Sander. The Dune framework: Basic concepts and recent developments.
Comput. Math. Appl., 81:75–112, 2021.

[7] T. A. Bickart. An efficient solution process for implicit Runge–Kutta methods. SIAM J. Numer. Anal.,
14(6):1022–1027, 1977.

[8] P. Birken. Numerical Methods for Unsteady Compressible Flow Problems. CRC Press, 2021.
[9] P. Birken, G. J. Gassner, and L. M. Versbach. Subcell finite volume multigrid preconditioning for high-

order discontinuous Galerkin methods. Int. J. Comput. Fluid Dyn., 33(9):353–361, 2019.
[10] P. D. Boom and D. W. Zingg. High-Order Implicit Time-Marching Methods Based on Generalized

Summation-by-Parts Operators. SIAM J. Sci. Comput., 37:A2682–A2709, 2015.
[11] S. Brdar, A. Dedner, and R. Klöfkorn. Compact and stable Discontinuous Galerkin methods for convection-

diffusion problems. SIAM J. Sci. Comput., 34(1):263–282, 2012.
[12] J. C. Butcher. Implicit Runge-Kutta Processes. Math. Comput., 18(85):50–64, 1964.
[13] J. C. Butcher. On the implementation of implicit Runge-Kutta methods. BIT, 16(3):237–240, 1976.
[14] P. C. Caplan, R. Haimes, D. L. Darmofal, and M. C. Galbraith. Four-dimensional anisotropic mesh

adaptation. Comput.-Aided Des., 129:102915, 2020.
[15] M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel. Entropy stable spectral collocation schemes

for the Navier–Stokes equations: Discontinuous interfaces. SIAM J. Sci. Comput., 36(5):B835–B867, 2014.
[16] M. H. Carpenter and D. Gottlieb. Spectral methods on arbitrary grids. J. Comput. Phys., 129(1):74–86,

1996.
[17] Z. Chen, H. Steeb, and S. Diebels. A space-time discontinuous Galerkin method applied to single-phase

flow in porous media. Comput. Geosci., 12(4):525–539, 2008.
[18] A. Dedner, S. Girke, R. Klöfkorn, and T. Malkmus. The DUNE-FEM-DG module. Archive of Numerical

Software, 5(1), 2017.
[19] A. Dedner and R. Klöfkorn. Extendible and Efficient Python Framework for Solving Evolution Equations

with Stabilized Discontinuous Galerkin Method. Commun. Appl. Math. Comput. Sci., 2021.
[20] A. Dedner and R. Klöfkorn. The DUNE-FEM tutorial, 2022. https://dune-project.org/sphinx/content/

sphinx/dune-fem/.
[21] A. Dedner, R. Klöfkorn, and M. Nolte. Python Bindings for the DUNE-FEM Module. Zenodo (Mar 2020),

https://doi.org/10.5281/zenodo.3706994, 2020.
[22] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A Generic Interface for Parallel and Adaptive

Scientific Computing: Abstraction Principles and the DUNE-FEM Module. Computing, 90(3–4):165–196,
2010.

89

https://petsc.org/
https://dune-project.org/sphinx/content/sphinx/dune-fem/
https://dune-project.org/sphinx/content/sphinx/dune-fem/
https://doi.org/10.5281/zenodo.3706994

L.M. Versbach, V. Linders, et al.

[23] A. Dedner and M. Nolte. Construction of Local Finite Element Spaces Using the Generic Reference
Elements. In A. Dedner, B. Flemisch, and R. Klöfkorn, editors, Advances in DUNE, pages 3–16. Springer,
2012.

[24] D. C. Del Rey Fernández, J. E. Hicken, and D. W. Zingg. Review of summation-by-parts operators with
simultaneous approximation terms for the numerical solution of partial differential equations. Comput.
Fluids, 95:171–196, 2014.

[25] L. T. Diosady and S. M. Murman. Tensor-product preconditioners for higher-order space–time discontin-
uous Galerkin methods. J. Comput. Phys., 330:296–318, 2017.

[26] W. Dörfler, S. Findeisen, and C. Wieners. Space-time discontinuous Galerkin discretizations for linear
first-order hyperbolic evolution systems. Comput. Methods Appl. Math., 16(3):409–428, 2016.

[27] T. C. Fisher and M. H. Carpenter. High-order entropy stable finite difference schemes for nonlinear
conservation laws: Finite domains. J. Comput. Phys., 252:518–557, 2013.

[28] T. C. Fisher, M. H. Carpenter, J. Nordström, N. K. Yamaleev, and C. Swanson. Discretely conserva-
tive finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary
conditions. J. Comput. Phys., 234:353–375, 2013.

[29] M. Franciolini and S. M. Murman. Multigrid preconditioning for a space-time spectral-element
discontinuous-Galerkin solver. In AIAA Scitech 2020 Forum, page 1314, 2020.

[30] S. Friedhoff, S. MacLachlan, and C. Borgers. Local Fourier analysis of space-time relaxation and multigrid
schemes. SIAM J. Sci. Comput., 35(5):S250–S276, 2013.

[31] L. Friedrich, G. Schnücke, A. R. Winters, D. C. Del Rey Fernández, G. J. Gassner, and M. H. Carpen-
ter. Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for
Hyperbolic Conservation Laws. J. Sci. Comput., 80(1):175–222, 2019.

[32] C. V. Frontin, G. S. Walters, F. D. Witherden, C. W. Lee, D. M. Williams, and D. L. Darmofal. Founda-
tions of space-time finite element methods: Polytopes, interpolation, and integration. Appl. Numer. Math.,
166:92–113, 2021.

[33] M. J. Gander. 50 Years of Time Parallel Time Integration. In T. Carraro, M. Geiger, S. Körkel, and R. Ran-
nacher, editors, Multiple Shooting and Time Domain Decomposition Methods, pages 69–113. Springer,
2015.

[34] M. J. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid algorithm for parabolic
problems. SIAM J. Sci. Comput., 38(4):A2173–A2208, 2016.

[35] G. J. Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation
to SBP-SAT finite difference methods. SIAM J. Sci. Comput., 35(3):A1233–A1253, 2013.

[36] G. J. Gassner and A. R. Winters. A novel robust strategy for discontinuous Galerkin methods in compu-
tational fluid mechanics: Why? When? What? Where? Front. Phys., page 612, 2021.

[37] Ch. Gersbacher. Higher-order discontinuous finite element methods and dynamic model adaptation for
hyperbolic systems of conservation laws. Phd thesis, University of Freiburg, 2017.

[38] J. Gopalakrishnan and G. Kanschat. A multilevel discontinuous Galerkin method. Numer. Math.,
95(3):527–550, 2003.

[39] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Springer, 2009.
[40] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, volume 14 of Springer Series in

Computational Mathematics. Springer, 2010.
[41] P. W. Hemker, W. Hoffmann, and M. H. Van Raalte. Two-level Fourier Analysis of a Multigrid Approach

for Discontinuous Galerkin Discretization. SIAM J. Sci. Comput., 25(3):1018–1041, 2003.
[42] P. W. Hemker, W. Hoffmann, and M. H. Van Raalte. Fourier two-level analysis for discontinuous Galerkin

discretization with linear elements. Numer. Linear Algebra Appl., 11(5-6):473–491, 2004.

90

Aspects of Space-Time DGSEM

[43] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and
applications. Springer, 2008.

[44] J. E. Hicken and D. W. Zingg. Superconvergent functional estimates from summation-by-parts finite-
difference discretizations. SIAM J. Sci. Comput., 33(2):893–922, 2011.

[45] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Wood-
ward. Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw.,
31(3):363–396, 2005.

[46] P. Houston and N. Sime. Automatic Symbolic Computation for Discontinuous Galerkin Finite Element
Methods. SIAM J. Sci. Comput., 40(3):C327–C357, 2018.

[47] G. M. Hulbert and T. Hughes, Jr. Space-time finite element methods for second-order hyperbolic equations.
Comput. Methods Appl. Math., 84(3):327–348, 1990.

[48] A. Jameson. Evaluation of fully implicit Runge Kutta schemes for unsteady flow calculations. J. Sci.
Comput., 73(2-3):819–852, 2017.

[49] L. O. Jay. Lobatto Methods. In B. Engquist, editor, Encyclopedia of Applied and Computational Mathe-
matics, pages 817–826. Springer, 2015.

[50] S. Jayasinghe, D. L. Darmofal, N. K. Burgess, M. C. Galbraith, and S. R. Allmaras. A space-time adaptive
method for reservoir flows: formulation and one-dimensional application. Comput. Geosci., 22(1):107–123,
2018.

[51] X. Jiao, X. Wang, and O. Chen. Optimal and Low-Memory Near-Optimal Preconditioning of Fully Implicit
Runge–Kutta Schemes for Parabolic PDEs. SIAM J. Sci. Comput., 43(5):A3527–A3551, 2021.

[52] O. Karakashian and C. Makridakis. A space-time finite element method for the nonlinear Schrödinger
equation: the discontinuous Galerkin method. Math. Comput., 67(222):479–499, 1998.

[53] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford
University Press, 2013.

[54] J. Kasimir, L. M. Versbach, P. Birken, G. J. Gassner, and R. Klöfkorn. An Finite Volume Based Multigrid
Preconditioner for DG-SEM for Convection-Diffusion. In 14th WCCM-ECCOMAS Congress 2020, volume
600, 2021.

[55] C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space–time discontinuous Galerkin method for
the compressible Navier–Stokes equations. J. Comput. Phys., 217(2):589–611, 2006.

[56] C. M. Klaij, M. H. van Raalte, H. van der Ven, and J. J. W. van der Vegt. h-Multigrid for space-time
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys.,
227(2):1024–1045, 2007.

[57] U. Köcher and M. Bause. Variational space–time methods for the wave equation. J. Sci. Comput.,
61(2):424–453, 2014.

[58] D. A. Kopriva. Implementing Spectral Methods for Partial Differential Equations. Springer, 2009.
[59] D. A. Kopriva and G. J. Gassner. On the Quadrature and Weak Form Choices in Collocation Type

Discontinuous Galerkin Spectral Element Methods. J. Sci. Comput., 44:136–155, 2010.
[60] D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini. Computation of electromagnetic scattering with

a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng., 53(1):105–122,
2002.

[61] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. J. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn,
M. Sonntag, et al. Flexi: A high order discontinuous Galerkin framework for hyperbolic–parabolic conser-
vation laws. Comput. Math. Appl., 81:186–219, 2021.

[62] H.-O. Kreiss and G. Scherer. Finite Element and Finite Difference Methods for Hyperbolic Partial Differ-
ential Equations. In C. de Boor, editor, Mathematical Aspects of Finite Elements in Partial Differential
Equations, pages 195–212. Academic Press Inc., 1974.

91

L.M. Versbach, V. Linders, et al.

[63] J. Lai, F. Liu, V. V. Anh, and Q. Liu. A space-time finite element method for solving linear Riesz space
fractional partial differential equations. Numer. Algorithms, pages 1–22, 2021.

[64] E. Lehsten. Implementation of 3 stage Lobatto IIIC into Assimulo package. Bachelor thesis, Lund Univer-
sity, 2021.

[65] V. Linders. On an eigenvalue property of Summation-By-Parts operators. J. Sci. Comput., 93:82, 2022.
[66] V. Linders, T. Lundquist, and J. Nordström. On the order of accuracy of finite difference operators on

diagonal norm based summation-by-parts form. SIAM J. Numer. Anal., 56(2):1048–1063, 2018.
[67] V. Linders, J. Nordström, and S. H. Frankel. Properties of Runge-Kutta-Summation-By-Parts methods.

J. Comput. Phys., 419:109684, 2020.
[68] T. Lundquist and J. Nordström. The SBP–SAT technique for initial value problems. J. Comput. Phys.,

270:86–104, 2014.
[69] C. Makridakis and R. H. Nochetto. A posteriori error analysis for higher order dissipative methods for

evolution problems. Numer. Math., 104(4):489–514, 2006.
[70] M. Masud Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone. A New Block Preconditioner for

Implicit Runge–Kutta Methods for Parabolic PDE Problems. SIAM J. Sci. Comput., 43(5):S475–S495,
2021.

[71] A. Müller, M. A. Kopera, S. Marras, L. C. Wilcox, T. Isaac, and F. X. Giraldo. Strong scaling for numerical
weather prediction at petascale with the atmospheric model NUMA. Int. J. High Perform. Comput. Appl.,
33(2):411–426, 2019.

[72] R. D. Nair, L. Bao, M. D. Toy, and R. Klöfkorn. A High-Order Multiscale Global Atmospheric Model.
AIAA AVIATION Forum, 2016.

[73] M. Neumüller. Space-Time Methods, volume 20 of Monograph Series TU Graz: Computation in Engineer-
ing and Science. TU Graz, 2013.

[74] J. Nievergelt. Parallel methods for integrating ordinary differential equations. Commun. ACM, 7(12):731–
733, 1964.

[75] J. Nordström and C. La Cognata. Energy stable boundary conditions for the nonlinear incompressible
Navier–Stokes equations. Math. Comput., 88(316):665–690, 2019.

[76] J. Nordström and V. Linders. Well-posed and stable transmission problems. J. Comput. Phys., 364:95–110,
2018.

[77] J. Nordström and T. Lundquist. Summation-by-parts in time. J. Comput. Phys., 251:487–499, 2013.
[78] W. Pazner and P.-O. Persson. Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin

fluid simulations. J. Comput. Phys., 335:700–717, 2017.
[79] W. Pazner and P.-O. Persson. Approximate tensor-product preconditioners for very high order discontin-

uous Galerkin methods. J. Comput. Phys., 354:344–369, 2018.
[80] H. Ranocha. Some notes on summation by parts time integration methods. Results Appl. Math., 1:100004,

2019.
[81] H. Ranocha, M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber, J. Chan, and G. J. Gassner. Adaptive

numerical simulations with Trixi.jl: A case study of Julia for scientific computing. Proceedings of the
JuliaCon Conferences, 1(1):77, 2022.

[82] A. A. Ruggiu and J. Nordström. On pseudo-spectral time discretizations in summation-by-parts form. J.
Comput. Phys., 360:192–201, 2018.

[83] J. Schneid. B-convergence of Lobatto IIIC formulas. Numer. Math., 51(2):229–235, 1987.
[84] C.-W. Shu. High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief

survey of several recent developments. J. Comput. Phys., 316:598–613, 2016.

92

Aspects of Space-Time DGSEM

[85] B. Strand. Summation by parts for finite difference approximations for d/dx. J. Comput. Phys., 110(1):47–
67, 1994.

[86] J. J. Sudirham, J. J. W. van der Vegt, and R. M. J. van Damme. Space-time discontinuous Galerkin
method for advection-diffusion problems on time-dependent domains. Appl. Numer. Math., 56(12):1491–
1518, 2006.

[87] M. Svärd and J. Nordström. Review of summation-by-parts schemes for initial–boundary-value problems.
J. Comput. Phys., 268:17–38, 2014.

[88] T. E. Tezduyar and K. Takizawa. Space–time computations in practical engineering applications: A sum-
mary of the 25-year history. Comput. Mech., 63(4):747–753, 2019.

[89] J. J. W. van der Vegt. Space-time discontinuous Galerkin finite element methods, pages 1–37. Von Karman
Institute for Fluid Dynamics, 2006.

[90] J. J. W. van der Vegt and S. Rhebergen. hp-multigrid as smoother algorithm for higher order discontinuous
Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis. J. Comput. Phys.,
231(22):7537–7563, 2012.

[91] J. J. W. van der Vegt and S. Rhebergen. hp-Multigrid as Smoother algorithm for higher order discontinuous
Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge–Kutta smoother.
J. Comput. Phys., 231:7564–7583, 2012.

[92] J. J. W. van der Vegt and H. van der Ven. Space-time discontinuous Galerkin finite element method
with dynamic grid motion for inviscid compressible flows. I. General formulation. J. Comput. Phys.,
182(2):546–585, 2002.

[93] J. J. W. van der Vegt and Y. Xu. Space–time discontinuous Galerkin method for nonlinear water waves.
J. Comput. Phys., 224(1):17–39, 2007.

[94] H. Van der Ven and J. J. W. van der Vegt. Space–time discontinuous Galerkin finite element method with
dynamic grid motion for inviscid compressible flows: II. Efficient flux quadrature. Comput. Methods Appl.
Math., 191(41-42):4747–4780, 2002.

[95] M. H. Van Raalte and P. W. Hemker. Two-level multigrid analysis for the convection–diffusion equation
discretized by a discontinuous Galerkin method. Numer. Linear Algebra Appl., 12(5-6):563–584, 2005.

[96] L. M. Versbach. Efficient Solvers for Space-Time Discontinuous Galerkin Spectral Element Methods. PhD
thesis, Mathematics (Faculty of Sciences), Lund University, 2022.

[97] L. M. Versbach, P. Birken, V. Linders, and G. J. Gassner. Local Fourier Analysis of a Space-Time Multigrid
Method for DG-SEM for the Linear Advection Equation. https://arxiv.org/abs/2112.03115, 2021.

[98] Y. Xia, X. Liu, H. Luo, and R. Nourgaliev. A third-order implicit discontinuous Galerkin method based on
a Hermite WENO reconstruction for time-accurate solution of the compressible Navier–Stokes equations.
Int. J. Numer. Methods Fluids, 79(8):416–435, 2015.

[99] M. Yano and D. L. Darmofal. An optimization-based framework for anisotropic simplex mesh adaptation.
J. Comput. Phys., 231(22):7626–7649, 2012.

[100] Q. Zhang and C.-W. Shu. Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin
method for symmetrizable systems of conservation laws. SIAM J. Numer. Anal., 44(4):1703–1720, 2006.

93

https://arxiv.org/abs/2112.03115

	1. Introduction
	1.1. Further reading

	2. Governing Equations and Simulation Software
	3. Method of Lines DG-SEM
	3.1. DG-SEM in Space
	3.2. Temporal Discretization

	4. Space-Time DG-SEM
	5. Theoretical Aspects of Space-Time DG-SEM
	5.1. DG-SEM and Lobatto IIIC
	5.2. Comparison of terminology

	6. Practical Aspects of Space-Time DG-SEM
	6.1. STDG
	6.2. LoDG
	6.3. Algorithmic Aspects

	7. Experiments
	7.1. Validation of Convergence Rates
	7.2. Advection-Diffusion
	7.3. Euler Equations

	8. Conclusions
	Appendix A. Installation of and Assimulo
	Appendix B. Butcher tableaus
	Appendix C. UFL patch
	Appendix D. DG-SEM operators
	Author contributions
	References

