Overview of the Revised'7 Algorithmic Language
Scheme

Arex SHINN, JoHN COWAN, AND ARTHUR A. GLECKLER (Editors)

STEVEN GANZ ALEXEY RADUL OLIN SHIVERS
AaroNn W. Hsu JEFFREY T. READ ALARIC SNELL-Pym
BRrRADLEY LUCIER Davip Rusu GERALD J. SUSSMAN
EMMANUEL MEDERNACH BenjaMmiIN L. RUSSEL

RicHARD KELSEY, WiLLIAM CLINGER, AND JONATHAN REES
(Editors, Revised® Report on the Algorithmic Language Scheme)

MiICHAEL SPERBER, R. KENT DvyBvIG, MATTHEW FLATT, AND ANTON VAN STRAATEN
(Editors, Revised® Report on the Algorithmic Language Scheme)

Dedicated to the memory of John McCarthy and Daniel Weinreb

#xx EDITOR’S DRAFT *** April 15, 2013

2 Revised” Scheme

OVERVIEW OF SCHEME

This paper gives an overview of the small language of
RRS. The purpose of this overview is to explain enough
about the basic concepts of the language to facilitate un-
derstanding of the R7RS report, which is organized as a
reference manual. Consequently, this overview is not a
complete introduction to the language, nor is it precise in
all respects or normative in any way.

Following Algol, Scheme is a statically scoped program-
ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.

Scheme has latent as opposed to manifest types. Types
are associated with objects (also called values) rather than
with variables. (Some authors refer to languages with la-
tent types as untyped, weakly typed or dynamically typed
languages.) Other languages with latent types are Python,
Ruby, Smalltalk, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly
typed or statically typed languages) include Algol 60, C,
C+#, Java, Haskell, and ML.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent in-
clude C#, Java, Haskell, most Lisp dialects, ML, Python,
Ruby, and Smalltalk.

Implementations of Scheme must be properly tail-
recursive. This allows the execution of an iterative com-
putation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar.

Scheme was one of the first languages to support proce-
dures as objects in their own right. Procedures can be
created dynamically, stored in data structures, returned
as results of procedures, and so on. Other languages with
these properties include Common Lisp, Haskell, ML, Ruby,
and Smalltalk.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. First-class continu-
ations are useful for implementing a wide variety of ad-
vanced control constructs, including non-local exits, back-
tracking, and coroutines.

In Scheme, the argument expressions of a procedure call
are evaluated before the procedure gains control, whether

the procedure needs the result of the evaluation or not.
C, C#, Common Lisp, Python, Ruby, and Smalltalk are
other languages that always evaluate argument expressions
before invoking a procedure. This is distinct from the lazy-
evaluation semantics of Haskell, or the call-by-name se-
mantics of Algol 60, where an argument expression is not
evaluated unless its value is needed by the procedure.

Scheme’s model of arithmetic provides a rich set of numer-
ical types and operations on them. Furthermore, it distin-
guishes eract and ineract numbers: Essentially, an exact
number object corresponds to a number exactly, and an in-
exact number is the result of a computation that involved
rounding or other approximations.

1. Basic types

Scheme programs manipulate objects, which are also re-
ferred to as walues. Scheme objects are organized into sets
of values called types. This chapter gives an overview of the
fundamentally important types of the Scheme language.

Note:
in the Scheme context differs from the use of the term in the

As Scheme is latently typed, the use of the term type

context of other languages, particularly those with manifest typ-
ing.

Numbers Scheme supports a rich variety of numerical
data types, including integers of arbitrary precision, ratio-
nal numbers, complex numbers, and inexact numbers of
various kinds.

Booleans A boolean is a truth value, and can be either
true or false. In Scheme, the object for “false” is written #f.
The object for “true” is written #t. In most places where a
truth value is expected, however, any object different from
#f counts as true.

Pairs and lists A pair is a data structure with two com-
ponents. The most common use of pairs is to represent
(singly linked) lists, where the first component (the “car”)
represents the first element of the list, and the second com-
ponent (the “cdr”) the rest of the list. Scheme also has a
distinguished empty list, which is the last cdr in a chain of
pairs that form a list.

Symbols A symbol is an object representing a string,
the symbol’s name. Unlike strings, two symbols whose
names are spelled the same way are never distinguishable.
Symbols are useful for many applications; for instance, they
can be used the way enumerated values are used in other
languages.

In R7RS, unlike R°RS, symbols and identifiers are case-
sensitive.

Characters Scheme characters mostly correspond to
textual characters. More precisely, they are isomorphic
to a subset of the scalar values of the Unicode standard,
with possible implementation-dependent extensions.

Strings Strings are finite sequences of characters with
fixed length and thus represent arbitrary Unicode texts.

Vectors Vectors, like lists, are linear data structures rep-
resenting finite sequences of arbitrary objects. Whereas
the elements of a list are accessed sequentially through the
chain of pairs representing it, the elements of a vector are
addressed by integer indices. Thus, vectors are more ap-
propriate than lists for random access to elements.

Bytevectors Bytevectors are similar to vectors, except
that their contents are bytes, exact integers in the range 0
to 255 inclusive.

Procedures Procedures are values in Scheme.

Records Records are structured values, and are aggre-
gations of zero or more fields, each of which holds a single
location. Records are organized into record types. A pred-
icate, a constructor, and field accessors and mutators can
be defined for each record type.

Ports Ports represent input and output devices. To
Scheme, an input port is a Scheme object that can deliver
data upon command, while an output port is a Scheme
object that can accept data.

2. Expressions

The most important elements of Scheme code are expres-
stons. Expressions can be ewvaluated, producing a value
(actually, any number of values.) The most fundamental
expressions are literal expressions:

#t — #t
23 = 23

This notation means that the expression #t evaluates to
#t, that is, the value for “true”, and that the expression
23 evaluates to a number representing the number 23.

Compound expressions are formed by placing parenthe-
ses around their subexpressions. The first subexpression
identifies an operation; the remaining subexpressions are
operands to the operation:

(+ 23 42)
(+ 14 (* 23 42))

= 65
= 980

3. Variables and binding 3

In the first of these examples, + is the name of the built-
in operation for addition, and 23 and 42 are the operands.
The expression (+ 23 42) reads as “the sum of 23 and 42”.
Compound expressions can be nested—the second example
reads as “the sum of 14 and the product of 23 and 42”.

As these examples indicate, compound expressions in
Scheme are always written using the same prefix notation.
As a consequence, the parentheses are needed to indicate
structure. Consequently, “superfluous” parentheses, which
are often permissible in mathematical notation and also in
many programming languages, are not allowed in Scheme.

As in many other languages, whitespace (including line
endings) is not significant when it separates subexpressions
of an expression, and can be used to indicate structure.

3. Variables and binding

Scheme allows identifiers to stand for locations contain-
ing values. These identifiers are called variables. In many
cases, specifically when the location’s value is never mod-
ified after its creation, it is useful to think of the variable
as standing for the value directly.

(let ((x 23)
(y 42))

+ x) = 65

In this case, the expression starting with let is a bind-
ing construct. The parenthesized structure following the
let lists variables alongside expressions: the variable x
alongside 23, and the variable y alongside 42. The let
expression binds x to 23, and y to 42. These bindings are
available in the body of the let expression, (+ x y), and
only there.

4. Definitions

The variables bound by a let expression are local, because
their bindings are visible only in the let’s body. Scheme
also allows creating top-level bindings for identifiers as fol-
lows:

(define x 23)
(define y 42)

+xy = 65

(These are actually “top-level” in the body of a top-level
program or library.)

The first two parenthesized structures are definitions; they
create top-level bindings, binding x to 23 and y to 42. Defi-
nitions are not expressions, and cannot appear in all places
where an expression can occur. Moreover, a definition has
no value.

Bindings follow the lexical structure of the program: When
several bindings with the same name exist, a variable refers

4 Revised” Scheme

to the binding that is closest to it, starting with its occur-
rence in the program and going from inside to outside, and
referring to an outermost binding if no local binding can
be found along the way:

(define x 23)
(define y 42)
(let ((y 43))

+x) = 66
(et ((y 43))
(let ((y 44))
-+ x) = 67

5. Procedures
Definitions can also be used to define procedures:

(define (f x)
(+ x 42))

(f 23) — 65

A procedure is, slightly simplified, an abstraction of an
expression over objects. In the example, the first defini-
tion defines a procedure called f. (Note the parentheses
around f x, which indicate that this is a procedure defini-
tion.) The expression (£ 23) is a procedure call meaning,
roughly, “evaluate (+ x 42) (the body of the procedure)
with x bound to 23”.

As procedures are objects, they can be passed to other
procedures:

(define (f x)
(+ x 42))

(define (g p %)
(p x))

(g £ 23) = 65

In this example, the body of g is evaluated with p bound to
f and x bound to 23, which is equivalent to (£ 23), which
evaluates to 65.

In fact, many predefined operations of Scheme are pro-
vided not by syntax, but by variables whose values are
procedures. The + operation, for example, which receives
special syntactic treatment in many other languages, is just
a regular identifier in Scheme, bound to a procedure that
adds numbers. The same holds for * and many others:

(define (h op x y)

(op x V)
(h + 23 42) —> 65
(h * 23 42) = 966

Procedure definitions are not the only way to create pro-
cedures. A lambda expression creates a new procedure as
an object, with no need to specify a name:

((lambda (x) (+ x 42)) 23) — 65

The entire expression in this example is a procedure call;
(lambda (x) (+ x 42)), evaluates to a procedure that
takes a single number and adds 42 to it.

6. Procedure calls and syntactic key-
words

Whereas (+ 23 42), (f 23), and ((lambda (x) (+ x
42)) 23) are all examples of procedure calls, lambda and
let expressions are not. This is because let, even though
it is an identifier, is not a variable, but is instead a syn-
tactic keyword. A list that has a syntactic keyword as its
first subexpression obeys special rules determined by the
keyword. The define identifier in a definition is also a syn-
tactic keyword. Hence, definitions are also not procedure
calls.

The rules for the lambda keyword specify that the first
sublist is a list of parameters, and the remaining sublists
are the body of the procedure. In let expressions, the first
sublist is a list of binding specifications, and the remaining
sublists constitute a body of expressions.

Procedure calls can be distinguished from these expression
types by looking for a syntactic keyword in the first position
of a list: if the first position does not contain a syntactic
keyword, the expression is a procedure call. The set of
syntactic keywords of Scheme is fairly small, which usually
makes this task fairly simple. It is possible, however, to
create new bindings for syntactic keywords.

7. Assignment

Scheme variables bound by definitions or let or lambda
expressions are not actually bound directly to the ob-
jects specified in the respective bindings, but to loca-
tions containing these objects. The contents of these lo-
cations can subsequently be modified destructively via as-
stgnment:

(let ((x 23))
(set! x 42)
x) — 42

In this case, the body of the let expression consists of two
expressions which are evaluated sequentially, with the value
of the final expression becoming the value of the entire let
expression. The expression (set! x 42) is an assignment,
saying “replace the object in the location referenced by x
with 42”. Thus, the previous value of x, 23, is replaced by
42,

8. Derived syntax and macros

Many of the expression types specified as part of the RTRS
small language can be translated into more basic expression
types. For example, a 1let expression can be translated into
a procedure call and a lambda expression. The following
two expressions are equivalent:

(let ((x 23)
(y 42))

+ x y) —> 65

((lambda (x y) (+ x y)) 23 42)
—> 65

Syntax expressions like let expressions are called derived
because their semantics can be derived from that of other
kinds of expressions by a syntactic transformation. Some
procedure definitions are also derived expressions. The fol-
lowing two definitions are equivalent:

(define (f x)
(+ x 42))

(define f
(lambda (x)
(+ x 42)))

In Scheme, it is possible for a program to create its own de-
rived expressions by binding syntactic keywords to macros:

(define-syntax def
(syntax-rules ()

((def £ (p ...) body)
(define (f p ...)
body))))
(def £ (x)
(+ x 42))

The define-syntax construct specifies that a parenthe-
sized structure matching the pattern (def £ (p ...)
body), where £, p, and body are pattern variables, is trans-
lated to (define (£ p ...) body). Thus, the def ex-
pression appearing in the example gets translated to:

(define (f x)
(+ x 42))

The ability to create new syntactic keywords makes Scheme
extremely flexible and expressive, allowing many of the fea-
tures built into other languages to be implemented directly
in Scheme: any Scheme programmer can add new expres-
sion types.

9. Syntactic data and datum values

Datum wvalues constitute a subset of Scheme objects.
These include booleans, numbers, characters, symbols, and
strings as well as lists, vectors, and bytevectors whose ele-
ments are datum values. Each datum value can be repre-
sented textually as a syntactic datum, which can be written
out and read back in without loss of information. There
is in general more than one syntactic datum corresponding
to each datum value. Moreover, each datum value can be
trivially translated to a literal expression in a program by
prepending a ’ to a corresponding syntactic datum:

10. Continuations 5

723 — 23
‘#t — #t
’foo —> foo
’(1 2 3) = (12 3)
#(1 2 3) = #(1 2 3)

The ’> shown in the previous examples is not needed for
representations of literal constants other than symbols and
lists. The syntactic datum foo represents a symbol with
name “foo”, and ’foo is a literal expression with that sym-
bol as its value. (1 2 3) is a syntactic datum that repre-
sents a list with elements 1, 2, and 3, and > (1 2 3) is a
literal expression with this list as its value. Likewise, #(1
2 3) is a syntactic datum that represents a vector with
elements 1, 2 and 3, and *#(1 2 3) is the corresponding
literal.

Syntactic datums are a superset of Scheme expressions.
Thus, data can be used to represent Scheme expressions
as data objects. In particular, symbols can be used to
represent identifiers.

> (+ 23 42)
’(define (f x) (+ x 42))
—> (define (f x) (+ x 42))

= (+ 23 42)

This facilitates writing programs that operate on Scheme
source code, in particular interpreters and program trans-
formers.

10. Continuations

Whenever a Scheme expression is evaluated there is a con-
tinuation wanting the result of the expression. The con-
tinuation represents an entire (default) future for the com-
putation. For example, informally the continuation of 3 in
the expression

(+13)

adds 1 to it. Normally these ubiquitous continua-
tions are hidden behind the scenes and programmers do
not think much about them. On rare occasions, how-
ever, a programmer needs to deal with continuations
explicitly. The call-with-current-continuation pro-
cedure allows Scheme programmers to do that by cre-
ating a procedure that reinstates the current continua-
tion. The call-with-current-continuation procedure
accepts a procedure, calls it immediately with an argu-
ment that is an escape procedure. This escape procedure
can then be called with an argument that becomes the
result of the call to call-with-current-continuation.
That is, the escape procedure abandons its own con-
tinuation, and reinstates the continuation of the call to
call-with-current-continuation.

In the following example, an escape procedure representing
the continuation that adds 1 to its argument is bound to
escape, and then called with 3 as an argument. The con-
tinuation of the call to escape is abandoned, and instead
the 3 is passed to the continuation that adds 1:

6 Revised” Scheme

(+ 1 (call-with-current-continuation
(lambda (escape)
(+ 2 (escape 3)))))
— 4

An escape procedure has unlimited extent: It can be
called after the continuation it captured has been in-
voked, and it can be called multiple times. This
makes call-with-current-continuation significantly
more powerful than typical non-local control constructs
such as exceptions in other languages.

11.

Scheme code can be organized in components called Ii-
braries. Each library contains definitions and expressions.
It can import definitions from other libraries and export
definitions to other libraries.

Libraries

The following library called (hello) exports a definition
called hello-world, and imports the base library and the
display library. The hello-world export is a procedure
that displays Hello World on a separate line:

(define-library (hello)
(export hello-world)
(import (scheme base)

(scheme display))
(begin
(define (hello-world)
(display "Hello World")
(newline))))

12. Programs

Libraries are invoked by other libraries, but ultimately by
a Scheme program. Like a library, a program contains im-
ports, definitions and expressions, and specifies an entry
point for execution. Thus a program defines, via the tran-
sitive closure of the libraries it imports, a Scheme program.

The following program obtains the first argument from
the command line via the command-line procedure from
the process-context library. It then opens the file using
with-input-from-file, which causes the file to be the
current input port, and arranges for it to be closed at the
end. Next, it calls the read-1line procedure to read a line
of text from the file, and then write-string and newline
to output the line, then looping until the end of file:

(import (scheme base)
(scheme file)
(scheme process-context))
(with-input-from-file
(cadr (command-line))
(lambda ()
(let loop ((line (read-line)))
(unless (eof-object? line)
(write-string line)
(newline)
(loop (read-line))))))

13. The REPL

Implementations may provide an interactive session called
a REPL (Read-Eval-Print Loop), where import declara-
tions, expressions and definitions can be entered and eval-
uated one at a time. The REPL starts out with the base
library imported, and possibly other libraries. An imple-
mentation may provide a mode of operation in which the
REPL reads its input from a file. Such a file is not, in gen-
eral, the same as a program, because it can contain import
declarations in places other than the beginning.

Here is a short REPL session. The > character represents
the REPL’s prompt for input:

> ; A few simple things

> (+ 2 2)

4

> (sin 4)

Undefined variable: sin

> (import (scheme inexact))
> (sin 4)
-0.756802495307928

> (define sine sin)

> (sine 4)
-0.756802495307928

> ; Guy Steele’s three-part test

> ; True is true ...

> #t

#t

> ; 100!/99! = 100 ...

> (define (fact n)

(Gif (=n0) 1 (* n (fact (- n 1)))))
> (/ (fact 100) (fact 99))
100
> ; If it returns the *right* complex number,
> ; so much the better ...
> (define (atanh x)

(/ (- (Log (+ 1 %))

(log (- 1 x)))
2))

> (atanh -2)
-0.549306144334055+1.57079632679491

	Basic types
	Expressions
	Variables and binding
	Definitions
	Procedures
	Procedure calls and syntactic keywords
	Assignment
	Derived syntax and macros
	Syntactic data and datum values
	Continuations
	Libraries
	Programs
	The REPL

