
Revised7 Report on the
Algorithmic Language

Scheme

ALEX SHINN, JOHN COWAN,
AND ARTHUR A. GLECKLER (Editors)

S GANZ A RADUL O SHIVERS

A W. HSU J T. READ A SNELL-PYM

B LUCIER D RUSH G J. SUSSMAN

E MEDERNACH B L. RUSSEL

RICHARD KELSEY, WILLIAM CLINGER,
AND JONATHAN REES

(Editors, R5RS)

MICHAEL SPERBER, R. KENT DYBVIG, MATTHEW FLATT,
AND ANTON VAN STRAATEN

(Editors, R6RS)

Dedicated to the memory of John McCarthy

2

SUMMARY
The report gives a defining description of the programming language
Scheme. Scheme is a statically scoped and properly tail recursive
dialect of the Lisp programming language invented by Guy Lewis
Steele Jr. and Gerald Jay Sussman. It was designed to have an ex-
ceptionally clear and simple semantics and few different ways to form
expressions. A wide variety of programming paradigms, including
imperative, functional, and object-oriented styles, find convenient
expression in Scheme.
The introduction offers a brief history of the language and of the
report.
The first three chapters present the fundamental ideas of the lan-
guage and describe the notational conventions used for describing
the language and for writing programs in the language.
Chapters 4 and 5 describe the syntax and semantics of expressions,
definitions, programs, and libraries.
Chapter 6 describes Scheme’s built-in procedures, which include all
of the language’s data manipulation and input/output primitives.
Chapter 7 provides a formal syntax for Scheme written in extended
BNF, along with a formal denotational semantics. An example of
the use of the language follows the formal syntax and semantics.
Appendix A provides a list of the standard libraries and the identi-
fiers that they export.
Appendix B provides a list of optional but standardized implemen-
tation feature names.
The report concludes with a list of references and an alphabetic
index.

*** DRAFT***
December 18, 2011

3

CONTENTS
1 Overview of Scheme . 6

1.1 Semantics . 7
1.2 Syntax . 8
1.3 Notation and terminology . 9

2 Lexical conventions . 13
2.1 Identifiers . 14
2.2 Whitespace and comments . 15
2.3 Other notations . 16
2.4 Datum labels . 18

3 Basic concepts . 19
3.1 Variables, syntactic keywords, and regions 19
3.2 Disjointness of types . 20
3.3 External representations . 21
3.4 Storage model . 22
3.5 Proper tail recursion . 23

4 Expressions . 26
4.1 Primitive expression types . 27
4.2 Derived expression types . 32
4.3 Macros . 52

5 Program structure . 61
5.1 Programs . 61
5.2 Definitions . 62
5.3 Syntax definitions . 65
5.4 Record type definitions . 66
5.5 Libraries . 68

6 Standard procedures . 75
6.1 Equivalence predicates . 76
6.2 Numbers . 82
6.3 Booleans . 103
6.4 Pairs and lists . 104
6.5 Symbols . 113
6.6 Characters . 114
6.7 Strings . 118
6.8 Vectors . 125
6.9 Bytevectors . 128
6.10 Control features . 130
6.11 Exceptions . 140
6.12 Eval . 142
6.13 Input and output . 144

7 Formal syntax and semantics . 158
7.1 Formal syntax . 158
7.2 Formal semantics . 169
7.3 Derived expression types . 179

A Standard Libraries . 193
B Standard Feature Identifiers . 200
Notes . 202
Additional material . 210
Example . 212
References . 216

4

Introduction
Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary. Scheme demonstrates
that a very small number of rules for forming expressions, with no
restrictions on how they are composed, suffice to form a practical and
efficient programming language that is flexible enough to support
most of the major programming paradigms in use today.
Scheme was one of the first programming languages to incorporate
first class procedures as in the lambda calculus, thereby proving the
usefulness of static scope rules and block structure in a dynamically
typed language. Scheme was the first major dialect of Lisp to dis-
tinguish procedures from lambda expressions and symbols, to use a
single lexical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an operand
position. By relying entirely on procedure calls to express itera-
tion, Scheme emphasized the fact that tail recursive procedure calls
are essentially GOTO’s that pass arguments, thus allowing a pro-
gramming style that is both coherent and efficient. Scheme was the
first widely used programming language to embrace first class es-
cape procedures, from which all previously known sequential control
structures can be synthesized. A subsequent version of Scheme in-
troduced the concept of exact and inexact numbers, an extension of
Common Lisp’s generic arithmetic. More recently, Scheme became
the first programming language to support hygienic macros, which
permit the syntax of a block-structured language to be extended in
a consistent and reliable manner.

Background

The first description of Scheme was written in 1975 [34]. A revised
report [31] appeared in 1978, which described the evolution of the
language as its MIT implementation was upgraded to support an

5

innovative compiler [32]. Three distinct projects began in 1981 and
1982 to use variants of Scheme for courses at MIT, Yale, and Indiana
University [27, 23, 15]. An introductory computer science textbook
using Scheme was published in 1984 [3].
As Scheme became more widespread, local dialects began to diverge
until students and researchers occasionally found it difficult to un-
derstand code written at other sites. Fifteen representatives of the
major implementations of Scheme therefore met in October 1984 to
work toward a better and more widely accepted standard for Scheme.
Their report, the RRRS [7], was published at MIT and Indiana Uni-
versity in the summer of 1985. Further revision took place in the
spring of 1986, resulting in the R3RS [29]. Work in the spring of
1988 resulted in R4RS [9], which became the basis for the IEEE
Standard for the Scheme Programming Language in 1991 [18]. In
1998, several additions to the IEEE standard, including high-level
hygienic macros, multiple return values and eval, were finalized as
the R5RS [2].
In the fall of 2006, work began on a more ambitious standard, includ-
ing many new improvements and stricter requirements made in the
interest of improved portability. The resulting standard, the R6RS,
was completed in August 2007 [1], and was organized as a core lan-
guage and set of mandatory standard libraries. The size and goals
of the R6RS, however, were controversial, and adoption of the new
standard was not as widespread as had been hoped.
In consequence, the Scheme Steering Committee decided in August
2009 to divide the standard into two separate but compatible lan-
guages — a “small” language, suitable for educators, researchers and
embedded languages, focused on R5RScompatibility, and a “large”
language focused on the practical needs of mainstream software de-
velopment which would evolve to become a replacement for R6RS.
The present report describes the “small” language of that effort.

We intend this report to belong to the entire Scheme community, and
so we grant permission to copy it in whole or in part without fee. In

1. OVERVIEW OF SCHEME 6

particular, we encourage implementors of Scheme to use this report
as a starting point for manuals and other documentation, modifying
it as necessary.

Acknowledgements

We would like to thank the members of the Steering Committee,
William Clinger, Marc Feeley, Chris Hanson, Jonathan Rees, and
Olin Shivers, for their support and guidance. We’d like to thank
the following people for their help: Per Bothner, Taylor Campbell,
Ray Dillinger, Brian Harvey, Shiro Kawai, Jonathan Kraut, Thomas
Lord, Vincent Manis, Jeronimo Pellegrini, Jussi Piitulainen, Alex
Queiroz, Jim Rees, Jay Reynolds Freeman, Malcolm Tredinnick, De-
nis Washington, Andy Wingo, and Andre van Tonder.
In addition we would like to thank all the past editors, and the
people who helped them in turn: Hal Abelson, Norman Adams,
David Bartley, Alan Bawden, Michael Blair, Gary Brooks, George
Carrette, Andy Cromarty, Pavel Curtis, Jeff Dalton, Olivier Danvy,
Ken Dickey, Bruce Duba, Robert Findler, Andy Freeman, Richard
Gabriel, Yekta Gürsel, Ken Haase, Robert Halstead, Robert Hieb,
Paul Hudak, Morry Katz, Eugene Kohlbecker, Chris Lindblad, Jacob
Matthews, Mark Meyer, Jim Miller, Don Oxley, Jim Philbin, Kent
Pitman, John Ramsdell, Guillermo Rozas, Mike Shaff, Jonathan
Shapiro, Guy Steele, Julie Sussman, Perry Wagle, Mitchel Wand,
Daniel Weise, Henry Wu, and Ozan Yigit. We thank Carol Fes-
senden, Daniel Friedman, and Christopher Haynes for permission
to use text from the Scheme 311 version 4 reference manual. We
thank Texas Instruments, Inc. for permission to use text from the
TI Scheme Language Reference Manual [36]. We gladly acknowledge
the influence of manuals for MIT Scheme [23], T [28], Scheme 84 [16],
Common Lisp [33], and Algol 60 [24].

1. OVERVIEW OF SCHEME 7

1. Overview of Scheme
1.1. Semantics

This section gives an overview of Scheme’s semantics. A detailed in-
formal semantics is the subject of chapters 3 through 6. For reference
purposes, section 7.2 provides a formal semantics of Scheme.
Scheme is a statically scoped programming language. Each use of
a variable is associated with a lexically apparent binding of that
variable.
Scheme is a dynamically typed language. Types are associated with
values (also called objects) rather than with variables. Statically
typed languages, by contrast, associate types with variables and ex-
pressions as well as with values.
All objects created in the course of a Scheme computation, including
procedures and continuations, have unlimited extent. No Scheme
object is ever destroyed. The reason that implementations of Scheme
do not (usually!) run out of storage is that they are permitted to
reclaim the storage occupied by an object if they can prove that the
object cannot possibly matter to any future computation.
Implementations of Scheme are required to be properly tail recursive.
This allows the execution of an iterative computation in constant
space, even if the iterative computation is described by a syntacti-
cally recursive procedure. Thus with a properly tail recursive imple-
mentation, iteration can be expressed using the ordinary procedure-
call mechanics, so that special iteration constructs are useful only as
syntactic sugar. See section 3.5.
Scheme procedures are objects in their own right. Procedures can be
created dynamically, stored in data structures, returned as results of
procedures, and so on.
One distinguishing feature of Scheme is that continuations, which in
most other languages only operate behind the scenes, also have “first-
class” status. Continuations are useful for implementing a wide va-
riety of advanced control constructs, including non-local exits, back-

1. OVERVIEW OF SCHEME 8

tracking, and coroutines. See section 6.10.
Arguments to Scheme procedures are always passed by value, which
means that the actual argument expressions are evaluated before the
procedure gains control, regardless of whether the procedure needs
the result of the evaluation.
Scheme’s model of arithmetic is designed to remain as independent
as possible of the particular ways in which numbers are represented
within a computer. In Scheme, every integer is a rational number,
every rational is a real, and every real is a complex number. Thus
the distinction between integer and real arithmetic, so important
to many programming languages, does not appear in Scheme. In its
place is a distinction between exact arithmetic, which corresponds to
the mathematical ideal, and inexact arithmetic on approximations.
Exact arithmetic is not limited to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully parenthesized pre-
fix notation for programs and (other) data; the grammar of Scheme
generates a sublanguage of the language used for data. An important
consequence of this simple, uniform representation is that Scheme
programs and data can easily be treated uniformly by other Scheme
programs. For example, the eval procedure evaluates a Scheme pro-
gram expressed as data.
The read procedure performs syntactic as well as lexical decompo-
sition of the data it reads. The read procedure parses its input as
data (section 7.1.2), not as program.
The formal syntax of Scheme is described in section 7.1.

1. OVERVIEW OF SCHEME 9

1.3. Notation and terminology

1.3.1. Base and optional features

Every identifier defined in this report appears in one of several li-
braries. Identifiers defined in the base library are not marked spe-
cially in the body of the report. A summary of all the standard
libraries and the features they provide is given in Appendix A.
Implementations must provide the base library and all the identifiers
exported from it. Implementations are free to provide or omit the
other libraries given in this report, but each library must either be
provided in its entirety, exporting no additional identifiers, or else
omitted altogether.
Implementations may provide other libraries not described in this
report. Implementations may also extend the function of any iden-
tifier in this report, provided the extensions are not in conflict with
the language reported here. In particular, implementations must
support portable code by providing a mode of operation in which
the lexical syntax does not conflict with the lexical syntax described
in this report.

1.3.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the phrase “an
error is signalled” to indicate that implementations must detect and
report the error. An error is signalled by raising a non-continuable
exception, as if by the procedure raise as described in section 6.11.
The object raised is implementation-dependent and need not be a
newly allocated object every time. In addition to errors signalled
by situations described in this report, programmers may signal their
own errors and handle signalled errors.
If such wording does not appear in the discussion of an error, then im-
plementations are not required to detect or report the error, though
they are encouraged to do so. Such a situation is sometimes, but

1. OVERVIEW OF SCHEME 10

not always, referred to with the phrase “an error.” For example, it
is an error for a procedure to be passed an argument of a type that
the procedure is not explicitly specified to handle, even though such
domain errors are seldom mentioned in this report. Implementa-
tions may extend a procedure’s domain of definition to include such
arguments.
This report uses the phrase “may report a violation of an implemen-
tation restriction” to indicate circumstances under which an imple-
mentation is permitted to report that it is unable to continue exe-
cution of a correct program because of some restriction imposed by
the implementation. Implementation restrictions are discouraged,
but implementations are encouraged to report violations of imple-
mentation restrictions.
For example, an implementation may report a violation of an im-
plementation restriction if it does not have enough storage to run a
program, or an arithmetic operation would produce an exact number
that is too large for the implementation to represent.
If the value of an expression is said to be “unspecified,” then the
expression must evaluate to some object without signalling an error,
but the value depends on the implementation; this report explicitly
does not say what value is returned.
Finally, the words and phrases “must,” “must not,” “shall,” “shall
not,” “should,” “should not,” “may,” “required,” “recommended,”
and “optional”, although not capitalized in this report, are to be
interpreted as described in RFC 2119 [12]. In particular, “must”
and “must not” are used only when absolute restrictions are placed
on implementations.

1.3.3. Entry format

Chapters 4 and 6 are organized into entries. Each entry describes
one language feature or a group of related features, where a feature is
either a syntactic construct or a built-in procedure. An entry begins

1. OVERVIEW OF SCHEME 11

with one or more header lines of the form
template category
for identifiers in the base library, or
template library category
where library is the short name of a library as defined in Appendix A.
If category is “syntax,” the entry describes an expression type, and
the template gives the syntax of the expression type. Components of
expressions are designated by syntactic variables, which are written
using angle brackets, for example, 〈expression〉, 〈variable〉. Syntac-
tic variables are intended to denote segments of program text; for
example, 〈expression〉 stands for any string of characters which is a
syntactically valid expression. The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.
If category is “auxiliary syntax,” then the entry describes a syntax
binding that occurs only as part of specific surrounding expressions.
Any use as an independent syntactic construct or identifier is an
error.
If category is “procedure,” then the entry describes a procedure,
and the header line gives a template for a call to the procedure.
Argument names in the template are italicized . Thus the header
line
(vector-ref vector k) procedure
indicates that the procedure bound to the vector-ref variable takes
two arguments, a vector vector and an exact non-negative integer k
(see below). The header lines
(make-vector k) procedure
(make-vector k fill) procedure

1. OVERVIEW OF SCHEME 12

indicate that the make-vector procedure must be defined to take
either one or two arguments.
It is an error for an operation to be presented with an argument
that it is not specified to handle. For succinctness, we follow the
convention that if an argument name is also the name of a type
listed in section 3.2, then it is an error if that argument is not of
the named type. For example, the header line for vector-ref given
above dictates that the first argument to vector-ref is a vector.
The following naming conventions also imply type restrictions:

obj any object
list, list1, . . . listj , . . . list (see section 6.4)
z, z1, . . . zj , . . . complex number
x, x1, . . . xj , . . . real number
y, y1, . . . yj , . . . real number
q, q1, . . . qj , . . . rational number
n, n1, . . . nj , . . . integer
k, k1, . . . kj , . . . exact non-negative integer
string string
pair pair
list list
alist association list (list of pairs)
symbol symbol
char character
letter alphabetic character
byte exact non-negative integer < 256
bytevector bytevector
proc procedure
thunk zero-argument procedure
port port

2. LEXICAL CONVENTIONS 13

1.3.4. Evaluation examples

The symbol “=⇒” used in program examples is read “evaluates to.”
For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the object 40. Or,
more precisely: the expression given by the sequence of characters
“(* 5 8)” evaluates, in the initial environment, to an object that
can be represented externally by the sequence of characters “40.” See
section 3.3 for a discussion of external representations of objects.

1.3.5. Naming conventions

By convention, ? is the final character of the names of procedures
that always return a boolean value. Such procedures are called pred-
icates.
Similarly, ! is the final character of the names of procedures that
store values into previously allocated locations (see section 3.4). Such
procedures are called mutation procedures. The value returned by a
mutation procedure is unspecified.
By convention, “->” appears within the names of procedures that
take an object of one type and return an analogous object of another
type. For example, list->vector takes a list and returns a vector
whose elements are the same as those of the list.

2. Lexical conventions
This section gives an informal account of some of the lexical con-
ventions used in writing Scheme programs. For a formal syntax of
Scheme, see section 7.1.

2. LEXICAL CONVENTIONS 14

2.1. Identifiers

An identifier is any sequence of letters, digits, and “extended iden-
tifier characters” provided that it does not have a prefix which is a
valid number. However, the . token (a single period) used in the list
syntax is not an identifier.
All implementations of Scheme must support the following extended
identifier characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

In addition, any character supported by an implementation can be
used within an identifier when specified using an 〈inline hex escape〉.
For example, the identifier H\x65;llo is the same as the identifier
Hello, and in an implementation that supports the appropriate Uni-
code character the identifier \x3BB; is the same as the identifier λ.
As a convenience, identifiers may also be written as a sequence of
zero or more characters enclosed within vertical bars (|), analogous
to string literals. Any character, including whitespace characters,
but excluding the backslash and vertical bar characters, may ap-
pear verbatim in such an identifier. It is also possible to include the
backslash and vertical bar characters, as well as any other charac-
ter, in the identifier with an 〈inline hex escape〉. Thus the identifier
|foo bar| is the same as the identifier foo\x20;bar. Note that ||
is a valid identifier that is not equal to any other identifier.
Here are some examples of identifiers:

lambda q

list->vector +soup+

+ V17a

<=? a34kTMNs

->string ...

|two words| two\x20;words

the-word-recursion-has-many-meanings

2. LEXICAL CONVENTIONS 15

See section 7.1.1 for the formal syntax of identifiers.
Identifiers have two uses within Scheme programs:

• Any identifier may be used as a variable or as a syntactic key-
word (see sections 3.1 and 4.3).

• When an identifier appears as a literal or within a literal (see
section 4.1.2), it is being used to denote a symbol (see sec-
tion 6.5).

In contrast with earlier revisions of the report [2], the syntax distin-
guishes between upper and lower case in identifiers and in characters
specified via their names, but not in numbers, nor in 〈inline hex escapes〉
used in the syntax of identifiers, characters, or strings. None of the
identifiers defined in this report contain upper-case characters, even
when they may appear to do so as a result of the English-language
convention of capitalizing the word at the beginning of a sentence.
The following directives give explicit control over case folding.

#!fold-case

#!no-fold-case

These directives may appear anywhere comments are permitted (see
section 2.2) and are treated as comments, except that they affect
the reading of subsequent data. The #!fold-case directive causes
the read procedure to case-fold (as if by string-foldcase; see sec-
tion 6.7) each identifier and character name subsequently read from
the same port. The #!no-fold-case directive causes the read pro-
cedure to return to the default, non-folding behavior.

2.2. Whitespace and comments

Whitespace characters include the space and newline characters. (Im-
plementations may provide additional whitespace characters such as
tab or page break.) Whitespace is used for improved readability and

2. LEXICAL CONVENTIONS 16

as necessary to separate tokens from each other, a token being an
indivisible lexical unit such as an identifier or number, but is oth-
erwise insignificant. Whitespace can occur between any two tokens,
but not within a token. Whitespace occurring inside a string or
inside a symbol delimited by vertical bars is significant.
The lexical syntax includes several comment forms. Comments are
treated exactly like whitespace.
A semicolon (;) indicates the start of a line comment. The comment
continues to the end of the line on which the semicolon appears.
Comments are invisible to Scheme, but the end of the line is visible as
whitespace. This prevents a comment from appearing in the middle
of an identifier or number.
Another way to indicate a comment is to prefix a 〈datum〉 (cf.
section 7.1.2) with #; as well as possible 〈whitespace〉 before the
〈datum〉. The comment consists of the comment prefix #;, the space,
and the 〈datum〉 together. This notation is useful for “commenting
out” sections of code.
Block comments are indicated with properly nested #| and |# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

(if (= n 0)

#;(= n 1)

1 ;Base case: return 1

(* n (fact (- n 1))))))

2.3. Other notations

For a description of the notations used for numbers, see section 6.2.

2. LEXICAL CONVENTIONS 17

. + - These are used in numbers, and may also occur anywhere in
an identifier. A delimited plus or minus sign by itself is also an
identifier. A delimited period (not occurring within a number
or identifier) is used in the notation for pairs (section 6.4),
and to indicate a rest-parameter in a formal parameter list
(section 4.1.4). Note that a sequence of two or more periods is
an identifier.

() Parentheses are used for grouping and to notate lists (section 6.4).

’ The single quote character is used to indicate literal data (sec-
tion 4.1.2).

` The backquote character is used to indicate partly-constant data
(section 4.2.8).

, ,@ The character comma and the sequence comma at-sign are
used in conjunction with backquote (section 4.2.8).

" The double quote character is used to delimit strings (section 6.7).

\ Backslash is used in the syntax for character constants (section 6.6)
and as an escape character within string constants (section 6.7)
and identifiers (section 7.1.1).

[] { } Left and right square brackets and curly braces are reserved
for possible future extensions to the language.

Sharp sign is used for a variety of purposes depending on the
character that immediately follows it:

#t #f These are the boolean constants (section 6.3), along with the
alternatives #true and #false.

#\ This introduces a character constant (section 6.6).

2. LEXICAL CONVENTIONS 18

#(This introduces a vector constant (section 6.8). Vector constants
are terminated by) .

#u8(This introduces a bytevector constant (section 6.9). Bytevec-
tor constants are terminated by) .

#e #i #b #o #d #x These are used in the notation for numbers
(section 6.2.5).

#〈n〉= #〈n〉# These are used for labeling and referencing other literal
data (section 2.4).

2.4. Datum labels

#〈n〉=〈datum〉 lexical syntax
#〈n〉# lexical syntax
The lexical syntax #〈n〉=〈datum〉 reads the same as 〈datum〉, but
also results in 〈datum〉 being labelled by 〈n〉. It is an error if 〈n〉 is
not a sequence of digits.
The lexical syntax #〈n〉# serves as a reference to some object labelled
by #〈n〉=; the result is the same object as the #〈n〉= as compared with
eqv? (see section 6.1).
Together, these syntaxes permit the notation of structures with shared
or circular substructure.

(let ((x (list ’a ’b ’c)))

(set-cdr! (cddr x) x)

x) =⇒ #0=(a b c . #0#)

The scope of a datum label is the portion of the datum in which it
appears that is to the right of the label. Consequently, a reference
#〈n〉# may occur only after a label #〈n〉=; it is an error to attempt a
forward reference. In addition, it is an error if the reference appears

3. BASIC CONCEPTS 19

as the labelled object itself (as in #〈n〉= #〈n〉#), because the object
labelled by #〈n〉= is not well defined in this case.
It is an error for a 〈program〉 or 〈library〉 to include circular refer-
ences. In particular, it is an error for quasiquote (section 4.2.8) to
contain them.

#1=(begin (display #\x) . #1#)

=⇒ error

3. Basic concepts
3.1. Variables, syntactic keywords, and regions

An identifier names either a type of syntax or a location where a
value can be stored. An identifier that names a type of syntax is
called a syntactic keyword and is said to be bound to that syntax.
An identifier that names a location is called a variable and is said
to be bound to that location. The set of all visible bindings in effect
at some point in a program is known as the environment in effect
at that point. The value stored in the location to which a variable
is bound is called the variable’s value. By abuse of terminology, the
variable is sometimes said to name the value or to be bound to the
value. This is not quite accurate, but confusion rarely results from
this practice.
Certain expression types are used to create new kinds of syntax and
to bind syntactic keywords to those new syntaxes, while other expres-
sion types create new locations and bind variables to those locations.
These expression types are called binding constructs. Those that
bind syntactic keywords are listed in section 4.3. The most funda-
mental of the variable binding constructs is the lambda expression,
because all other variable binding constructs can be explained in
terms of lambda expressions. The other variable binding constructs
are let, let*, letrec, letrec*, let-values, let*-values, and do

expressions (see sections 4.1.4, 4.2.2, and 4.2.4).

3. BASIC CONCEPTS 20

Scheme is a language with block structure. To each place where
an identifier is bound in a program there corresponds a region of
the program text within which the binding is visible. The region
is determined by the particular binding construct that establishes
the binding; if the binding is established by a lambda expression,
for example, then its region is the entire lambda expression. Every
mention of an identifier refers to the binding of the identifier that
established the innermost of the regions containing the use. If there
is no binding of the identifier whose region contains the use, then the
use refers to the binding for the variable in the top level environment,
if any (chapters 4 and 6); if there is no binding for the identifier, it
is said to be unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predicates:

boolean? pair?

symbol? number?

char? string?

vector? bytevector?

port? procedure?

null?

These predicates define the types boolean, pair, symbol, number, char
(or character), string, vector, bytevector, port, procedure and the
empty list object.
Although there is a separate boolean type, any Scheme value can
be used as a boolean value for the purpose of a conditional test. As
explained in section 6.3, all values count as true in such a test except
for #f. This report uses the word “true” to refer to any Scheme value
except #f, and the word “false” to refer to #f.

3. BASIC CONCEPTS 21

3.3. External representations

An important concept in Scheme (and Lisp) is that of the external
representation of an object as a sequence of characters. For exam-
ple, an external representation of the integer 28 is the sequence of
characters “28,” and an external representation of a list consisting
of the integers 8 and 13 is the sequence of characters “(8 13).”
The external representation of an object is not necessarily unique.
The integer 28 also has representations “#e28.000” and “#x1c,” and
the list in the previous paragraph also has the representations “(08

13)” and “(8 . (13 . ()))” (see section 6.4).
Many objects have standard external representations, but some, such
as procedures, do not have standard representations (although par-
ticular implementations may define representations for them).
An external representation can be written in a program to obtain
the corresponding object (see quote, section 4.1.2).
External representations can also be used for input and output. The
procedure read (section 6.13.2) parses external representations, and
the procedure write (section 6.13.3) generates them. Together, they
provide an elegant and powerful input/output facility.
Note that the sequence of characters “(+ 2 6)” is not an external
representation of the integer 8, even though it is an expression eval-
uating to the integer 8; rather, it is an external representation of
a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any
sequence of characters that is an expression is also the external rep-
resentation of some object. This can lead to confusion, since it is not
always obvious out of context whether a given sequence of charac-
ters is intended to denote data or program, but it is also a source of
power, since it facilitates writing programs such as interpreters and
compilers that treat programs as data (or vice versa).
The syntax of external representations of various kinds of objects
accompanies the description of the primitives for manipulating the

3. BASIC CONCEPTS 22

objects in the appropriate sections of chapter 6.

3.4. Storage model

Variables and objects such as pairs, vectors, and strings implicitly
denote locations or sequences of locations. A string, for example, de-
notes as many locations as there are characters in the string. A new
value can be stored into one of these locations using the string-set!
procedure, but the string continues to denote the same locations as
before.
An object fetched from a location, by a variable reference or by a
procedure such as car, vector-ref, or string-ref, is equivalent
in the sense of eqv? (section 6.1) to the object last stored in the
location before the fetch.
Every location is marked to show whether it is in use. No variable
or object ever refers to a location that is not in use. Whenever this
report speaks of storage being allocated for a variable or object, what
is meant is that an appropriate number of locations are chosen from
the set of locations that are not in use, and the chosen locations are
marked to indicate that they are now in use before the variable or
object is made to denote them.
Every object that denotes locations is either mutable or immutable.
Specifically: literal constants, the strings returned by symbol->string,
and possibly the environment returned by scheme-report-environment,
are immutable objects, while all objects created by the other proce-
dures listed in this report are mutable. It is an error to attempt to
store a new value into a location that is denoted by an immutable
object.
These locations should be understood as conceptual, not physical.
Hence, they do not necessarily correspond to memory addresses, and
even if they do, the memory address may not be constant.
Rationale: In many systems it is desirable for constants (i.e. the values of

literal expressions) to reside in read-only memory. Making it an error to

3. BASIC CONCEPTS 23

alter constants permits this implementation strategy, while not requiring

other systems to distinguish between mutable and immutable objects.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail recur-
sive. Procedure calls that occur in certain syntactic contexts de-
fined below are tail calls. A Scheme implementation is properly
tail recursive if it supports an unbounded number of active tail
calls. A call is active if the called procedure might still return.
Note that this includes calls that might be returned from either
by the current continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked. In the
absence of captured continuations, calls could return at most once
and the active calls would be those that had not yet returned. A
formal definition of proper tail recursion can be found in [11].
Rationale:
Intuitively, no space is needed for an active tail call because the continua-
tion that is used in the tail call has the same semantics as the continuation
passed to the procedure containing the call. Although an improper imple-
mentation might use a new continuation in the call, a return to this new
continuation would be followed immediately by a return to the continu-
ation passed to the procedure. A properly tail recursive implementation
returns to that continuation directly.
Proper tail recursion was one of the central ideas in Steele and Sussman’s
original version of Scheme. Their first Scheme interpreter implemented
both functions and actors. Control flow was expressed using actors, which
differed from functions in that they passed their results on to another
actor instead of returning to a caller. In the terminology of this section,
each actor finished with a tail call to another actor.
Steele and Sussman later observed that in their interpreter the code for
dealing with actors was identical to that for functions and thus there was
no need to include both in the language.

A tail call is a procedure call that occurs in a tail context. Tail

3. BASIC CONCEPTS 24

contexts are defined inductively. Note that a tail context is always
determined with respect to a particular lambda expression.

• The last expression within the body of a lambda expression,
shown as 〈tail expression〉 below, occurs in a tail context. The
same is true of the bodies of a case-lambda expression.

(lambda 〈formals〉
〈definition〉* 〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context, then
the subexpressions shown as 〈tail expression〉 are in a tail con-
text. These were derived from rules in the grammar given in
chapter 7 by replacing some occurrences of 〈expression〉 with
〈tail expression〉. Only those rules that contain tail contexts
are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

3. BASIC CONCEPTS 25

(when 〈test〉 〈tail sequence〉)
(unless 〈test〉 〈tail sequence〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)
(let* (〈binding spec〉*) 〈tail body〉)
(letrec (〈binding spec〉*) 〈tail body〉)
(letrec* (〈binding spec〉*) 〈tail body〉)
(let-values (〈formals〉*) 〈tail body〉)
(let*-values (〈formals〉*) 〈tail body〉)

(let-syntax (〈syntax spec〉*) 〈tail body〉)
(letrec-syntax (〈syntax spec〉*) 〈tail body〉)

(begin 〈tail sequence〉)

(do (〈iteration spec〉*)
(〈test〉 〈tail sequence〉)

〈expression〉*)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

〈tail body〉 −→ 〈definition〉* 〈tail sequence〉
〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond or case expression is in a tail context, and has a
clause of the form (〈expression1〉 => 〈expression2〉) then the
(implied) call to the procedure that results from the evaluation
of 〈expression2〉 is in a tail context. 〈expression2〉 itself is not

4. EXPRESSIONS 26

in a tail context.

• Note that 〈cond clause〉s appear in guard expressions as well
as cond expressions.

Certain built-in procedures are also required to perform tail calls.
The first argument passed to apply and to call-with-current-continuation,
and the second argument passed to call-with-values, must be
called via a tail call. Similarly, eval must evaluate its first argu-
ment as if it were in tail position within the eval procedure.
In the following example the only tail call is the call to f. None of
the calls to g or h are tail calls. The reference to x is in a tail context,
but it is not a call and thus is not a tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recognize that

some non-tail calls, such as the call to h above, can be evaluated as though

they were tail calls. In the example above, the let expression could be

compiled as a tail call to h. (The possibility of h returning an unexpected

number of values can be ignored, because in that case the effect of the let

is explicitly unspecified and implementation-dependent.)

4. Expressions
Expression types are categorized as primitive or derived. Primitive
expression types include variables and procedure calls. Derived ex-
pression types are not semantically primitive, but can instead be
defined as macros. Suitable definitions of some of the derived ex-
pressions are given in section 7.3.

4. EXPRESSIONS 27

The procedures force, eager, and make-parameter are also de-
scribed in this chapter, because they are intimately associated with
the delay, lazy, and parameterize expression types.

4.1. Primitive expression types

4.1.1. Variable references

〈variable〉 syntax
An expression consisting of a variable (section 3.1) is a variable ref-
erence. The value of the variable reference is the value stored in the
location to which the variable is bound. It is an error to reference
an unbound variable.

(define x 28)

x =⇒ 28

4.1.2. Literal expressions

(quote 〈datum〉) syntax
’〈datum〉 syntax
〈constant〉 syntax
(quote 〈datum〉) evaluates to 〈datum〉. 〈Datum〉 may be any exter-
nal representation of a Scheme object (see section 3.3). This notation
is used to include literal constants in Scheme code.

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

(quote 〈datum〉) may be abbreviated as ’〈datum〉. The two nota-
tions are equivalent in all respects.

4. EXPRESSIONS 28

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

Numerical constants, string constants, character constants, bytevec-
tor constants, and boolean constants evaluate to themselves; they
need not be quoted.

’"abc" =⇒ "abc"

"abc" =⇒ "abc"

’145932 =⇒ 145932

145932 =⇒ 145932

’#t =⇒ #t

#t =⇒ #t

As noted in section 3.4, it is an error to alter a constant (i.e. the value
of a literal expression) using a mutation procedure like set-car! or
string-set!.

4.1.3. Procedure calls

(〈operator〉 〈operand1〉 . . .) syntax
A procedure call is written by simply enclosing in parentheses ex-
pressions for the procedure to be called and the arguments to be
passed to it. The operator and operand expressions are evaluated
(in an unspecified order) and the resulting procedure is passed the
resulting arguments.

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

A number of procedures are available as the values of variables in
the initial environment; for example, the addition and multiplication

4. EXPRESSIONS 29

procedures in the above examples are the values of the variables +

and *. New procedures are created by evaluating lambda expressions
(see section 4.1.4).
Procedure calls may return any number of values (see values in sec-
tion 6.10). Most of the procedures defined in this report return one
value or, for procedures such as apply, pass on the values returned
by a call to one of their arguments. Exceptions are noted in the
individual descriptions.
Note: In contrast to other dialects of Lisp, the order of evaluation is

unspecified, and the operator expression and the operand expressions are

always evaluated with the same evaluation rules.

Note: Although the order of evaluation is otherwise unspecified, the effect

of any concurrent evaluation of the operator and operand expressions is

constrained to be consistent with some sequential order of evaluation. The

order of evaluation may be chosen differently for each procedure call.

Note: In many dialects of Lisp, the empty list, (), is a legitimate expres-

sion evaluating to itself. In Scheme, it is an error.

4.1.4. Procedures

(lambda 〈formals〉 〈body〉) syntax
Syntax: 〈Formals〉 should be a formal arguments list as described
below, and 〈body〉 should be a sequence of one or more expressions.
Semantics: A lambda expression evaluates to a procedure. The en-
vironment in effect when the lambda expression was evaluated is
remembered as part of the procedure. When the procedure is later
called with some actual arguments, the environment in which the
lambda expression was evaluated will be extended by binding the
variables in the formal argument list to fresh locations, the corre-
sponding actual argument values will be stored in those locations,
and the body of the lambda expression will be evaluated in the ex-
tended environment. The results of the last expression in the body
will be returned as the results of the procedure call.

4. EXPRESSIONS 30

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 should have one of the following forms:

• (〈variable1〉 . . .): The procedure takes a fixed number of ar-
guments; when the procedure is called, the arguments will be
stored in newly allocated locations that are bound to the cor-
responding variables.

• 〈variable〉: The procedure takes any number of arguments;
when the procedure is called, the sequence of actual arguments
is converted into a newly allocated list, and the list is stored
in a newly allocated location that is bound to 〈variable〉.

• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a space-delimited
period precedes the last variable, then the procedure takes n or
more arguments, where n is the number of formal arguments
before the period (it is an error if there is not at least one).
The value stored in the binding of the last variable will be a
newly allocated list of the actual arguments left over after all
the other actual arguments have been matched up against the
other formal arguments.

It is an error for a 〈variable〉 to appear more than once in 〈formals〉.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

4. EXPRESSIONS 31

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

4.1.5. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax
Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 should be expressions.
Semantics: An if expression is evaluated as follows: first, 〈test〉 is
evaluated. If it yields a true value (see section 6.3), then 〈consequent〉
is evaluated and its values are returned. Otherwise 〈alternate〉 is
evaluated and its values are returned. If 〈test〉 yields a false value
and no 〈alternate〉 is specified, then the result of the expression is
unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

4.1.6. Assignments

(set! 〈variable〉 〈expression〉) syntax
〈Expression〉 is evaluated, and the resulting value is stored in the
location to which 〈variable〉 is bound. It is an error if 〈variable〉 is
not bound either in some region enclosing the set! expression or at
top level. The result of the set! expression is unspecified.

(define x 2)

(+ x 1) =⇒ 3

(set! x 4) =⇒ unspecified
(+ x 1) =⇒ 5

4. EXPRESSIONS 32

4.2. Derived expression types

The constructs in this section are hygienic, as discussed in section 4.3.
For reference purposes, section 7.3 gives macro definitions that will
convert most of the constructs described in this section into the
primitive constructs described in the previous section.

4.2.1. Conditionals

(cond 〈clause1〉 〈clause2〉 . . .) syntax
else auxiliary syntax
=> auxiliary syntax
Syntax: 〈Clauses〉 take one of two forms, either:

(〈test〉 〈expression1〉 . . .)

where 〈test〉 is any expression, or

(〈test〉 => 〈expression〉)

The last 〈clause〉 may be an “else clause,” which has the form

(else 〈expression1〉 〈expression2〉 . . .).

Semantics: A cond expression is evaluated by evaluating the 〈test〉
expressions of successive 〈clause〉s in order until one of them evalu-
ates to a true value (see section 6.3). When a 〈test〉 evaluates to a
true value, then the remaining 〈expression〉s in its 〈clause〉 are evalu-
ated in order, and the results of the last 〈expression〉 in the 〈clause〉
are returned as the results of the entire cond expression.
If the selected 〈clause〉 contains only the 〈test〉 and no 〈expression〉s,
then the value of the 〈test〉 is returned as the result. If the selected
〈clause〉 uses the => alternate form, then the 〈expression〉 is evalu-
ated. It is an error if its value is not a procedure that accepts one
argument. This procedure is then called on the value of the 〈test〉
and the values returned by this procedure are returned by the cond

expression.

4. EXPRESSIONS 33

If all 〈test〉s evaluate to #f, and there is no else clause, then the
result of the conditional expression is unspecified; if there is an else
clause, then its 〈expression〉s are evaluated in order, and the values
of the last one are returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #f)) =⇒ 2

(case 〈key〉 〈clause1〉 〈clause2〉 . . .) syntax
Syntax: 〈Key〉 may be any expression. Each 〈clause〉 should have
the form

((〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .),

where each 〈datum〉 is an external representation of some object.
It is an error if any of the 〈datum〉s are the same anywhere in the
expression. Alternatively, a 〈clause〉 may be of the form

((〈datum1〉 . . .) => 〈expression〉)

The last 〈clause〉 may be an “else clause,” which has one of the
forms

(else 〈expression1〉 〈expression2〉 . . .)

or

(else => 〈expression〉).

4. EXPRESSIONS 34

Semantics: A case expression is evaluated as follows. 〈Key〉 is evalu-
ated and its result is compared against each 〈datum〉. If the result of
evaluating 〈key〉 is equivalent (in the sense of eqv?; see section 6.1)
to a 〈datum〉, then the expressions in the corresponding 〈clause〉
are evaluated in order and the results of the last expression in the
〈clause〉 are returned as the results of the case expression.
If the result of evaluating 〈key〉 is different from every 〈datum〉, then
if there is an else clause its expressions are evaluated and the results
of the last are the results of the case expression; otherwise the result
of the case expression is unspecified.
If the selected 〈clause〉 or else clause uses the => alternate form,
then the 〈expression〉 is evaluated. It is an error if its value is not a
procedure accepting one argument. This procedure is then called on
the value of the 〈key〉 and the values returned by this procedure are
returned by the case expression.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ unspecified
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else => (lambda (x) x))) =⇒ c

(and 〈test1〉 . . .) syntax
The 〈test〉 expressions are evaluated from left to right, and if any
expression evaluates to #f (see section 6.3), #f is returned. Any re-
maining expressions are not evaluated. If all the expressions evaluate
to true values, the value of the last expression is returned. If there
are no expressions then #t is returned.

4. EXPRESSIONS 35

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

(or 〈test1〉 . . .) syntax
The 〈test〉 expressions are evaluated from left to right, and the value
of the first expression that evaluates to a true value (see section 6.3)
is returned. Any remaining expressions are not evaluated. If all ex-
pressions evaluate to #f or if there are no expressions, #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or (memq ’b ’(a b c))

(/ 3 0)) =⇒ (b c)

(when 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax
The 〈test〉 expression is evaluated, and if it evaluates to a true value,
the expressions are evaluated in order. The result of the when ex-
pression is unspecified.
The following example outputs 12:

(when (= 1 1.0)

(display "1")

(display "2") =⇒ unspecified

(unless 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax
The 〈test〉 expression is evaluated, and if it evaluates to #f, the ex-
pressions are evaluated in order. The result of the unless expression
is unspecified.
The following example outputs nothing:

4. EXPRESSIONS 36

(unless (= 1 1.0)

(display "1")

(display "2") =⇒ unspecified

4.2.2. Binding constructs

The binding constructs let, let*, letrec, letrec*, let-values,
and let*-values give Scheme a block structure, like Algol 60. The
syntax of the first four constructs is identical, but they differ in
the regions they establish for their variable bindings. In a let ex-
pression, the initial values are computed before any of the variables
become bound; in a let* expression, the bindings and evaluations
are performed sequentially; while in letrec and letrec* expres-
sions, all the bindings are in effect while their initial values are being
computed, thus allowing mutually recursive definitions. let-values
and let*-values are analogous to let and let* respectively, but
are designed to handle multiple-valued expressions, binding different
identifiers to each returned value.

(let 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 should be a sequence
of zero or more definitions followed by a sequence of one or more
expressions as described in section 4.1.4. It is an error for a 〈variable〉
to appear more than once in the list of variables being bound.
Semantics: The 〈init〉s are evaluated in the current environment (in
some unspecified order), the 〈variable〉s are bound to fresh locations
holding the results, the 〈body〉 is evaluated in the extended environ-
ment, and the values of the last expression of 〈body〉 are returned.
Each binding of a 〈variable〉 has 〈body〉 as its region.

4. EXPRESSIONS 37

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also “named let,” section 4.2.4.

(let* 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 should be a zero or more definitions followed by one or
more expressions as described in section 4.1.4.
Semantics: The let* binding construct is similar to let, but the
bindings are performed sequentially from left to right, and the region
of a binding indicated by (〈variable〉 〈init〉) is that part of the let*

expression to the right of the binding. Thus the second binding is
done in an environment in which the first binding is visible, and so
on. The 〈variable〉s need not be distinct.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

(letrec 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . .),

4. EXPRESSIONS 38

and 〈body〉 should be a sequence of zero or more definitions followed
by one or more expressions as described in section 4.1.4. It is an error
for a 〈variable〉 to appear more than once in the list of variables being
bound.
Semantics: The 〈variable〉s are bound to fresh locations holding un-
specified values, the 〈init〉s are evaluated in the resulting environ-
ment (in some unspecified order), each 〈variable〉 is assigned to the
result of the corresponding 〈init〉, the 〈body〉 is evaluated in the re-
sulting environment, and the values of the last expression in 〈body〉
are returned. Each binding of a 〈variable〉 has the entire letrec ex-
pression as its region, making it possible to define mutually recursive
procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t

One restriction on letrec is very important: if it is not possible
to evaluate each 〈init〉 without assigning or referring to the value of
any 〈variable〉, it is an error. The restriction is necessary because
letrec is defined in terms of a procedure call where a lambda ex-
pression binds the 〈variable〉s to the values of the 〈init〉s. In the
most common uses of letrec, all the 〈init〉s are lambda expressions
and the restriction is satisfied automatically. Another restriction is
that the continuation of each 〈init〉 should not be invoked more than
once.

4. EXPRESSIONS 39

(letrec* 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 should be a sequence of zero or more definitions followed
by one or more expressions as described in section 4.1.4. It is an error
for a 〈variable〉 to appear more than once in the list of variables being
bound.
Semantics: The 〈variable〉s are bound to fresh locations, each 〈variable〉
is assigned in left-to-right order to the result of evaluating the corre-
sponding 〈init〉, the 〈body〉 is evaluated in the resulting environment,
and the values of the last expression in 〈body〉 are returned. Despite
the left-to-right evaluation and assignment order, each binding of a
〈variable〉 has the entire letrec* expression as its region, making it
possible to define mutually recursive procedures.
If it is not possible to evaluate each 〈init〉 without assigning or re-
ferring to the value of the corresponding 〈variable〉 or the 〈variable〉
of any of the bindings that follow it in 〈bindings〉, it is an error.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

(let-values 〈mvbindings〉 〈body〉) syntax
Syntax: 〈Mvbindings〉 should have the form

4. EXPRESSIONS 40

((〈formals1〉 〈init1〉) . . .),

where each 〈init〉 should be an expression, and 〈body〉 should be zero
or more definitions followed by a sequence of one or more expressions
as described in section 4.1.4. It is an error for a variable to appear
more than once in the set of 〈formals〉.
Semantics: The 〈init〉s are evaluated in the current environment
(in some unspecified order) as if by invoking call-with-values,
the variables occuring in the 〈formals〉 are bound to fresh locations
holding the values returned by the 〈init〉s, where the 〈formals〉 are
matched to the return values in the same way that the 〈formals〉 in
a lambda expression are matched to the arguments in a procedure
call. Then, the 〈body〉 is evaluated in the extended environment,
and the values of the last expression of 〈body〉 are returned. Each
binding of a 〈variable〉 has 〈body〉 as its region.
It is an error if the 〈formals〉 do not match the number of values
returned by the corresponding 〈init〉.

(let-values (((root rem) (exact-integer-sqrt 32)))

(* root rem) =⇒ 35

(let*-values 〈mvbindings〉 〈body〉) syntax
Syntax: 〈Mvbindings〉 should have the form

((〈formals〉 〈init〉) . . .),

and 〈body〉 should be a sequence of zero or more definitions followed
by one or more expressions as described in section 4.1.4. In each
〈formals〉, it is an error if any variable appears more than once.
Semantics: let-values* is similar to let-values, but the 〈init〉s
are evaluated and bindings created sequentially from left to right,
with the region of the bindings of each 〈formals〉 including the 〈init〉s
to its right as well as 〈body〉. Thus the second 〈init〉 is evaluated
in an environment in which the first set of bindings is visible and
initialized, and so on.

4. EXPRESSIONS 41

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

4.2.3. Sequencing
Both of Scheme’s sequencing constructs are named begin, but the
two have slightly different forms and uses:

(begin 〈expression or definition〉 . . .) syntax
This form of begin may appear as part of a 〈body〉, or at the
〈top-level〉, or directly nested in a begin that is itself of this form.
It causes the contained expressions and definitions to be evaluated
exactly as if the enclosing begin construct were not present.
Rationale: This form is commonly used in the output of macros (see

section 4.3) which need to generate multiple definitions and splice them

into the context in which they are expanded.

(begin 〈expression1〉 〈expression2〉 . . .) syntax
This form of begin can be used as an ordinary expression. The
〈expression〉s are evaluated sequentially from left to right, and the
values of the last 〈expression〉 are returned. This expression type
is used to sequence side effects such as assignments or input and
output.

(define x 0)

(and (= x 0)

(begin (set! x 5)

(+ x 1) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

4. EXPRESSIONS 42

4.2.4. Iteration

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . .)
(〈test〉 〈expression〉 . . .)

〈command〉 . . .)
A do expression is an iteration construct. It specifies a set of variables
to be bound, how they are to be initialized at the start, and how they
are to be updated on each iteration. When a termination condition
is met, the loop exits after evaluating the 〈expression〉s.
A do expression is evaluated as follows: The 〈init〉 expressions are
evaluated (in some unspecified order), the 〈variable〉s are bound to
fresh locations, the results of the 〈init〉 expressions are stored in the
bindings of the 〈variable〉s, and then the iteration phase begins.
Each iteration begins by evaluating 〈test〉; if the result is false (see
section 6.3), then the 〈command〉 expressions are evaluated in order
for effect, the 〈step〉 expressions are evaluated in some unspecified
order, the 〈variable〉s are bound to fresh locations, the results of the
〈step〉s are stored in the bindings of the 〈variable〉s, and the next
iteration begins.
If 〈test〉 evaluates to a true value, then the 〈expression〉s are eval-
uated from left to right and the values of the last 〈expression〉 are
returned. If no 〈expression〉s are present, then the value of the do

expression is unspecified.
The region of the binding of a 〈variable〉 consists of the entire do

expression except for the 〈init〉s. It is an error for a 〈variable〉 to
appear more than once in the list of do variables.
A 〈step〉 may be omitted, in which case the effect is the same as if
(〈variable〉 〈init〉 〈variable〉) had been written instead of (〈variable〉
〈init〉).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

4. EXPRESSIONS 43

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

(let 〈variable〉 〈bindings〉 〈body〉) syntax
“Named let” is a variant on the syntax of let which provides a
more general looping construct than do and can also be used to
express recursions. It has the same syntax and semantics as ordinary
let except that 〈variable〉 is bound within 〈body〉 to a procedure
whose formal arguments are the bound variables and whose body is
〈body〉. Thus the execution of 〈body〉 can be repeated by invoking
the procedure named by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

4.2.5. Delayed evaluation

(delay 〈expression〉) lazy library syntax
The delay construct is used together with the procedure force to
implement lazy evaluation or call by need. (delay 〈expression〉)

4. EXPRESSIONS 44

returns an object called a promise which at some point in the future
may be asked (by the force procedure) to evaluate 〈expression〉,
and deliver the resulting value. The effect of 〈expression〉 returning
multiple values is unspecified.

(lazy 〈expression〉) lazy library syntax
The lazy construct is similar to delay, but it is an error for its
argument not to evaluate to a promise. The returned promise, when
forced, will evaluate to whatever the original promise would have
evaluated to if it had been forced.

(force promise) lazy library procedure
The force procedure forces the value of a promise created by delay

or lazy. If no value has been computed for the promise, then a
value is computed and returned. The value of the promise is cached
(or ”memoized”) so that if it is forced a second time, the previously
computed value is returned.

(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

=⇒ (3 3)

(define integers

(letrec ((next

(lambda (n)

(delay (cons n (next (+ n 1)))))))

(next 0)))

(define head

(lambda (stream) (car (force stream))))

(define tail

(lambda (stream) (cdr (force stream))))

(head (tail (tail integers)))

=⇒ 2

4. EXPRESSIONS 45

The following example is a mechanical transformation of a lazy
stream-filtering algorithm into Scheme. Each call to a construc-
tor is wrapped in delay, and each argument passed to a decon-
structor is wrapped in force. The use of (lazy ...) instead of
(delay (force ...)) around the body of the procedure ensures
that an ever-growing sequence of pending promises does not exhaust
the heap.

(define (stream-filter p? s)

(lazy

(if (null? (force s))

(delay ’())

(let ((h (car (force s)))

(t (cdr (force s))))

(if (p? h)

(delay (cons h (stream-filter p? t)))

(stream-filter p? t))))))

(head (tail (tail (stream-filter odd? integers))))

=⇒ 5

The following examples are not intended to illustrate good program-
ming style, as delay, lazy, and force are mainly intended for pro-
grams written in the functional style. However, they do illustrate the
property that only one value is computed for a promise, no matter
how many times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise

4. EXPRESSIONS 46

(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Various extensions to this semantics of delay, force and lazy are
supported in some implementations:

• Calling force on an object that is not a promise may simply
return the object.

• It may be the case that there is no means by which a promise
can be operationally distinguished from its forced value. That
is, expressions like the following may evaluate to either #t or
to #f, depending on the implementation:

(eqv? (delay 1) 1) =⇒ unspecified
(pair? (delay (cons 1 2))) =⇒ unspecified

• Some implementations may implement “implicit forcing,” where
the value of a promise is forced by primitive procedures like cdr
and +:

(+ (delay (* 3 7)) 13) =⇒ 34

(eager obj) lazy library procedure
The eager procedure returns a promise which when forced will re-
turn obj . It is similar to delay, but does not delay its argument: it
is a procedure rather than syntax.

4. EXPRESSIONS 47

4.2.6. Dynamic bindings

(make-parameter init) procedure
(make-parameter init converter) procedure
Returns a newly allocated parameter object, which is a procedure
that accepts zero arguments and returns the value associated with
the parameter object. Initially, this value is the value of (converter
init), or of init if the conversion procedure converter is not specified.
The associated value can be temporarily changed using parameterize,
which is described below.
The effect of passing arguments to a parameter object is implementation-
dependent.

(parameterize ((〈param1〉 〈value1〉) . . .) syntax
〈body〉)

A parameterize expression is used to change the values returned by
specified parameter objects during the evaluation of the body. It is
an error if the value of any 〈param〉 expression is not a parameter
object. The 〈param〉 and 〈value〉 expressions are evaluated in an
unspecified order. The 〈body〉 is evaluated in a dynamic environment
in which calls to the parameters return the results of passing the
corresponding values to the conversion procedure specified when the
parameters were created. Then the previous values of the parameters
are restored without passing them to the conversion procedure. The
results of the last expression in the 〈body〉 are returned as the results
of the entire parameterize expression.
Note: If the conversion procedure is not idempotent, the results of

(parameterize ((x (x))) ...), which appears to bind the parameter

x to its current value, may not be what the user expects.

If an implementation supports multiple threads of execution, then
parameterize must not change the associated values of any param-
eters in any thread other than the current thread or threads created
inside 〈body〉.

4. EXPRESSIONS 48

Parameter objects can be used to specify configurable settings for a
computation without the need to pass the value to every procedure
in the call chain explicitly.

(define radix

(make-parameter

10

(lambda (x)

(if (and (integer? x) (<= 2 x 16))

x

(error "invalid radix")))))

(define (f n) (number->string n (radix)))

(f 12) =⇒ "12"

(parameterize ((radix 2))

(f 12)) =⇒ "1100"

(f 12) =⇒ "12"

(radix 16) =⇒ unspecified

(parameterize ((radix 0))

(f 12)) =⇒ error

4.2.7. Exception Handling

(guard (〈variable〉 syntax
〈cond clause1〉 〈cond clause2〉 . . .)

〈body〉)
Syntax: Each 〈cond clause〉 is as in the specification of cond.
Semantics: The 〈body〉 is evaluated with an exception handler that
binds the raised object to 〈variable〉 and, within the scope of that
binding, evaluates the clauses as if they were the clauses of a cond

4. EXPRESSIONS 49

expression. That implicit cond expression is evaluated with the con-
tinuation and dynamic environment of the guard expression. If ev-
ery 〈cond clause〉’s 〈test〉 evaluates to #f and there is no else clause,
then raise-continuable is re-invoked on the raised object within
the dynamic environment of the original call to raise except that
the current exception handler is that of the guard expression.
See section 6.11 for a more complete discussion of exceptions.

4.2.8. Quasiquotation

(quasiquote 〈qq template〉) syntax
`〈qq template〉 syntax
unquote auxiliary syntax
unquote-splicing auxiliary syntax
“Backquote” or “quasiquote” expressions are useful for construct-
ing a list or vector structure when some but not all of the de-
sired structure is known in advance. If no commas appear within
the 〈qq template〉, the result of evaluating `〈qq template〉 is equiv-
alent to the result of evaluating ’〈qq template〉. If a comma ap-
pears within the 〈qq template〉, however, the expression following
the comma is evaluated (“unquoted”) and its result is inserted into
the structure instead of the comma and the expression. If a comma
appears followed immediately by an at-sign (@), then it is an error
if the following expression does not evaluate to a list; the opening
and closing parentheses of the list are then “stripped away” and the
elements of the list are inserted in place of the comma at-sign ex-
pression sequence. A comma at-sign should only appear within a list
or vector 〈qq template〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

4. EXPRESSIONS 50

`((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

Quasiquote expressions may be nested. Substitutions are made only
for unquoted components appearing at the same nesting level as the
outermost backquote. The nesting level increases by one inside each
successive quasiquotation, and decreases by one inside each unquo-
tation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)

A quasiquote expression may return either fresh, mutable objects or
literal structure for any structure that is constructed at run time
during the evaluation of the expression. Portions that do not need
to be rebuilt are always literal. Thus,

(let ((a 3)) `((1 2) ,a ,4 ,’five 6))

may be equivalent to either of the following expressions:

`((1 2) 3 4 five 6)

(let ((a 3))

(cons ’(1 2)

(cons a (cons 4 (cons ’five ’(6))))))

However, it is not equivalent to this expression:

4. EXPRESSIONS 51

(let ((a 3)) (list (list 1 2) a 4 ’five 6))

The two notations `〈qq template〉 and (quasiquote 〈qq template〉)
are identical in all respects. ,〈expression〉 is identical to (unquote

〈expression〉), and ,@〈expression〉 is identical to (unquote-splicing

〈expression〉). The external syntax generated by write for two-
element lists whose car is one of these symbols may vary between
implementations.

(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ `(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))

It is an error if any of the identifiers quasiquote, unquote, or
unquote-splicing appear in positions within a 〈qq template〉 oth-
erwise than as described above.

4.2.9. Case-lambda

(case-lambda 〈clause1〉 〈clause2〉 . . .) case-lambda library syntax
Syntax: Each 〈clause〉 should be of the form (〈formals〉 〈body〉),
where 〈formals〉 and 〈body〉 have the same syntax as in a lambda

expression.
Semantics: A case-lambda expression evaluates to a procedure that
accepts a variable number of arguments and is lexically scoped in
the same manner as a procedure resulting from a lambda expres-
sion. When the procedure is called, the first 〈clause〉 for which the
arguments agree with 〈formals〉 is selected, where agreement is spec-
ified as for the 〈formals〉 of a lambda expression. The variables of
〈formals〉 are bound to fresh locations, the values of the arguments
are stored in those locations, the 〈body〉 is evaluated in the extended

4. EXPRESSIONS 52

environment, and the results of 〈body〉 are returned as the results of
the procedure call.
It is an error for the arguments not to agree with the 〈formals〉 of
any 〈clause〉.

(define range

(case-lambda

((e) (range 0 e))

((b e) (do ((r ’() (cons e r))

(e (- e 1) (- e 1)))

((< e b) r)))))

(range 3) =⇒ (0 1 2)

(range 3 5) =⇒ (3 4)

4.3. Macros

Scheme programs can define and use new derived expression types,
called macros. Program-defined expression types have the syntax

(〈keyword〉 〈datum〉 ...)

where 〈keyword〉 is an identifier that uniquely determines the expres-
sion type. This identifier is called the syntactic keyword, or simply
keyword, of the macro. The number of the 〈datum〉s, and their syn-
tax, depends on the expression type.
Each instance of a macro is called a use of the macro. The set of
rules that specifies how a use of a macro is transcribed into a more
primitive expression is called the transformer of the macro.
The macro definition facility consists of two parts:

• A set of expressions used to establish that certain identifiers
are macro keywords, associate them with macro transformers,
and control the scope within which a macro is defined, and

4. EXPRESSIONS 53

• a pattern language for specifying macro transformers.

The syntactic keyword of a macro may shadow variable bindings,
and local variable bindings may shadow keyword bindings:

• If a macro transformer inserts a binding for an identifier (vari-
able or keyword), the identifier will in effect be renamed through-
out its scope to avoid conflicts with other identifiers. Note that
a define at top level may or may not introduce a binding; see
section 5.2.

• If a macro transformer inserts a free reference to an identifier,
the reference refers to the binding that was visible where the
transformer was specified, regardless of any local bindings that
surround the use of the macro.

In consequence, all macros defined using the pattern language are
“hygienic” and “referentially transparent” and thus preserve Scheme’s
lexical scoping [19, 20, 4, 10, 14]:

4.3.1. Binding constructs for syntactic keywords

The let-syntax and letrec-syntax binding constructs are analo-
gous to let and letrec, but they bind syntactic keywords to macro
transformers instead of binding variables to locations that contain
values. Syntactic keywords may also be bound at top level or else-
where with define-syntax; see section 5.3.

(let-syntax 〈bindings〉 〈body〉) syntax
Syntax: 〈Bindings〉 should have the form

((〈keyword〉 〈transformer spec〉) . . .)

Each 〈keyword〉 is an identifier, each 〈transformer spec〉 is an in-
stance of syntax-rules, and 〈body〉 should be a sequence of one

4. EXPRESSIONS 54

or more definitions followed by expressions. It is an error for a
〈keyword〉 to appear more than once in the list of keywords being
bound.
Semantics: The 〈body〉 is expanded in the syntactic environment
obtained by extending the syntactic environment of the let-syntax

expression with macros whose keywords are the 〈keyword〉s, bound to
the specified transformers. Each binding of a 〈keyword〉 has 〈body〉
as its region.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(letrec-syntax 〈bindings〉 〈body〉) syntax
Syntax: Same as for let-syntax.
Semantics: The 〈body〉 is expanded in the syntactic environment ob-
tained by extending the syntactic environment of the letrec-syntax
expression with macros whose keywords are the 〈keyword〉s, bound
to the specified transformers. Each binding of a 〈keyword〉 has the
〈transformer spec〉s as well as the 〈body〉 within its region, so the
transformers can transcribe expressions into uses of the macros in-
troduced by the letrec-syntax expression.

(letrec-syntax

4. EXPRESSIONS 55

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

4.3.2. Pattern language

A 〈transformer spec〉 has one of the following forms:

(syntax-rules (〈literal〉 . . .) syntax
〈syntax rule〉 . . .)

(syntax-rules 〈ellipsis〉 (〈literal〉 . . .) syntax
〈syntax rule〉 . . .)

auxiliary syntax
. . . auxiliary syntax
Syntax: It is an error if any of the 〈literal〉s, or the 〈ellipsis〉 in the
second form, is not an identifier. It is also an error if 〈syntax rule〉
is not of the form

(〈pattern〉 〈template〉)

The 〈pattern〉 in a 〈syntax rule〉 is a list 〈pattern〉 whose first element
is an identifier.

4. EXPRESSIONS 56

A 〈pattern〉 is either an identifier, a constant, or one of the follow-
ing

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...

. 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

and a template is either an identifier, a constant, or one of the fol-
lowing

(〈element〉 ...)

(〈element〉 〈element〉 〈template〉)
(〈ellipsis〉 〈template〉)
#(〈element〉 ...)

where an 〈element〉 is a 〈template〉 optionally followed by an 〈ellipsis〉.
An 〈ellipsis〉 is the identifier specified in the second form of syntax-rules,
or the default identifier ... (three consecutive periods) otherwise.
Semantics: An instance of syntax-rules produces a new macro
transformer by specifying a sequence of hygienic rewrite rules. A use
of a macro whose keyword is associated with a transformer specified
by syntax-rules is matched against the patterns contained in the
〈syntax rule〉s, beginning with the leftmost 〈syntax rule〉. When a
match is found, the macro use is transcribed hygienically according
to the template.
An identifier appearing within a 〈pattern〉 may be an underscore (),
a literal identifier listed in the list of 〈literal〉s, or the 〈ellipsis〉. All
other identifiers appearing within a 〈pattern〉 are pattern variables.
The keyword at the beginning of the pattern in a 〈syntax rule〉 is not
involved in the matching and is considered neither a pattern variable
nor a literal identifier.

4. EXPRESSIONS 57

Pattern variables match arbitrary input elements and are used to
refer to elements of the input in the template. It is an error for the
same pattern variable to appear more than once in a 〈pattern〉.
Underscores also match arbitrary input elements but are not pattern
variables and so cannot be used to refer to those elements. If an un-
derscore appears in the 〈literal〉s list, then that takes precedence and
underscores in the 〈pattern〉 match as literals. Multiple underscores
may appear in a 〈pattern〉.
Identifiers that appear in (〈literal〉 . . .) are interpreted as literal
identifiers to be matched against corresponding elements of the in-
put. A element in the input matches a literal identifier if and only if
it is an identifier and either both its occurrence in the macro expres-
sion and its occurrence in the macro definition have the same lexical
binding, or the two identifiers are equal and both have no lexical
binding.
A subpattern followed by 〈ellipsis〉 can match zero or more elements
of the input, unless 〈ellipsis〉 appears in the 〈literal〉s in which case
it is matched as a literal.
More formally, an input F matches a pattern P if and only if:

• P is an underscore ().

• P is a non-literal identifier; or

• P is a literal identifier and F is an identifier with the same
binding; or

• P is a list (P1 . . . Pn) and F is a list of n elements that match
P1 through Pn, respectively; or

• P is an improper list (P1 P2 . . . Pn . Pn+1) and F is a list
or improper list of n or more elements that match P1 through
Pn, respectively, and whose nth tail matches Pn+1; or

• P is of the form (P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1 . . . Pn)

where F is a proper list of n elements, the first e− 1 of which

4. EXPRESSIONS 58

match P1 through Pe−1, respectively, whose next m − k ele-
ments each match Pe, whose remaining n−m elements match
Pm+1 through Pn; or

• P is of the form (P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1 . . . Pn .

Px) where F is an list or improper list of n elements, the
first e − 1 of which match P1 through Pe−1, whose next m −
k elements each match Pe, whose remaining n − m elements
match Pm+1 through Pn, and whose nth and final cdr matches
Px; or

• P is a vector of the form #(P1 . . . Pn) and F is a vector of n
elements that match P1 through Pn; or

• P is of the form #(P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1 . . . Pn)

where F is a vector of n elements the first e−1 of which match
P1 through Pe−1, whose next m − k elements each match Pe,
and whose remaining n − m elements matche Pm+1 through
Pn; or

• P is a constant and F is equal to P in the sense of the equal?

procedure.

It is an error to use a macro keyword, within the scope of its binding,
in an expression that does not match any of the patterns.
When a macro use is transcribed according to the template of the
matching 〈syntax rule〉, pattern variables that occur in the template
are replaced by the elements they match in the input. Pattern vari-
ables that occur in subpatterns followed by one or more instances
of the identifier 〈ellipsis〉 are allowed only in subtemplates that are
followed by as many instances of 〈ellipsis〉. They are replaced in the
output by all of the elements they match in the input, distributed as
indicated. It is an error if the output cannot be built up as specified.
Identifiers that appear in the template but are not pattern variables
or the identifier 〈ellipsis〉 are inserted into the output as literal identi-

4. EXPRESSIONS 59

fiers. If a literal identifier is inserted as a free identifier then it refers
to the binding of that identifier within whose scope the instance of
syntax-rules appears. If a literal identifier is inserted as a bound
identifier then it is in effect renamed to prevent inadvertent captures
of free identifiers.
A template of the form (〈ellipsis〉 〈template〉) is identical to 〈template〉,
except that ellipses within the template have no special meaning.
That is, any ellipses contained within 〈template〉 are treated as or-
dinary identifiers. In particular, the template (〈ellipsis〉 〈ellipsis〉)
produces a single 〈ellipsis〉. This allows syntactic abstractions to
expand into code containing ellipses.

(define-syntax be-like-begin

(syntax-rules ()

((be-like-begin name)

(define-syntax name

(syntax-rules ()

((name expr (... ...))

(begin expr (... ...))))))))

(be-like-begin sequence)

(sequence 1 2 3 4) =⇒ 4

As an example, if let and cond are defined as in section 7.3 then
they are hygienic (as required) and the following is not an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local variable, and
hence an expression, and not as the top-level identifier =>, which the
macro transformer treats as a syntactic keyword. Thus the example
expands into

(let ((=> #f))

(if #t (begin => ’ok)))

4. EXPRESSIONS 60

instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in an invalid procedure call.

4.3.3. Signalling errors in macro transformers

(syntax-error 〈message〉 〈args〉 . . .) syntax
syntax-error behaves similarly to error (6.11) except that imple-
mentations with an expansion pass separate from evaluation should
signal an error as soon as syntax-error is expanded. This can be
used as a syntax-rules 〈template〉 for a 〈pattern〉 that is an invalid
use of the macro, which can provide more descriptive error messages.
〈message〉 should be a string literal, and 〈args〉 arbitrary expressions
providing additional information. Applications cannot count on be-
ing able to catch syntax errors with exception handlers or guards.

(define-syntax simple-let

(syntax-rules ()

(((head ... ((x . y) val) . tail)

body1 body2 ...)

(syntax-error

"expected an identifier but got"

(x . y)))

((((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))))

5. PROGRAM STRUCTURE 61

5. Program structure
5.1. Programs

A Scheme program consists of a sequence of program parts: expres-
sions, definitions, syntax definitions, record type definitions, imports,
cond-expands, and includes. A collection of program parts may be
encapsulated in a library to be reused by multiple programs. Expres-
sions are described in chapter 4; the other program parts, as well as
libraries, are the subject of the rest of the present chapter.
Programs and libraries are typically stored in files, although pro-
grams can be entered interactively to a running Scheme system, and
other paradigms are possible. Implementations which store libraries
in files should document the mapping from the name of a library to
its location in the file system.
Program parts other than expressions that are present at the top
level of a program can be interpreted declaratively. They cause bind-
ings to be created in the top level environment or modify the value
of existing top-level bindings. The initial (or “top level”) Scheme en-
vironment is empty except for import, so further bindings can only
be introduced with import.
Expressions occurring at the top level of a program are interpreted
imperatively; they are executed in order when the program is invoked
or loaded, and typically perform some kind of initialization.
At the top level of a program (begin 〈form1〉 . . .) is equivalent to
the sequence of expressions, definitions, and syntax definitions in the
begin. Macros can expand into such begins.
Implementations may provide an interactive session called a REPL
(Read-Eval-Print Loop), where Scheme program parts can be en-
tered and evaluated one at a time. For convenience and ease of use,
the “top-level” Scheme environment in a REPL must not be not
empty, but must start out with a number of variables bound to loca-
tions containing at least the bindings provided by the base library.
This library includes the core syntax of Scheme and generally use-

5. PROGRAM STRUCTURE 62

ful procedures that manipulate data. For example, the variable abs

is bound to a procedure of one argument that computes the abso-
lute value of a number, and the variable + is bound to a procedure
that computes sums. The full list of (scheme base) bindings can
be found in Appendix A.

5.2. Definitions

Definitions are valid in some, but not all, contexts where expressions
are allowed. They are valid only at the top level of a 〈program〉 and
at the beginning of a 〈body〉.
In a 〈body〉 (begin 〈definition1〉 . . .) is equivalent to the sequence
of definitions 〈definition1〉 Macros can expand into such begins.
A definition takes one of the following forms:

• (define 〈variable〉 〈expression〉)

• (define (〈variable〉 〈formals〉) 〈body〉)
〈Formals〉 should be either a sequence of zero or more vari-
ables, or a sequence of one or more variables followed by a
space-delimited period and another variable (as in a lambda
expression). This form is equivalent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

• (define (〈variable〉 . 〈formal〉) 〈body〉)
〈Formal〉 should be a single variable. This form is equivalent
to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

5. PROGRAM STRUCTURE 63

5.2.1. Top level definitions

At the top level of a program, a definition

(define 〈variable〉 〈expression〉)

has essentially the same effect as the assignment expression

(set! 〈variable〉 〈expression〉)

if 〈variable〉 is bound to a non-syntax value. However, if 〈variable〉 is
not bound, or is bound to a syntax definition (see below), then the
definition will bind 〈variable〉 to a new location before performing
the assignment, whereas it would be an error to perform a set! on
an unbound variable.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

Implementations are permitted to provide an initial environment in
which all possible variables are bound to locations, most of which
contain unspecified values. Top level definitions in such an imple-
mentation are truly equivalent to assignments.

5.2.2. Internal definitions

Definitions may occur at the beginning of a 〈body〉 (that is, the body
of a lambda, let, let*, letrec, letrec*, let-values, let-values*,
let-syntax, letrec-syntax, parameterize, guard, or case-lambda
expression or that of a definition of an appropriate form). Such defi-
nitions are known as internal definitions as opposed to the top level
definitions described above. The variable defined by an internal def-
inition is local to the 〈body〉. That is, 〈variable〉 is bound rather
than assigned, and the region of the binding is the entire 〈body〉.
For example,

5. PROGRAM STRUCTURE 64

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

An expanded 〈body〉 containing internal definitions can always be
converted into a completely equivalent letrec* expression. For ex-
ample, the let expression in the above example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

Just as for the equivalent letrec* expression, it is an error if it is
not possible to evaluate each 〈expression〉 of every internal definition
in a 〈body〉 without assigning or referring to the value of the corre-
sponding 〈variable〉 or the 〈variable〉 of any of the definitions that
follow it in 〈body〉.
It is an error to define the same identifier more than once in the
same 〈body〉.
Wherever an internal definition may occur, (begin 〈definition1〉 . . .)
is equivalent to the sequence of definitions that form the body of the
begin.

5.2.3. Multiple-value definitions

The construct define-values introduces new definitions like define,
but can create multiple definitions from a single expression returning
multiple values. It is allowed wherever define is allowed.

(define-values 〈formals〉 〈expression〉) syntax
It is an error if a variable appears more than once in the set of
〈formals〉.

5. PROGRAM STRUCTURE 65

Semantics: 〈Expression〉 is evaluated, and the 〈formals〉 are bound
to the return values in the same way that the 〈formals〉 in a lambda

expression are matched to the arguments in a procedure call.

(let ()

(define-values (x y) (values 1 2))

(+ x y)) =⇒ 3

5.3. Syntax definitions

Syntax definitions are valid wherever definitions are. They have
the following form:
(define-syntax 〈keyword〉 〈transformer spec〉)
〈Keyword〉 is an identifier, and the 〈transformer spec〉 should be an
instance of syntax-rules. If the define-syntax occurs at the top
level, then the top-level syntactic environment is extended by binding
the 〈keyword〉 to the specified transformer, but existing references to
any top-level binding for 〈keyword〉 remain unchanged. Otherwise,
it is an internal syntax definition, and is local to the 〈body〉 in which
it is defined.

(let ((x 1) (y 2))

(define-syntax swap!

(syntax-rules ()

((swap! a b)

(let ((tmp a))

(set! a b)

(set! b tmp)))))

(swap! x y)

(list x y)) =⇒ (2 1)

Macros can expand into definitions in any context that permits them.
However, it is an error for a definition to define an identifier whose
binding has to be known in order to determine the meaning of the

5. PROGRAM STRUCTURE 66

definition itself, or of any preceding definition that belongs to the
same group of internal definitions. Similarly, it is an error for an
internal definition to define an identifier whose binding has to be
known in order to determine the boundary between the internal def-
initions and the expressions of the body it belongs to. For example,
the following are errors:

(define define 3)

(begin (define begin list))

(let-syntax

((foo (syntax-rules ()

((foo (proc args ...) body ...)

(define proc

(lambda (args ...)

body ...))))))

(let ((x 3))

(foo (plus x y) (+ x y))

(define foo x)

(plus foo x)))

5.4. Record type definitions

Record type definitions are used to introduce new data types, called
record types. The values of a record type are called records and are
aggregations of zero or more fields, each of which holds a single lo-
cation. A predicate, a constructor, and field accessors and mutators
are defined for each record type. Record type definitions are valid
wherever definitions are.

(define-record-type 〈name〉 syntax
〈constructor〉 〈pred〉 〈field〉 . . .)

Syntax: 〈name〉 and 〈pred〉 should be identifiers. The 〈constructor〉
should be of the form

5. PROGRAM STRUCTURE 67

(〈constructor name〉 〈field name〉 . . .)

and each 〈field〉 should be either of the form

(〈field name〉 〈accessor name〉)

or of the form

(〈field name〉 〈accessor name〉 〈modifier name〉)

It is an error for the same identifier to occur more than once as a
field name.
define-record-type is generative: each use creates a new record
type that is distinct from all existing types, including Scheme’s pre-
defined types and other record types — even record types of the
same name or structure.
An instance of define-record-type is equivalent to the following
definitions:

• 〈name〉 is bound to a representation of the record type itself.
This may be a run-time object or a purely syntactic represen-
tation.

• 〈constructor name〉 is bound to a procedure that takes as many
arguments as there are 〈field name〉s in the (〈constructor name〉
. . .) subform and returns a new record of type 〈name〉. Fields
whose names are listed with 〈constructor name〉 have the cor-
responding argument as their initial value. The initial values
of all other fields are unspecified.

• 〈pred〉 is bound to a predicate that returns #t when given a
value returned by the procedure bound to 〈constructor name〉
and #f for everything else.

• Each 〈accessor name〉 is bound to a procedure that takes a
record of type 〈name〉 and returns the current value of the
corresponding field. It is an error to pass an accessor a value
which is not a record of the appropriate type.

5. PROGRAM STRUCTURE 68

• Each 〈modifier name〉 is bound to a procedure that takes a
record of type 〈name〉 and a value which becomes the new value
of the corresponding field; an unspecified value is returned. It
is an error to pass a modifier a first argument which is not a
record of the appropriate type.

For instance, the following definition

(define-record-type <pare>

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

defines kons to be a constructor, kar and kdr to be accessors,
set-kar! to be a modifier, and pare? to be a predicate for instances
of <pare>.

(pare? (kons 1 2)) =⇒ #t

(pare? (cons 1 2)) =⇒ #f

(kar (kons 1 2)) =⇒ 1

(kdr (kons 1 2)) =⇒ 2

(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) =⇒ 3

5.5. Libraries

Libraries provide a way to organize Scheme programs into reusable
parts with explicitly defined interfaces to the rest of the program.
This section defines the notation and semantics for libraries.

5. PROGRAM STRUCTURE 69

5.5.1. Library Syntax

A library definition takes the following form:

(define-library 〈library name〉
〈library declaration〉 . . .)

〈library name〉 is a list whose members are identifiers or unsigned
exact integers that is used to identify the library uniquely when im-
porting from other programs or libraries. Libraries whose first iden-
tifier is scheme are reserved for use by this report and future versions
of this report. Libraries whose first identifier is srfi are reserved for
libraries implementing Scheme Requests for Implementation.
A 〈library declaration〉 may be any of:

• (export 〈export spec〉 . . .)

• (import 〈import set〉 . . .)

• (begin 〈command or definition〉 . . .)

• (include 〈filename1〉 〈filename2〉 . . .)

• (include-ci 〈filename1〉 〈filename2〉 . . .)

• (cond-expand 〈cond-expand clause〉 . . .)

An export declaration specifies a list of identifiers which can be
made visible to other libraries or programs. An 〈export spec〉 takes
one of the following forms:

• 〈identifier〉

• (rename 〈identifier1〉 〈identifier2〉)

5. PROGRAM STRUCTURE 70

In an 〈export spec〉, an 〈identifier〉 names a single binding defined
within or imported into the library, where the external name for
the export is the same as the name of the binding within the li-
brary. A rename spec exports the binding defined within or imported
into the library and named by 〈identifier1〉 in each (〈identifier1〉
〈identifier2〉) pairing, using 〈identifier2〉 as the external name.
An import declaration provides a way to import the identifiers ex-
ported by a library. Each 〈import set〉 names a set of bindings from
another library and possibly specifies local names for the imported
bindings. It takes one of the following forms:

• 〈library name〉

• (only 〈import set〉 〈identifier〉 . . .)

• (except 〈import set〉 〈identifier〉 . . .)

• (prefix 〈import set〉 〈identifier〉)

• (rename 〈import set1〉 (〈identifier2〉 〈identifier〉) . . .)

In the first form, all of the identifiers in the named library’s export
clauses are imported with the same names (or the exported names
if exported with rename). The additional 〈import set〉 forms modify
this set as follows:

• only produces a subset of the given 〈import set〉, including
only the listed identifiers (after any renaming). It is an error
if any of the listed identifiers are not found in the original set.

• except produces a subset of the given 〈import set〉, excluding
the listed identifiers (after any renaming). It is an error if any
of the listed identifiers are not found in the original set.

• rename modifies the given 〈import set〉, replacing each instance
of 〈identifier1〉 with 〈identifier2〉. It is an error if any of the
listed identifiers are not found in the original set.

5. PROGRAM STRUCTURE 71

• prefix automatically renames all identifiers in the given 〈import set〉,
prefixing each with the specified 〈identifier〉.

The top level of a program may also include import declarations.
In a library declaration, it is an error to import the same identifier
more than once with different bindings, or to redefine or mutate an
imported binding with define, define-syntax or set!. However,
a REPL should permit these actions.
The begin, include, and include-ci declarations are used to spec-
ify the commands and definitions that make up the body of the
library. The begin declaration takes a list of expressions and defini-
tions to be spliced literally, analogous to the top-level begin. Both
the include and include-ci declarations take one or more filenames
expressed as string literals, apply an implementation-specific algo-
rithm to find corresponding files, read the whole contents of each file,
and include the results into the library body or program as though
wrapped in a top-level begin. The difference between the two is
that include-ci reads each file as if it began with the #!fold-case

directive, while include does not. All three may appear at the top
level of a program.
Note: Implementations are encouraged to search for files in the directory

which contains the including file, and to provide a way for users to specify

other directories to search.

Note: For portability, include and include-ci must operate on source

files. Their operation on other kinds of files necessarily varies among

implementations.

The cond-expand library declaration provides a way to statically
expand different library declarations depending on the implementa-
tion under which the library is being loaded. A 〈cond-expand clause〉
takes the following form:
(〈feature requirement〉 〈library declaration〉 . . .)
The last clause may be an “else clause,” which has the form
(else 〈library declaration〉 . . .)

5. PROGRAM STRUCTURE 72

A 〈feature requirement〉 takes one of the following forms:

• 〈feature identifier〉

• (library 〈library name〉)

• (and 〈feature requirement〉 . . .)

• (or 〈feature requirement〉 . . .)

• (not 〈feature requirement〉)

Each implementation maintains a list of feature identifiers which
are present, as well as a list of libraries which can be imported.
The value of a 〈feature requirement〉 is determined by replacing each
〈feature identifier〉 and (library 〈library name〉) on the implemen-
tation’s lists with #t, and all other feature identifiers and library
names with #f, then evaluating the resulting expression as a Scheme
boolean expression under the normal interpretation of and, or, and
not.
A cond-expand is then expanded by evaluating the 〈feature requirement〉s
of successive 〈cond-expand clause〉s in order, until one of them re-
turns #t. When a true clause is found, the corresponding 〈library declaration〉s
are spliced into the current library definition and the remaining
clauses are ignored. If none of the 〈feature requirement〉s evaluate
to #t, then if there is an else clause, its 〈library declaration〉s are
included. Otherwise, the cond-expand has no effect.
The exact features provided are implementation-defined, but for
portability a core set of features is given in appendix B.
After all cond-expand library declarations are expanded, a new en-
vironment is constructed for the library consisting of all imported
bindings. The expressions and declarations from all begin, include
and include-ci declarations are expanded in that environment in
the order in which they occur in the library declaration.

5. PROGRAM STRUCTURE 73

The top-level expressions in a library are executed in the order in
which they occur when the library is loaded. A library is loaded
zero or more times when it is imported by a program or by another
library which is about to be loaded, but must be loaded at least once
per program in which it is so imported.

5.5.2. Library example

The following example shows how a program may be divided into
libraries plus a relatively small main program. If the main program
is entered into a REPL, it is not necessary to import the base module.

(define-library (example grid)

(export make rows cols ref each

(rename put! set!))

(import (scheme base))

(begin

;; Create an NxM grid.

(define (make n m)

(let ((grid (make-vector n)))

(do ((i 0 (+ i 1)))

((= i n) grid)

(let ((v (make-vector m #f)))

(vector-set! grid i v)))))

(define (rows grid)

(vector-length grid))

(define (cols grid)

(vector-length (vector-ref grid 0)))

;; Return #false if out of range.

(define (ref grid n m)

(and (< -1 n (rows grid))

(< -1 m (cols grid))

(vector-ref (vector-ref grid n) m)))

(define (put! grid n m v)

(vector-set! (vector-ref grid n) m v))

(define (each grid proc)

5. PROGRAM STRUCTURE 74

(do ((j 0 (+ j 1)))

((= j (rows grid)))

(do ((k 0 (+ k 1)))

((= k (cols grid)))

(proc j k (ref grid j k)))))))

(define-library (example life)

(export life)

(import (except (scheme base) set!)

(scheme write)

(example grid))

(begin

(define (life-count grid i j)

(define (count i j)

(if (ref grid i j) 1 0))

(+ (count (- i 1) (- j 1))

(count (- i 1) j)

(count (- i 1) (+ j 1))

(count i (- j 1))

(count i (+ j 1))

(count (+ i 1) (- j 1))

(count (+ i 1) j)

(count (+ i 1) (+ j 1))))

(define (life-alive? grid i j)

(case (life-count grid i j)

((3) #true)

((2) (ref grid i j))

(else #false)))

(define (life-print grid)

(display "\x1B;[1H\x1B;[J") ; clear vt100

(each grid

(lambda (i j v)

(display (if v "*" " "))

(when (= j (- (cols grid) 1))

(newline)))))

(define (life grid iterations)

6. STANDARD PROCEDURES 75

(do ((i 0 (+ i 1))

(grid0 grid grid1)

(grid1 (make (rows grid) (cols grid))

grid0))

((= i iterations))

(each grid0

(lambda (j k v)

(let ((a (life-alive? grid0 j k)))

(set! grid1 j k a))))

(life-print grid1)))))

;; Main program.

(import (scheme base)

(only (example life) life)

(rename (prefix (example grid) grid-)

(grid-make make-grid)))

;; Initialize a grid with a glider.

(define grid (make-grid 24 24))

(grid-set! grid 1 1 #true)

(grid-set! grid 2 2 #true)

(grid-set! grid 3 0 #true)

(grid-set! grid 3 1 #true)

(grid-set! grid 3 2 #true)

;; Run for 80 iterations.

(life grid 80)

6. Standard procedures
This chapter describes Scheme’s built-in procedures.
The procedures force and eager are intimately associated with the
expression types delay and lazy, and are described with them in
section 4.2.5. In the same way, the procedure make-parameter is

6. STANDARD PROCEDURES 76

intimately associated with the expression type parameterize, and
is described with it in section 4.2.6.
A program may use a top-level definition to bind any variable. It
may subsequently alter any such binding by an assignment (see sec-
tion 4.1.6). These operations do not modify the behavior of Scheme’s
built-in procedures, or any procedure defined in a library (see sec-
tion 5.5). Altering any top-level binding that has not been intro-
duced by a definition has an unspecified effect on the behavior of the
built-in procedures.

6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean value (#t
or #f). An equivalence predicate is the computational analogue of
a mathematical equivalence relation (it is symmetric, reflexive, and
transitive). Of the equivalence predicates described in this section,
eq? is the finest or most discriminating, equal? is the coarsest, and
eqv? is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure
The eqv? procedure defines a useful equivalence relation on objects.
Briefly, it returns #t if obj1 and obj2 are normally regarded as the
same object. This relation is left slightly open to interpretation, but
the following partial specification of eqv? holds for all implementa-
tions of Scheme.
The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

=⇒ #t

6. STANDARD PROCEDURES 77

Note: This assumes that neither obj1 nor obj2 is an “uninterned

symbol” as alluded to in section 6.5. This report does not specify

the behavior of eqv? on implementation-dependent extensions.

• obj1 and obj2 are both numbers, are numerically equal (see =,
section 6.2), and are either both exact or both inexact.

• obj1 and obj2 are both characters and are the same character
according to the char=? procedure (section 6.6).

• obj1 and obj2 are both the empty list.

• obj1 and obj2 are pairs, vectors, bytevectors, records, or strings
that denote the same location in the store (section 3.4).

The eqv? procedure returns #f if:

• obj1 and obj2 are of different types (section 3.2).

• one of obj1 and obj2 is #t but the other is #f.

• obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

=⇒ #f

• one of obj1 and obj2 is an exact number but the other is an
inexact number.

• obj1 and obj2 are numbers for which the = procedure returns
#f, and nan? returns #f for both.

• obj1 and obj2 are characters for which the char=? procedure
returns #f.

• one of obj1 and obj2 is the empty list but the other is not.

6. STANDARD PROCEDURES 78

• obj1 and obj2 are pairs, vectors, bytevectors, records, or strings
that denote distinct locations.

• obj1 and obj2 are procedures that would behave differently (re-
turn different values or have different side effects) for some
arguments.

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? ’() ’()) =⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(eqv? #f ’nil) =⇒ #f

The following examples illustrate cases in which the above rules do
not fully specify the behavior of eqv?. All that can be said about
such cases is that the value returned by eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified
(eqv? +nan.0 +nan.0) =⇒ unspecified

The next set of examples shows the use of eqv? with procedures
that have local state. The gen-counter procedure must return a
distinct procedure every time, since each procedure has its own in-
ternal counter. The gen-loser procedure, however, returns equiv-
alent procedures each time, since the local state does not affect the

6. STANDARD PROCEDURES 79

value or side effects of the procedures. However, eqv? may or may
not detect this equivalence.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) =⇒ #t

(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ #t

(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since it is an error to modify constant objects (those returned by
literal expressions), implementations are permitted, though not re-
quired, to share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified

6. STANDARD PROCEDURES 80

(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

Rationale: The above definition of eqv? allows implementations latitude

in their treatment of procedures and literals: implementations are free

either to detect or to fail to detect that two procedures or two literals

are equivalent to each other, and can decide whether or not to merge

representations of equivalent objects by using the same pointer or bit

pattern to represent both.

(eq? obj1 obj2) procedure
The eq? procedure is similar to eqv? except that in some cases it
is capable of discerning distinctions finer than those detectable by
eqv?.
On symbols, booleans, the empty list, pairs, procedures, and non-
empty strings, vectors, bytevectors, and records, eq? and eqv? are
guaranteed to have the same behavior. On numbers and characters,
eq?’s behavior is implementation-dependent, but it will always re-
turn either true or false, and will return true only when eqv? would
also return true. On empty vectors and empty strings, eq? may also
behave differently from eqv?.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ unspecified
(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified

6. STANDARD PROCEDURES 81

(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ #t

Rationale: It will usually be possible to implement eq? much more effi-

ciently than eqv?, for example, as a simple pointer comparison instead of

as some more complicated operation. One reason is that it is not always

possible to compute eqv? of two numbers in constant time, whereas eq?

implemented as pointer comparison will always finish in constant time. In

applications using procedures to implement objects with state, eq? may

be used instead of eqv? since it obeys the same constraints as eqv?.

(equal? obj1 obj2) procedure
The equal? procedure recursively compares the contents of pairs,
vectors, strings, bytevectors, and records, applying eqv? on other
objects such as numbers and symbols. If two objects are eqv?, they
must be equal? as well. Even if its arguments are circular data
structures, equal? must always terminate.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

Note: A rule of thumb is that objects are generally equal? if they print

the same.

6. STANDARD PROCEDURES 82

6.2. Numbers

It is important to distinguish between mathematical numbers, the
Scheme numbers that attempt to model them, the machine repre-
sentations used to implement the Scheme numbers, and notations
used to write numbers. This report uses the types number, complex,
real, rational, and integer to refer to both mathematical numbers
and Scheme numbers.

6.2.1. Numerical types

Mathematically, numbers are arranged into a tower of subtypes in
which each level is a subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real,
and a complex. The same is true of the Scheme numbers that model
3. For Scheme numbers, these types are defined by the predicates
number?, complex?, real?, rational?, and integer?.
There is no simple relationship between a number’s type and its
representation inside a computer. Although most implementations
of Scheme will offer at least two different representations of 3, these
different representations denote the same integer.
Scheme’s numerical operations treat numbers as abstract data, as
independent of their representation as possible. Although an im-
plementation of Scheme may use multiple internal representations
of numbers, this should not be apparent to a casual programmer
writing simple programs.
It is necessary, however, to distinguish between numbers that are
represented exactly and those that might not be. For example, in-

6. STANDARD PROCEDURES 83

dexes into data structures must be known exactly, as must some
polynomial coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact, and ir-
rational numbers may be approximated by rational and therefore
inexact approximations. In order to catch uses of inexact numbers
where exact numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal to the
dimension of type.

6.2.2. Exactness

Scheme numbers are either exact or inexact. A number is exact if it
was written as an exact constant or was derived from exact numbers
using only exact operations. A number is inexact if it was written
as an inexact constant, if it was derived using inexact ingredients,
or if it was derived using inexact operations. Thus inexactness is a
contagious property of a number.
If two implementations produce exact results for a computation that
did not involve inexact intermediate results, the two ultimate re-
sults will be mathematically equivalent. This is generally not true of
computations involving inexact numbers since approximate methods
such as floating-point arithmetic may be used, but it is the duty of
each implementation to make the result as close as practical to the
mathematically ideal result.
Rational operations such as + should always produce exact results
when given exact arguments. If the operation is unable to produce
an exact result, then it may either report the violation of an imple-
mentation restriction or it may silently coerce its result to an inexact
value. See section 6.2.3.
Except for inexact->exact, the operations described in this sec-
tion must generally return inexact results when given any inexact
arguments. An operation may, however, return an exact result if it
can prove that the value of the result is unaffected by the inexact-

6. STANDARD PROCEDURES 84

ness of its arguments. For example, multiplication of any number
by an exact zero may produce an exact zero result, even if the other
argument is inexact.

6.2.3. Implementation restrictions

Implementations of Scheme are not required to implement the whole
tower of subtypes given in section 6.2.1, but they must implement
a coherent subset consistent with both the purposes of the imple-
mentation and the spirit of the Scheme language. For example, im-
plementations in which all numbers are real, or in which non-real
numbers are always inexact, or in which exact numbers are always
integer, are still quite useful.
Implementations may also support only a limited range of numbers
of any type, subject to the requirements of this section. The sup-
ported range for exact numbers of any type may be different from
the supported range for inexact numbers of that type. For example,
an implementation that uses IEEE double-precision floating-point
numbers to represent all its inexact real numbers may also support
a practically unbounded range of exact integers and rationals while
limiting the range of inexact reals (and therefore the range of inex-
act integers and rationals) to the dynamic range of the IEEE double
format. Furthermore, the gaps between the representable inexact
integers and rationals are likely to be very large in such an imple-
mentation as the limits of this range are approached.
An implementation of Scheme must support exact integers through-
out the range of numbers permitted as indexes of lists, vectors,
bytevectors, and strings or that result from computing the length
of one of these. The length, vector-length, bytevector-length,
and string-length procedures must return an exact integer, and it
is an error to use anything but an exact integer as an index. Fur-
thermore, any integer constant within the index range, if expressed
by an exact integer syntax, will indeed be read as an exact integer,

6. STANDARD PROCEDURES 85

regardless of any implementation restrictions that apply outside this
range. Finally, the procedures listed below will always return ex-
act integer results provided all their arguments are exact integers
and the mathematically expected results are representable as exact
integers within the implementation:

+ - *

quotient remainder modulo

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt exact-integer-sqrt

floor/ ceiling/ centered/

truncate/ round/ euclidean/

floor-quotient floor-remainder

ceiling-quotient ceiling-remainder

centered-quotient centered-remainder

truncate-quotient truncate-remainder

round-quotient round-remainder

euclidean-quotient euclidean-remainder

Implementations are encouraged, but not required, to support exact
integers and exact rationals of practically unlimited size and preci-
sion, and to implement the above procedures and the / procedure in
such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an ex-
act result when given exact arguments, then it may either report a
violation of an implementation restriction or it may silently coerce
its result to an inexact number; such a coercion can cause an error
later. Nevertheless, implementations that do not provide exact ra-
tional numbers should return inexact rational numbers rather than
reporting an implementation restriction.
An implementation may use floating-point and other approximate

6. STANDARD PROCEDURES 86

representation strategies for inexact numbers. This report recom-
mends, but does not require, that the IEEE 754 standard be followed
by implementations that use floating-point representations, and that
implementations using other representations should match or exceed
the precision achievable using these floating-point standards [17]. In
particular, the description of transcendental functions in IEEE 754-
2008 should be followed by such implementations, particularly with
respect to infinities and NaNs.
Although Scheme allows a variety of written notations for numbers,
any particular implementation may support only some of them. For
example, an implementation in which all numbers are real need not
support the rectangular and polar notations for complex numbers.
If an implementation encounters an exact numerical constant that
it cannot represent as an exact number, then it may either report a
violation of an implementation restriction or it may silently represent
the constant by an inexact number.

6.2.4. Implementation extensions

Implementations may provide more than one representation of floating-
point numbers with differing precisions. In an implementation which
does so, an inexact result must be represented with at least as much
precision as is used to express any of the inexact arguments to that
operation. Although it is desirable for potentially inexact operations
such as sqrt to produce exact answers when applied to exact argu-
ments, if an exact number is operated upon so as to produce an
inexact result, then the most precise representation available must
be used. For example, the value of (sqrt 4) should be 2, but in
an implementation that provides both single and double precision
floating point numbers it may be the latter but must not be the
former.
In addition, implementations may distinguish special numbers called
positive infinity, negative infinity, NaN, and negative zero.

6. STANDARD PROCEDURES 87

Positive infinity is regarded as an inexact real (but not rational) num-
ber that represents an indeterminate value greater than the numbers
represented by all rational numbers. Negative infinity is regarded as
an inexact real (but not rational) number that represents an inde-
terminate value less than the numbers represented by all rational
numbers.
A NaN is regarded as an inexact real (but not rational) number
so indeterminate that it might represent any real value, including
positive or negative infinity, and might even be greater than positive
infinity or less than negative infinity. It might even represent no
number at all, as in the case of (asin 2.0).
Note that the real and the imaginary parts of a complex number can
be infinities or NaNs.
Negative zero is an inexact real value written -0.0 which is distinct
(in the sense of eqv?) from 0.0. A Scheme implementation is not
required to distinguish negative zero. If it does, however, the behav-
ior of the transcendental functions is sensitive to the distinction in
accordance with IEEE 754.
Furthermore, the negation of negative zero is ordinary zero and vice
versa. This implies that the sum of two negative zeros is negative,
and the result of subtracting (positive) zero from a negative zero is
likewise negative. However, numerical comparisons treat negative
zero as equal to zero.

6.2.5. Syntax of numerical constants

The syntax of the written representations for numbers is described
formally in section 7.1.1. Note that case is not significant in numer-
ical constants.
A number can be written in binary, octal, decimal, or hexadecimal
by the use of a radix prefix. The radix prefixes are #b (binary), #o
(octal), #d (decimal), and #x (hexadecimal). With no radix prefix,
a number is assumed to be expressed in decimal.

6. STANDARD PROCEDURES 88

A numerical constant can be specified to be either exact or inexact
by a prefix. The prefixes are #e for exact, and #i for inexact. An
exactness prefix may appear before or after any radix prefix that is
used. If the written representation of a number has no exactness
prefix, the constant is inexact if it contains a decimal point or an
exponent. Otherwise, it is exact.
In systems with inexact numbers of varying precisions it can be useful
to specify the precision of a constant. For this purpose, implemen-
tations may accept numerical constants written with an exponent
marker that indicates the desired precision of the inexact represen-
tation. The letters s, f, d, and l, meaning short , single, double, and
long precision respectively, are acceptable in place of e. The default
precision has at least as much precision as double, but implementa-
tions may allow this default to be set by the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

The numbers positive infinity, negative infinity and NaN are written
+inf.0, -inf.0 and +nan.0 respectively. Implementations are not
required to support them, but if they do, they must be in confor-
mance with IEEE 754. However, implementations are not required
to support signaling NaNs, or provide a way to distinguish between
different NaNs.

6.2.6. Numerical operations

The reader is referred to section 1.3.3 for a summary of the naming
conventions used to specify restrictions on the types of arguments to
numerical routines. The examples used in this section assume that
any numerical constant written using an exact notation is indeed
represented as an exact number. Some examples also assume that

6. STANDARD PROCEDURES 89

certain numerical constants written using an inexact notation can
be represented without loss of accuracy; the inexact constants were
chosen so that this is likely to be true in implementations that use
IEEE doubles to represent inexact numbers.

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure
These numerical type predicates can be applied to any kind of ar-
gument, including non-numbers. They return #t if the object is of
the named type, and otherwise they return #f. In general, if a type
predicate is true of a number then all higher type predicates are also
true of that number. Consequently, if a type predicate is false of a
number, then all lower type predicates are also false of that number.
If z is a complex number, then (real? z) is true if and only if (zero?
(imag-part z)) and (exact? (imag-part z)) are both true. If x
is an inexact real number, then (integer? x) is true if and only if
(= x (round x)).
The numbers +inf.0, -inf.0, and +nan.0 are real but not rational.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0i) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? #e1e10) =⇒ #t

(real? +inf.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

6. STANDARD PROCEDURES 90

(integer? 8/4) =⇒ #t

Note: The behavior of these type predicates on inexact numbers is unre-

liable, since any inaccuracy might affect the result.

Note: In many implementations the complex? procedure will be the same

as number?, but unusual implementations may be able to represent some

irrational numbers exactly or may extend the number system to support

some kind of non-complex numbers.

(exact? z) procedure
(inexact? z) procedure
These numerical predicates provide tests for the exactness of a quan-
tity. For any Scheme number, precisely one of these predicates is
true.

(exact? 3.0) =⇒ #f

(exact? #e3.0) =⇒ #t

(inexact? 3.) =⇒ #t

(exact-integer? z) procedure
Returns #t if z is both exact and an integer; otherwise returns #f.

(exact-integer? 32) =⇒ #t

(exact-integer? 32.0) =⇒ #f

(exact-integer? 32/5) =⇒ #f

(finite? z) inexact library procedure
The finite? procedure returns #t on all real numbers except +inf.0,
-inf.0, and +nan.0, and on complex numbers if their real and imag-
inary parts are both finite. Otherwise it returns #f.

6. STANDARD PROCEDURES 91

(finite? 3) =⇒ #t

(finite? +inf.0) =⇒ #f

(finite? 3.0+inf.0i) =⇒ #f

(nan? z) inexact library procedure
The nan? procedure returns #t on +nan.0, and on any complex
number if its real part or its imaginary part or both are +nan.0.
Otherwise it returns #f.

(nan? +nan.0) =⇒ #t

(nan? 32) =⇒ #f

(nan? +nan.0+5.0i) =⇒ #t

(nan? 1+2i) =⇒ #f

(= z1 z2 z3 . . .) procedure
(< x1 x2 x3 . . .) procedure
(> x1 x2 x3 . . .) procedure
(<= x1 x2 x3 . . .) procedure
(>= x1 x2 x3 . . .) procedure
These procedures return #t if their arguments are (respectively):
equal, monotonically increasing, monotonically decreasing, mono-
tonically nondecreasing, or monotonically nonincreasing, and #f oth-
erwise. If any of the arguments are +nan.0, all the predicates return
#f.
These predicates are required to be transitive.
Note: The traditional implementations of these predicates in Lisp-like

languages are not transitive.

Note: While it is not an error to compare inexact numbers using these

predicates, the results are unreliable because a small inaccuracy can affect

the result; this is especially true of = and zero?. When in doubt, consult

a numerical analyst.

6. STANDARD PROCEDURES 92

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure
These numerical predicates test a number for a particular property,
returning #t or #f. See note above.

(max x1 x2 . . .) procedure
(min x1 x2 . . .) procedure
These procedures return the maximum or minimum of their argu-
ments.

(max 3 4) =⇒ 4 ; exact

(max 3.9 4) =⇒ 4.0 ; inexact

Note: If any argument is inexact, then the result will also be inexact

(unless the procedure can prove that the inaccuracy is not large enough

to affect the result, which is possible only in unusual implementations).

If min or max is used to compare numbers of mixed exactness, and the

numerical value of the result cannot be represented as an inexact number

without loss of accuracy, then the procedure may report a violation of an

implementation restriction.

(+ z1 . . .) procedure
(* z1 . . .) procedure
These procedures return the sum or product of their arguments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(* 4) =⇒ 4

(*) =⇒ 1

6. STANDARD PROCEDURES 93

(- z1 z2) procedure
(- z) procedure
(- z1 z2 . . .) procedure
(/ z1 z2) procedure
(/ z) procedure
(/ z1 z2 . . .) procedure
With two or more arguments, these procedures return the difference
or quotient of their arguments, associating to the left. With one
argument, however, they return the additive or multiplicative inverse
of their argument. It is an error if any argument of / other than the
first is an exact zero.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(abs x) procedure
The abs procedure returns the absolute value of its argument.

(abs -7) =⇒ 7

(floor/ n1 n2) procedure
(floor-quotient n1 n2) procedure
(floor-remainder n1 n2) procedure
(ceiling/ n1 n2) procedure
(ceiling-quotient n1 n2) procedure
(ceiling-remainder n1 n2) procedure
(truncate/ n1 n2) procedure
(truncate-quotient n1 n2) procedure
(truncate-remainder n1 n2) procedure

6. STANDARD PROCEDURES 94

(round/ n1 n2) procedure
(round-quotient n1 n2) procedure
(round-remainder n1 n2) procedure
(euclidean/ n1 n2) procedure
(euclidean-quotient n1 n2) procedure
(euclidean-remainder n1 n2) procedure
(centered/ n1 n2) procedure
(centered-quotient n1 n2) procedure
(centered-remainder n1 n2) procedure
These procedures, all in the division library, implement number-
theoretic (integer) division. It is an error if n2 is zero. The proce-
dures ending in / return two integers; the other procedures return
an integer. All the procedures compute a quotient nq and remainder
nr such that n1 = n2nq + nr. For each of the six division operators,
there are three procedures defined as follows:

(〈operator〉/ n1 n2) =⇒ nq nr

(〈operator〉-quotient n1 n2) =⇒ nq

(〈operator〉-remainder n1 n2) =⇒ nr

The remainder nr is determined by the choice of integer nq: nr =
n1 − n2nq. Each set of operators uses a different choice of nq:
ceiling nq = dn1/n2e
floor nq = bn1/n2c
truncate nq = truncate(n1/n2)
round nq = [n1/n2]
euclidean if n2 > 0, nq = bn1/n2c; if n2 < 0, nq = dn1/n2e
centered choose nq such that −|n2/2| <= nr < |n2/2|

For any of the operators, and for integers n1 and n2 with n2 not
equal to 0,

(= n1 (+ (* n2 (〈operator〉-quotient n1 n2))

(〈operator〉-remainder n1 n2)))

=⇒ #t

6. STANDARD PROCEDURES 95

provided all numbers involved in that computation are exact.
See [5] for discussion.

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure
The quotient and remainder procedures are equivalent to truncate-quotient
and truncate-remainder, respectively, and modulo is equivalent to
floor-remainder.

(modulo 13 4) =⇒ 1

(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3

(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3

(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1

(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0 ; inexact

Note: These procedures are provided for backward compatibility with

earlier versions of this report.

(gcd n1 . . .) procedure
(lcm n1 . . .) procedure
These procedures return the greatest common divisor or least com-
mon multiple of their arguments. The result is always non-negative.

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

6. STANDARD PROCEDURES 96

(lcm 32.0 -36) =⇒ 288.0 ; inexact

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure
These procedures return the numerator or denominator of their ar-
gument; the result is computed as if the argument was represented
as a fraction in lowest terms. The denominator is always positive.
The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(exact->inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return integers. The floor procedure returns the
largest integer not larger than x. The ceiling procedure returns
the smallest integer not smaller than x, truncate returns the integer
closest to x whose absolute value is not larger than the absolute value
of x, and round returns the closest integer to x, rounding to even
when x is halfway between two integers.
Rationale: The round procedure rounds to even for consistency with

the default rounding mode specified by the IEEE 754 IEEE floating-point

standard.

Note: If the argument to one of these procedures is inexact, then the

result will also be inexact. If an exact value is needed, the result can be

passed to the inexact->exact procedure.

6. STANDARD PROCEDURES 97

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0 ; inexact

(round 7/2) =⇒ 4 ; exact

(round 7) =⇒ 7

(rationalize x y) procedure

The rationalize procedure returns the simplest rational number
differing from x by no more than y. A rational number r1 is simpler
than another rational number r2 if r1 = p1/q1 and r2 = p2/q2 (in

lowest terms) and |p1| ≤ |p2| and |q1| ≤ |q2|. Thus 3/5 is simpler
than 4/7. Although not all rationals are comparable in this ordering
(consider 2/7 and 3/5) any interval contains a rational number that
is simpler than every other rational number in that interval (the
simpler 2/5 lies between 2/7 and 3/5). Note that 0 = 0/1 is the
simplest rational of all.

(rationalize

(inexact->exact .3) 1/10) =⇒ 1/3 ; exact

(rationalize .3 1/10) =⇒ #i1/3 ; inexact

(exp z) inexact library procedure
(log z) inexact library procedure
(sin z) inexact library procedure
(cos z) inexact library procedure

6. STANDARD PROCEDURES 98

(tan z) inexact library procedure
(asin z) inexact library procedure
(acos z) inexact library procedure
(atan z) inexact library procedure
(atan y x) inexact library procedure
These procedures compute the usual transcendental functions. The
log procedure computes the natural logarithm of z (not the base ten
logarithm). The asin, acos, and atan procedures compute arcsine
(sin−1), arccosine (cos−1), and arctangent (tan−1), respectively. The
two-argument variant of atan computes (angle (make-rectangular

x y)) (see below), even in implementations that don’t support the
complex library.
In general, the mathematical functions log, arcsine, arccosine, and
arctangent are multiply defined. The value of log z is defined to be
the one whose imaginary part lies in the range from −π (exclusive)
to π (inclusive). The value of log 0 is undefined. With log defined
this way, the values of sin−1 z, cos−1 z, and tan−1 z are according to
the following formulæ:

sin−1 z = −i log(iz +
√

1− z2)

cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)

The above specification follows [33], which in turn cites [25]; refer
to these sources for more detailed discussion of branch cuts, bound-
ary conditions, and implementation of these functions. When it is
possible these procedures produce a real result from a real argument.

(sqrt z) inexact library procedure
Returns the principal square root of z. The result will have either a
positive real part, or a zero real part and a non-negative imaginary
part.

6. STANDARD PROCEDURES 99

(exact-integer-sqrt k) procedure
Returns two non-negative exact integers s and r where k = s2 + r
and k < (s+ 1)2.

(exact-integer-sqrt 4) =⇒ 2 0

(exact-integer-sqrt 5) =⇒ 2 1

(expt z1 z2) procedure
Returns z1 raised to the power z2. For nonzero z1, this is

z1
z2 = ez2 log z1

0.0z is 1.0 if z = 0.0, and 0.0 if (real-part z) is positive. For other
cases in which the first argument is zero, either an error is signalled
or an unspecified number is returned.

(make-rectangular x1 x2) complex library procedure
(make-polar x3 x4) complex library procedure
(real-part z) complex library procedure
(imag-part z) complex library procedure
(magnitude z) complex library procedure
(angle z) complex library procedure
Let x1, x2, x3, and x4 be real numbers and z be a complex number
such that

z = x1 + x2i = x3 · eix4

Then all of

(make-rectangular x1 x2) =⇒ z
(make-polar x3 x4) =⇒ z
(real-part z) =⇒ x1
(imag-part z) =⇒ x2
(magnitude z) =⇒ |x3|
(angle z) =⇒ xangle

6. STANDARD PROCEDURES 100

are true, where −π < xangle ≤ π with xangle = x4 + 2πn for some
integer n.
The make-polar procedure may return an inexact complex number
even if its arguments are exact.
Rationale: The magnitude procedure is the same as abs for a real argu-

ment, but abs is in the base library, whereas magnitude is in the optional

complex library.

(exact->inexact z) procedure
(inexact->exact z) procedure
The procedure exact->inexact returns an inexact representation
of z. The value returned is the inexact number that is numerically
closest to the argument. For inexact arguments, the result is the
same as the argument. For exact complex numbers, the result is
a complex number whose real and imaginary parts are the result
of applying exact->inexact to the real and imaginary parts of the
argument, respectively. If an exact argument has no reasonably close
inexact equivalent, then a violation of an implementation restriction
may be reported.
The procedure inexact->exact returns an exact representation of
z. The value returned is the exact number that is numerically clos-
est to the argument. For exact arguments, the result is the same
as the argument. For inexact non-integral real arguments, the im-
plementation may return a rational approximation, or may report
an implementation violation. For inexact complex arguments, the
result is a complex number whose real and imaginary parts are the
result of applying inexact->exact to the real and imaginary parts
of the argument, respectively. If an inexact argument has no reason-
ably close exact equivalent, then a violation of an implementation
restriction may be reported.
These procedures implement the natural one-to-one correspondence
between exact and inexact integers throughout an implementation-
dependent range. See section 6.2.3.

6. STANDARD PROCEDURES 101

6.2.7. Numerical input and output

(number->string z) procedure
(number->string z radix) procedure
It is an error if radix is not one of 2, 8, 10, or 16. If omitted, radix
defaults to 10. The procedure number->string takes a number and
a radix and returns as a string an external representation of the given
number in the given radix such that

(let ((number number)
(radix radix))

(eqv? number

(string->number (number->string number

radix)

radix)))

is true. It is an error if no possible result makes this expression true.
If z is inexact, the radix is 10, and the above expression can be
satisfied by a result that contains a decimal point, then the result
contains a decimal point and is expressed using the minimum number
of digits (exclusive of exponent and trailing zeroes) needed to make
the above expression true [6, 8]; otherwise the format of the result is
unspecified.
The result returned by number->string never contains an explicit
radix prefix.
Note: The error case can occur only when z is not a complex number or

is a complex number with a non-rational real or imaginary part.

Rationale: If z is an inexact number and the radix is 10, then the above

expression is normally satisfied by a result containing a decimal point. The

unspecified case allows for infinities, NaNs, and unusual representations.

(string->number string) procedure
(string->number string radix) procedure
Returns a number of the maximally precise representation expressed

6. STANDARD PROCEDURES 102

by the given string. It is an error if radix is not 2, 8, 10, or 16. If
supplied, radix is a default radix that will be overridden by an ex-
plicit radix prefix in string (e.g. "#o177"). If radix is not supplied,
then the default radix is 10. If string is not a syntactically valid
notation for a number, then string->number returns #f.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

Note: The domain of string->number may be restricted by implemen-

tations in the following ways. Whenever string contains an explicit radix

prefix, string->number is permitted to return #f. If all numbers sup-

ported by an implementation are real, then string->number is permitted

to return #f whenever string uses the polar or rectangular notations for

complex numbers. If all numbers are integers, then string->number may

return #f whenever the fractional notation is used. If all numbers are

exact, then string->number may return #f whenever an exponent marker

or explicit exactness prefix is used. If all inexact numbers are integers,

then string->number may return #f whenever a decimal point is used.

6.3. Booleans

The standard boolean objects for true and false are written as #t

and #f. Alternatively, they may be written #true and #false, re-
spectively. What really matters, though, are the objects that the
Scheme conditional expressions (if, cond, and, or, when, unless,
do) treat as true or false. The phrase “a true value” (or sometimes
just “true”) means any object treated as true by the conditional
expressions, and the phrase “a false value” (or “false”) means any
object treated as false by the conditional expressions.
Of all the Scheme values, only #f counts as false in conditional ex-
pressions. All other Scheme values, including #t, count as true.

6. STANDARD PROCEDURES 103

Note: Unlike some other dialects of Lisp, Scheme distinguishes #f and

the empty list from each other and from the symbol nil.

Boolean constants evaluate to themselves, so they do not need to be
quoted in programs.

#t =⇒ #t

#f =⇒ #f

’#f =⇒ #f

(not obj) procedure
The not procedure returns #t if obj is false, and returns #f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure
The boolean? predicate returns #t if obj is either #t or #f and
returns #f otherwise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f

6. STANDARD PROCEDURES 104

6.4. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure with two
fields called the car and cdr fields (for historical reasons). Pairs are
created by the procedure cons. The car and cdr fields are accessed
by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.
Pairs are used primarily to represent lists. A list can be defined
recursively as either the empty list or a pair whose cdr is a list.
More precisely, the set of lists is defined as the smallest set X such
that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains list is also
in X .

The objects in the car fields of successive pairs of a list are the
elements of the list. For example, a two-element list is a pair whose
car is the first element and whose cdr is a pair whose car is the second
element and whose cdr is the empty list. The length of a list is the
number of elements, which is the same as the number of pairs.
The empty list is a special object of its own type It is not a pair, it
has no elements, and its length is zero.
Note: The above definitions imply that all lists have finite length and are

terminated by the empty list.

The most general notation (external representation) for Scheme pairs
is the “dotted” notation (c1 . c2) where c1 is the value of the car
field and c2 is the value of the cdr field. For example (4 . 5) is a
pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the
external representation of a pair, not an expression that evaluates to
a pair.
A more streamlined notation can be used for lists: the elements of
the list are simply enclosed in parentheses and separated by spaces.
The empty list is written () . For example,

6. STANDARD PROCEDURES 105

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.
A chain of pairs not ending in the empty list is called an improper
list. Note that an improper list is not a list. The list and dotted
notations can be combined to represent improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored in the
cdr field. When the set-cdr! procedure is used, an object can be a
list one moment and not the next:

(define x (list ’a ’b ’c))

(define y x)

y =⇒ (a b c)

(list? y) =⇒ #t

(set-cdr! x 4) =⇒ unspecified
x =⇒ (a . 4)

(eqv? x y) =⇒ #t

y =⇒ (a . 4)

(list? y) =⇒ #f

(set-cdr! x x) =⇒ unspecified
(list? x) =⇒ #f

Within literal expressions and representations of objects read by
the read procedure, the forms ’〈datum〉, `〈datum〉, ,〈datum〉, and

6. STANDARD PROCEDURES 106

,@〈datum〉 denote two-element lists whose first elements are the sym-
bols quote, quasiquote, unquote, and unquote-splicing, respec-
tively. The second element in each case is 〈datum〉. This convention
is supported so that arbitrary Scheme programs can be represented
as lists. That is, according to Scheme’s grammar, every 〈expression〉
is also a 〈datum〉 (see section 7.1.2). Among other things, this per-
mits the use of the read procedure to parse Scheme programs. See
section 3.3.

(pair? obj) procedure
The pair? predicate returns #t if obj is a pair, and otherwise returns
#f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure
Returns a newly allocated pair whose car is obj1 and whose cdr is
obj2. The pair is guaranteed to be different (in the sense of eqv?)
from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure
Returns the contents of the car field of pair . Note that it is an error
to take the car of the empty list.

6. STANDARD PROCEDURES 107

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ error

(cdr pair) procedure
Returns the contents of the cdr field of pair . Note that it is an error
to take the cdr of the empty list.

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ error

(set-car! pair obj) procedure
Stores obj in the car field of pair . The value returned by set-car!

is unspecified.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ unspecified
(set-car! (g) 3) =⇒ error

(set-cdr! pair obj) procedure
Stores obj in the cdr field of pair . The value returned by set-cdr!

is unspecified.

(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure
These procedures are compositions of car and cdr, where for exam-
ple caddr could be defined by

6. STANDARD PROCEDURES 108

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided. There are
twenty-eight of these procedures in all.

(null? obj) procedure
Returns #t if obj is the empty list, otherwise returns #f.

(list? obj) procedure
Returns #t if obj is a list. Otherwise, it returns #f. By definition,
all lists have finite length and are terminated by the empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(let ((x (list ’a)))

(set-cdr! x x)

(list? x)) =⇒ #f

(make-list k) procedure
(make-list k fill) procedure
Returns a newly allocated list of k elements. If a second argument
is given, then each element is initialized to fill . Otherwise the initial
contents of each element is unspecified.

(make-list 2 3) =⇒ (3 3)

(list obj . . .) procedure
Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()

6. STANDARD PROCEDURES 109

(length list) procedure
Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . .) procedure
Returns a list consisting of the elements of the first list followed by
the elements of the other lists.

(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

The resulting list is always newly allocated, except that it shares
structure with the last list argument. The last argument may actu-
ally be any object; an improper list results if the last argument is
not a proper list.

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

(reverse list) procedure
Returns a newly allocated list consisting of the elements of list in
reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure
Returns the sublist of list obtained by omitting the first k elements.
It is an error if list has fewer than k elements. The list-tail

procedure could be defined by

6. STANDARD PROCEDURES 110

(define list-tail

(lambda (x k)

(if (zero? k)

x

(list-tail (cdr x) (- k 1)))))

(list-ref list k) procedure
Returns the kth element of list . (This is the same as the car of
(list-tail list k).) It is an error if list has fewer than k elements.

(list-ref ’(a b c d) 2) =⇒ c

(list-ref ’(a b c d)

(inexact->exact (round 1.8)))

=⇒ c

(list-set! list k obj) procedure
It is an error if k is not a valid index of list . The list-set! procedure
stores obj in element k of list . The value returned by list-set! is
unspecified.

(let ((ls (list ’one ’two ’five!)))

(list-set! ls 2 ’three)

ls)

=⇒ (one two three)

(list-set! ’(0 1 2) 1 "oops")

=⇒ error ; constant list

(memq obj list) procedure
(memv obj list) procedure
(member obj list) procedure
(member obj list compare) procedure
These procedures return the first sublist of list whose car is obj ,
where the sublists of list are the non-empty lists returned by (list-tail

6. STANDARD PROCEDURES 111

list k) for k less than the length of list . If obj does not occur in list ,
then #f (not the empty list) is returned. The memq procedure uses
eq? to compare obj with the elements of list , while memv uses eqv?

and member uses compare, if given, and equal? otherwise.

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(member "B"

’("a" "b" "c")

string-ci=?) =⇒ ("b" "c")

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure
(assoc obj alist compare) procedure
It is an error if alist (for “association list”) is not a list of pairs.
These procedures find the first pair in alist whose car field is obj ,
and returns that pair. If no pair in alist has obj as its car, then #f

(not the empty list) is returned. The assq procedure uses eq? to
compare obj with the car fields of the pairs in alist , while assv uses
eqv? and assoc uses compare if given and equal? otherwise.

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

6. STANDARD PROCEDURES 112

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assoc 2.0 ’((1 1) (2 4) (3 9)) =)

=⇒ (2 4)

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

Rationale: Although they are often used as predicates, memq, memv,

member, assq, assv, and assoc do not have question marks in their names

because they return potentially useful values rather than just #t or #f.

(list-copy list) procedure
Returns a newly allocated copy of the given list . Only the pairs
themselves are copied; the cars of the result are the same (in the
sense of eqv? as the cars of list . If the last pair of list has a cdr
which is not the empty list, the last pair of the result does too.
As a degenerate case, an argument which is not a list is returned
unchanged.

6.5. Symbols

Symbols are objects whose usefulness rests on the fact that two sym-
bols are identical (in the sense of eqv?) if and only if their names
are spelled the same way. For instance, they can be used the way
enumerated values are used in other languages.
The rules for writing a symbol are exactly the same as the rules for
writing an identifier; see sections 2.1 and 7.1.1.
It is guaranteed that any symbol that has been returned as part of
a literal expression, or read using the read procedure, and subse-
quently written out using the write procedure, will read back in as
the identical symbol (in the sense of eqv?).

6. STANDARD PROCEDURES 113

Note: Some implementations have values known as “uninterned sym-

bols,” which defeat write/read invariance, and also violate the rule that

two symbols are the same if and only if their names are spelled the same.

(symbol? obj) procedure
Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol->string symbol) procedure
Returns the name of symbol as a string. It is an error to apply
mutation procedures like string-set! to strings returned by this
procedure.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(string->symbol string) procedure
Returns the symbol whose name is string . This procedure can create
symbols with names containing special characters that would require
escaping when written.

(string->symbol "mISSISSIppi")

=⇒ mISSISSIppi

6. STANDARD PROCEDURES 114

(eq? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

6.6. Characters

Characters are objects that represent printed characters such as let-
ters and digits. All Scheme implementations must support at least
the ASCII character repertoire: that is, Unicode characters U+0000
through U+007F. Implementations may support any other Unicode
characters they see fit, and may also support non-Unicode char-
acters as well. Except as otherwise specified, the result of apply-
ing any of the following procedures to a non-Unicode character is
implementation-dependent.
Characters are written using the notation #\〈character〉 or #\〈character name〉
or #\x〈hex scalar value〉.
Here are some examples:

#\a ; lower case letter
#\A ; upper case letter
#\(; left parenthesis
#\ ; the space character
#\iota ; ι (if supported)
#\x03BB ; λ (if supported)

The following character names must be supported by all implemen-
tations:

6. STANDARD PROCEDURES 115

#\alarm ; U+0007
#\backspace ; U+0008
#\delete ; U+007F
#\escape ; U+001B
#\newline ; the linefeed character, U+000A
#\null ; the null character, U+0000
#\return ; the return character, U+000D
#\space ; the preferred way to write a space
#\tab ; the tab character, U+0009

Case is significant in #\〈character〉, and in #\〈character name〉, but
not in #\x〈hex scalar value〉. If 〈character〉 in #\〈character〉 is al-
phabetic, then the character following 〈character〉 must be a de-
limiter character such as a space or parenthesis. This rule resolves
the ambiguous case where, for example, the sequence of characters
“#\space” could be taken to be either a representation of the space
character or a representation of the character “#\s” followed by a
representation of the symbol “pace.”
Characters written in the #\ notation are self-evaluating. That is,
they do not have to be quoted in programs.
Some of the procedures that operate on characters ignore the differ-
ence between upper case and lower case. The procedures that ignore
case have “-ci” (for “case insensitive”) embedded in their names.

(char? obj) procedure
Returns #t if obj is a character, otherwise returns #f.

(char=? char1 char2 char3 . . .) procedure
(char<? char1 char2 char3 . . .) procedure
(char>? char1 char2 char3 . . .) procedure
(char<=? char1 char2 char3 . . .) procedure
(char>=? char1 char2 char3 . . .) procedure

6. STANDARD PROCEDURES 116

These procedures return #t if the Unicode codepoints correspond-
ing to their arguments are (respectively): equal, monotonically in-
creasing, monotonically decreasing, monotonically nondecreasing, or
monotonically nonincreasing.
These predicates are required to be transitive.
These procedures impose a total ordering on the set of characters
which is the same as the Unicode code point ordering. This is true
whether or not the implementation uses the Unicode representation
internally.

(char-ci=? char1 char2 char3 . . .) char library procedure
(char-ci<? char1 char2 char3 . . .) char library procedure
(char-ci>? char1 char2 char3 . . .) char library procedure
(char-ci<=? char1 char2 char3 . . .) char library procedure
(char-ci>=? char1 char2 char3 . . .) char library procedure
These procedures are similar to char=? et cetera, but they treat up-
per case and lower case letters as the same. For example, (char-ci=?
#\A #\a) returns #t.
Specifically, these procedures behave as if char-foldcase were ap-
plied to their arguments before they were compared.

(char-alphabetic? char) char library procedure
(char-numeric? char) char library procedure
(char-whitespace? char) char library procedure
(char-upper-case? letter) char library procedure
(char-lower-case? letter) char library procedure
These procedures return #t if their arguments are alphabetic, nu-
meric, whitespace, upper case, or lower case characters, respectively,
otherwise they return #f.
Specifically, they must return #t when applied to characters with the
Unicode properties Alphabetic, Numeric Digit, White Space, Up-
percase, and Lowercase respectively, and #f when applied to any

6. STANDARD PROCEDURES 117

other Unicode characters. Note that many Unicode characters are
alphabetic but neither upper nor lower case.

(digit-value char) char library procedure
This procedure returns the numeric value (0 to 9) of its argument if
it is a numeric digit (that is, if char-numeric? returns #t), or #f on
any other character.

(digit-value #\3) =⇒ 3

(digit-value #\x0664) =⇒ 4

(digit-value #\x0EA6) =⇒ 0

(char->integer char) procedure
(integer->char n) procedure
Given a Unicode character, char->integer returns an exact integer
between 0 and #xD7FF or between #xE000 and #x10FFFF which is
equal to the Unicode code point of that character. Given a non-
Unicode character, it returns an exact integer greater than #x10FFFF.
This is true independent of whether the implementation uses the
Unicode representation internally.
Given an exact integer that is the value returned by a character
when char->integer is applied to it, integer->char returns that
character.

(char-upcase char) char library procedure
(char-downcase char) char library procedure
(char-foldcase char) char library procedure
The char-upcase procedure, given an argument that is the lowercase
part of a Unicode casing pair, returns the uppercase member of the
pair, provided that both characters are supported by the Scheme
implementation. Note that language-sensitive casing pairs are not

6. STANDARD PROCEDURES 118

used. If the argument is not the lowercase member of such a pair, it
is returned.
The char-downcase procedure, given an argument that is the upper-
case part of a Unicode casing pair, returns the lowercase member of
the pair, provided that both characters are supported by the Scheme
implementation. Note that language-sensitive casing pairs are not
used. If the argument is not the uppercase member of such a pair,
it is returned.
The char-foldcase procedure applies the Unicode simple case-folding
algorithm to its argument and returns the result. Note that language-
sensitive folding is not used. If the argument is an uppercase letter,
the result will be either a lowercase letter or the same as the argu-
ment if the lowercase letter does not exist or is not supported by the
implementation. See UAX #29 (part of the Unicode Standard) for
details.
Note that many Unicode lowercase characters do not have uppercase
equivalents.

6.7. Strings

Strings are sequences of characters. Strings are written as sequences
of characters enclosed within doublequotes ("). Within a string lit-
eral, various escape sequences represent characters other than them-
selves. Escape sequences always start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008

• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \r : return, U+000D

6. STANDARD PROCEDURES 119

• \" : doublequote, U+0022

• \\ : backslash, U+005C

• \〈intraline whitespace〉〈line ending〉 〈intraline whitespace〉 : noth-
ing

• \x〈hex scalar value〉; : specified character (note the terminat-
ing semi-colon).

The result is unspecified if any other character in a string occurs
after a backslash.
Except for a line ending, any character outside of an escape sequence
stands for itself in the string literal. A line ending which is pre-
ceded by \〈intraline whitespace〉 expands to nothing (along with any
trailing intraline whitespace), and can be used to indent strings for
improved legibility. Any other line ending has the same effect as
inserting a \n character into the string.
Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text"

"Here’s a text \

containing just one line"

"\x03B1; is named GREEK SMALL LETTER ALPHA."

The length of a string is the number of characters that it contains.
This number is an exact, non-negative integer that is fixed when
the string is created. The valid indexes of a string are the exact
non-negative integers less than the length of the string. The first
character of a string has index 0, the second has index 1, and so on.
In phrases such as “the characters of string beginning with index
start and ending with index end ,” it is understood that the index
start is inclusive and the index end is exclusive. Thus if start and
end are the same index, a null substring is referred to, and if start is

6. STANDARD PROCEDURES 120

zero and end is the length of string , then the entire string is referred
to. It is an error if start is less than end .
Some of the procedures that operate on strings ignore the difference
between upper and lower case. The versions that ignore case have
“-ci” (for “case insensitive”) embedded in their names.
Implementations may forbid certain characters from appearing in
strings. For example, an implementation might support the entire
Unicode repertoire, but only allow characters U+0000 to U+00FF
(the Latin-1 repertoire) in strings. It is an error to pass such a forbid-
den character to make-string, string, string-set!, or string-fill!.

(string? obj) procedure
Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure
The make-string procedure returns a newly allocated string of length
k. If char is given, then all the characters of the string are initialized
to char , otherwise the contents of the string are unspecified.

(string char . . .) procedure
Returns a newly allocated string composed of the arguments. It is
analogous to list.

(string-length string) procedure
Returns the number of characters in the given string .

(string-ref string k) procedure
It is an error if k is not a valid index of string . The string-ref

procedure returns character k of string using zero-origin indexing.
There is no requirement for this procedure to execute in constant

time.

6. STANDARD PROCEDURES 121

(string-set! string k char) procedure
It is an error if k is not a valid index of string . The string-set!

procedure stores char in element k of string and returns an unspec-
ified value. There is no requirement for this procedure to execute in
constant time.

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ unspecified
(string-set! (g) 0 #\?) =⇒ error
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ error

(string=? char1 char2 char3 . . .) procedure
Returns #t if all the strings are the same length and contain exactly
the same characters in the same positions, otherwise returns #f.

(string-ci=? char1 char2 char3 . . .) char library procedure
Returns #t if, after case-folding, all the strings are the same length
and contain the same characters in the same positions, otherwise re-
turns #f. Specifically, these procedures behave as if string-foldcase
were applied to their arguments before comparing them.

(string-ni=? char1 char2 char3 . . .) procedure
Returns #t if, after an implementation-defined normalization, all the
strings are the same length and contain the same characters in the
same positions, otherwise returns #f. The intent is to provide a
means of comparing strings that are considered equivalent in some
situations but are represented by a different sequence of characters.
Specifically, an implementation which supports Unicode should use
Unicode normalization NFC or NFD as specified by Unicode TR#15.

6. STANDARD PROCEDURES 122

Implementations which only support ASCII or some other charac-
ter set which provides no ambiguous representations of character
sequences may define the normalization to be the identity operation,
in which case string-ni=? is equivalent to string=?.

(string<? string1 string2 string3 . . .) procedure
(string-ci<? string1 string2 string3 . . .)

char library procedure
(string-ni<? string1 string2 string3 . . .)

char library procedure
(string>? string1 string2 string3 . . .) procedure
(string-ci>? string1 string2 string3 . . .)

char library procedure
(string-ni>? string1 string2 string3 . . .)

char library procedure
(string<=? string1 string2 string3 . . .) procedure
(string-ci<=? string1 string2 string3 . . .)

char library procedure
(string-ni<=? string1 string2 string3 . . .)

char library procedure
(string>=? string1 string2 string3 . . .) procedure
(string-ci>=? string1 string2 string3 . . .)

char library procedure
(string-ni>=? string1 string2 string3 . . .)

char library procedure
These procedures return #t if their arguments are (respectively):
equal, monotonically increasing, monotonically decreasing, mono-
tonically nondecreasing, or monotonically nonincreasing.
These predicates are required to be transitive.
These procedures compare strings in an implementation-defined way.
One approach is to make them the lexicographic extensions to strings
of the corresponding orderings on characters. In that case, string<?
would be the lexicographic ordering on strings induced by the order-

6. STANDARD PROCEDURES 123

ing char<? on characters, and if the two strings differ in length but
are the same up to the length of the shorter string, the shorter string
would be considered to be lexicographically less than the longer
string. However, it is also permitted to use the natural ordering
imposed by the internal representation of strings, or a more complex
locale-specific ordering.
In all cases, a pair of strings must satisfy exactly one of string<?,
string=?, and string>?, and must satisfy string<=? if and only if
they do not satisfy string>? and string>=? if and only if they do
not satisfy string<?.
The “-ci” procedures behave as if they applied string-foldcase to
their arguments before invoking the corresponding procedures with-
out “-ci”.
The “-ni” procedures behave as if they applied the implementation-
defined normalization used by string-ni=? to their arguments be-
fore invoking the corresponding procedures without “-ni”.

(string-upcase string) char library procedure
(string-downcase string) char library procedure
(string-foldcase string) char library procedure
These procedures apply the Unicode full string uppercasing, lower-
casing, and case-folding algorithms to their arguments and return
the result. If the result is equal to the argument, a new string need
not be allocated. Note that language-sensitive mappings and fold-
ings are not used. The result may differ in length from the argument.
What is more, a few characters have case-mappings that depend on
the surrounding context. For example, Greek capital sigma normally
lowercases to Greek small sigma, but at the end of a word it down-
cases to Greek small final sigma instead. See UAX #29 (part of the
Unicode Standard) for details.

6. STANDARD PROCEDURES 124

(substring string start end) procedure
It is an error if start and end are not exact integers satisfying the
inequality

0 ≤ start ≤ end ≤ (string-length string).

The substring procedure returns a newly allocated string formed
from the characters of string beginning with index start (inclusive)
and ending with index end (exclusive).

(string-append string . . .) procedure
Returns a newly allocated string whose characters are the concate-
nation of the characters in the given strings.

(string->list string) procedure
(list->string list) procedure
string->list returns a newly allocated list of the characters that
make up the given string. list->string returns a newly allocated
string formed from the elements in the list list . It is an error if any
element is not a character. string->list and list->string are
inverses so far as equal? is concerned.

(string-copy string) procedure
Returns a newly allocated copy of the given string .

(string-fill! string char) procedure
(string-fill! string char start end) procedure
If start and end are given, string-fill! stores fill in all the ele-
ments of string between start (inclusive) and end (exclusive). It is
an error if fill is not a character or is forbidden in strings, or if start
is less than end . If start and endy are omitted, fill is stored in all the
elements of string . In either case, an unspecified value is returned.

6. STANDARD PROCEDURES 125

6.8. Vectors

Vectors are heterogenous structures whose elements are indexed by
integers. A vector typically occupies less space than a list of the same
length, and the average time needed to access a randomly chosen
element is typically less for the vector than for the list.
The length of a vector is the number of elements that it contains.
This number is a non-negative integer that is fixed when the vector
is created. The valid indexes of a vector are the exact non-negative
integers less than the length of the vector. The first element in a
vector is indexed by zero, and the last element is indexed by one less
than the length of the vector.
Vectors are written using the notation #(obj . . .). For example, a
vector of length 3 containing the number zero in element 0, the list
(2 2 2 2) in element 1, and the string "Anna" in element 2 can be
written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an
expression evaluating to a vector. It is an error not to quote a vector
constant:

’#(0 (2 2 2 2) "Anna")

=⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure
Returns #t if obj is a vector; otherwise returns #f.

(make-vector k) procedure
(make-vector k fill) procedure
Returns a newly allocated vector of k elements. If a second argument
is given, then each element is initialized to fill . Otherwise the initial
contents of each element is unspecified.

6. STANDARD PROCEDURES 126

(vector obj . . .) procedure
Returns a newly allocated vector whose elements contain the given
arguments. It is analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure
Returns the number of elements in vector as an exact integer.

(vector-ref vector k) procedure
It is an error if k is not a valid index of vector . vector-ref returns
the contents of element k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(inexact->exact

(round (* 2 (acos -1)))))

=⇒ 13

(vector-set! vector k obj) procedure
It is an error if k is not a valid index of vector . vector-set! stores
obj in element k of vector . The value returned by vector-set! is
unspecified.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ error ; constant vector

6. STANDARD PROCEDURES 127

(vector->list vector) procedure
(list->vector list) procedure
vector->list returns a newly allocated list of the objects contained
in the elements of vector . list->vector returns a newly created
vector initialized to the elements of the list list .

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector->string string) procedure
(string->vector vector) procedure
vector->string returns a newly allocated string of the objects con-
tained in the elements of vector . It is an error if any element is
not a character allowed in strings. string->vector returns a newly
created vector initialized to the elements of the string string .

(string->vector "ABC") =⇒ #(#\A #\B #\C)

(vector->string

#(#\1 #\2 #\3) =⇒ "123"

(vector-copy vector) procedure
(vector-copy vector start) procedure
(vector-copy vector start end) procedure
(vector-copy vector start end fill) procedure
Returns a newly allocated copy of the given vector . The elements of
the new vector are the same (in the sense of eqv?) as the elements
of the old.
The arguments start , end , and fill default to 0, the length of vector ,
and an implementation-specified value respectively. If end is greater

6. STANDARD PROCEDURES 128

than the length of vector , the fill argument is used to fill the addi-
tional elements of the result.

(vector-fill! vector fill) procedure
(vector-fill! vector fill start end) procedure
If start and end are given, vector-fill! stores fill (which can be
any object) in all the elements of vector between start (inclusive)
and end (exclusive). It is an error if start is less than end . If they
are omitted, fill is stored in all the elements of vector . In either case,
an unspecified value is returned.

6.9. Bytevectors

Bytevectors represent blocks of binary data. They are fixed-length
sequences of bytes, where a byte is an exact integer in the range
[0, 255]. A bytevector is typically more space-efficient than a vector
containing the same values.
The length of a bytevector is the number of elements that it con-
tains. This number is a non-negative integer that is fixed when the
bytevector is created. The valid indexes of a bytevector are the exact
non-negative integers less than the length of the bytevector, starting
at index zero as with vectors.

(bytevector? obj) procedure
Returns #t if obj is a bytevector. Otherwise, #f is returned.

(make-bytevector k) procedure
(make-bytevector k byte) procedure
make-bytevector returns a newly allocated bytevector of length k.
If byte is given, then all elements of the bytevector are initialized to
byte, otherwise the contents of each element are unspecified.

(bytevector-length bytevector) procedure
Returns the length of bytevector in bytes as an exact integer.

6. STANDARD PROCEDURES 129

(bytevector-u8-ref bytevector k) procedure
Returns the kth byte of bytevector .

(bytevector-u8-set! bytevector k byte) procedure
Stores byte as the kth byte of bytevector . The value returned by
bytevector-u8-set! is unspecified.

(bytevector-copy bytevector) procedure
Returns a newly allocated bytevector containing the same bytes as
bytevector .

(bytevector-copy! from to) procedure
Copies the bytes of bytevector from to bytevector to. It is an error if
to is shorter than from. The value returned by bytevector-copy!

is unspecified.

(bytevector-copy-partial bytevector start end) procedure
Returns a newly allocated bytevector containing the bytes in bytevector
between start (inclusive) and end (exclusive).

(bytevector-copy-partial! from start end to at) procedure
Copies the bytes of bytevector from between start and end to bytevec-
tor to, starting at at . The order in which bytes are copied is unspec-
ified, except that if the source and destination overlap, copying takes
place as if the source is first copied into a temporary bytevector and
then into the destination. This can be achieved without allocat-
ing storage by making sure to copy in the correct direction in such
circumstances.
It is an error if the inequality (>= (- (bytevector-length to) at)
(- end start)) is false. The value returned by bytevector-copy-partial!

is unspecified.

6. STANDARD PROCEDURES 130

(utf8->string bytevector) procedure
(string->utf8 string) procedure
These procedures translate between strings and bytevectors that en-
code those strings using the UTF-8 encoding. The utf8->string

procedure decodes a bytevector and returns the corresponding string;
the string->utf8 procedure encodes a string and returns the corre-
sponding bytevector. It is an error to pass invalid byte sequences or
byte sequences representing characters which are forbidden in strings
to utf8->string.

(utf8->string #u8(#x41)) =⇒ "A"

(string->utf8 "λ") =⇒ #u8(#xCE #xBB)

6.10. Control features

This chapter describes various primitive procedures which control
the flow of program execution in special ways. The procedure?

predicate is also described here.

(procedure? obj) procedure
Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t

(apply proc arg1 . . . args) procedure
apply calls proc with the elements of the list (append (list arg1
. . .) args) as the actual arguments.

6. STANDARD PROCEDURES 131

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(map proc list1 list2 . . .) procedure
It is an error if proc does not accept as many arguments as there are
lists and return a single value. If more than one list is given and not
all lists have the same length, map terminates when the shortest list
runs out. map applies proc element-wise to the elements of the lists
and returns a list of the results, in order. It is an error for proc to
mutate any of the lists. The dynamic order in which proc is applied
to the elements of the lists is unspecified. If multiple returns occur
from map, the values returned by earlier returns are not mutated.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6 7)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

6. STANDARD PROCEDURES 132

(string-map proc string1 string2 . . .) procedure
It is an error if proc does not accept as many arguments as there
are strings and return a single character. If more than one string is
given and not all strings have the same length, string-map termi-
nates when the shortest string runs out. string-map applies proc
element-wise to the elements of the strings and returns a string of
the results, in order. The dynamic order in which proc is applied
to the elements of the strings is unspecified. If multiple returns oc-
cur from string-map, the values returned by earlier returns are not
mutated.

(string-map char-foldcase "AbdEgH")

=⇒ "abdegh"

(string-map

(lambda (c)

(integer->char (+ 1 (char->integer c))))

"HAL")

=⇒ "IBM"

(string-map

(lambda (c k)

((if (eqv? k #\u) char-upcase char-downcase)

c))

"studlycaps xxx"

"ululululul")

=⇒ "StUdLyCaPs"

(vector-map proc vector1 vector2 . . .) procedure
It is an error if proc does not accept as many arguments as there
are vectors and return a single value. If more than one vector is
given and not all vectors have the same length, vector-map termi-
nates when the shortest vector runs out. vector-map applies proc
element-wise to the elements of the vectors and returns a vector of

6. STANDARD PROCEDURES 133

the results, in order. The dynamic order in which proc is applied
to the elements of the vectors is unspecified. If multiple returns oc-
cur from vector-map, the values returned by earlier returns are not
mutated.

(vector-map cadr ’#((a b) (d e) (g h)))

=⇒ #(b e h)

(vector-map (lambda (n) (expt n n))

’#(1 2 3 4 5))

=⇒ #(1 4 27 256 3125)

(vector-map + ’#(1 2 3) ’#(4 5 6 7))

=⇒ #(5 7 9)

(let ((count 0))

(vector-map

(lambda (ignored)

(set! count (+ count 1))

count)

’#(a b))) =⇒ #(1 2) or #(2 1)

(for-each proc list1 list2 . . .) procedure
The arguments to for-each are like the arguments to map, but
for-each calls proc for its side effects rather than for its values.
Unlike map, for-each is guaranteed to call proc on the elements of
the lists in order from the first element(s) to the last, and the value
returned by for-each is unspecified. It is an error for proc to mutate
any of the lists. If more than one list is given and not all lists have
the same length, for-each terminates when the shortest list runs
out.

(let ((v (make-vector 5)))

(for-each (lambda (i)

6. STANDARD PROCEDURES 134

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(string-for-each proc string1 string2 . . .) procedure
The arguments to string-for-each are like the arguments to string-map,
but string-for-each calls proc for its side effects rather than for its
values. Unlike string-map, string-for-each is guaranteed to call
proc on the elements of the lists in order from the first element(s) to
the last, and the value returned by string-for-each is unspecified.
If more than one string is given and not all strings have the same
length, string-for-each terminates when the shortest string runs
out.

(let ((v ’()))

(string-for-each

(lambda (c) (set! v (cons (char->integer c) v))

"abcde")

v) =⇒ (101 100 99 98 97)

(vector-for-each proc vector1 vector2 . . .) procedure
The arguments to vector-for-each are like the arguments to vector-map,
but vector-for-each calls proc for its side effects rather than for its
values. Unlike vector-map, vector-for-each is guaranteed to call
proc on the elements of the vectors in order from the first element(s)
to the last, and the value returned by vector-for-each is unspec-
ified. If more than one vector is given and not all vectors have the
same length, vector-for-each terminates when the shortest vector
runs out.

(let ((v (make-list 5)))

(vector-for-each

(lambda (i) (list-set! v i (* i i)))

6. STANDARD PROCEDURES 135

’#(0 1 2 3 4))

v) =⇒ (0 1 4 9 16)

(call-with-current-continuation proc) procedure
(call/cc proc) procedure
It is an error if proc does not accept one argument. The procedure
call-with-current-continuation (or its equivalent abbreviation
call/cc) packages the current continuation (see the rationale below)
as an “escape procedure” and passes it as an argument to proc. The
escape procedure is a Scheme procedure that, if it is later called, will
abandon whatever continuation is in effect at that later time and
will instead use the continuation that was in effect when the escape
procedure was created. Calling the escape procedure may cause the
invocation of before and after thunks installed using dynamic-wind.
The escape procedure accepts the same number of arguments as the
continuation to the original call to call-with-current-continuation.
Except for continuations created by the call-with-values pro-
cedure (including the initialization expressions of let-values and
let*-values expressions), all continuations take exactly one value.
The effect of passing no value or more than one value to continua-
tions that were not created by call-with-values is unspecified.
However, the continuations of all non-final expressions within a se-
quence of expressions, such as in lambda, case-lambda, begin, let,
let*, letrec, letrec*, let-values, let*-values, let-syntax,
letrec-syntax, parameterize, guard, case, cond, when, and unless

expressions, take an arbitrary number of values, because they discard
the values passed to them in any event.
The escape procedure that is passed to proc has unlimited extent just
like any other procedure in Scheme. It can be stored in variables or
data structures and can be called as many times as desired.
The following examples show only the simplest ways in which call-with-current-continuation

is used. If all real uses were as simple as these examples, there would
be no need for a procedure with the power of call-with-current-continuation.

6. STANDARD PROCEDURES 136

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

Rationale:
A common use of call-with-current-continuation is for structured,
non-local exits from loops or procedure bodies, but in fact call-with-current-continuation
is useful for implementing a wide variety of advanced control structures.
Whenever a Scheme expression is evaluated there is a continuation want-
ing the result of the expression. The continuation represents an entire
(default) future for the computation. If the expression is evaluated at
top level, for example, then the continuation might take the result, print
it on the screen, prompt for the next input, evaluate it, and so on for-
ever. Most of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply it by the
value stored in a local variable, add seven, and give the answer to the top

6. STANDARD PROCEDURES 137

level continuation to be printed. Normally these ubiquitous continuations
are hidden behind the scenes and programmers do not think much about
them. On rare occasions, however, a programmer needs to deal with con-
tinuations explicitly. The call-with-current-continuation procedure
allows Scheme programmers to do that by creating a procedure that acts
just like the current continuation.

Most programming languages incorporate one or more special-purpose es-

cape constructs with names like exit, return, or even goto. In 1965,

however, Peter Landin [21] invented a general purpose escape operator

called the J-operator. John Reynolds [30] described a simpler but equally

powerful construct in 1972. The catch syntax described by Sussman and

Steele in the 1975 report on Scheme is exactly the same as Reynolds’s con-

struct, though its name came from a less general construct in MacLisp.

Several Scheme implementors noticed that the full power of catch could be

provided by a procedure instead of by a special syntactic construct, and

the name call-with-current-continuation was coined in 1982. This

name is descriptive, but opinions differ on the merits of such a long name,

and some people prefer the name call/cc instead.

(values obj . . .) procedure
Delivers all of its arguments to its continuation. Values might be
defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure
Calls its producer argument with no values and a continuation that,
when passed some values, calls the consumer procedure with those
values as arguments. The continuation for the call to consumer is
the continuation of the call to call-with-values.

6. STANDARD PROCEDURES 138

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

(dynamic-wind before thunk after) procedure
Calls thunk without arguments, returning the result(s) of this call.
Before and after are called, also without arguments, as required by
the following rules. Note that, in the absence of calls to continua-
tions captured using call-with-current-continuation, the three
arguments are called once each, in order. Before is called whenever
execution enters the dynamic extent of the call to thunk and after is
called whenever it exits that dynamic extent. The dynamic extent of
a procedure call is the period between when the call is initiated and
when it returns. Before and after are excluded from the dynamic
extent. In Scheme, because of call-with-current-continuation,
the dynamic extent of a call is not always a single, connected time
period. It is defined as follows:

• The dynamic extent is entered when execution of the body of
the called procedure begins.

• The dynamic extent is also entered when execution is not
within the dynamic extent and a continuation is invoked that
was captured (using call-with-current-continuation) dur-
ing the dynamic extent.

• It is exited when the called procedure returns.

• It is also exited when execution is within the dynamic ex-
tent and a continuation is invoked that was captured while
not within the dynamic extent.

6. STANDARD PROCEDURES 139

If a second call to dynamic-wind occurs within the dynamic extent
of the call to thunk and then a continuation is invoked in such a way
that the afters from these two invocations of dynamic-wind are both
to be called, then the after associated with the second (inner) call
to dynamic-wind is called first.
If a second call to dynamic-wind occurs within the dynamic extent
of the call to thunk and then a continuation is invoked in such a way
that the befores from these two invocations of dynamic-wind are
both to be called, then the before associated with the first (outer)
call to dynamic-wind is called first.
If invoking a continuation requires calling the before from one call to
dynamic-wind and the after from another, then the after is called
first.
The effect of using a captured continuation to enter or exit the dy-
namic extent of a call to before or after is unspecified.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

6. STANDARD PROCEDURES 140

6.11. Exceptions

This section describes Scheme’s exception-handling and exception-
raising procedures. For the concept of Scheme exceptions, see section
1.3.2. See also 4.2.7 for the guard syntax.
Exception handlers are one-argument procedures that determine the
action the program takes when an exceptional situation is signalled.
The system implicitly maintains a current exception handler.
The program raises an exception by invoking the current exception
handler, passing it an object encapsulating information about the
exception. Any procedure accepting one argument may serve as
an exception handler and any object may be used to represent an
exception.

(with-exception-handler handler thunk) procedure
It is an error if handler does not accept one argument. It is also an er-
ror if thunk does not accept zero arguments. The with-exception-handler
procedure returns the results of invoking thunk . Handler is installed
as the current exception handler for the dynamic extent (as deter-
mined by dynamic-wind) of the invocation of thunk .

(raise obj) procedure
Raises an exception by invoking the current exception handler on
obj . The handler is called with a continuation whose dynamic ex-
tent is that of the call to raise, except that the current exception
handler is the one that was in place when the handler being called
was installed. If the handler returns, an exception is raised in the
same dynamic extent as the handler.

(raise-continuable obj) procedure
Raises an exception by invoking the current exception handler on
obj . The handler is called with a continuation that is equivalent to
the continuation of the call to raise-continuable, except that: (1)

6. STANDARD PROCEDURES 141

the current exception handler is the one that was in place when the
handler being called was installed, and (2) if the handler being called
returns, then it will again become the current exception handler. If
the handler returns, the values it returns become the values returned
by the call to raise-continuable.

(with-exception-handler

(lambda (con)

(cond

((string? con)

(display con))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable "should be a number")

23)))

prints: should be a number

=⇒ 65

(error message obj . . .) procedure
Message should be a string. Raises an exception as if by calling
raise on a newly allocated implementation-defined object which
encapsulates the information provided by message, as well as any
obj s, known as the irritants. The procedure error-object? must
return #t on such objects.

(define (null-list? l)

(cond ((pair? l) #f)

((null? l) #t)

(else

(error

"null-list?: argument out of domain"

6. STANDARD PROCEDURES 142

l))))

(error-object? obj) procedure
Returns #t if obj is an object created by error or one of an implementation-
defined set of objects, otherwise returns #f.

(error-object-message error-object) procedure
Returns the message encapsulated by error-object .

(error-object-irritants error-object) procedure
Returns a list of the irritants encapsulated by error-object .

6.12. Eval

(eval expression environment-specifier) eval library procedure
Evaluates expression in the specified environment and returns its
value. It is an error if expression is not a valid Scheme expres-
sion represented as a datum. Implementations may extend eval

to allow non-expression programs such as definitions as the first
argument, with the restriction that eval is not allowed to create
new bindings in the environments returned by null-environment

or scheme-report-environment.

(eval ’(* 7 3) (scheme-report-environment 7))

=⇒ 21

(let ((f (eval ’(lambda (f x) (f x x))

(null-environment 7))))

(f + 10))

=⇒ 20

6. STANDARD PROCEDURES 143

(scheme-report-environment version) eval library procedure
If version is equal to 7, corresponding to this revision of the Scheme
report (the Revised7 Report on Scheme), scheme-report-environment
returns a specifier for an environment that contains only the bind-
ings defined either in the base library or in the other libraries of this
report that the implementation supports. Implementations must
support this value of version.
Implementations may also support other values of version, in which
case they should return an environment containing bindings corre-
sponding to the corresponding version of the report. If version is
neither 7 nor another value supported by the implementation, an
error is signalled.
The effect of assigning (through the use of eval) a variable bound
in a scheme-report-environment (for example car) is unspecified.
Thus the environments specified by scheme-report-environment

may be immutable.

(null-environment version) eval library procedure
The null-environment procedure returns a specifier for an envi-
ronment that contains only the bindings for all syntactic keywords
defined either in the base library or in the other libraries of this
report, provided that the implementation supports them.

(environment list1 . . .) eval library procedure
This procedure returns a specifier for the environment that results
by starting with an empty environment and then importing each list ,
considered as an import set, into it. (See section 5.5 for a description
of import sets.) The bindings of the environment represented by the
specifier are immutable.

(interaction-environment) repl library procedure
This procedure returns a specifier for an environment that contains
an implementation-defined set of bindings, typically a superset of

6. STANDARD PROCEDURES 144

those exported by (scheme base). The intent is that this proce-
dure will return the environment in which the implementation would
evaluate expressions entered by the user into a REPL.

6.13. Input and output

6.13.1. Ports

Ports represent input and output devices. To Scheme, an input port
is a Scheme object that can deliver data upon command, while an
output port is a Scheme object that can accept data. Whether the in-
put and output port types are disjoint is implementation-dependent.
Different port types operate on different data. Scheme implementa-
tions are required to support textual ports and binary ports, but may
also provide other port types.
A textual port supports reading or writing of individual characters
from or to a backing store containing characters using read-char

and write-char below, as well as operations defined in terms of
characters such as read and write.
A binary port supports reading or writing of individual bytes from
or to a backing store containing bytes using read-u8 and write-u8

below, as well as operations defined in terms of bytes. Whether
the textual and binary port types are disjoint is implementation-
dependent.
Ports can be used to access files, devices, and similar things on the
host system on which the Scheme program is running.

(call-with-input-file string proc) file library procedure
(call-with-output-file string proc) file library procedure
It is an error if proc does not accept one argument. For call-with-input-file,
the file named by string should already exist; for call-with-output-file,
the effect is unspecified if the file already exists. These procedures
call proc with one argument: the textual port obtained by open-
ing the named file for input or output as if by open-input-file

6. STANDARD PROCEDURES 145

or open-output-file. If the file cannot be opened, an error is sig-
nalled. If proc returns, then the port is closed automatically and
the values yielded by the proc are returned. If proc does not return,
then the port must not be closed automatically unless it is possible
to prove that the port will never again be used for a read or write
operation.
Rationale: Because Scheme’s escape procedures have unlimited extent,

it is possible to escape from the current continuation but later to es-

cape back in. If implementations were permitted to close the port on

any escape from the current continuation, then it would be impossible

to write portable code using both call-with-current-continuation and

call-with-input-file or call-with-output-file.

(call-with-port port proc) procedure
It is an error if proc does not accept one argument. The call-with-port
procedure calls proc with port as an argument. If proc returns, port
is closed automatically and the values returned by proc are returned.

(input-port? obj) procedure
(output-port? obj) procedure
(textual-port? obj) procedure
(binary-port? obj) procedure
(port? obj) procedure
These procedures return #t if obj is an input port, output port, tex-
tual port, binary port, or any kind of port, respectively. Otherwise
they return #f.

(port-open? port) procedure
Returns #t if port is still open and capable of performing input or
output, and #f otherwise.

(current-input-port) procedure
(current-output-port) procedure

6. STANDARD PROCEDURES 146

(current-error-port) procedure
Returns the current default input port, output port, or error port (an
output port), respectively. These procedures are parameter objects,
which can be overridden with parameterize (see section 4.2.6). The
initial bindings for these are system-defined textual ports.

(with-input-from-file string thunk) file library procedure
(with-output-to-file string thunk) file library procedure
It is an error if thunk does not accept zero arguments. For with-input-from-file,
it is an error if the file named by string does not already exist; for
with-output-to-file, the effect is unspecified if the file already ex-
ists. The file is opened for input or output as if by open-input-file

or open-output-file, and the new port is made the default value
returned by current-input-port or current-output-port (and is
used by (read), (write obj), and so forth). The thunk is then
called with no arguments. When the thunk returns, the port is
closed and the previous default is restored. with-input-from-file
and with-output-to-file return the values yielded by thunk . If
an escape procedure is used to escape from the continuation of these
procedures, their behavior is implementation-dependent.

(open-input-file string) file library procedure
(open-binary-input-file string) file library procedure
Takes a string for an existing file and returns a textual input port
or binary input port capable of delivering data from the file. If the
file cannot be opened, an error is signalled.

(open-output-file string) file library procedure
(open-binary-output-file string) file library procedure
Takes a string naming an output file to be created and returns a
textual output port or binary output port capable of writing data
to a new file by that name. If the file cannot be opened, an error is

6. STANDARD PROCEDURES 147

signalled. If a file with the given name already exists, the effect is
unspecified.

(close-port port) procedure
(close-input-port port) procedure
(close-output-port port) procedure
Closes the resource associated with port , rendering the port in-
capable of delivering or accepting data. It is an error to apply
the last two procedures to a port which is not an input or out-
put port, respectively. Scheme implementations may provide ports
which are simultaneously input and output ports, such as sockets; the
close-input-port and close-output-port procedures can then be
used to close the input and output sides of the port independently.
These routines have no effect if the file has already been closed. The
value returned is unspecified.

(open-input-string string) procedure
Takes a string and returns a textual input port that delivers charac-
ters from the string.

(open-output-string) procedure
Returns a textual output port that will accumulate characters for
retrieval by get-output-string.

(get-output-string port) procedure
It is an error if port was not created with open-output-string.
Returns a string consisting of the characters that have been output
to the port so far in the order they were output.

(open-input-bytevector bytevector) procedure
Takes a bytevector and returns a binary input port that delivers
bytes from the bytevector.

6. STANDARD PROCEDURES 148

(open-output-bytevector) procedure
Returns a binary output port that will accumulate bytes for retrieval
by get-output-bytevector.

(get-output-bytevector port) procedure
It is an error if port was not created with open-output-bytevector.
Returns a bytevector consisting of the bytes that have been output
to the port so far in the order they were output.

6.13.2. Input

(read) read library procedure
(read port) read library procedure
read converts external representations of Scheme objects into the ob-
jects themselves. That is, it is a parser for the nonterminal 〈datum〉
(see sections 7.1.2 and 6.4). read returns the next object parsable
from the given textual input port , updating port to point to the first
character past the end of the external representation of the object.
If an end of file is encountered in the input before any characters
are found that can begin an object, then an end of file object is
returned. The port remains open, and further attempts to read will
also return an end of file object. If an end of file is encountered after
the beginning of an object’s external representation, but the external
representation is incomplete and therefore not parsable, an error is
signalled.
Port may be omitted, in which case it defaults to the value returned
by current-input-port. It is an error to read from a closed port.

(read-char) procedure
(read-char port) procedure
Returns the next character available from the textual input port ,
updating the port to point to the following character. If no more
characters are available, an end of file object is returned. Port

6. STANDARD PROCEDURES 149

may be omitted, in which case it defaults to the value returned by
current-input-port.

(peek-char) procedure
(peek-char port) procedure
Returns the next character available from the textual input port ,
without updating the port to point to the following character. If no
more characters are available, an end of file object is returned. Port
may be omitted, in which case it defaults to the value returned by
current-input-port.
Note: The value returned by a call to peek-char is the same as the

value that would have been returned by a call to read-char with the

same port . The only difference is that the very next call to read-char or

peek-char on that port will return the value returned by the preceding

call to peek-char. In particular, a call to peek-char on an interactive

port will hang waiting for input whenever a call to read-char would have

hung.

(read-line) procedure
(read-line port) procedure
Returns the next line of text available from the textual input port ,
updating the port to point to the following character. If an end of
line is read, a string containing all of the text up to (but not includ-
ing) the end of line is returned, and the port is updated to point
just past the end of line. If an end of file is encountered before any
end of line is read, but some characters have been read, a string
containing those characters is returned. If an end of file is encoun-
tered before any characters are read, an end-of-file object is returned.
For the purpose of this procedure, an end of line consists of either
a linefeed character, a carriage return character, or a sequence of
a carriage return character followed by a linefeed character. Port
may be omitted, in which case it defaults to the value returned by
current-input-port.

6. STANDARD PROCEDURES 150

(eof-object? obj) procedure
Returns #t if obj is an end of file object, otherwise returns #f. The
precise set of end of file objects will vary among implementations,
but in any case no end of file object will ever be an object that can
be read in using read.

(char-ready?) procedure
(char-ready? port) procedure
Returns #t if a character is ready on the textual input port and re-
turns #f otherwise. If char-ready returns #t then the next read-char
operation on the given port is guaranteed not to hang. If the port is
at end of file then char-ready? returns #t. Port may be omitted, in
which case it defaults to the value returned by current-input-port.
Rationale: char-ready? exists to make it possible for a program to accept

characters from interactive ports without getting stuck waiting for input.

Any input editors associated with such ports must ensure that characters

whose existence has been asserted by char-ready? cannot be rubbed out.

If char-ready? were to return #f at end of file, a port at end of file would

be indistinguishable from an interactive port that has no ready characters.

(read-u8) procedure
(read-u8 port) procedure
Returns the next byte available from the binary input port , updating
the port to point to the following byte. If no more bytes are available,
an end of file object is returned. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

(peek-u8) procedure
(peek-u8 port) procedure
Returns the next byte available from the binary input port , without
updating the port to point to the following byte. If no more bytes are

6. STANDARD PROCEDURES 151

available, an end of file object is returned. Port may be omitted, in
which case it defaults to the value returned by current-input-port.

(u8-ready?) procedure
(u8-ready? port) procedure
Returns #t if a byte is ready on the binary input port and returns #f
otherwise. If u8-ready? returns #t then the next read-u8 operation
on the given port is guaranteed not to hang. If the port is at end of
file then u8-ready? returns #t. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

(read-bytevector length) procedure
(read-bytevector length port) procedure
Reads the next length bytes, or as many as are available before the
end of file, from the binary input port into a newly allocated bytevec-
tor in left-to-right order and returns the bytevector. If no bytes are
available, an end of file object is returned. Port may be omitted, in
which case it defaults to the value returned by current-input-port.

(read-bytevector! bytevector start end) procedure
(read-bytevector! bytevector start end port) procedure
Reads the next end− start bytes, or as many as are available before
the end of file, from the binary input port into bytevector in left-to-
right order beginning at the start position. Returns the number of
bytes read. If no bytes are available, an end of file object is returned.
Port may be omitted, in which case it defaults to the value returned
by current-input-port.

6.13.3. Output

(write obj) write library procedure
(write obj port) write library procedure
Writes a written representation of obj to the given textual output
port . Strings that appear in the written representation are enclosed

6. STANDARD PROCEDURES 152

in doublequotes, and within those strings backslash and doublequote
characters are escaped by backslashes. Symbols that contain non-
ASCII characters are escaped either with inline hex escapes or with
vertical bars. Character objects are written using the #\ notation.
Shared list structure is represented using datum labels. write re-
turns an unspecified value. Port may be omitted, in which case it
defaults to the value returned by current-output-port.

(write-simple obj) write library procedure
(write-simple obj port) write library procedure
write-simple is the same as write, except that shared structure is
not represented using datum labels. This may cause write-simple

not to terminate if obj contains circular structure.

(display obj) write library procedure
(display obj port) write library procedure
Writes a representation of obj to the given textual output port .
Strings that appear in the written representation are not enclosed
in doublequotes, and no characters are escaped within those strings.
Symbols are not escaped. Character objects appear in the represen-
tation as if written by write-char instead of by write. display

returns an unspecified value. Port may be omitted, in which case it
defaults to the value returned by current-output-port.
Rationale: write is intended for producing machine-readable output and

display for producing human-readable output.

(newline) procedure
(newline port) procedure
Writes an end of line to textual output port . Exactly how this is done
differs from one operating system to another. Returns an unspecified
value. Port may be omitted, in which case it defaults to the value
returned by current-output-port.

6. STANDARD PROCEDURES 153

(write-char char) procedure
(write-char char port) procedure
Writes the character char (not an external representation of the char-
acter) to the given textual output port and returns an unspecified
value. Port may be omitted, in which case it defaults to the value
returned by current-output-port.

(write-u8 byte) procedure
(write-u8 byte port) procedure
Writes the byte to the given binary output port and returns an un-
specified value. Port may be omitted, in which case it defaults to
the value returned by current-output-port.

(write-bytevector bytevector) procedure
(write-bytevector bytevector port) procedure
Writes the bytes of bytevector in left-to-right order to the binary
output port . Port may be omitted, in which case it defaults to the
value returned by current-output-port.

(write-partial-bytevector bytevector start end) procedure
(write-partial-bytevector bytevector start end port)

procedure
Writes the bytes of bytevector from start (inclusive) to end (exclu-
sive) in left-to-right order to the binary output port . Port may be
omitted, in which case it defaults to the value returned by current-output-port.

(flush-output-port) procedure
(flush-output-port port) procedure
Flushes any buffered output from the buffer of output-port to the
underlying file or device and returns an unspecified value. Port
may be omitted, in which case it defaults to the value returned by
current-output-port.

6. STANDARD PROCEDURES 154

6.13.4. System interface

Questions of system interface generally fall outside of the domain of
this report. However, the following operations are important enough
to deserve description here.

(load filename) load library procedure
(load filename environment-specifier) load library procedure
An implementation-dependent operation is used to transform filename
into the name of an existing file containing Scheme source code.
The load procedure reads expressions and definitions from the file
and evaluates them sequentially in the environment specified by
environment-specifier . If environment-specifier is omitted, (interaction-environment)
is assumed.
It is unspecified whether the results of the expressions are printed.
The load procedure does not affect the values returned by current-input-port

and current-output-port. It returns an unspecified value.
Rationale: For portability, load must operate on source files. Its op-

eration on other kinds of files necessarily varies among implementations.

(file-exists? filename) file library procedure
It is an error if filename is not a string. The file-exists? procedure
returns #t if the named file exists at the time the procedure is called,
#f otherwise.

(delete-file filename) file library procedure
It is an error if filename is not a string. The delete-file procedure
deletes the named file if it exists and can be deleted, and returns an
unspecified value. If the file does not exist or cannot be deleted, an
error is signalled.

6. STANDARD PROCEDURES 155

(command-line) process-context library procedure
Returns the command line passed to the process as a list of strings.
The first string corresponds to the command name, and is implementation-
dependent. It is an error to mutate any of these strings.

(exit) process-context library procedure
(exit obj) process-context library procedure
Exits the running program and communicates an exit value to the
operating system. If no argument is supplied, the exit procedure
should communicate to the operating system that the program ex-
ited normally. If an argument is supplied, the exit procedure should
translate the argument into an appropriate exit value for the oper-
ating system. If obj is #f, the exit is assumed to be abnormal.

(get-environment-variable name)
process-context library procedure

Most operating systems provide each running process with an envi-
ronment consisting of environment variables. (This environment is
not to be confused with the Scheme environments that can be passed
to eval: see section 6.12.) Both the name and value of an environ-
ment variable are strings. The procedure get-environment-variable
returns the value of the environment variable name, or #f if the
named environment variable is not found. get-environment-variable
may use locale-setting information to encode the name and decode
the value of the environment variable. It is an error if get-environment-variable
can’t decode the value. It is also an error to mutate the resulting
string.

(get-environment-variable "PATH")

=⇒ "/usr/local/bin:/usr/bin:/bin"

(get-environment-variables) process-context library procedure
Returns the names and values of all the environment variables as

6. STANDARD PROCEDURES 156

an alist, where the car of each entry is the name of an environment
variable and the cdr is its value, both as strings. The order of the
list is unspecified. It is an error to mutate any of these strings.

(get-environment-variables)

=⇒ (("USER" . "root") ("HOME" . "/"))

(current-second) time library procedure
Returns an inexact number representing time on the International
Atomic Time (TAI) scale. The value 0.0 represents ten seconds after
midnight on January 1, 1970 TAI (equivalent to midnight Universal
Time) and the value 1.0 represents one TAI second later. Neither
high-accuracy nor high-precision values are required; in particular,
returning Coordinated Universal Time plus a suitable constant may
be the best an implementation can do.

(current-jiffy) time library procedure
Returns the number of jiffies that have elapsed since an arbitrary,
implementation-defined epoch. A jiffy is an implementation-defined
fraction of a second which is defined by the return value of the
jiffies-per-second procedure. The starting epoch is guaranteed
to be constant during a run of the program, but may vary between
different runs.

(jiffies-per-second) time library procedure
Returns an exact integer representing the number of jiffies per SI
second. This value is an implementation-specified constant.

(define (time-length)

(let ((list (make-list 100000))

(start (current-jiffy)))

(length list)

6. STANDARD PROCEDURES 157

(/ (- (current-jiffy) start)

(jiffies-per-second))))

7. FORMAL SYNTAX AND SEMANTICS 158

7. Formal syntax and semantics
This chapter provides formal descriptions of what has already been
described informally in previous chapters of this report.

7.1. Formal syntax

This section provides a formal syntax for Scheme written in an ex-
tended BNF.
All spaces in the grammar are for legibility. Case is insignificant;
for example, #x1A and #X1a are equivalent. 〈empty〉 stands for the
empty string.
The following extensions to BNF are used to make the description
more concise: 〈thing〉* means zero or more occurrences of 〈thing〉;
and 〈thing〉+ means at least one 〈thing〉.

7.1.1. Lexical structure

This section describes how individual tokens (identifiers, numbers,
etc.) are formed from sequences of characters. The following sections
describe how expressions and programs are formed from sequences
of tokens.
〈Intertoken space〉 may occur on either side of any token, but not
within a token.
Identifiers, dot, numbers, characters, and booleans are terminated
by a 〈delimiter〉 or by the end of the input.
The following four characters from the ASCII repertoire are reserved
for future extensions to the language: [] { }

In addition to the identifier characters of the ASCII repertoire spec-
ified below, Scheme implementations may permit any additional
repertoire of Unicode characters to be employed in identifiers, pro-
vided that each such character has a Unicode general category of Lu,
Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk,
So, or Co, or is U+200C or U+200D (the zero-width non-joiner and

7. FORMAL SYNTAX AND SEMANTICS 159

joiner, respectively, which are needed for correct spelling in Persian,
Hindi, and other languages). It is an error to use a non-Unicode
character in symbols or identifiers.
All Scheme implementations must permit the escape sequence \x<hexdigits>;
to appear in Scheme identifiers. If the character with the given Uni-
code scalar value is supported by the implementation, identifiers
containing such a sequence are equivalent to identifiers containing
the corresponding character.

〈token〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉
| (|) | #(| #u8(| ’ | ` | , | ,@ | .

〈delimiter〉 −→ 〈whitespace〉 | (|) | " | ;
〈intraline whitespace〉 −→ 〈space or tab〉
〈whitespace〉 −→ 〈intraline whitespace〉 | 〈newline〉

| 〈return〉
〈comment〉 −→ ; 〈all subsequent characters up to a

line break〉
| 〈nested comment〉
| #; 〈atmosphere〉 〈datum〉

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉
〈intertoken space〉 −→ 〈atmosphere〉*

Note that +i, -i and 〈infinity〉 below are exceptions to the 〈peculiar identifier〉
rule; they are parsed as numbers, not identifiers.

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈vertical bar〉 〈symbol element〉* 〈vertical bar〉
| 〈peculiar identifier〉

7. FORMAL SYNTAX AND SEMANTICS 160

〈initial〉 −→ 〈letter〉 | 〈special initial〉
| 〈inline hex escape〉

〈letter〉 −→ a | b | c | ... | z
| A | B | C | ... | Z

〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =
| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉

| a | A | b | B | c | C | d | D | e | E | f | F
〈explicit sign〉 −→ + | -
〈special subsequent〉 −→ 〈explicit sign〉 | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+
〈peculiar identifier〉 −→ 〈explicit sign〉

| 〈explicit sign〉 〈sign subsequent〉 〈subsequent〉*
| 〈explicit sign〉 . 〈dot subsequent〉 〈subsequent〉*
| . 〈non-digit〉 〈subsequent〉*

〈non-digit〉 −→ 〈dot subsequent〉 | 〈explicit sign〉
〈dot subsequent〉 −→ 〈sign subsequent〉 | .
〈sign subsequent〉 −→ 〈initial〉 | 〈explicit sign〉 | @
〈symbol element〉 −→

〈any character other than 〈vertical bar〉 or \〉

〈boolean〉 −→ #t | #f | #true | #false

〈character〉 −→ #\ 〈any character〉
| #\ 〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ alarm | backspace | delete
| escape | newline | null | return | space | tab

7. FORMAL SYNTAX AND SEMANTICS 161

〈string〉 −→ " 〈string element〉* "

〈string element〉 −→ 〈any character other than " or \〉
| \a | \b | \t | \n | \r | \" | \\
| \〈intraline whitespace〉〈line ending〉
〈intraline whitespace〉
| 〈inline hex escape〉

〈bytevector〉 −→ #u8(〈byte〉*)
〈byte〉 −→ 〈any exact integer between 0 and 255〉

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉

The following rules for 〈num R〉, 〈complex R〉, 〈real R〉, 〈ureal R〉,
〈uinteger R〉, and 〈prefix R〉 are implicitly replicated for R = 2, 8, 10,
and 16. There are no rules for 〈decimal 2〉, 〈decimal 8〉, and 〈decimal 16〉,
which means that numbers containing decimal points or exponents
are always in decimal radix. Although not shown below, all alpha-
betic characters used in the grammar of numbers may appear in
either upper or lower case.

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i

| 〈real R〉 + i | 〈real R〉 - i | 〈real R〉 〈infinity〉 i

| + 〈ureal R〉 i | - 〈ureal R〉 i

| 〈infinity〉 i | + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| 〈infinity〉

〈ureal R〉 −→ 〈uinteger R〉
| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉

7. FORMAL SYNTAX AND SEMANTICS 162

| . 〈digit 10〉+ 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉
〈infinity〉 −→ +inf.0 | -inf.0 | +nan.0

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | s | f | d | l
〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉 | #i | #e
〈radix 2〉 −→ #b

〈radix 8〉 −→ #o

〈radix 10〉 −→ 〈empty〉 | #d
〈radix 16〉 −→ #x

〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈digit 10〉 | a | b | c | d | e | f

7.1.2. External representations

〈Datum〉 is what the read procedure (section 6.13.2) successfully
parses. Note that any string that parses as an 〈expression〉 will also
parse as a 〈datum〉.

〈datum〉 −→ 〈simple datum〉 | 〈compound datum〉
| 〈label〉 = 〈datum〉 | 〈label〉 #

〈simple datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉 | 〈bytevector〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉

7. FORMAL SYNTAX AND SEMANTICS 163

〈list〉 −→ (〈datum〉*) | (〈datum〉+ . 〈datum〉)
| 〈abbreviation〉

〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@
〈vector〉 −→ #(〈datum〉*)
〈label〉 −→ # 〈digit 10〉+

7.1.3. Expressions

The definitions in this and the following subsections assume that
all the syntax keywords defined in this report have been properly
imported from their libraries, and that none of them have been re-
defined or shadowed.

〈expression〉 −→ 〈identifier〉
| 〈literal〉
| 〈procedure call〉
| 〈lambda expression〉
| 〈conditional〉
| 〈assignment〉
| 〈derived expression〉
| 〈macro use〉
| 〈macro block〉

〈literal〉 −→ 〈quotation〉 | 〈self-evaluating〉
〈self-evaluating〉 −→ 〈boolean〉 | 〈number〉

| 〈character〉 | 〈string〉 | 〈bytevector〉
〈quotation〉 −→ ’〈datum〉 | (quote 〈datum〉)
〈procedure call〉 −→ (〈operator〉 〈operand〉*)
〈operator〉 −→ 〈expression〉
〈operand〉 −→ 〈expression〉

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)
〈formals〉 −→ (〈identifier〉*) | 〈identifier〉

7. FORMAL SYNTAX AND SEMANTICS 164

| (〈identifier〉+ . 〈identifier〉)
〈body〉 −→ 〈definition〉* 〈sequence〉
〈sequence〉 −→ 〈command〉* 〈expression〉
〈command〉 −→ 〈expression〉

〈conditional〉 −→ (if 〈test〉 〈consequent〉 〈alternate〉)
〈test〉 −→ 〈expression〉
〈consequent〉 −→ 〈expression〉
〈alternate〉 −→ 〈expression〉 | 〈empty〉

〈assignment〉 −→ (set! 〈identifier〉 〈expression〉)

〈derived expression〉 −→
(cond 〈cond clause〉+)
| (cond 〈cond clause〉* (else 〈sequence〉))
| (case 〈expression〉
〈case clause〉+)

| (case 〈expression〉
〈case clause〉*
(else 〈sequence〉))

| (case 〈expression〉
〈case clause〉*
(else => 〈recipient〉))

| (and 〈test〉*)
| (or 〈test〉*)
| (when 〈expression〉 〈test〉 〈sequence〉)
| (unless 〈expression〉 〈test〉 〈sequence〉)
| (let (〈binding spec〉*) 〈body〉)
| (let 〈identifier〉 (〈binding spec〉*) 〈body〉)
| (let* (〈binding spec〉*) 〈body〉)
| (letrec (〈binding spec〉*) 〈body〉)
| (letrec* (〈binding spec〉*) 〈body〉)
| (let-values (〈mv binding spec〉*) 〈body〉)

7. FORMAL SYNTAX AND SEMANTICS 165

| (let*-values (〈mv binding spec〉*) 〈body〉)
| (begin 〈sequence〉)
| (do (〈iteration spec〉*)

(〈test〉 〈do result〉)
〈command〉*)

| (delay 〈expression〉)
| (lazy 〈expression〉)
| (parameterize (〈expression〉 〈expression〉)* 〈body〉)
| (guard (〈identifier〉 〈cond clause〉*) 〈body〉)
| 〈quasiquotation〉
| (case-lambda 〈case-lambda clause〉*)

〈cond clause〉 −→ (〈test〉 〈sequence〉)
| (〈test〉)
| (〈test〉 => 〈recipient〉)

〈recipient〉 −→ 〈expression〉
〈case clause〉 −→ ((〈datum〉*) 〈sequence〉)

| ((〈datum〉*) => 〈recipient〉)
〈binding spec〉 −→ (〈identifier〉 〈expression〉)
〈mv binding spec〉 −→ (〈formals〉 〈expression〉)
〈iteration spec〉 −→ (〈identifier〉 〈init〉 〈step〉)

| (〈identifier〉 〈init〉)
〈case-lambda clause〉 −→ (〈formals〉 〈body〉)
〈init〉 −→ 〈expression〉
〈step〉 −→ 〈expression〉
〈do result〉 −→ 〈sequence〉 | 〈empty〉

〈macro use〉 −→ (〈keyword〉 〈datum〉*)
〈keyword〉 −→ 〈identifier〉

〈macro block〉 −→
(let-syntax (〈syntax spec〉*) 〈body〉)
| (letrec-syntax (〈syntax spec〉*) 〈body〉)

7. FORMAL SYNTAX AND SEMANTICS 166

〈syntax spec〉 −→ (〈keyword〉 〈transformer spec〉)

7.1.4. Quasiquotations

The following grammar for quasiquote expressions is not context-
free. It is presented as a recipe for generating an infinite number
of production rules. Imagine a copy of the following rules for D =
1, 2, 3, D keeps track of the nesting depth.

〈quasiquotation〉 −→ 〈quasiquotation 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ `〈qq template D〉

| (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈simple datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| ’〈qq template D〉
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ ,〈qq template D − 1〉

| (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→ ,@〈qq template D − 1〉

| (unquote-splicing 〈qq template D − 1〉)

In 〈quasiquotation〉s, a 〈list qq template D〉 can sometimes be con-
fused with either an 〈unquotation D〉 or a 〈splicing unquotation D〉.
The interpretation as an 〈unquotation〉 or 〈splicing unquotation D〉
takes precedence.

7. FORMAL SYNTAX AND SEMANTICS 167

7.1.5. Transformers

〈transformer spec〉 −→
(syntax-rules (〈identifier〉*) 〈syntax rule〉*)
| (syntax-rules 〈identifier〉 (〈identifier〉*)
〈syntax rule〉*)

〈syntax rule〉 −→ (〈pattern〉 〈template〉)
〈pattern〉 −→ 〈pattern identifier〉

| 〈underscore〉
| (〈pattern〉*)
| (〈pattern〉+ . 〈pattern〉)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*

. 〈pattern〉)
| #(〈pattern〉*)
| #(〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| 〈pattern datum〉

〈pattern datum〉 −→ 〈string〉
| 〈character〉
| 〈boolean〉
| 〈number〉

〈template〉 −→ 〈pattern identifier〉
| (〈template element〉*)
| (〈template element〉+ . 〈template〉)
| #(〈template element〉*)
| 〈template datum〉

〈template element〉 −→ 〈template〉
| 〈template〉 〈ellipsis〉

〈template datum〉 −→ 〈pattern datum〉
〈pattern identifier〉 −→ 〈any identifier except ...〉
〈ellipsis〉 −→ 〈an identifier defaulting to ...〉
〈underscore〉 −→ 〈the identifier 〉

7. FORMAL SYNTAX AND SEMANTICS 168

7.1.6. Programs and definitions

〈program〉 −→ 〈command or definition〉*
〈command or definition〉 −→ 〈command〉

| 〈definition〉
| (import 〈import set〉+)
| (begin 〈command or definition〉+)

〈definition〉 −→ (define 〈identifier〉 〈expression〉)
| (define (〈identifier〉 〈def formals〉) 〈body〉)
| 〈syntax definition〉
| (define-values 〈def formals〉 〈body〉)
| (define-record-type 〈identifier〉
〈constructor〉 〈identifier〉 〈field spec〉*)

| (begin 〈definition〉*)
〈def formals〉 −→ 〈identifier〉*

| 〈identifier〉* . 〈identifier〉
〈constructor〉 −→ (〈identifier〉 〈field name〉*)
〈field spec〉 −→ (〈field name〉 〈accessor〉)

| (〈field name〉 〈accessor〉 〈mutator〉)
〈field name〉 −→ 〈identifier〉
〈accessor〉 −→ 〈identifier〉
〈mutator〉 −→ 〈identifier〉
〈syntax definition〉 −→

(define-syntax 〈keyword〉 〈transformer spec〉)

7.1.7. Libraries

〈library〉 −→
(define-library 〈library name〉 〈library declaration〉*)

〈library name〉 −→ (〈library name part〉+)
〈library name part〉 −→ 〈identifier〉 | 〈uinteger 10〉
〈library declaration〉 −→ (export 〈export spec〉*)

| (import 〈import set〉*)

7. FORMAL SYNTAX AND SEMANTICS 169

| (begin 〈command or definition〉*)
| (include 〈string〉+)
| (include-ci 〈string〉+)
| (cond-expand 〈cond-expand clause〉*)
| (cond-expand 〈cond-expand clause〉*

(else 〈library declaration〉*))
〈export spec〉 −→ 〈identifier〉

| (rename 〈identifier〉 〈identifier〉)
〈import set〉 −→ 〈library name〉

| (only 〈import set〉 〈identifier〉+)
| (except 〈import set〉 〈identifier〉+)
| (prefix 〈import set〉 〈identifier〉)
| (rename 〈import set〉 〈export spec〉+)

〈cond-expand clause〉 −→
(〈feature requirement〉 〈library declaration〉*)

〈feature requirement〉 −→ 〈identifier〉
| 〈library name〉
| (and 〈feature requirement〉*)
| (or 〈feature requirement〉*)
| (not 〈feature requirement〉)

7.2. Formal semantics

This section provides a formal denotational semantics for the prim-
itive expressions of Scheme and selected built-in procedures. The
concepts and notation used here are described in [35]; the notation
is summarized below:

7. FORMAL SYNTAX AND SEMANTICS 170

〈 . . . 〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t→ a, b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
x in D injection of x into domain D

x | D projection of x to domain D
The reason that expression continuations take sequences of values in-
stead of single values is to simplify the formal treatment of procedure
calls and multiple return values.
The boolean flag associated with pairs, vectors, and strings will be
true for mutable objects and false for immutable objects.
The order of evaluation within a call is unspecified. We mimic that
here by applying arbitrary permutations permute and unpermute,
which must be inverses, to the arguments in a call before and after
they are evaluated. This is not quite right since it suggests, incor-
rectly, that the order of evaluation is constant throughout a program
(for any given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evaluation would
be.
The storage allocator new is implementation-dependent, but it must
obey the following axiom: if new σ ∈ L, then σ (newσ |L) ↓ 2 = false.
The definition of K is omitted because an accurate definition of K
would complicate the semantics without being very interesting.
If P is a program in which all variables are defined before being
referenced or assigned, then the meaning of P is

E [[((lambda (I*) P’) 〈undefined〉 . . .)]]

where I* is the sequence of variables defined in P, P′ is the sequence
of expressions obtained by replacing every definition in P by an as-
signment, 〈undefined〉 is an expression that evaluates to undefined,

7. FORMAL SYNTAX AND SEMANTICS 171

and E is the semantic function that assigns meaning to expressions.

7.2.1. Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
Γ ∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) Γ* E0)

| (lambda (I* . I) Γ* E0)

| (lambda I Γ* E0)

| (if E0 E1 E2) | (if E0 E1)

| (set! I E)

7. FORMAL SYNTAX AND SEMANTICS 172

7.2.2. Domain equations

α ∈ L locations
ν ∈ N natural numbers

T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L× L× T pairs
Ev = L*× T vectors
Es = L*× T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
φ ∈ F = L× (E*→ K→ C) procedure values
ε ∈ E = Q + H + R + Ep + Ev + Es + M + F

expressed values
σ ∈ S = L→ (E× T) stores
ρ ∈ U = Ide→ L environments
θ ∈ C = S→ A command continuations
κ ∈ K = E*→ C expression continuations

A answers
X errors

7.2.3. Semantic functions

K : Con→ E

E : Exp→ U→ K→ C

E* : Exp*→ U→ K→ C

C : Com*→ U→ C→ C

Definition of K deliberately omitted.

E [[K]] = λρκ . send (K[[K]])κ

E [[I]] = λρκ . hold (lookup ρ I)
(single(λε . ε = undefined→

7. FORMAL SYNTAX AND SEMANTICS 173

wrong “undefined variable”,
send ε κ))

E [[(E0 E*)]] =
λρκ . E*(permute(〈E0〉 § E*))

ρ
(λε* . ((λε* . applicate (ε* ↓ 1) (ε* † 1) κ)

(unpermute ε*)))

E [[(lambda (I*) Γ* E0)]] =
λρκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*κ′ .#ε* = #I*→
tievals(λα* . (λρ′ . C[[Γ*]]ρ′(E [[E0]]ρ′κ′))

(extends ρ I* α*))
ε*,

wrong “wrong number of arguments”〉
in E)

κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

E [[(lambda (I* . I) Γ* E0)]] =
λρκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*κ′ .#ε* ≥ #I*→
tievalsrest

(λα* . (λρ′ . C[[Γ*]]ρ′(E [[E0]]ρ′κ′))
(extends ρ (I* § 〈I〉) α*))

ε*
(#I*),

wrong “too few arguments”〉 in E)
κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

7. FORMAL SYNTAX AND SEMANTICS 174

E [[(lambda I Γ* E0)]] = E [[(lambda (. I) Γ* E0)]]

E [[(if E0 E1 E2)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε→ E [[E1]]ρκ,

E [[E2]]ρκ))

E [[(if E0 E1)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε→ E [[E1]]ρκ,

send unspecified κ))

Here and elsewhere, any expressed value other than undefined may be used
in place of unspecified.

E [[(set! I E)]] =
λρκ . E [[E]] ρ (single(λε . assign (lookup ρ I)

ε
(send unspecified κ)))

E*[[]] = λρκ . κ〈 〉

E*[[E0 E*]] =
λρκ . E [[E0]] ρ (single(λε0 . E*[[E*]] ρ (λε* . κ (〈ε0〉 § ε*))))

C[[]] = λρθ . θ

C[[Γ0 Γ*]] = λρθ . E [[Γ0]] ρ (λε* . C[[Γ*]]ρθ)

7.2.4. Auxiliary functions

lookup : U→ Ide→ L

lookup = λρI . ρI

extends : U→ Ide*→ L*→ U

extends =
λρI*α* .#I* = 0→ ρ,

extends (ρ[(α* ↓ 1)/(I* ↓ 1)]) (I* † 1) (α* † 1)

wrong : X→ C [implementation-dependent]

7. FORMAL SYNTAX AND SEMANTICS 175

send : E→ K→ C

send = λεκ . κ〈ε〉

single : (E→ C)→ K

single =
λψε* .#ε* = 1→ ψ(ε* ↓ 1),

wrong “wrong number of return values”

new : S→ (L + {error}) [implementation-dependent]

hold : L→ K→ C

hold = λακσ . send (σα ↓ 1)κσ

assign : L→ E→ C→ C

assign = λαεθσ . θ(update αεσ)

update : L→ E→ S→ S

update = λαεσ . σ[〈ε, true〉/α]

tievals : (L*→ C)→ E*→ C

tievals =
λψε*σ .#ε* = 0→ ψ〈 〉σ,

new σ ∈ L→ tievals (λα* . ψ(〈new σ | L〉 § α*))
(ε* † 1)
(update(new σ | L)(ε* ↓ 1)σ),

wrong “out of memory”σ

tievalsrest : (L*→ C)→ E*→ N→ C

tievalsrest =
λψε*ν . list (dropfirst ε*ν)

(single(λε . tievals ψ ((takefirst ε*ν) § 〈ε〉)))

dropfirst = λln . n = 0→ l, dropfirst (l † 1)(n− 1)

takefirst = λln . n = 0→ 〈 〉, 〈l ↓ 1〉 § (takefirst (l † 1)(n− 1))

truish : E→ T

truish = λε . ε = false→ false, true

7. FORMAL SYNTAX AND SEMANTICS 176

permute : Exp*→ Exp* [implementation-dependent]

unpermute : E*→ E* [inverse of permute]

applicate : E→ E*→ K→ C

applicate =
λεε*κ . ε ∈ F→ (ε | F ↓ 2)ε*κ,wrong “bad procedure”

onearg : (E→ K→ C)→ (E*→ K→ C)
onearg =
λζε*κ .#ε* = 1→ ζ(ε* ↓ 1)κ,

wrong “wrong number of arguments”

twoarg : (E→ E→ K→ C)→ (E*→ K→ C)
twoarg =
λζε*κ .#ε* = 2→ ζ(ε* ↓ 1)(ε* ↓ 2)κ,

wrong “wrong number of arguments”

list : E*→ K→ C

list =
λε*κ .#ε* = 0→ send null κ,

list (ε* † 1)(single(λε . cons〈ε* ↓ 1, ε〉κ))

cons : E*→ K→ C

cons =
twoarg (λε1ε2κσ . new σ ∈ L→

(λσ′ . new σ′ ∈ L→
send (〈new σ | L,new σ′ | L, true〉

in E)
κ
(update(new σ′ | L)ε2σ

′),
wrong “out of memory”σ′)

(update(new σ | L)ε1σ),
wrong “out of memory”σ)

7. FORMAL SYNTAX AND SEMANTICS 177

less : E*→ K→ C

less =
twoarg (λε1ε2κ . (ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R < ε2 | R→ true, false)κ,
wrong “non-numeric argument to <”)

add : E*→ K→ C

add =
twoarg (λε1ε2κ . (ε1 ∈ R ∧ ε2 ∈ R)→

send ((ε1 | R + ε2 | R) in E)κ,
wrong “non-numeric argument to +”)

car : E*→ K→ C

car =
onearg (λεκ . ε ∈ Ep → hold (ε | Ep ↓ 1)κ,

wrong “non-pair argument to car”)

cdr : E*→ K→ C [similar to car]

setcar : E*→ K→ C

setcar =
twoarg (λε1ε2κ . ε1 ∈ Ep →

(ε1 | Ep ↓ 3)→ assign (ε1 | Ep ↓ 1)
ε2
(send unspecified κ),

wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)

eqv : E*→ K→ C

eqv =
twoarg (λε1ε2κ . (ε1 ∈ M ∧ ε2 ∈ M)→

send (ε1 | M = ε2 | M→ true, false)κ,
(ε1 ∈ Q ∧ ε2 ∈ Q)→

7. FORMAL SYNTAX AND SEMANTICS 178

send (ε1 | Q = ε2 | Q→ true, false)κ,
(ε1 ∈ H ∧ ε2 ∈ H)→

send (ε1 | H = ε2 | H→ true, false)κ,
(ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R = ε2 | R→ true, false)κ,
(ε1 ∈ Ep ∧ ε2 ∈ Ep)→

send ((λp1p2 . ((p1 ↓ 1) = (p2 ↓ 1)∧
(p1 ↓ 2) = (p2 ↓ 2))→ true,

false)
(ε1 | Ep)
(ε2 | Ep))
κ,

(ε1 ∈ Ev ∧ ε2 ∈ Ev)→ . . . ,
(ε1 ∈ Es ∧ ε2 ∈ Es)→ . . . ,
(ε1 ∈ F ∧ ε2 ∈ F)→

send ((ε1 | F ↓ 1) = (ε2 | F ↓ 1)→ true, false)
κ,

send false κ)

apply : E*→ K→ C

apply =
twoarg (λε1ε2κ . ε1 ∈ F→ valueslist 〈ε2〉(λε* . applicate ε1ε*κ),

wrong “bad procedure argument to apply”)

valueslist : E*→ K→ C

valueslist =
onearg (λεκ . ε ∈ Ep →

cdr〈ε〉
(λε* . valueslist

ε*
(λε* . car〈ε〉(single(λε . κ(〈ε〉 § ε*))))),

ε = null→ κ〈 〉,
wrong “non-list argument to values-list”)

cwcc : E*→ K→ C [call-with-current-continuation]
cwcc =

7. FORMAL SYNTAX AND SEMANTICS 179

onearg (λεκ . ε ∈ F→
(λσ . new σ ∈ L→

applicate ε
〈〈new σ | L, λε*κ′ . κε*〉 in E〉
κ
(update (new σ | L)

unspecified
σ),

wrong “out of memory”σ),
wrong “bad procedure argument”)

values : E*→ K→ C

values = λε*κ . κε*

cwv : E*→ K→ C [call-with-values]
cwv =

twoarg (λε1ε2κ . applicate ε1〈 〉(λε* . applicate ε2 ε*))

7.3. Derived expression types

This section gives macro definitions for the derived expression types
in terms of the primitive expression types (literal, variable, call,
lambda, if, and set!), except for quasiquote.

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

7. FORMAL SYNTAX AND SEMANTICS 180

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

(define-syntax case

(syntax-rules (else =>)

((case (key ...)

clauses ...)

(let ((atom-key (key ...)))

(case atom-key clauses ...)))

((case key

(else => result))

(result key))

((case key

(else result1 result2 ...))

(begin result1 result2 ...))

((case key

((atoms ...) result1 result2 ...))

(if (memv key ’(atoms ...))

(begin result1 result2 ...)))

((case key

((atoms ...) => result))

(if (memv key ’(atoms ...))

(result key)))

((case key

7. FORMAL SYNTAX AND SEMANTICS 181

((atoms ...) => result)

clause clauses ...)

(if (memv key ’(atoms ...))

(result key)

(case key clause clauses ...)))

((case key

((atoms ...) result1 result2 ...)

clause clauses ...)

(if (memv key ’(atoms ...))

(begin result1 result2 ...)

(case key clause clauses ...)))))

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

7. FORMAL SYNTAX AND SEMANTICS 182

body1 body2 ...)))

tag)

val ...))))

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 val1) (name2 val2) ...)

body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...)

body1 body2 ...)))))

The following letrec macro uses the symbol <undefined> in place of
an expression which returns something that when stored in a location
makes it an error to try to obtain the value stored in the location (no
such expression is defined in Scheme). A trick is used to generate
the temporary names needed to avoid specifying the order in which
the values are evaluated. This could also be accomplished by using
an auxiliary macro.

(define-syntax letrec

(syntax-rules ()

((letrec ((var1 init1) ...) body ...)

(letrec "generate temp names"

(var1 ...)

()

((var1 init1) ...)

body ...))

((letrec "generate temp names"

()

(temp1 ...)

((var1 init1) ...)

7. FORMAL SYNTAX AND SEMANTICS 183

body ...)

(let ((var1 <undefined>) ...)

(let ((temp1 init1) ...)

(set! var1 temp1)

...

body ...)))

((letrec "generate temp names"

(x y ...)

(temp ...)

((var1 init1) ...)

body ...)

(letrec "generate temp names"

(y ...)

(newtemp temp ...)

((var1 init1) ...)

body ...))))

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body0 body1 ...)

(let-values "bind"

(binding ...) () (begin body0 body1 ...)))

((let-values "bind" () tmps body)

(let tmps body))

((let-values "bind" ((b0 e0)

binding ...) tmps body)

7. FORMAL SYNTAX AND SEMANTICS 184

(let-values "mktmp" b0 e0 ()

(binding ...) tmps body))

((let-values "mktmp" () e0 args

bindings tmps body)

(call-with-values

(lambda () e0)

(lambda args

(let-values "bind"

bindings tmps body))))

((let-values "mktmp" (a . b) e0 (arg ...)

bindings (tmp ...) body)

(let-values "mktmp" b e0 (arg ... x)

bindings (tmp ... (a x)) body))

((let-values "mktmp" a e0 (arg ...)

bindings (tmp ...) body)

(call-with-values

(lambda () e0)

(lambda (arg x)

(let-values "bind"

bindings (tmp ... (a x)) body))))))

(define-syntax let*-values

(syntax-rules ()

((let*-values () body0 body1 ...)

(begin body0 body1 ...))

((let*-values (binding0 binding1 ...)

body0 body1 ...)

(let-values (binding0)

(let*-values (binding1 ...)

body0 body1 ...)))))

7. FORMAL SYNTAX AND SEMANTICS 185

(define-syntax define-values

(syntax-rules ()

((define-values () expr)

(define dummy

(call-with-values (lambda () expr)

(lambda args #f))))

((define-values (var) expr)

(define var expr))

((define-values (var0 var1 ... varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cadr var0)))

(set! var0 (car var0))

v))))

((define-values (var0 var1 varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cdr var0)))

(set! var0 (car var0))

v))))

((define-values var expr)

(define var

7. FORMAL SYNTAX AND SEMANTICS 186

(call-with-values (lambda () expr)

list)))))

(define-syntax begin

(syntax-rules ()

((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not make use of
the ability to write more than one expression in the body of a lambda
expression. In any case, note that these rules apply only if the body
of the begin contains no definitions.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda args

(begin exp2 ...))))))

The following definition of do uses a trick to expand the variable
clauses. As with letrec above, an auxiliary macro would also work.
The expression (if #f #f) is used to obtain an unspecific value.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

7. FORMAL SYNTAX AND SEMANTICS 187

((loop

(lambda (var ...)

(if test

(begin

(if #f #f)

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

Here is a possible implementation of delay, force and lazy. We
define the expression

(lazy 〈expression〉)

to have the same meaning as the procedure call

(make-promise #f (lambda () 〈expression〉))

as follows

(define-syntax lazy

(syntax-rules ()

((lazy expression)

(make-promise #f (lambda () expression)))))

and we define the expression

(delay 〈expression〉)

7. FORMAL SYNTAX AND SEMANTICS 188

to have the same meaning as:

(lazy (make-promise #t 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(lazy (make-promise #t expression)))))

where make-promise is defined as follows:

(define make-promise

(lambda (done? proc)

(list (cons done? proc))))

Finally, we define force to call the procedure expressions in promises
iteratively using a trampoline technique following [13] until a non-
lazy result (i.e. a value created by delay instead of lazy) is returned,
as follows:

(define (force promise)

(if (promise-done? promise)

(promise-value promise)

(let ((promise* ((promise-value promise))))

(unless (promise-done? promise)

(promise-update! promise* promise))

(force promise))))

with the following promise accessors:

(define promise-done?

(lambda (x) (car (car x))))

(define promise-value

(lambda (x) (cdr (car x))))

(define promise-update!

7. FORMAL SYNTAX AND SEMANTICS 189

(lambda (new old)

(set-car! (car old) (promise-done? new))

(set-cdr! (car old) (promise-value new))

(set-car! new (car old))))

The following implementation of make-parameter and parameterize

is suitable for an implementation with no threads. Parameter ob-
jects are implemented here as procedures, using two arbitrary unique
objects <param-set!> and <param-convert>:

(define (make-parameter init . o)

(let* ((converter

(if (pair? o) (car o) (lambda (x) x)))

(value (converter init)))

(lambda args

(cond

((null? args)

value)

((eq? (car args) <param-set!>)

(set! value (cadr args)))

((eq? (car args) <param-convert>)

converter)

(else

(error "bad parameter syntax"))))))

Then parameterize uses dynamic-wind to dynamically rebind the
associated value:

(define-syntax parameterize

(syntax-rules ()

((parameterize ("step")

((param value p old new) ...)

()

body)

(let ((p param) ...)

(let ((old (p)) ...

7. FORMAL SYNTAX AND SEMANTICS 190

(new ((p <param-convert>) value)) ...)

(dynamic-wind

(lambda () (p <param-set!> new) ...)

(lambda () . body)

(lambda () (p <param-set!> old) ...)))))

((parameterize ("step")

args

((param value) . rest)

body)

(parameterize ("step")

((param value p old new) . args)

rest

body))

((parameterize ((param value) ...) . body)

(parameterize ("step")

()

((param value) ...)

body))))

The following implementation of guard depends on an auxiliary
macro, here called guard-aux.

(define-syntax guard

(syntax-rules ()

((guard (var clause ...) e1 e2 ...)

((call/cc

(lambda (guard-k)

(with-exception-handler

(lambda (condition)

((call/cc

(lambda (handler-k)

(guard-k

(lambda ()

(let ((var condition))

(guard-aux

7. FORMAL SYNTAX AND SEMANTICS 191

(handler-k

(lambda ()

(raise condition)))

clause ...))))))))

(lambda ()

(call-with-values

(lambda () e1 e2 ...)

(lambda args

(guard-k

(lambda ()

(apply values args)))))))))))))

(define-syntax guard-aux

(syntax-rules (else =>)

((guard-aux reraise (else result1 result2 ...))

(begin result1 result2 ...))

((guard-aux reraise (test => result))

(let ((temp test))

(if temp

(result temp)

reraise)))

((guard-aux reraise (test => result)

clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test))

test)

((guard-aux reraise (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test result1 result2 ...))

(if test

7. FORMAL SYNTAX AND SEMANTICS 192

(begin result1 result2 ...)

reraise))

((guard-aux reraise

(test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(guard-aux reraise clause1 clause2 ...)))))

(define-syntax case-lambda

(syntax-rules ()

((case-lambda (params body0 body1 ...) ...)

(lambda args

(let ((len (length args)))

(let-syntax

((cl (syntax-rules ::: ()

((cl)

(error "no matching clause"))

((cl ((p :::) . body) . rest)

(if (= len (length ’(p :::)))

(apply (lambda (p :::)

. body)

args)

(cl . rest)))

((cl ((p ::: . tail) . body)

. rest)

(if (>= len (length ’(p :::)))

(apply

(lambda (p ::: . tail)

. body)

args)

(cl . rest))))))

(cl (params body0 body1 ...) ...)))))))

APPENDIX A. STANDARD LIBRARIES 193

Appendix A. Standard Libraries
This section lists the exports provided by the standard libraries. The
libraries are factored so as to separate features which might not be
supported by all implementations, or which might be expensive to
load.
The scheme library prefix is used for all standard libraries, and is
reserved for use by future standards.
Base Library
The (scheme base) library exports many of the procedures and
syntax bindings that are traditionally associated with Scheme.

* + -

... / <

<= = =>

> >=

abs and append

apply assoc assq

assv begin binary-port?

boolean? bytevector-copy

bytevector-copy!

bytevector-copy-partial

bytevector-copy-partial!

bytevector-length

bytevector-u8-ref

bytevector-u8-set! bytevector?

caaaar caaadr caaar

caadar caaddr caadr

caar caar cadaar

cadadr cadar caddar

cadddr caddr cadr

cadr call-with-current-continuation

call-with-port call-with-values

call/cc car case

cdaaar cdaadr cdaar

cdadar cdaddr cdadr

APPENDIX A. STANDARD LIBRARIES 194

cdar cddaar cddadr

cddar cdddar cddddr

cdddr cddr cdr

ceiling char->integer char-ready?

char<=? char<? char=?

char>=? char>? char?

close-input-port

close-output-port close-port

complex? cond cond-expand

cons current-error-port

current-input-port

current-output-port define

define-record-type define-syntax

define-values denominator do

dynamic-wind else eof-object?

eq? equal? eqv?

error error-object-irritants

error-object-message error-object?

even? exact->inexact

exact-integer-sqrt exact-integer?

exact? expt floor

flush-output-port for-each

gcd get-output-bytevector

get-output-string guard

if import inexact->exact

inexact? input-port? integer->char

integer? lambda lcm

length let let*

let*-values let-syntax let-values

letrec letrec* letrec-syntax

list list->string list->vector

list-copy list-ref list-set!

list-tail list? make-bytevector

make-list make-parameter make-string

make-vector map max

member memq memv

APPENDIX A. STANDARD LIBRARIES 195

min modulo negative?

newline not null?

number->string number? numerator

odd? open-input-bytevector

open-input-string

open-output-bytevector

open-output-string or

output-port? pair? parameterize

peek-char peek-u8 port-open?

port? positive? procedure?

quasiquote quote quotient

raise raise-continuable

rational? rationalize read-bytevector

read-bytevector! read-char

read-line read-u8 real?

remainder reverse round

set! set-car! set-cdr!

string string->list string->number

string->symbol string->utf8 string->vector

string-append string-copy string-fill!

string-for-each string-length string-map

string-ref string-set! string<=?

string<? string=? string>=?

string>? string? substring

symbol->string symbol? syntax-error

syntax-rules textual-port? truncate

u8-ready? unless unquote

unquote-splicing utf8->string

values vector vector->list

vector->string vector-copy vector-fill!

vector-for-each vector-length vector-map

vector-ref vector-set! vector?

when with-exception-handler

write-bytevector write-char

write-partial-bytevector write-u8

zero?

APPENDIX A. STANDARD LIBRARIES 196

Inexact Library
The (scheme inexact) library exports procedures which are typi-
cally only useful with inexact values.

acos asin atan

cos exp finite?

log nan? sin

sqrt tan

Complex Library
The (scheme complex) library exports procedures which are typi-
cally only useful with complex values.

angle imag-part magnitude

make-polar make-rectangular

real-part

Division Library
The (scheme division) library exports procedures for integer di-
vision.

ceiling-quotient

ceiling-remainder ceiling/

centered-quotient

centered-remainder centered/

euclidean-quotient

euclidean-remainder euclidean/

floor-quotient floor-remainder floor/

round-quotient round-remainder round/

truncate-quotient

truncate-remainder truncate/

APPENDIX A. STANDARD LIBRARIES 197

Lazy Library
The (scheme lazy) library exports procedures and syntax keywords
for lazy evaluation.

delay eager force

lazy

Case-Lambda Library
The (scheme case-lambda) library exports the case-lambda syn-
tax.

case-lambda

Eval Library
The (scheme eval) library exports procedures for evaluating Scheme
data as programs.

environment eval

null-environment

scheme-report-environment

Repl Library
The (scheme repl) library exports the interaction-environment

procedure.

interaction-environment

Process Context Library
The (scheme process-context) library exports procedures for ac-
cessing with the program’s calling context.

APPENDIX A. STANDARD LIBRARIES 198

command-line exit

get-environment-variable

get-environment-variables

Load Library
The (scheme load) library exports procedures for loading Scheme
expressions from files.

load

File Library
The (scheme file) library provides procedures for accessing files.

call-with-input-file

call-with-output-file delete-file

file-exists? open-binary-input-file

open-binary-output-file open-input-file

open-output-file

with-input-from-file

with-output-to-file

Read Library
The (scheme read) library provides procedures for reading Scheme
objects.

read

Write Library
The (scheme write) library provides procedures for writing Scheme
objects.

display write write-simple

APPENDIX A. STANDARD LIBRARIES 199

Char Library
The (scheme char) library provides procedures for dealing with
Unicode character operations.

char-alphabetic? char-ci<=?

char-ci<? char-ci=? char-ci>=?

char-ci>? char-downcase char-foldcase

char-lower-case? char-numeric?

char-upcase char-upper-case?

char-whitespace? digit-value

string-ci<=? string-ci<? string-ci=?

string-ci>=? string-ci>? string-downcase

string-foldcase string-upcase

Char Normalization Library
The (scheme char normalization) library provides procedures for
dealing with Unicode normalization operations.

string-ni<=? string-ni<? string-ni=?

string-ni>=? string-ni>?

Time
The (scheme time) library provides access to the system time.

current-jiffy current-second

jiffies-per-second

APPENDIX B. STANDARD FEATURE IDENTIFIERS 200

Appendix B. Standard Feature Identifiers
An implementation may provide any or all of the feature identifiers
listed below, as well as any others that it chooses, but must not
provide a feature identifier if it does not provide the corresponding
feature. These features are used by cond-expand.

r7rs

All R7RS Scheme implementations have this feature.

exact-closed

All algebraic operations except / produce exact values given
exact inputs.

ratios

/ with exact arguments produces an exact result when the di-
visor is nonzero.

exact-complex

Exact complex numbers are provided.

ieee-float

Inexact numbers are IEEE 754 floating point values.

full-unicode

All Unicode codepoints are supported as characters (except the
surrogates).

windows

This Scheme implementation is running on Windows.

posix

This Scheme implementation is running on a POSIX system.

unix, darwin, linux, bsd, freebsd, solaris, ...

APPENDIX B. STANDARD FEATURE IDENTIFIERS 201

Operating system flags (more than one may apply).

i386, x86-64, ppc, sparc, jvm, clr, llvm, ...

CPU architecture flags.

ilp32, lp64, ilp64, ...

C memory model flags.

big-endian, little-endian

Byte order flags.

〈name〉
The name of this implementation.

〈name-version〉
The name and version of this implementation.

Notes 202

NOTES

Language changes since R5RS

This section enumerates the differences between this report and the
“Revised5 report” [2].

The list is incomplete and subject to change while this report is
in draft status.

• Various minor ambiguities and unclarities in R5RS have been
cleaned up.

• Libraries have been added as a new program structure to im-
prove encapsulation and sharing of code. Some existing and
new identifiers have been factored out into separate libraries.
Libraries can be imported into other libraries or main pro-
grams, with controlled exposure and renaming of identifiers.
The contents of a library can be made conditional on the fea-
tures of the implementation on which it is to be used.

• Exceptions can now be signalled explicitly with raise, raise-continuable
or error, and can be handled with with-exception-handler

and the guard syntax. Any object can specify an error condi-
tion; the implementation-defined conditions signalled by error

have accessor functions to retrieve the arguments passed to
error.

• New disjoint types supporting access to multiple fields can be
generated with SRFI 9’s define-record-type.

• Parameter objects can be created with make-parameter, and
dynamically rebound with parameterize.

• Bytevectors, homogeneous vectors of integers in the range [0, 255],
have been added as a new disjoint type. A subset of the pro-
cedures available for vectors is provided. Bytevectors can be

Notes 203

converted to and from strings in accordance with the UTF-8
character encoding. Bytevectors have a datum representation
and evaluate to themselves.

• The procedure read-line is provided to make line-oriented
textual input simpler.

• Ports can now be designated as textual or binary ports, with
new procedures for reading and writing binary data. The new
predicate port-open? returns whether a port is open or closed.

• String ports have been added as a way to read and write char-
acters to and from strings, and bytevector ports to read and
write bytes to and from bytevectors.

• The procedures current-input-port and current-output-port

are now parameter objects, as is the newly introduced current-error-port.

• The syntax-rules construct now recognizes (underscore) as
a wildcard, allows the ellipsis symbol to be specified explicitly
instead of the default ..., allows template escapes with an
ellipsis-prefixed list, and allows tail patterns to follow an ellipsis
pattern.

• The syntax-error syntax has been added as a way to sig-
nal immediate and more informative errors when a macro is
expanded.

• Internal define-syntax definitions are now allowed wherever
internal defines are.

• The letrec* binding construct has been added, and internal
define is specified in terms of it.

• Support for capturing multiple values has been enhanced with
define-values, let-values, and let*-values. Programs

Notes 204

are now explicitly permitted to pass zero or more than one
value to continuations which discard them.

• The case conditional now supports a => syntax analogous to
cond.

• To support dispatching on the number of arguments passed to
a procedure, case-lambda has been added in its own library.

• The convenience conditionals when and unless have been added.

• Positive infinity, negative infinity, NaN, and negative inexact
zero have been added to the numeric tower as inexact values
with the written representations +inf.0, -inf.0, +nan.0, and
-0.0 respectively.

• The procedures map and for-each are now required to termi-
nate on the shortest list when inputs have different length.

• The procedures member and assoc now take an optional third
argument specifying the equality predicate to be used.

• The procedures exact-integer? and exact-integer-sqrt have
been added.

• The procedures make-list, list-copy, list-set!, string-map,
string-for-each, string->vector, vector-copy, vector-map,
vector-for-each, and vector->string have been added to
round out the sequence operations.

• Implementations may provide any subset of the full Unicode
repertoire that includes ASCII, but implementations must sup-
port any such subset in a way consistent with Unicode. Various
character and string procedures have been extended accord-
ingly. String comparison remains implementation-dependent,
and is no longer required to be consistent with character com-
parison, which is based on Unicode code points. The new

Notes 205

digit-value procedure is added to obtain the numerical value
of a numeric character.

• The procedures string-ni=? and related procedures have been
added to compare strings as though they had gone through an
implementation-defined normalization, without exposing the
normalization.

• The case-folding behavior of read can now be explicitly con-
trolled, with no folding as the default.

• There are now two additional comment syntaxes: #; to skip
the next datum, and #| ... |# for nestable block comments.

• Data prefixed with datum labels #<n>= can be referenced with
#<n># allowing for reading and writing of data with shared
structure.

• Strings and symbols now allow mnemonic and numeric escape
sequences, and the list of named characters has been extended.

• The procedures file-exists? and delete-file are available
in the (scheme file) library.

• An interface to the system environment and command line is
available in the (scheme process-context) library.

• Procedures for accessing the current time are available in the
(scheme time) library.

• A complete set of integer division operators is available in the
(scheme division) library.

• The load procedure now accepts a second argument specifying
the environment to load into.

Notes 206

• The procedures transcript-on and transcript-off have been
removed.

• The semantics of read-eval-print loops are now partly pre-
scribed, allowing the retroactive redefinition of procedures but
not syntax keywords.

Incompatibilities with the main R6RS document

This section enumerates the incompatibilities between R7RS and the
“Revised6 report” [1].

The list is incomplete and subject to change while this report is
in draft status.

• The syntax of the library system was deliberately chosen to
be syntactically different from R6RS, using define-library

instead of library in order to allow easy disambiguation be-
tween R6RS and R7RS libraries.

• The library system does not support phase distinctions, which
are unnecessary in the absence of low-level macros (see below),
nor does it support versioning, which is an important feature
but deserves more experimentation before being standardized.

• Putting an extra level of indirection around the library body
allows room for extensibility. The R6RS syntax provides two
positional forms which must be present and must have the
correct keywords, export and import, which does not allow
for unambiguous extensions. The Working Group considers
extensibility to be important, and so chose a syntax which
provides a clear separation between the library declarations
and the Scheme code which makes up the body.

• The include library declaration makes it easier to include
separate files, and the include-ci variant allows legacy case-
insensitive code to be incorporated.

Notes 207

• The cond-expand library declaration based on SRFI 0 allows
for a more deterministic alternative to the R6RS .impl.sls

file naming convention.

• Since the R7RS library system is straightforward, we expect
that R6RS implementations will be able to support the define-library
syntax in addition to their library syntax.

• The grouping of standardized identifiers into libraries is differ-
ent from the R6RS approach. In particular, procedures which
are optional either expressly or by implication in R5RS have
been removed from the base library. Only the base library is
an absolute requirement.

• Identifier syntax is not provided. This is a useful feature in
some situations, but the existence of such macros means that
neither programmers nor other macros can look at an identi-
fier in an evaluated position and know it is a reference — this
in a sense makes all macros slightly weaker. Individual imple-
mentations are encouraged to continue experimenting with this
and other extensions before further standardization is done.

• Internal syntax definitions are allowed, but all references to
syntax must follow the definition; the even/odd example given
in R6RS is not allowed.

• The R6RS exception system was incorporated as is, but the
condition types have been left unspecified. Specific errors that
must be signalled in R6RS remain errors in R7RS, allowing
implementations to provide their own extensions. There is no
discussion of safety.

• Full Unicode support is not required. Instead of explicit nor-
malization forms this report provides normalization-insensitive
string comparisons that use an implementation-defined nor-
malization form (which may be the identity transformation).

Notes 208

Character comparisons are defined by Unicode, but string com-
parisons are implementation-dependent, and therefore need not
be the lexicographic mapping of the corresponding charac-
ter comparisons (an incompatibility with R5RS). Non-Unicode
characters are permitted.

• The full numeric tower is optional as in R5RS, but optional sup-
port for IEEE infinities, NaN, and -0.0 was adopted from R6RS.
Most clarifications on numeric results were also adopted, but
the R6RS procedures real-valued?, rational-valued?, and
integer-valued? were not. The R5RS names inexact->exact
for exact and exact->inexact for inexact were retained,
with a note indicating that their names are historical. The
R6RS division operators div, mod, div-and-mod, div0, mod0
and div0-and-mod0 have been replaced with a full set of 18
operators describing 6 different rounding semantics.

• When a result is unspecified, it is still required to be a single
value, in the interests of R5RS compatibility. However, non-
final expressions in a body may return any number of values.

• Because of widespread SRFI 1 support and extensive code that
uses it, the semantics of map and for-each have been changed
to use the SRFI 1 early termination behavior. Likewise assoc

and member take an optional equal? argument as in SRFI 1,
instead of the separate assp and memp procedures from R6RS.

• The R6RS quasiquote clarifications have been adopted, but
the Working Group has not seen convincing enough examples
to allow multiple-argument unquote and unquote-splicing.

• The R6RS method of specifying mantissa widths was not adopted.

Notes 209

Incompatibilities with the R6RS Standard Libraries docu-
ment

This section enumerates the incompatibilities between R7RS and the
R6RS [1] Standard Libraries.

The list is incomplete and subject to change while this report is
in draft status.

• The low-level macro system and syntax-case were not adopted.
There are two general families of macro systems in widespread
use — the syntax-case family and the syntactic-closures

family — and they have neither been shown to be equivalent
nor capable of implementing each other. Given this situation,
low-level macros have been left to the large language.

• The new I/O system from R6RS was not adopted. Histori-
cally, standardization reflects technologies that have undergone
a period of adoption, experimentation, and usage before incor-
poration into a standard. The Working Group was unhappy
with the redundant provision of both the new system and the
R5RS-compatible “simple I/O” system, which relegated R5RS
code to being a second-class citizen. However, binary I/O was
added using binary ports that are at least potentially disjoint
from textual ports and use their own parallel set of procedures.

• String ports are compatible with SRFI 6 rather than R6RS;
analogous bytevector ports are also provided.

• The Working Group felt that the R6RS records system was
overly complex, and the two layers poorly integrated. The
Working Group spent a lot of time debating this, but in the end
decided to simply use a generative version of SRFI 9, which has
near-universal support among implementations. The Working
Group hopes to provide a more powerful records system in the
large language.

Additional material 210

• Enumerations are not included in the small language.

• R6RS-style bytevectors are included, but provide only the “u8”
procedures in the small language. The lexical syntax uses #u8
for compatibility with SRFI 4, rather than the R6RS #vu8

style. With a library system, it’s easier to change names than
reader syntax.

• The utility macros when and unless are provided, but since
it would be meaningless to try to use their result, it is left
unspecified.

• The Working Group could not agree on a single design for hash
tables and left them for the large language.

• Sorting, bitwise arithmetic, and enumerations were not consid-
ered to be sufficiently useful to include in the small language.
They will probably be included in the large language.

• Pair and string mutation are too well-established to be rele-
gated to separate libraries.

ADDITIONAL MATERIAL

The Internet Scheme Repository at

http://www.cs.indiana.edu/scheme-repository/

contains an extensive Scheme bibliography, as well as papers, pro-
grams, implementations, and other material related to Scheme.

The Scheme community website at

http://schemers.org/

contains additional resources for learning and programming, job and
event postings, and Scheme user group information.

A bibliography of Scheme-related research at

Additional material 211

http://library.readscheme.org/

links to technical papers and theses related to the Scheme language,
including both classic papers and recent research.

Example 212

EXAMPLE

The procedure integrate-system integrates the system

y′k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.
The parameter system-derivative is a function that takes a

system state (a vector of values for the state variables y1, . . . , yn) and
produces a system derivative (the values y′1, . . . , y

′
n). The parameter

initial-state provides an initial system state, and h is an initial
guess for the length of the integration step.

The value returned by integrate-system is an infinite stream
of system states.

(define integrate-system

(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(delay (map-streams next

states)))))

states))))

The procedure runge-kutta-4 takes a function, f, that pro-
duces a system derivative from a system state. It produces a function
that takes a system state and produces a new system state.

(define runge-kutta-4

(lambda (f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state

Example 213

(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3))))))))

(define elementwise

(lambda (f)

(lambda vectors

(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors)))))))

(define generate-vector

(lambda (size proc)

(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector

(lambda (s)

(elementwise (lambda (x) (* x s)))))

Example 214

The map-streams procedure is analogous to map: it applies its
first argument (a procedure) to all the elements of its second argu-
ment (a stream).

(define map-streams

(lambda (f s)

(cons (f (head s))

(delay (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car holds the
first element of the stream and whose cdr holds a promise to deliver
the rest of the stream.

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

The following illustrates the use of integrate-system in inte-
grating the system

C
dvC
dt

= −iL −
vC
R

L
diL
dt

= vC

which models a damped oscillator.

(define damped-oscillator

(lambda (R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

(define the-states

Example 215

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01))

References 216

REFERENCES
[1] Michael Sperber, R. Kent Dybvig, Mathew Flatt, and Anton

van Straaten, editors. The revised6 report on the algorithmic
language Scheme.

[2] Richard Kelsey, William Clinger, and Jonathan Rees, editors.
The revised5 report on the algorithmic language Scheme.

[3] Harold Abelson and Gerald Jay Sussman with Julie Sussman.
Structure and Interpretation of Computer Programs, second
edition. MIT Press, Cambridge, 1996.

[4] Alan Bawden and Jonathan Rees. Syntactic closures. In Pro-
ceedings of the 1988 ACM Symposium on Lisp and Functional
Programming, pages 86–95.

[5] Raymond T. Boute. The Euclidean definition of the functions
div and mod. In ACM Transactions on Programming Lan-
guages and Systems 14(2), pages 127–144, April 1992.

[6] Robert G. Burger and R. Kent Dybvig. Printing floating-point
numbers quickly and accurately. In Proceedings of the ACM
SIGPLAN ’96 Conference on Programming Language Design
and Implementation, pages 108–116.

[7] William Clinger, editor. The revised revised report on Scheme,
or an uncommon Lisp. MIT Artificial Intelligence Memo 848,
August 1985. Also published as Computer Science Department
Technical Report 174, Indiana University, June 1985.

[8] William Clinger. How to read floating point numbers accu-
rately. In Proceedings of the ACM SIGPLAN ’90 Conference
on Programming Language Design and Implementation, pages
92–101. Proceedings published as SIGPLAN Notices 25(6),
June 1990.

References 217

[9] William Clinger and Jonathan Rees, editors. The revised4 re-
port on the algorithmic language Scheme. In ACM Lisp Point-
ers 4(3), pages 1–55, 1991.

[10] William Clinger and Jonathan Rees. Macros that work. In Pro-
ceedings of the 1991 ACM Conference on Principles of Pro-
gramming Languages, pages 155–162.

[11] William Clinger. Proper Tail Recursion and Space Efficiency.
In Proceedings of the 1998 ACM Conference on Programming
Language Design and Implementation, June 1998.

[12] S. Bradner. Key words for use in RFCs to Indicate Require-
ment Levels. http://www.ietf.org/rfc/rfc2119.txt, 1997.

[13] Andre van Tonder. SRFI-45: Primitives for Express-
ing Iterative Lazy Algorithms. http://srfi.schemers.org/
srfi-45/, 2002.

[14] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntac-
tic abstraction in Scheme. Lisp and Symbolic Computation
5(4):295–326, 1993.

[15] Carol Fessenden, William Clinger, Daniel P. Friedman, and
Christopher Haynes. Scheme 311 version 4 reference manual.
Indiana University Computer Science Technical Report 137,
February 1983. Superseded by [16].

[16] D. Friedman, C. Haynes, E. Kohlbecker, and M. Wand. Scheme
84 interim reference manual. Indiana University Computer Sci-
ence Technical Report 153, January 1985.

[17] IEEE Standard 754-1985. IEEE Standard for Binary Floating-
Point Arithmetic. IEEE, New York, 1985.

[18] IEEE Standard 1178-1990. IEEE Standard for the Scheme
Programming Language. IEEE, New York, 1991.

http://www.ietf.org/rfc/rfc2119.txt
http://srfi.schemers.org/srfi-45/
http://srfi.schemers.org/srfi-45/

References 218

[19] Eugene E. Kohlbecker Jr. Syntactic Extensions in the Program-
ming Language Lisp. PhD thesis, Indiana University, August
1986.

[20] Eugene E. Kohlbecker Jr., Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. Hygienic macro expansion. In Pro-
ceedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 151–161.

[21] Peter Landin. A correspondence between Algol 60 and
Church’s lambda notation: Part I. Communications of the
ACM 8(2):89–101, February 1965.

[22] John McCarthy. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I. Communications
of the ACM 3(4):184–195, April 1960.

[23] MIT Department of Electrical Engineering and Computer Sci-
ence. Scheme manual, seventh edition. September 1984.

[24] Peter Naur et al. Revised report on the algorithmic language
Algol 60. Communications of the ACM 6(1):1–17, January
1963.

[25] Paul Penfield, Jr. Principal values and branch cuts in com-
plex APL. In APL ’81 Conference Proceedings, pages 248–256.
ACM SIGAPL, San Francisco, September 1981. Proceedings
published as APL Quote Quad 12(1), ACM, September 1981.

[26] Kent M. Pitman. The revised MacLisp manual (Saturday
evening edition). MIT Laboratory for Computer Science Tech-
nical Report 295, May 1983.

[27] Jonathan A. Rees and Norman I. Adams IV. T: A dialect of
Lisp or, lambda: The ultimate software tool. In Conference
Record of the 1982 ACM Symposium on Lisp and Functional
Programming, pages 114–122.

References 219

[28] Jonathan A. Rees, Norman I. Adams IV, and James R. Mee-
han. The T manual, fourth edition. Yale University Computer
Science Department, January 1984.

[29] Jonathan Rees and William Clinger, editors. The revised3 re-
port on the algorithmic language Scheme. In ACM SIGPLAN
Notices 21(12), pages 37–79, December 1986.

[30] John Reynolds. Definitional interpreters for higher order pro-
gramming languages. In ACM Conference Proceedings, pages
717–740. ACM, 1972.

[31] Guy Lewis Steele Jr. and Gerald Jay Sussman. The revised
report on Scheme, a dialect of Lisp. MIT Artificial Intelligence
Memo 452, January 1978.

[32] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme. MIT
Artificial Intelligence Laboratory Technical Report 474, May
1978.

[33] Guy Lewis Steele Jr. Common Lisp: The Language, second
edition. Digital Press, Burlington MA, 1990.

[34] Gerald Jay Sussman and Guy Lewis Steele Jr. Scheme: an
interpreter for extended lambda calculus. MIT Artificial Intel-
ligence Memo 349, December 1975.

[35] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. MIT Press, Cam-
bridge, 1977.

[36] Texas Instruments, Inc. TI Scheme Language Reference Man-
ual. Preliminary version 1.0, November 1985.

References 220

	Overview of Scheme
	Semantics
	Syntax
	Notation and terminology

	Lexical conventions
	Identifiers
	Whitespace and comments
	Other notations
	Datum labels

	Basic concepts
	Variables, syntactic keywords, and regions
	Disjointness of types
	External representations
	Storage model
	Proper tail recursion

	Expressions
	Primitive expression types
	Derived expression types
	Macros

	Program structure
	Programs
	Definitions
	Syntax definitions
	Record type definitions
	Libraries

	Standard procedures
	Equivalence predicates
	Numbers
	Booleans
	Pairs and lists
	Symbols
	Characters
	Strings
	Vectors
	Bytevectors
	Control features
	Exceptions
	Eval
	Input and output

	Formal syntax and semantics
	Formal syntax
	Formal semantics
	Derived expression types

	Standard Libraries
	Standard Feature Identifiers
	Notes
	Additional material
	Example
	References

