arXiv:2110.15433v1 [cs.CR] 28 Oct 2021

Fuzzm: Finding Memory Bugs through
Binary-Only Instrumentation and Fuzzing of WebAssembly

Daniel Lehmann* Martin Toldam Torp* Michael Pradel
University of Stuttgart, Aarhus University, University of Stuttgart,
Germany Denmark Germany

mail@dlehmann.eu

Abstract

WebAssembly binaries are often compiled from memory-
unsafe languages, such as C and C++. Because of Web-
Assembly’s linear memory and missing protection features,
e.g., stack canaries, source-level memory vulnerabilities are
exploitable in compiled WebAssembly binaries, sometimes
even more easily than in native code. This paper addresses
the problem of detecting such vulnerabilities through the first
binary-only fuzzer for WebAssembly. Our approach, called
Fuzzm, combines canary instrumentation to detect overflows
and underflows on the stack and the heap, an efficient coverage
instrumentation, a WebAssembly VM, and the input genera-
tion algorithm of the popular AFL fuzzer. Besides as an oracle
for fuzzing, our canaries also serve as a stand-alone binary
hardening technique to prevent the exploitation of vulnerable
binaries in production. We evaluate Fuzzm with 28 real-world
WebAssembly binaries, some compiled from source and some
found in the wild without source code. The fuzzer explores
thousands of execution paths, triggers dozens of crashes, and
performs hundreds of program executions per second. When
used for binary hardening, the approach prevents previously
published exploits against vulnerable WebAssembly binaries
while imposing low runtime overhead.

1 Introduction

WebAssembly is an increasingly important bytecode lan-
guage [20, 55, 56] with low-level semantics, fast execution,
and a multitude of source languages compiling to it. It is
widely supported in browsers' and used by diverse web ap-
plications [24], for “serverless” cloud computing [21,52], in
smart contract platforms [23,36,46], to sandbox libraries in
native applications [40, 58], and even as a universal bytecode
by standlone WebAssembly runtimes [1,2, 13].

Given its importance, the security of WebAssembly is also
becoming more and more relevant. While WebAssembly pre-
vents some security issues by design, source-level vulnerabil-
ities may still propagate to WebAssembly binaries [8,30,37].

*Both authors contributed equally to the paper.
1>94% support as of October 2021, see https: //caniuse.com/was.

torp@cs.au.dk

michael@binaervarianz.de

Recent work [30] has shown that, surprisingly, memory vul-
nerabilities in WebAssembly binaries can sometimes be even
more easily exploited than when the same source code is
compiled to native architectures. One reason is the lack of
mitigations, such as stack canaries, page protection flags, or
hardened memory allocators [30].

To find vulnerabilities, greybox fuzzing has proven to be an
effective technique [9,22,32,47,59]. For example, Google’s
OSS-Fuzz project has found thousands of vulnerabilities in
widely used software [3,51]. A greybox fuzzer automatically
generates inputs that explore the target program and eventu-
ally trigger a vulnerability. For that, it requires (i) lightweight
feedback from the execution, e.g., coverage information, to
guide the input generation, and (ii) runtime oracles that make
a vulnerability apparent, e.g., by crashing the program.

A greybox fuzzer for WebAssembly would be highly de-
sirable, but several characteristics of WebAssembly must be
taken into account. First, WebAssembly is a compilation tar-
get for multiple source languages, including C, C++, Rust,
Go, and many others [24]. A fuzzer aimed at a specific source
language hence could analyze only a fraction of all real-world
binaries. Second, the source code of a WebAssembly binary
may not be available, e.g., when analyzing third-party web-
sites, third-party libraries, or in-house legacy applications.
Even if the source code is available, adopting a fuzzer into the
development workflow is made harder if it requires changes
to the build system, or specific (versions of) compilers. Third,
even when compiling from the same source code, the security-
relevant behavior of a program compiled to WebAssembly
may differ from the same program being compiled to native
code [30]. As we illustrate in Section 3, whether a vulnera-
bility can be exploited depends on how the semantics of the
source language are compiled and which mitigations the target
platform provides. As a result, fuzzing a program compiled
for another platform, e.g., x86 [16], is insufficient to expose
memory bugs in WebAssembly. Taken together, these charac-
teristics motivate a fuzzer targeted at WebAssembly binaries.
However, despite the overall success of greybox fuzzing and
the increasing importance of WebAssembly, such a fuzzer
currently does not exist.

https://caniuse.com/wasm.

This paper presents Fuzzm?, the first binary-only greybox
fuzzer for WebAssembly. Its main components, shown in Fig-
ure 1, address several interesting technical challenges. First,
unlike native programs, WebAssembly lacks several built-
in oracles that native fuzzers rely on for finding suspicious
program behavior. For example, none of the current compil-
ers targeting WebAssembly adds stack canaries [14,45], and
due to WebAssembly’s linear memory, overflows from, e.g.,
stack to heap data remain unnoticed [30]. While tools like
AddressSanitizer [50] can instrument source code to detect
memory-related misbehavior, they do not apply to binaries.
Instead, our stack and heap canary instrumentation rewrites
binaries to detect over- and underflows on the stack and heap.
Besides fuzzing, the canaries are also useful for retroactively
hardening existing WebAssembly binaries in production.

Second, in a binary fuzzer we cannot rely on compiler-
inserted code to track coverage, which is what AFL and other
fuzzers do [9,32,47]. Even though there are dynamic instru-
mentation approaches for binaries, e.g., AFL’s QEMU mode,
they often suffer from high overheads, and are architecture-
dependent and not applicable to WebAssembly. Our coverage
instrumentation instead applies to unmodified, production
WebAssembly binaries and tracks coverage efficiently.

The final challenge, especially when fuzzing bytecode pro-
grams, is efficiency. WebAssembly binaries are executed in a
virtual machine (VM), which may cause a naive approach to
suffer from high start-up time and makes fuzzing impractical.
Instead, we integrate a WebAssembly VM that executes the
target program with the tried-and-tested input generation of
AFL. Here, WebAssembly’s sandboxing can actually be an
opportunity rather than a drawback: The memory of the target
application and AFL can reside in a single address space,
without the need for different processes separating the two.

The result of addressing the above challenges is a practical,
effective, and efficient end-to-end fuzzer for WebAssembly
binaries. Our evaluation applies Fuzzm to 28 programs, of
which ten are well-known programs compiled from source
code to WebAssembly, and 18 are WebAssembly binaries
without source code found in the wild. We find our approach
to be effective, covering 1,232 unique execution paths and
triggering 40 unique crashes on average during 24 hours of
fuzzing. The majority of the triggered crashes are due to our
canary-based oracles. In terms of efficiency, Fuzzm performs
hundreds of program executions per second, comparable to
AFL, despite requiring only a binary as input and running the
program in a VM. Finally, we show that the canaries inserted
by our instrumentations effectively prevent three previously
published exploits against vulnerable WebAssembly bina-
ries [30]. Due to their low runtime overhead (1.05x and 1.06x,
for stack and heap canaries, respectively) the canary instru-
mentation serves, beyond fuzzing, as a standalone hardening
tool for existing, vulnerable WebAssembly binaries.

2“Fuzzm” is a portmanteau word of “fuzzing” and “Wasm”.

Seed
Inputs

A) I1. Fuzzing
AFL+Wasm
Instrument M
1. Instrument - WasmVM__
- nstru Approx. Coverage &
Stack & Heap Coverage | nputs
Canaries —
Crashes
B) Regular Execution in Production

Figure 1: Overview of the main components of Fuzzm.

Contributions. In summary, this paper contributes:

e The first binary-only fuzzer for WebAssembly programs.

* A binary instrumentation that inserts stack and heap ca-
naries, which can be used to harden existing WebAssembly
programs and as an oracle in our fuzzer (Section 4).

¢ Integration of the AFL fuzzer and its tried-and-tested in-
put generation, a binary-only instrumentation that provides
compatible coverage information, and a WebAssembly VM,
for efficient end-to-end fuzzing (Section 5).

* Empirical evidence that Fuzzm effectively explores paths
and finds crashes in well-known programs compiled to
WebAssembly, and in large, real-world WebAssembly bi-
naries without source code (Section 6), and

* Empirical evidence that binaries hardened with our canary
instrumentations run with low runtime overhead and effec-
tively thwart previously published exploits (Section 6).

2 Background on WebAssembly

We briefly introduce features of WebAssembly most rel-
evant to this paper, and some of the security aspects of the
language. WebAssembly is an assembly-like language de-
signed as a portable compilation target from different source
languages, e.g., from C/C++ with Emscripten or Clang, or
from Rust. Beyond the browser platform, which was the first
to widely support WebAssembly, there now are several other
platforms, e.g., Node.js and the standalone Wasmtime VM?.

Types. WebAssembly is a stack-based, statically typed lan-
guage. There are four types in WebAssembly: 132 (i64) for
32-bit (64-bit) integers and 32 (f64) for 32-bit (64-bit) float-
ing point numbers. Typed instructions push and pop values
from an implicit operand stack. For example, 132.const N
pushes the 32-bit constant integer N, and f64.add pops two
64-bit floating point numbers and then pushes their sum.

Control flow. Unlike many other assembly-like languages,
WebAssembly features structured control flow, which is en-
coded using nested blocks. A block is a sequence of instruc-
tions that either begins with a block or loop and ends with
an end instruction.* Blocks may be nested arbitrarily deep.
Within a block, a br (br_if) L instruction (conditionally)

3https ://wasmtime.dev/
4There are also if and else blocks, but they add no expressive power
over regular blocks and branches, so we do not explain them here for brevity.

https://wasmtime.dev/

1 loop 6 block

2 .. X 7 block
3 br o ;3 Restart loop. 8

4 9

5)

HE br 1 ;5 Jump out.
eni)
end

Figure 2: Branching in WebAssembly illustrated

end

jumps to the end (or for loops, to the beginning) of the Lth
block, where 0 is the block containing the br_if instruction,
1 is its parent, and so on. L can be thought of as a numeri-
cal, relative block label. For example, the br instruction on
line 3 of Figure 2 jumps to the beginning of the loop block
on line 1, and similarly, the br on line 8 jumps out two blocks
to the end on line 10. A br_table Ly...L;, D instruction im-
plements jump tables. It consumes the top-most integer from
the operand stack i and jumps to L;, or a default D if i > ¢.

Functions and variables. A function in WebAssembly has
typed parameters, typed local variables, and a sequence of
instructions. Parameters and local variables are read using
local.get N and written using local.set N, where N refers
to the Nth local variable or parameter. Most instructions, in-
cluding direct calls, are statically type checked; indirect calls
are type checked at runtime. There are also global variables,
which are read (written) with global.get (global.set).

Memory. Unlike native programs, WebAssembly uses a
byte-addressable linear memory for storing long-lived ob-
jects. The memory is initialized with a certain size when the
module is instantiated and can be grown at runtime using
the memory.grow instruction. The 32-bit address space has
no holes, so every pointer € [0, size] is valid. The memory
is fully program-organized, i.e., there is no garbage collec-
tion. Load and store instructions take i32 values as addresses.
For example, i64.store consumes two elements from the
operand stack: an 164 value and an 132 address, at which it
stores the eight byte value in linear memory.

WASI. WebAssembly does not have a standard library or
I/O functions by default. Instead all interaction with the un-
derlying host system needs to happen through imports. WASI
(the WebAssembly System Interface) specifies a syscall inter-
face of functions for performing 1/0, filesystem access, etc.’
A program written in some high-level language (typically C,
C++, or Rust) can be compiled to a WASI binary, and then
executed by a WASI-compliant runtime, such as Wasmtime.
There are other ways of executing WebAssembly, e.g., in the
browser or on Node.js, but we focus on WASI in this work.

Security. WebAssembly has a two-sided security story. On
the one hand, WebAssembly programs execute in a sand-
boxed environment, which isolates them well from the mem-
ory and code of the underlying host system. This prevents
many attacks in the browser or cloud setting. On the other
hand, protection of WebAssembly program’s own memory is
very limited [8, 18,30], even compared to native binaries. As

Shttps://wasi.dev/

the operand stack only stores primitive values, linear mem-
ory must be used for all non-primitive values on the stack,
all static data, and the heap. Current compilers do not in-
sert canaries into the stack in linear memory or any other
protection mechanism for detecting buffer overflows at run-
time. This issue is aggravated by the fact that there are no
guard pages between memory regions, allowing, e.g., a buffer
overflow on the stack to run over static data or data on the
heap. There is also no way of marking parts of linear mem-
ory as read-only; it is always writable everywhere. Due to
these issues, WebAssembly programs can be exploited in
practice, causing cross-site scripting, remote code execution,
and other malicious behaviors [30], which motivates the need
for tools to both discover memory-related vulnerabilities in
WebAssembly binaries, and mitigate exploits at runtime.

3 Overview and Motivating Example

Our approach consists of two main components, as shown
in Figure 1. First, we present a novel binary-only canary in-
strumentation (Section 4) that hardens WebAssembly applica-
tions by adding stack and heap canaries. Second, we present a
binary-only fuzzer for WebAssembly (Section 5). It integrates
several components into an effective and efficient end-to-end
fuzzer: novel instrumentation to gather coverage information
directly from WebAssembly binaries, a WebAssembly VM,
and the input generation abilities of the proven AFL tool.
The remainder of this section illustrates our approach with a
motivating example, subsequent sections fill in the details.

Example. The program in Figure 3 suffers from a textbook
buffer overflow on the stack (line 3) that can be potentially
triggered by the right inputs (lines 10 and 3). Because of
differences in compilers, system libraries, and protection fea-
tures, the vulnerability is not exploitable when compiled to
a modern native architecture, such as x86-64, but it can be
exploited when compiled to WebAssembly [30]. Figure 4a
and b show the stack layout of the program when executed as
a native binary (compiled with GCC) and as a WebAssembly
binary (compiled with Emscripten). Because the variables
input1 and input?2 are stored in a different order on the stack,
an attacker overflowing input1 cannot change the program
behavior in the native binary, but can do so in WebAssembly.
It is thus important to fuzz test the WebAssembly binary, and
not only a native binary compiled from the same source.

Canary instrumentation. To detect executions that ex-
ploit vulnerabilities like the above example, we present a
binary-only instrumentation technique that adds protections
in the form of stack and heap canaries. The approach instru-
ments every function in the binary with code that inserts a
canary onto the stack frame upon entry and checks it upon
function exit. Beyond stack overflows, the instrumentation
also detects memory violations on the heap by surrounding
heap chunks with canaries. Figure 4c shows the inserted ca-
nary on the stack of the example program. An attack writing

https://wasi.dev/

1 void vulnerable() { data.. data ..

2 char input1[8]; g data..

3 scanf("%16s”, inputl); // Buffer overflow! s O stack canary B Buffer O stack canary gvimf\;
4 char input2[81; 3 input2 Limited input1 Overflow input1 Detected
5 scanf("%8s", input2); A Buffer

6 /% more code... */ 3} input1 Overflow input2 input2

7 int read_int() { int i; scanf("%d", &i); return i; 3} .

s int main(int argc, charsx argy) { (a) Native, e.g., x86. (b) WebAssembly, (c) WebAssembly,

5 char data[10] = "some data’: Overflow is not original. Overflow instrumented.

10 if (read_int() == 42) // Input, figured out by fuzzer. detected but also is exploitable and is Overflow detected,
11 vulnerable(); not exploitable. not detected. not exploitable.

12 if (strcmp(data, "some data”) == 0) X

13 puts("equal”); Figure 4: Stack layouts of the example program.

14 else puts(”not equal”); 3}

Figure 3: Example program with a vulnerability (simplified).

beyond the buffer will overwrite the canary, which the instru-
mented binary will detect and abort execution.

The canary instrumentation serves two purposes, marked
with A) and B) in Figure 1. A) The primary purpose explored
in this paper is as an oracle during fuzz-testing. If a fuzzer
successfully generates an input that causes an overflow (e.g.,
of input1 in the example), it might remain unnoticed, unless
the overflow causes a crash. Analogous to dynamic checks for
memory corruptions in native programs [16,45,48], our stack
and heap canary instrumentation provides a precise test oracle
that warns about memory corruptions observed during an
execution. B) Beyond fuzzing, our instrumentation also serves
as a hardening technique for binaries running in production.
The instrumentation mitigates exploits by detecting overflows
during an execution, where it can terminate the program and
hence prevent exploitation. As we show in our evaluation, this
protection comes with low overhead and be can be applied to
large, real-world binaries compiled from C, C++, and Rust.

Fuzzing WebAssembly. The second main component of
our approach is the actual fuzzer. We use a greybox fuzzing
approach based on the widely used AFL fuzzer and its proven
input generation. The high-level workflow is that of standard
greybox fuzzing: Starting from some seed input(s), repeatedly
execute the program, and gather coverage feedback, which is
used to mutate inputs until triggering a crash. In the example
program, AFL’s input generation eventually figures out to
start the input with "42" (line 9) to explore more behavior in
function vulnerable. However, in said function, native AFL
fails to detect a vulnerability due to the different stack lay-
outs between the native and WebAssembly binaries, whereas
Fuzzm finds a crashing input after few minutes of fuzzing.
Applying AFL-style greybox fuzzing to WebAssembly is
non-trivial for two reasons. First, the fuzzer requires cover-
age information, which native AFL obtains by inserting code
when compiling the program from source. However, we want
to fuzz WebAssembly binaries without requiring access to
the source code. We hence present a novel binary-only in-
strumentation technique to gather AFL-compatible coverage
information from WebAssembly binaries. Second, to be prac-
tical, fuzzers typically perform hundreds of executions of

a program per second. We present a set of WebAssembly-
specific adaptions of the original AFL that achieve this level
of efficiency.

4 Hardening WebAssembly Programs with a
Binary-Only Canary Instrumentation

The lack of virtual memory, page protections, or compiler-
inserted mitigations [14] makes WebAssembly programs
more vulnerable to buffer overflows than native programs,
with unique and surprising consequences such as overwriting
supposedly constant data and stack-to-heap overflows [30].
While linear memory is a core part of the language that can-
not be changed, over- and underflows on the stack and heap
should be detected at runtime. To do so, we present an in-
strumentation that statically inserts stack and heap canaries
in WebAssembly binaries. Similar to prior work on canaries
on the stack [19,45] or the heap [42,48] for native programs,
the basic idea is to surround memory chunks with a special
value, called the canary, and to check whether this value was
overwritten, e.g., before deallocation or when returning from
a function. Our approach differs from prior work in three
ways. First, to the best of our knowledge, we are the first to
present a canary-based protection for WebAssembly. Current
compilers do not implement canaries, so many already exist-
ing WebAssembly binaries are potentially vulnerable. Second,
in contrast to, e.g., compiler-inserted canaries or the popular
AddressSanitizer [50], our approach does not require source
code but instruments WebAssembly binaries directly. This
allows us to retroactively harden existing binaries. Finally, in
contrast to binary-only techniques for native programs, such
as Valgrind [41] or Intel Pin [33], our approach performs reli-
able, static instrumentation. As a result, the runtime overhead
of our instrumented binaries is negligible instead of the much
higher overheads caused by dynamic instrumentation.

4.1 Stack Canaries

To detect buffer overflows that write beyond the current
stack frame, Fuzzm performs three transformations on each
function in a binary, as illustrated in Figure 5. First, we insert
a preamble that injects the canary value onto the stack in
linear memory. Second, we wrap the original body in a new
block and rewrite all returns such that they jump to the end of

Entry

Entry Canary Injection
Wrapped
return Body
br depth-1

Exit Exit Exit ‘
Canary Validation

Exit

(a) Original body,
returning from

multiple places. (b) Instrumented with canaries.

Figure 5: CFGs of a WebAssembly function before and after
the instrumentation. The rectangles represent subgraphs.

Algorithm 1 Stack canary instrumentation.
The ++ operator denotes concatenation.

1: procedure INSTRUMENTFUNCTION(body)
2: canary <— eight randomly generated bytes
3 body < INJECTCANARY(canary) ++ body
4: body < block ++ body ++ end > Wrap original body
5: depth < 0
6: for instr in body do
7 if OPENSBLOCK(instr) then > Track block depth
8 depth < depth+1
9: else if CLOSESBLOCK(instr) then
10: depth < depth — 1
11: if instr = return then > Redirect returns
12: instr < br (depth — 1)
13: body <— body ++ VALIDATECANARY (canary)

said block, giving the code a single unique exit point. Finally,
we append a canary validation postamble to the function.
Algorithm 1 presents the instrumentation of a given func-
tion in more detail. Line 2 generates a random 8-byte canary
value. We use eight bytes because it is the largest primitive
value supported by WebAssembly, and we use a random value
to reduce the probability of missing a buffer overflow that
coincidentally matches the canary. Line 3 prepends the ca-
nary injection code to the function body. A template of the
injected code is shown in Figure 6. The code is parametrized
by the canary value <CANARY> and by <SP>, the index of the
global WebAssembly variable that holds the stack pointer. In
all WASTI applications, the stack pointer is the first global vari-
able, i.e., <SP> is 0. For non-WASI applications, heuristics to
identify the stack pointer can be used [24]. The code reserves
space for the canary on the stack in linear memory (line 14,
16 bytes due to stack alignment) and stores the canary value
there, i.e., at the beginning of the stack frame (line 5-7).
The fact that a WebAssembly function may return from
multiple locations raises the question where to insert code
to validate the canary. Unlike in native code, there is no sin-
gle function epilogue that clears the stack and returns to the
caller. One possible approach is to separately instrument ev-
ery return instruction with a copy of the validation code, but
this would increase code size considerably. Instead, we first
rewrite the function to return from a single location and then

global.get <SP> ;; Reserve stack space for canary value.
i32.const 16 ;5 WASI has 16-byte stack alignment.

i32.sub

global.set <SP>

global.get <SP> ;; Store canary at beginning of stack frame.
i64.const <CANARY>

i64.store

~ o g w N =

Figure 6: Template of INJECTCANARY for Algorithm 1.

1 block ;3 Original return value is at top of operand stack.
2 global.get <SP> ;; Compare canary value against reference.
3 i64.1load

4 i64.const <CANARY>

5 i64.eq

6 br_if @ ;5 Jump out of block if correct.

7 unreachable ;3 Otherwise: Overflow detected!

8 end

9 global.get <SP>
10 1i32.const 16

11 i32.add

12 global.set <SP>
13 return

;3 Adjust stack pointer.

Figure 7: Template of VALIDATECANARY for Algorithm 1.

insert the validation code once there. First, the entire func-
tion is wrapped into a new WebAssembly block (line 4 of
Algorithm 1). Then, each return instruction in the function
body is replaced with a jump to the end of the new block
(lines 6-12), keeping the semantics of the original code. For
that, the depth variable (line 5) needs to keep track of the
number of nested blocks around the current instruction.

Finally, line 13 appends a postamble for validating the ca-
nary before the function returns. Figure 7 shows the template
of this code. Since all return instructions were rewritten to
jump to the end of the wrapped body, the function return value
will reside at the top of the WebAssembly operand stack once
the postamble starts executing. This return value is untouched
by the canary validation code in lines 1-6 of Figure 7, avoid-
ing the introduction of a fresh local. The stack pointer global
at this point refers to the original functions stack base, which
after our injection is the memory location used for the canary.
This value is loaded from memory and compared against the
known, correct canary value. If they differ, an unreachable
trap is triggered, which halts execution and thwarts potential
exploits. The trap location also indicates that a buffer over-
flow occurred that crosses the stack frame boundary of the
function and its caller. If the canary was intact, lines 9-12
deallocate the canary by adjusting the stack pointer. Finally,
line 13 returns the only value left on the operand stack from
line 1: the untouched function return value.

4.2 Heap Canaries

Detecting and preventing memory violations on the heap
is important as well. In WebAssembly, this is especially criti-
cal, because binaries frequently ship with allocators that are
optimized for code size, and thus lack security features such
as safe unlinking [30]. To illustrate the problem, Figure 8a

size bytes 4 bytes 8 bytes 8 bytes
e -) ﬁ/\ v A \ -
Allocator Allocator o Underflow Overflow
Metadata Payload ... Metadata | >%¢ | © Canary Payload.... © Canary
1 Pointer returned | original | Data Pointer returned

frommalloc() Data Pointer after Instrumentation

(a) Without canaries. (b) With canaries.

Figure 8: Heap chunks, before and after the instrumentation.

shows the typical layout of a heap chunk, i.e., a region of
dynamically allocated memory returned by functions like
malloc. The payload is where the user will read and write
data to. The metadata precedes (or follows) the payload and
is used for bookkeeping by the allocator. If an attacker over-
or underflows a buffer in the payload and writes into adjacent
metadata, this can yield a dangerous arbitrary write primitive,
which is much more powerful than a linear overflow [5,27].

To detect such violations on the heap, Fuzzm instruments
heap allocation and deallocation functions in the binary. Our
instrumentation inserts canary values before and after the pay-
load, as illustrated by Figure 8b, enabling us to detect both
overflows and underflows of the payload. The canaries are
inserted into the heap chunk by instrumented versions of allo-
cation functions (Section 4.2.1) and checked by instrumented
versions of deallocation functions (Section 4.2.2).

4.2.1 Insert Canaries on Heap Allocation

Heap canaries are inserted by instrumenting all functions
that directly allocate heap chunks. Our current implementa-
tion instruments the allocation functions from the C standard
library, i.e., malloc, calloc, and realloc. Other functions
that allocate by calling the low-level libc functions in turn
thus profit from our protection as well, as is commonly the
case, e.g., for operator new in the C++ standard library.

The instrumentation inserts code into allocation functions
in two places: a preamble in the beginning and a postamble
at the end, as outlined in Algorithm 2. The added code has
three high-level goals. First, the allocation size needs to be
increased in order to fit the canaries (line 5). Second, the
canary values must be written to memory (line 9). Third, the
data pointer returned by the allocator needs to be adjusted
before passing it to the user, such that it points to the now
shifted payload (line 10). Additionally, we add two new locals
to the function (lines 2 and 6) to save data (lines 4 and 8) used
later by the inserted code.

Effectively, our canary code is interposed between the orig-
inal allocator and the client code requesting the allocation,
and must be transparent to both. From the allocator’s point
of view, the payload is the whole region after the metadata
in Figure 8b, including the inserted canaries. For the client
code requesting the allocation, the payload is only the region
between the canaries, matching the originally requested size.
Both are unaware of the data inserted by our added code.

Details. In the preamble, we retrieve the originally re-
quested allocation size, save it to a local for later (line 4),

Algorithm 2 Instrumentation of heap allocation functions.

1: procedure INSTRUMENTALLOCFUNCTION(f)
2 localreq size < ADDFRESHLOCAL(f)
3 f.body > Insert preamble
4 SAVEALLOCREQUESTSIZE(, localyeq_gize) ++
5: INCREASEALLOCSIZE(f, localreq_gize) ++ f.body
6 localgaga_pir <~ ADDFRESHLOCAL(f)
7 f.body < f.body ++
8 SAVEDATAPOINTER(localgata_pir) ++
9 WRITESIZEANDCANARIES(localieq_size, l0calgaga_ptr) ++
10: ADJUSTDATAPOINTER(localgata_ptr)

> Insert postamble

and increase it by 20 bytes (line 5). The additional 20 bytes
make space for two 8-byte canaries and a 4-byte size field. The
latter is required for the checking code (Section 4.2.2). The
exact inserted preamble instructions depend on the allocator
function. For malloc(size_t) and realloc(void*,size_t),
SAVEALLOCREQUESTSIZE simply retrieves the first (sec-
ond) function argument with local.get and stores it into a
new local. INCREASEALLOCSIZE is just an addition and sets
the first (second) function argument to the new value.

Correctly instrumenting calloc(size_t nitems, size_t
item_size) is a bit more challenging. As the allocation size
is the product of both arguments and neither has to be multiple
of 20, the inserted preamble changes the arguments to

nitems;., = 1, and
item_sizeye, = nitems X item_size 4+ 20

Additionally, INCREASEALLOCSIZE checks that the second
expression does not result in an integer overflow to ensure that
the instrumentation never introduces errors into the program.

After the preamble, the original allocator code performs the
regular memory allocation routine. Then follows our inserted
postamble, shown in Figure 9. Since the postamble executes
after the original body of the allocation function, the top-most
element on the operand stack is the original return value, i.e.,
the pointer to the newly allocated memory. This is saved to a
local (line 1). Then, the chunk size and underflow canary are
stored before the payload (lines 2—7). The overflow canary is
stored after the payload (lines 8—12). Finally, the data pointer
is fetched and adjusted to point past the underflow canary
(lines 13—15). This value is finally returned to the calling code.
The result of this instrumentation is that memory allocation
functions create chunks as shown in Figure 8b.

4.2.2 Check Canaries on Heap Deallocation

Fuzzm checks whether the heap canaries are valid when-
ever a heap chunk gets deallocated. Similar to the allocation
functions, the approach requires the list of deallocation func-
tions, and our implementation currently supports the functions
provided by the C standard library, i.e., free and realloc.

The heap canaries are validated by the code in Figure 10,
which our approach inserts at the beginning of every deallo-
cation function. The argument to the function is a pointer to

local.set <DATA_PTR> ;; Save pointer returned by allocator.
local.get <DATA_PTR> ;; \

local.get <REQ_SIZE> ;; Write requested allocation size
i32.store ;5 / at the beginning (data_ptr).
local.get <DATA_PTR> ;; \

i64.const <CANARY> s Write underflow canary

i64.store offset=4 ;3 / at data_ptr + 4.

local.get <DATA_PTR> ;; \

9 local.get <REQ_SIZE> ;;

0 N U hA W N =

Write overflow canary

|
10 i32.add ;5 | at data_ptr + size + 12.
11 1i64.const <CANARY> HE
12 i64.store offset=12 ;; /

13 local.get <DATA_PTR> ;; \
14 i32.const 12
15 i32.add

Figure 9: Template of the inserted postamble in Algorithm 2.

local.get <PARAM>
i32.const 12 ;3 Adjust the pointer before passing
i32.sub ;5 it to the allocator.
local.set <PARAM>
block ;3 Check underflow canary.
local.get <PARAM>
i64.load offset=4
i64.const <CANARY>
9 i64.eq
10 br_if o
1 unreachable ;3 Underflow detected!
12 end
13 block ;3 Check overflow canary.
14 local.get <PARAM> ;; \ Load payload size from our own
15 i32.1load ;3 / metadata at beginning of chunk.

0 N O U A W N =

16 local.get <PARAM> ;; \

17 i32.add ;3 | Load overflow canary from
18 i64.load offset=12 ;; | data_ptr + size + 12.

19 164.const <CANARY> ;; /

20 i64.eq

21 br_if o

22 unreachable ; Overflow detected!

23 end

Figure 10: Preamble injected into heap deallocation functions
to validate heap canaries.

the payload of the heap chunk. To make the canaries trans-
parent to the deallocation function, this pointer needs to be
decremented in the beginning (lines 1-4). Lines 5—12 validate
the underflow canary, and lines 13-23 validate the overflow
canary. The approach uses the size stored during the canary
injection to compute the location of the overflow canary.

When to check the heap canaries is a trade-off between
performance, complexity of the instrumentation, and the like-
lihood of catching buffer overflows. Fuzzm performs this
check during deallocation, which is inexpensive, as every ca-
nary is checked at most once, but has the disadvantage of
not catching overflows in chunks that are never deallocated.
Others have proposed more aggressive techniques that check
canaries at every memory read or write [50] or validate ca-
naries at every syscall [42]. While these approaches may
detect more attacks in production, they also impose a larger
runtime overhead, which makes them less suited for binary
hardening and fuzzing.

Adjust returned pointer to payload.

;5 The argument passed to, e.g., free().

5 Binary-Only Fuzzing for WebAssembly

This section presents the first binary-only fuzzer for Web-
Assembly. We take a greybox fuzzing approach and build
upon the popular AFL framework, enabling us to reuse its ef-
fective input generation abilities. Because AFL usually targets
programs with source code available and does not support
WebAssembly, there are two key challenges to address. The
first challenge is gathering AFL-compatible coverage infor-
mation during the execution of a WebAssembly program.
Section 5.1 describes how Fuzzm addresses this challenge
via a novel static instrumentation of WebAssembly binaries.
The second challenge is how to integrate executions of Web-
Assembly on a VM with the existing AFL framework in a
way that allows for performing hundreds of executions of a
program within a second, which is the level of efficiency AFL
provides for natively compiled code. Section 5.2 describes
how Fuzzm addresses this challenge through a set of novel
techniques that connect AFL to WebAssembly.

5.1 Coverage Instrumentation

Greybox fuzzing is effective because it relies on lightweight
feedback during program execution to steer the fuzzer. To col-
lect that feedback, native AFL compiles applications from
source, inserting code to track an approximate form of path
coverage [9], which is stored into a trace bits array. Unlike
native AFL, we fuzz WebAssembly binaries without access
to their source code, and hence, cannot instrument during
compilation. AFL also offers a QEMU mode for dynamic
binary instrumentation, but it comes with a high performance
overhead and naturally is architecture-specific, offering no
WebAssembly implementation. Instead, Fuzzm gathers cover-
age via static binary instrumentation that inserts code at all
branches to extract AFL-compatible coverage information.
Hence, instrumentation cost is a one-time effort.

As a prerequisite for instrumentation, the approach de-
termines all branches. The structured control flow of Web-
Assembly enables Fuzzm to precisely identify all branch-
ing points in a program. Algorithm 3 summarizes this step,
traversing each function of a binary and marking instructions
that correspond to branches. This includes br_if (line 12),
but also if, else and 1oop blocks (line 9) since they also cor-
respond to a branch. Furthermore, the algorithm keeps track
of the depth of each instruction, i.e., depth is incremented at
block, if and loop instructions (line 7) and decremented at
an end instruction (line 19). Keeping track of the depth is nec-
essary to compute which end blocks are targets of branches.
Whenever the algorithm encounters a conditional break (either
br_if on line 10 or br_table on line 13), it adds the target
depth of the branch instruction to the targets set. At every end
instruction, the algorithm then checks whether the depth of
that end instruction is in the targets set (line 15). In case it
is present, the end is a target of some branch, and is there-
fore also marked for instrumentation (line 17). In addition to

Algorithm 3 Insertion of AFL coverage instrumenation.

1: procedure AFL_INSTRUMENT_FUNCTION(f)
2 depth <~ 0
3 targets < {}
4 for instr in f.body do
5: if instr € {block,if,else,loop} then
6: if instr € {block,if,loop} then
7 depth < depth+ 1
8 if instr € {if,else,loop} then
9: mark(instr)
10: else if instr = br_if n then
11: targets < targets U {depth —n}
12: mark(instr)
13: else if instr = br_table(jmp_targets) then
14: targets < targets U U cimp_targets 1 — 1}
15: else if instr = end then
16: if depth € targets then
17: mark(instr)
18: targets < targets \ {depth}
19: depth < depth — 1

20: mark(f.body[0])

1 1i32.const <CUR_LOCATION> ;3 Id of current branch.
2 global.get <PREV_LOCATION> ;3 Id of previous branch.
3 i32.xor

4 global.get <TRACE_BITS>
5 i32.add

6 local.tee $1 ;5 Set local without pop.
7

8

9

local.get 1
i32.1load8_u ;3 Unsigned load of 1 byte.
i32.const 1

10 i32.add

11 132.store8 ;3 Store counter in trace_bits.

12 i32.const <CUR_LOCATION > 1>
13 global.set <PREV_LOCATION>

;5 Shift right once.

Figure 11: AFL-style coverage instrumentation in Wasm.

the instructions marked by Algorithm 3, Fuzzm also marks
the beginning of every function (line 20) since an indirect
function call also represents a branch.

Given the branching points identified by Algorithm 2,
Fuzzm inserts instrumentation code into each of them. A
template of the instrumentation code is shown in Figure 11.
It adapts the coverage mechanism described in the AFL doc-
umentation® to WebAssembly. The basic idea is to maintain
a global array of counters, the trace bits array, that indicates
how often each consecutive pair of branches has been taken.
Every branch target is assigned a random identifier. When-
ever a branch is taken, the instrumentation code computes
an index that combines the identifier of the current branch,
<CUR_LOCATION>, and the identifier of the previous branch,
<PREV_LOCATION> (lines 1-3). The code then increments the
corresponding index of the trace bits array (lines 4—11). To
initialize the trace bits array, Fuzzm also injects code into the
_start function of the binary, which is the WASI entry point.

6https,: //1lcamtuf.coredump.cx/afl/technical_details.txt

5.2 Integrating a WebAssembly VM and AFL

The native version of AFL is heavily optimized towards
performing as many executions of the target program within a
given time period as possible. The following presents several
novel techniques that allow Fuzzm to achieve a similar level of
efficiency. Our implementation targets WebAssembly binaries
using the WASI syscall interface, i.e., applications running on
a compliant VM, such as Wasmer’ or Wasmtime.

Avoiding VM restarts. With the fuzzed program running
on a VM, one possible approach is to start a new instance of
the VM for each run of the target program. However, doing
so may easily result in more time spend on starting the VM
and compiling the module to native code than on running
the target program. Instead, Fuzzm starts the VM once, lets
the VM precompile the target WebAssembly binary, and then
reuses both throughout the fuzzing process. Fuzzm uses the
Wasmtime C API? to separately compile, then instantiate, and
finally run WebAssembly modules. For every newly generated
input, the fuzzer instantiates the WebAssembly module that
was already compiled to native code and then calls the _start
function, i.e., the entry point of the target binary.

Accessing the trace bits array. To generate new inputs,
AFL needs to access the coverage information stored in the
trace bits array. The native version of AFL starts the target
program as a subprocess and accesses the trace bits array via
shared memory. Instead, Fuzzm exploits the fact that the VM
sandbox allows for the target program and AFL’s own code to
share a single address space. To this end, our approach inserts
an accessor function into the binary during the coverage in-
strumentation. This function returns a pointer to the trace bits
array in the linear memory of the target program. After each
execution of the target program, Fuzzm calls the special func-
tion and extracts the 64KB of linear memory, corresponding
to the trace bits, using the Wasmtime C APIL.

Detecting crashes. The native version of AFL detects
crashes by looking for fatal signals (SIGSEGYV, SIGKILL,
SIGABRT) in the target program. However, WASI does
not support signals, so Fuzzm uses the trap system of Web-
Assembly to determine when the target program crashes. To
this end, the oracles that Fuzzm inserts (Section 4) trigger an
unreachable trap when they detect an overflow or underflow.
In addition, WebAssembly has other built-in traps that also in-
dicate faulty behavior (Section 2). When the _start function
terminates, Fuzzm checks if the termination was triggered by
a trap, and in that case, marks it as a crash.?

Killing long-running executions. Randomly generated in-
puts may trigger long-running or even non-terminating execu-
tions. To prevent those from slowing down overall fuzzing, na-
tive AFL runs the fuzzed program in a separate process, which

7https ://wasmer.io/

8https://docs.wasmtime.dev/c-api/

9Programs terminating with a non-zero exit code also trigger a trap in
WASI, but Fuzzm takes care to not interpret these specific traps as crashes,
as they do not indicate faulty behavior as crashes in native programs do.

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://wasmer.io/
https://docs.wasmtime.dev/c-api/

is killed after a timeout. However, since the WebAssembly
VM and generated code are running in the same process
as AFL, Fuzzm implements two mechanisms to stop long-
running executions. First, it uses a “soft killing” mechanism
based on a separate thread running on the WASI VM that
interrupts the thread of the target program after a timeout
dynamically set by AFL. Second, to address that the target
program may not react to the interrupt, a second “hard killing”
mechanism may restart the entire VM after a longer timeout.

6 Evaluation

We evaluate Fuzzm along the two use-cases we present in
Section 3. First, end-to-end fuzzing of WebAssembly binaries:

RQ1 Effectiveness: How effective is Fuzzm at covering paths
and finding crashes?

RQ2 Robustness: How robust is the instrumentation when
applied to real-world binaries?

RQ3 Efficiency: How efficient is fuzzing with Fuzzm?

Second, hardening binaries for production through canaries:

RQ4 Effectiveness: How effective are the inserted canaries at
preventing previously demonstrated exploits?
RQS Efficiency: How much overhead do the canaries impose?

For reproducibility, future research, and practicioners, we
make our source code, data, and all experimental results avail-
able at https://github.com/fuzzm/fuzzm-project.

6.1 Experimental Setup

Benchmarks. We use three sets of benchmarks (Table 1).
Benchmarks 1 to 7 are real-world applications and libraries
that can be compiled to WebAssembly with WASI. The se-
lected versions of those programs suffer from known memory
vulnerabilities, which a fuzzer might help to uncover and fix.
Benchmarks 8 to 10 are from the LAVA-M benchmark [17].
We omit the who program in LAVA-M since it reads the
list of mounted file systems, which is not yet supported by
WASI. AFL, and by extension also Fuzzm, is known to per-
form poorly on LAVA-M as the fuzzer does not handle the
multi-byte constraints of LAVA-M bugs well [47]. Because
LAVA-M has been criticized for not being representative of
real bugs [28], we would have liked to instead evaluate against
the more modern Magma benchmark suite [22]. However, all
the Magma benchmarks use features not yet supported by
WASI, such as threads, networking, and long jumps.
Benchmarks 11 to 28 are real-world WebAssembly bina-
ries, gathered from public websites, GitHub, and NPM pack-
ages by the WasmBench dataset [24]. We select 18 binaries
that run without error (before any instrumentation) in the
Wasmtime VM. Among them are large applications, such as
SQLite and Clang compiled to WebAssembly, but also several
smaller binaries, such as a JSON formatter (canonicaljson), a
template engine (handlebars-cli), and an interpreter (bfi).

Compilation. We compile the source code from the first
and second set using a version of Clang that targets Web-
Assembly'? and then instrument the binaries as described
in Sections 4 and 5. For comparing against native AFL, we
compile the benchmarks with the AFL version of GCC. Since
AFL’s instrumentation is applied during compilation, this is
not completely true to our scenario where source code is not
available and binaries are compiled for production. To level
the ground, we do not use AddressSanitizer or any other oracle
that requires source code, neither for Fuzzm nor AFL. An al-
ternative baseline would be the QEMU mode of AFL, which
uses dynamic instrumentation, but since it is much slower
than normal AFL, it would give Fuzzm an unfair advantage.
For the third benchmark set, we do not have any source code,
which highlights the need for a binary-only fuzzer.

Repetitions and system configuration. We repeatedly
fuzz each benchmark five times for 24 hours, both with Fuzzm
and AFL. The repetitions address the variance of results due
to the inherent non-determinism of fuzzing [28]. In addition
to the mean results across the repetitions, we report 95% con-
fidence intervals. All experiments were performed on two
machines, each with two Intel Xeon 12-core 24-thread CPUs
running at 2.2 GHz, using 256 GB of system memory, and
Ubuntu 18.04 LTS. For AFL, we use version 2.57b.

6.2 RQ1: Effectiveness of Fuzzm

We evaluate the end-to-end effectiveness of fuzzing Web-
Assembly binaries with Fuzzm by measuring how many
unique paths are explored, how many unique crashes are trig-
gered, and whether the canary instrumentation helps in finding
those crashes. Table 1 gives the results, where the numbers
for Fuzzm are presented in the left block. Crashes and paths
are counted using AFL’s notion of unique crashes and unique
paths, respectively, i.e., two crashes are merged if they are
found on the same path. Different crashes as per this metric
may sometimes have the same root cause [28].

We find that Fuzzm successfully explores many hundreds
of paths through the programs, on average 1,232 unique paths
per benchmark after 24 hours of fuzzing. We see that this
works even for complex programs such as flac (benchmark
set 1) or sqlite (set 3). For benchmark sets one and two, where
the fuzzed programs are known, we provide the fuzzer with
seed inputs. For set three, we only provided an empty file as
seed input, which could explain the lower average number
of discovered paths. In terms of crashes, Fuzzm finds 40.3
crashes per benchmark on average. For example, for libpng
and pdfresurrect, Fuzzm generates crashing inputs that pro-
duce the exact stack trace of proof-of-concept exploits against
the vulnerabilities, confirming that Fuzzm can find real bugs.

To better understand how Fuzzm exercises a program over
a 24-hour period of fuzzing, Figure 12 shows the number
of unique paths detected over time, for four programs. As

1Oht‘cps ://github.com/WebAssembly/wasi-sdk

https://github.com/fuzzm/fuzzm-project
https://github.com/WebAssembly/wasi-sdk

Table 1: Benchmarks overview and fuzzing results (5 x 24 hours). The reported numbers are mean and 95% confidence intervals.

Fuzzm (WebAssembly binaries) AFL (native, built from source)

Benchmark Paths Crashes, of those: caused by Canaries Execs/sec Paths Crashes Execs/sec
Total Stack Can. Heap Can.
Benchmark set 1 — Real-world applications and libraries:
1 abc2mtex 1678.6+ 225 2679+ 6.6 2245455 424+ 1.6 3594+ 424 29992+ 82.6 820.1+63.2 879.6+212.1
2 flac 607.5+ 115 0.0+ 0.0 0.0+00 00+ 0.0 497.0+ 7.1 1617.1+ 75.1 0.0+ 0.0 1228.1+391.3
3 jbig2dec 2199.1+ 13.8 0.1+ 0.2 0.0£0.0 0.0+ 0.0 662+ 51.6 3330.1+ 49.8 0.0+ 0.0 437.7+264.8
4 libpng 727.0+ 104 96.1+ 4.0 0.0£0.0 772+ 3.8 4309+ 67.6 11234+ 253 1764+ 2.8 692.54+481.6
5 libtiff 860.3+ 9.1 0.0+ 0.0 0.0£0.0 0.0+ 0.0 8685+ 643 25425+ 33.6 0.0+ 0.0 953.7+467.8
6 openjpeg 5322.2+3611.0 90.3+39.3 7.7+45 8.6£104 4573+242.8 17797+ 39.8 90.7+ 3.4 605.4+4354
7 pdfresurrect 840.1+ 207.0 545+ 84 151+£34 1724+ 54 228.1+194.1 1011.0+£2263 129.94+29.2 701.5+369.2
Benchmark set 2 — From LAVA-M [17]:
8 base64 200.6+ 7.2 3444+ 15 0.0£0.0 0.0+ 0.0 2258+ 83.7 3558+ 29.1 0.1£ 0.2 5143+276.6
9 md5sum 3952+ 20.6 0.0+ 0.0 0.0+00 0.0+ 0.0 324.64+202.7 31794+ 8.9 0.0+ 0.0 2024+ 60.7
10 uniq 213.1+ 228 0.0+ 0.0 0.0£00 0.0£ 0.0 678.2+109.6 113.0+ 3.7 03+ 04 415.0+£3375
Benchmark set 3 — Real-world WebAssembly binaries from WasmBench [24]:
11 bf 2714+ 275 0.0+ 0.0 0.0+00 0.0+ 00 28.6+ 7.4
12 bfi 2158.0+ 108.8 97.8+26.1 0.0£0.0 30.8+12.5 2864+ 40.1
13 canonicaljson 3574+ 158 1804+ 6.9 0.0+00 0.0+ 0.0 428.24+193.4
14 clang 6.0+ 0.6 0.0+ 0.0 0.0£00 0.0+ 0.0 368+ 0.7
15 colert 231.0+ 7.6 0.0£ 0.0 0.0£0.0 0.0+ 0.0 83.6+ 503
16 handlebars-cli 8822+ 695 394+ 0.7 0.0+0.0 394+ 0.7 222.0+136.8
17 hq9_plus_rs 227.0+ 155 428+ 09 0.0£0.0 428+ 09 111.0+ 42.0
18 jq 1.0+ 0.0 0.0+ 0.0 0.0£00 0.0+ 0.0 3340+ 73
19 libxml2 1778+ 50 00+ 00 004£00 00+ 00 700+ L5 (As those samples are binary-only
20 qjs 96400+ 960 14044614 34430 116+ 8.6 387.0+ 20.0 WebAssembly programs, there is no
21 grotext 1.0+ 00 00+ 00 00400 00+ 0.0 846+ 04 native counterpart to fuzz with AFL.)
22 rev 161.4+ 6.1 0.0+ 0.0 0.0£0.0 0.0+ 0.0 1404+ 20.1
23 save 232+ 07 0.0£ 0.0 0.0£00 0.0+ 0.0 464+ 12
24 sqlite 42842+ 738.3 24+ 42 0.0£0.0 0.0£ 0.0 3594+116.5
25 wviu 124+ 1.8 0.0+ 0.0 0.0£00 0.0+ 0.0 7072+ 7.6
26 wasi-example 2134+ 7.1 50.24+ 0.9 0.0£00 0.0+ 0.0 7644+ 81.8
27 wasm-interface 52+ 04 0.0+ 0.0 0.0+00 0.0+ 00 62224+ 103
28 zxing_barcode 2799.2+ 236.2 322+ 5.6 0.0£00 174+ 52 1314+ 622
Average (only sets 1 and 2) 1304.4 54.3 24.7 10.7 413.6 1518.9 121.7 663.0
Average (all) 1232.0 40.3 9.0 8.9 320.7
9000 250 the plots for found crashes strongly correlate with explored
8000 200 paths, we omit the former for space reasons. (Both plots for
;ggg all programs are available online.) As is typical for fuzzers,
5000 150 the majority of behaviors are detected early on, usually within
:ggg 100 the first couple of hours (12a/b/c). Then, the number of new
2000 50 paths and crashes often saturates, especially for the LAVA-M
1000 benchmarks (b). For some benchmarks, e.g., gjs, Fuzzm still
0 . .
o 5 10 15 20 O s 10 15 0 finds new paths when given more time (d). The confidence
(a) openipeg. (b) base64. intervals are generally small, except for openjpeg (a) and
6000 10000 pdfresurrect, where the results vary considerably across runs.
5000 9000 Overall, these findings are consistent with previous work, and
4000 3888 show that running a fuzzer multiple times is important to
6000 obtain statistically meaningful results [28].
3000 5000
2000 4000
Zggg Comparison. As Fuzzm is the first binary-only fuzzing ap-
1000 1000 proach for WebAssembly, we cannot directly compare to any
O s 10 15 2 O s 10 15 2 baseline. However, to put the number of paths and crashes into
() sqlite. () qjs. perspective, we also present results for native AFL on the right

side of Table 1. This is only meant as a rough frame of refer-
ence, as a fair comparison is impossible for several reasons.
First, Fuzzm requires only the binary as input, whereas AFL

Figure 12: Average unique discovered paths (y-axis) over
24 hours of fuzzing (x-axis), with 95% confidence intervals.

10

applies its instrumentation during compilation from source.
Second, our notion of branches may differ from branches con-
sidered by AFL, simply due to different compilers and their
target-dependent optimizations and codegen. Third, unlike
in native binaries, all libraries (including libc) are statically
linked in WebAssembly, which increases the amount of code
Fuzzm instruments and thus has to fuzz. Fourth, the number
of explored paths naturally depends on the execution speed,
which is in principle lower on WebAssembly compared to
native (see also Section 6.4). Finally, benchmark set three is
only available as WebAssembly binaries, which is why we
cannot compare against AFL for these benchmarks.

From the data on benchmark sets one and two, we can see
that Fuzzm discovers on average a similar number of paths
compared with AFL (1304 vs. 1519). In terms of crashes,
AFL triggers 122 on average, which is roughly twice as many
as Fuzzm’s 54. One outlier is base64 where Fuzzm triggers 34
unique crashes but AFL triggers only one crash in one of the
performed runs. The 34 WebAssembly crashes are triggered
by a built-in sanity check of the executing VM, which is not
present in native binaries and explains why these crashes are
not detected by AFL. For programs where Fuzzm does not
find any crashes (e.g., flac), AFL does not either.

For the LAVA-M benchmarks, both Fuzzm and AFL fail to
trigger any of the bugs injected by the LAVA tool. This obser-
vation is surprising since other papers that compare with AFL
report at least some bugs detected for uniq and also some-
times for base64 [10,60]. Manually investigating some of the
LAVA-M bugs shows that they resemble use-after-free bugs
and that a crash depends on the memory allocator allocating
a new chunk at the exact location of some previously freed
chunk. We attribute the fact that neither Fuzzm nor AFL finds
these bugs to differences in (versions of) the used memory
allocator and to differences across versions of AFL.

Effectiveness of Canaries. Besides being the first ap-
proach for fuzzing WebAssembly binaries, Fuzzm contributes
canary-based oracles to detect stack and heap over- and un-
derflows. We measure how much these oracles contribute
to the crashes detected by Fuzzm by distinguishing crashes
caused by the oracles from other crashes. The three “Crashes”
columns of Table 1 show the results. The stack and heap
canaries are responsible for 22.2% and 22.0% of all de-
tected crashes, respectively, on all benchmarks, and 45.5%
and 19.7% on benchmark sets one and two. This indicates that
both contribute significantly to the effectiveness of Fuzzm.

Summary: Aplied to well-known applications, libraries, and
real-world WebAssembly binaries, Fuzzm triggers an average
of 40 unique crashes and 1,232 unique paths within 24 hours
of fuzzing, which are similar results as AFL applied to native
programs. Our canary-based oracles detect about half of all
detected crashes, and hence, contribute significantly to the
effectiveness of Fuzzm.

11

6.3 RQ2: Robustness of Instrumentation

To effectively fuzz a program, our instrumentation should
not affect the semantics of the program, except in the presence
of overflows, where the canaries should terminate the program.
To validate the robustness of Fuzzm’s instrumentation, we
compare the output generated by the non-instrumented and
the instrumented versions of the benchmarks. For each bench-
mark in the first two sets, we collect at least ten different
inputs, totaling 138 test cases (Table 2). We sample these
inputs from different websites!!, and for programs where
we could not find sufficiently many examples online, e.g.,
pal2rgb, we generate inputs by, e.g., converting images to
the pal format. As benchmark set three is only available in
binary form without source code or documentation, we do
not generate test inputs for those programs. For the binaries
and test inputs shown in Table 2, we verify that the outputs
produced by the instrumented binaries are equivalent to the
outputs produced by the uninstrumented binaries for all 138
test cases. As additional evidence for the robustness of our
instrumentation, we find that all binaries we instrumented
pass built-in WebAssembly validation, which performs, e.g.,
type-checking of instructions and functions.

Summary: Test runs of the benchmarks and the static valida-
tion applied to each WebAssembly module before its execu-
tion show that the binary instrumentation applied by Fuzzm
preserves the semantics of the original program.

6.4 RQa3: Efficiency of End-to-End Fuzzing

Effective fuzzing requires many repeated executions of the
target program in limited time. This also applies to Fuzzm,
where fast execution is even more challenging due to Web-
Assembly being a bytecode language and applying our instru-
mentations at the binary level.

Table 1 lists the average program executions per second dur-
ing fuzzing in the column “Execs/sec”. With an average speed
of 321 executions per second, Fuzzm is able to quickly explore
many paths. As already described in Section 6.2, comparisons
between Fuzzm and AFL are possible in broad strokes only.
This is especially true for performance, because even uninstru-
mented WebAssembly binaries can execute on average up to
50% slower than native code [25]. Despite this, on benchmark
sets one and two, Fuzzm achieves 414 executions per second
on average, which is only 37% slower compared with 663
native executions per second in AFL. We believe this is fast
enough for practical fuzzing of WebAssembly binaries and
respectable, given execution of the target program in a VM.
Finally, as improvements to Wasmtime are orthogonal to our
approach, further optimizations of the young VM might also
speed up Fuzzm in the future.

Besides the program execution in a VM, other sources of
slowdown in Fuzzm can come from the applied binary in-
strumentation. To evaluate the runtime overhead of the added

11E.g., https://filesamples.com/.

https://filesamples.com/

Table 2: Robustness and runtime overhead of instrumented binaries (mean over 25 repetitions, 95% confidence intervals).

Execution Time, relative to Uninstrumented Binary

Test Execution Time (ms),

Benchmark Inputs Uninstrumented ; ; :
Coverage Stack Canaries Heap Canaries ~ All Canaries Cov. + Can.
1 abc2mtex 30 815 1.38+£0.03 1.02+0.01 1.02+0.01 1.06+0.01 1.38+0.04
2 flac 10 2,449 1.42+0.01 1.024+0.01 1.00+0.01 1.02+0.01 1.48+0.02
3 jbig2dec 28 4,742 2.05+£0.01 1.2240.01 1.00£0.00 1.22£0.01 2.24+0.01
4 libpng 10 3,480 1.57+£0.02 1.03+0.01 1.00+0.01 1.02+0.01 1.58+0.02
S5 libtiff 10 899 1.30£0.03 1.13+0.01 1.11£0.01 1.14£0.01 1.40£0.03
6 openjpeg 10 4,750 1.77+£0.02 1.05+0.01 1.00+£0.01 1.06+£0.01 1.84+0.02
7 pdfresurrect 10 2,894 1.16£0.02 1.06+0.01 1.31+£0.01 1.35+0.01 1.53+£0.02
8 base64 10 256 1.32+0.10 1.02+0.02 0.99+0.01 1.03+0.02 1.31+0.09
9 md5sum 10 272 1.33£0.09 1.03+0.03 1.00+£0.01 1.05+0.02 1.30£0.09
10 uniq 10 260 1.34+£0.09 1.04+0.03 1.02+£0.01 1.11£0.09 1.39£0.10
Average 2,082 1.46+0.04 1.06+0.02 1.05+0.01 1.114+0.02 1.544+0.04

code, we run the benchmark programs with the test inputs
used for RQ3, and compare the runtime of the original, unin-
strumented binaries against the runtime when the binaries
were instrumented. The results are shown in the right part
of Table 2. On average over 25 program executions, the cov-
erage instrumentation imposes a runtime overhead of 1.46x
over the uninstrumented binary. We will detail the overhead
of the canaries in Section 6.6. The overhead of the coverage
instrumentation is generally higher than for the canaries, be-
cause for every branch in the program it adds 13 instructions
(Figure 11). More efficient implementations, e.g., by predict-
ing some branches based on static analysis [7], could further
reduce the overhead, which we leave for future work. The last
column of Table 2 shows the combined overhead of both the
canary instrumentation and the coverage instrumentation.

Summary: Fuzzm performs hundreds of program executions
per second, which is only 37% slower than native AFL, despite
executing the program in a VM. The coverage instrumentation
imposes an average overhead of 1.46x, which dominates the
overall overhead imposed by Fuzzm’s instrumentation.

6.5 RQ4: Effectiveness of the Canaries in Pre-
venting Exploitation

In the previous research questions, we have analyzed
Fuzzm as an end-to-end WebAssembly fuzzer. The canary
instrumentations from Section 4 are, however, also useful
in a stand-alone setting, namely for catching memory errors
in production binaries to prevent exploitation. To evaluate
this scenario, we apply our canary instrumentation to three
previously published, vulnerable WebAssembly applications
with proof-of-concept exploits [30]. The applications use
WebAssembly in three different settings: on a website in
the browser, on Node.js, and a command-line application for
standalone WASI VMs. Since the canary instrumentation is
platform-independent, we can harden binaries in all three set-
tings. The proof-of-concept inputs exploit two buffer overflow
vulnerabilities on the stack, and one buffer overflow on the
heap that writes into allocator metadata. We confirm that the

12

uninstrumented, original WebAssembly binaries can be ex-
ploited, which causes cross-site scripting, executes code, and
writes to an unintended file, respectively. Then, we success-
fully instrument all three binaries, without requiring access
to the source code or their build process. When given correct
and benign inputs, those three instrumented binaries work as
before, but when passing the exploit inputs, all three examples
are successfully terminated by the inserted canary checks.

Summary: The stack and heap canaries inserted by our
binary-only instrumentation effectively hardens existing bina-
ries and protects against previously demonstrated exploits.

6.6 RQS: Efficiency of the Inserted Canaries

As demonstrated in the previous section, the inserted ca-
naries can mitigate buffer overflow attacks when applied to
existing binaries. For this usage scenario, it is essential that
the canaries have only a minimal impact on performance.
We evaluate their efficiency by running the benchmark pro-
grams with and without instrumentation on the inputs from
RQ3. The results are in Table 2, which shows the execution
times with different combinations of canaries relative to the
execution time of the uninstrumented programs.

Both the stack and heap canary instrumentation only
slightly impact performance, with an average execution time
of 1.06x and 1.05x relative to the uninstrumented binary. The
stack canary overhead is similar to efficient implementations
of canaries for native binaries [15], which are employed by
default in common compilers (Clang, GCC, MSVC). Some ap-
plications, e.g., jbig2dec with an execution time of 1.22x, are
impacted significantly more than others, e.g., flac, where the
overhead is negligible. The relative cost of heap canaries de-
pends on the number of memory allocations, especially small
ones. While pdfresurrect, an analyzer of PDF files, stands
out due its frequent allocations, the overhead for the other
applications is low or even too small too measure. The over-
head with both canary instrumentations applied (column “All
Canaries”) is approximately the combined overhead of the
individual ones, imposing a moderate overhead of 1.11x.

Summary: The overhead imposed by the canary-based ora-
cles is small (1.06x and 1.05x, respectively) and comparable
to canary implementations for other languages, which is en-
couraging for their use to harden production binaries.

7 Related Work

Fuzzing. Out of the many approaches for greybox
fuzzing [10, 12,22, 28, 35], we build on the popular AFL
fuzzer. Unlike its commonly used GCC and LLVM modes,
and the majority of other fuzzers [6,32,44,47,57], we do not
require source code access, and hence, also cannot rely on
compiler-added oracles [43,50]. Improvements to the input
generation algorithm of AFL [34] will also benefit Fuzzm.
There are several ways to fuzz native binaries. AFL’s
QEMU and DynlInst modes rely on dynamic instrumenta-
tion, which incurs substantial runtime overhead. Dinesh et
al. [16] propose static instrumentation of x86-64 binaries for
fuzzing, but they cannot handle WebAssembly binaries due to
the different architecture and also make several assumptions
that do not apply in our setting, e.g., position-independent
code, which does not exist in WebAssembly, or the presence
of relocation information, which we do not require. Other
recent work is about binary instrumentation for coverage [39],
but does not provide an oracle instrumentation similar to ours.
We know of one approach for fuzzing WebAssembly'?,
which is a port of LibFuzzer'. They require the source code
and only support C and C++ code compiled with Emscripten,
which then runs in a browser. Instead, Fuzzm is the first to fuzz
WebAssembly binaries, with support for WASI applications.
Fuzzing has also been used for testing WebAssembly VMs'#,
which is orthogonal to fuzzing WebAssembly programs.

Binary rewriting and overflow protection. Statically in-
strumenting native binaries is challenging due to the unde-
cidability of disassembly [54], with challenges like data in-
lined in code, variable-length instructions, resolution of indi-
rect jumps, and identification of functions [4]. Many existing
tools rely on the symbol table for recovering function bound-
aries [11, 16,53]. WebAssembly does not suffer from these
problems, a situation we use to our benefit in Fuzzm.
Several papers have presented binary rewriting techniques
for protecting the stack in x86 programs [11, 16, 42, 53].
BodyArmor inserts instrumentation that monitors reads and
writes relative to pointers [53]. Another technique combines
a randomized layout, isolation, and secure allocation for
hardening binaries against stack-based vulnerabilities [11].
RetroWrite [16] uses an overflow detection mechanism sim-
ilar to AddressSanitizer [50], i.e., using shadow memory to
mark bytes where access is illegal. These previous three ap-
proaches all rely on the symbol table being available.

12https: //github.com/jonathanmetzman/wasm-fuzzing-demo

13https: //11lvm.org/docs/LibFuzzer.html

14https: //github.com/wasmerio/wasmer/tree/master/fuzz
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz

and

13

Prasad et al. use a shadow stack for finding buffer overflows
reaching across stack frame boundaries, without requiring
access to the symbol table [45]. Their technique is similar
to the Fuzzm canaries in terms of the granularity of detected
bugs. Using a shadow stack does not affect relative references
on the stack, and is thus preferable to canaries on x86 where
relative references appear. They suffer from potential false
positives and false negatives as most other x86 techniques.

There has also been work on techniques for protecting bina-
ries against heap overflows [16,42,48]. Robertson et al. [48]
and Nikiforakis et al. [42] both present techniques that, like
the Fuzzm heap canaries, instrument the allocation and deallo-
cation functions such that they insert canaries. Nikiforakis et
al. check the canaries at system calls, which means it is likely
that overflows are detected early, but at the cost of having
to check the canaries often. We instead opted for the more
efficient option of checking canaries during deallocation, to
enable efficient fuzzing and low-overhead hardening.

WebAssembly. Several papers examine the security of
WebAssembly applications and found that exploits, which
are no longer possible in native binaries, may still affect Web-
Assembly [18,30]. WebAssembly was initially used heavily
for malicious cryptomining [29, 38,49], but it has recently
been shown that today’s WebAssembly binaries are rarely
malicious [24]. While WebAssembly is designed to achieve
near native speed, it has been shown to still be around 50%
slower [26], which explains the performance difference be-
tween Fuzzm and AFL. The Wasabi framework allows for
creating dynamic analyses for WebAssembly easily [31], but
Fuzzm uses its own instrumentation for efficiency.

8 Conclusion

WebAssembly programs are becoming more and more
prevalent, which increases the need for techniques that can un-
cover security problems. This paper presents Fuzzm, the first
binary-only greybox fuzzer for WebAssembly. The approach
combines canary-based binary instrumentation to detect over-
flows and underflows on the stack and the heap, an efficient
coverage instrumentation, a WebAssembly VM running the
program, and the input generation algorithm of native AFL.
Unlike most other efficient fuzzers, Fuzzm works directly on
production binaries, without requiring access to the source
code. We show that Fuzzm finds a substantial amount crashes
in real-world WebAssembly binaries, while being efficient
enough to perform hundreds of executions per second, even
though WebAssembly is a slower, non-native language. Be-
sides as oracles for fuzzing, the canaries also serve as a stand-
alone binary hardening technique to prevent exploitation of
vulnerable binaries in production. In this scenario, the ap-
proach prevents previously published exploits while imposing
low overhead. Overall, our work is an important step toward
securing the increasingly popular WebAssembly platform
against exploitation of memory-related vulnerabilities.

https://github.com/jonathanmetzman/wasm-fuzzing-demo
https://llvm.org/docs/LibFuzzer.html
https://github.com/wasmerio/wasmer/tree/master/fuzz
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz

Acknowledgments

This work was supported by the European Research Coun-
cil (ERC, grant agreement 851895), and by the German Re-
search Foundation within the ConcSys and Perf4JS projects.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Wasmer — The Universal WebAssembly Runtime.
https://wasmer.io/, 2019.

Wasmtime — A small and efficient runtime for Web-
Assembly & WASI. https://wasmtime.dev/, 2020.

OSS-Fuzz.
2021.

https://google.github.io/oss-fuzz/,

Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In Thorsten
Holz and Stefan Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016, pages 583—-600. USENIX Association,
2016.

Anonymous. Once upon a free. Phrack, 11(9), Novem-
ber 2001.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In NDSS, volume 19,
pages 1-15, 2019.

M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang
Kunz. Efficient binary-level coverage analysis. In FSE,
2020.

John Bergbom. Memory safety: old vul-
nerabilities become new with WebAssembly.
https://www.forcepoint.com/sites/default/files/
resources/files/report-web-assembly-memory-
safety-en.pdf, 2018.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Trans. Software Eng., 45(5):489-506, 2019.

Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 711-725. IEEE
Computer Society, 2018.

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert
Bos, and Cristiano Giuffrida. Stackarmor: Comprehen-
sive protection from stack-based memory error vulnera-
bilities for binaries. In 22nd Annual Network and Dis-
tributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015. The In-
ternet Society, 2015.

14

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun,
Wenbo Shen, Xinyu Xing, Long Lu, and Bing Mao.
Ptrix: Efficient hardware-assisted fuzzing for COTS bi-
nary. CoRR, abs/1905.10499, 2019.

Lin Clark. Standardizing WASI: A system inter-
face to run WebAssembly outside the web. https:
//hacks.mozilla.org/2019/03/standardizing-wasi-
a-webassembly-system-interface/, 2019.

Crispan Cowan. Stackguard: Automatic adaptive de-
tection and prevention of buffer-overflow attacks. In
Aviel D. Rubin, editor, Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, USA, January
26-29, 1998. USENIX Association, 1998.

Thurston H. Y. Dang, Petros Maniatis, and David A.
Wagner. The performance cost of shadow stacks and
stack canaries. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications
Security, ASIA CCS 15, Singapore, April 14-17, 2015,
pages 555-566. ACM, 2015.

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting COTS
binaries for fuzzing and sanitization. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, May 18-21, 2020, pages 1497-1511.
IEEE, 2020.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, William K. Robertson, Fred-
erick Ulrich, and Ryan Whelan. LAVA: large-scale au-
tomated vulnerability addition. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 110-121. IEEE Computer Society,
2016.

Brian McFadden Tyler Lukasiewicz Jeff Dileo Justin
Engler. Security chasms of WASM. In NCC Group
Whitepaper. NCC Group, 2018.

Dongsoo Ha, Wenhui Jin, and Heekuck Oh. REPICA:
rewriting position independent code of ARM. [EEE
Access, 6:50488-50509, 2018.

Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke Wag-
ner, Alon Zakai, and JF Bastien. Bringing the web up
to speed with webassembly. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 185-200, 2017.

Adam Hall and Umakishore Ramachandran. An exe-
cution model for serverless functions at the edge. In
Proceedings of the International Conference on Internet
of Things Design and Implementation, IoTDI 19, page

https://wasmer.io/
https://wasmtime.dev/
https://google.github.io/oss-fuzz/
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

225-236, New York, NY, USA, 2019. Association for
Computing Machinery.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. CoRR,
abs/2009.01120, 2020.

Ningyu He, Ruiyi Zhang, Lei Wu, Haoyu Wang, Xi-
apu Luo, Yao Guo, Ting Yu, and Xuxian Jiang. Secu-
rity analysis of eosio smart contracts. arXiv preprint
arXiv:2003.06568, 2020.

Aaron Hilbig, Daniel Lehman, and Michael Pradel. An
empirical study of real-world webassembly binaries: Se-

curity, languages, use cases. In The Web Conference
2021 (WWW °21),2021.

Abhinav Jangda, Bobby Powers, Emery Berger, and Ar-
jun Guha. Not so fast: Analyzing the performance of
webassembly vs. native code. login Usenix Mag., 44(3),
2019.

Abhinav Jangda, Bobby Powers, Emery D Berger, and
Arjun Guha. Not so fast: Analyzing the performance
of webassembly vs. native code. In 2079 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19),
pages 107-120, 2019.

Michel Kaempf. Vudo — An object superstitiously
believed to embody magical powers. Phrack, 11(8),
November 2001.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 2123-2138. ACM,
2018.

Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha
Moonsamy, Martina Lindorfer, Christopher Kruegel,
Herbert Bos, and Giovanni Vigna. Minesweeper: An
in-depth look into drive-by cryptocurrency mining and
its defense. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1714-1730. ACM, 2018.

Daniel Lehmann, Johannes Kinder, and Michael Pradel.
Everything old is new again: Binary security of web-
assembly. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 217-
234. USENIX Association, 2020.

Daniel Lehmann and Michael Pradel. Wasabi: A frame-
work for dynamically analyzing WebAssembly. In ASP-
LOS, 20109.

15

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 627-637, 2017.

Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish
Patil, Artur Klauser, P. Geoffrey Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim M. Hazelwood. Pin:
building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June
12-15, 2005, pages 190-200. ACM, 2005.

Dominik Maier, Heiko Eil3feldt, Andrea Fioraldi, and
Marc Heuse. AFL++ : Combining incremental steps
of fuzzing research. In I/4th USENIX Workshop on
Offensive Technologies, WOOT 2020, August 11, 2020.
USENIX Association, 2020.

Valentin Jean Marie Manes, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J
Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. IEEE Transactions
on Software Engineering, 2019.

Timothy McCallum. Diving into Ethereum’s
Virtual Machine (EVM): the future of Ewasm.
https://hackernoon.com/diving-into-ethereums-

virtual-machine-the-future-of-ewasm-wrk32iy,

2019.

Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and
Justin Engler. Security chasms of wasm. NCC Group
Whitepaper, 2018.

Marius Musch, Christian Wressnegger, Martin Johns,
and Konrad Rieck. Thieves in the browser: Web-based
cryptojacking in the wild. In Proceedings of the 14th
International Conference on Availability, Reliability and
Security, ARES 2019, Canterbury, UK, August 26-29,
2019, pages 4:1-4:10. ACM, 2019.

Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser,
Jack W. Davidson, and Matthew Hicks. Breaking
through binaries: Compiler-quality instrumentation for
better binary-only fuzzing. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1683—1700.
USENIX Association, August 2021.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting fine grain isola-
tion in the firefox renderer. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pages 699-716,
2020.

https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Im-
plementation, San Diego, California, USA, June 10-13,
2007, pages 89—-100. ACM, 2007.

Nick Nikiforakis, Frank Piessens, and Wouter Joosen.
Heapsentry: Kernel-assisted protection against heap
overflows. In Detection of Intrusions and Malware, and
Vulnerability Assessment - 10th International Confer-
ence, DIMVA 2013, Berlin, Germany, July 18-19, 2013.
Proceedings, volume 7967 of Lecture Notes in Com-
puter Science, pages 177-196. Springer, 2013.

Sebastian Osterlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Parmesan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2289-2306. USENIX As-
sociation, August 2020.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697—
710. IEEE, 2018.

Manish Prasad and Tzi-cker Chiueh. A binary rewrit-
ing defense against stack based buffer overflow attacks.
In Proceedings of the General Track: 2003 USENIX
Annual Technical Conference, June 9-14, 2003, San An-
tonio, Texas, USA, pages 211-224. USENIX, 2003.

Lijin Quan, Lei Wu, and Haoyu Wang. EVulHunter:
detecting fake transfer vulnerabilities for EOSIO’s
smart contracts at Webassembly-level. arXiv preprint
arXiv:1906.10362, 2019.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, vol-
ume 17, pages 1-14, 2017.

William K. Robertson, Christopher Kriigel, Darren
Mutz, and Fredrik Valeur. Run-time detection of heap-
based overflows. In Proceedings of the 17th Confer-
ence on Systems Administration (LISA 2003), San Diego,
California, USA, October 26-31, 2003, pages 51-60.
USENIX, 2003.

Jan Riith, Torsten Zimmermann, Konrad Wolsing, and
Oliver Hohlfeld. Digging into browser-based crypto
mining. In Proceedings of the Internet Measurement
Conference 2018, IMC 2018, Boston, MA, USA, October
31 - November 02, 2018, pages 70-76. ACM, 2018.

Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In 2012 USENIX Annual

16

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Technical Conference, Boston, MA, USA, June 13-15,
2012, pages 309-318. USENIX Association, 2012.

Kostya Serebryany. Oss-fuzz-google’s continuous
fuzzing service for open source software. USENIX Se-
curity, 2017.

Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 419-433. USENIX Association, July
2020.

Asia Slowinska, Traian Stancescu, and Herbert Bos.
Body armor for binaries: Preventing buffer overflows
without recompilation. In 2012 USENIX Annual Tech-
nical Conference, Boston, MA, USA, June 13-15, 2012,
pages 125-137. USENIX Association, 2012.

Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat
Kantarcioglu, and Bhavani M. Thuraisingham. Differ-
entiating code from data in x86 binaries. In Machine
Learning and Knowledge Discovery in Databases - Eu-
ropean Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011, Proceedings, Part I1l, volume 6913
of Lecture Notes in Computer Science, pages 522-536.
Springer, 2011.

Conrad Watt. Mechanising and verifying the web-
assembly specification. In Proceedings of the 7th ACM
SIGPLAN International Conference on certified pro-
grams and proofs, pages 53-65, 2018.

WebAssembly Community Group. WebAssembly
Specification. https://webassembly.github.io/spec/
core/, 2021.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, pages 745-761. USENIX
Association, 2018.

Alon Zakai. WasmBoxC: Simple, Easy, and Fast VM-
less Sandboxing. https://kripken.github.io/blog/
wasm/2020/07/27/wasmboxc.html, 2020.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon
Fraser, and Christian Holler. The fuzzing book. https:
//www.fuzzingbook.org/, 2019.

Bin Zhang, Jiaxi Ye, Chao Feng, and Chaojing Tang.
S2F: discover hard-to-reach vulnerabilities by semi-
symbolic fuzz testing. In 13th International Confer-
ence on Computational Intelligence and Security, CIS
2017, Hong Kong, China, December 15-18, 2017, pages

548-552. IEEE Computer Society, 2017.

https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/

	1 Introduction
	2 Background on WebAssembly
	3 Overview and Motivating Example
	4 Hardening WebAssembly Programs with a Binary-Only Canary Instrumentation
	4.1 Stack Canaries
	4.2 Heap Canaries
	4.2.1 Insert Canaries on Heap Allocation
	4.2.2 Check Canaries on Heap Deallocation

	5 Binary-Only Fuzzing for WebAssembly
	5.1 Coverage Instrumentation
	5.2 Integrating a WebAssembly VM and AFL

	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Effectiveness of Fuzzm
	6.3 RQ2: Robustness of Instrumentation
	6.4 RQ3: Efficiency of End-to-End Fuzzing
	6.5 RQ4: Effectiveness of the Canaries in Preventing Exploitation
	6.6 RQ5: Efficiency of the Inserted Canaries

	7 Related Work
	8 Conclusion

