IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

DiffSearch: A Scalable and Precise
Search Engine for Code Changes

Luca Di Grazia, Paul Bredl, Michael Pradel

Abstract—The source code of successful projects is evolving all the time, resulting in hundreds of thousands of code changes stored
in source code repositories. This wealth of data can be useful, e.g., to find changes similar to a planned code change or examples of
recurring code improvements. This paper presents DiffSearch, a search engine that, given a query that describes a code change,
returns a set of changes that match the query. The approach is enabled by three key contributions. First, we present a query language
that extends the underlying programming language with wildcards and placeholders, providing an intuitive way of formulating queries
that is easy to adapt to different programming languages. Second, to ensure scalability, the approach indexes code changes in a
one-time preprocessing step, mapping them into a feature space, and then performs an efficient search in the feature space for each
query. Third, to guarantee precision, i.e., that any returned code change indeed matches the given query, we present a tree-based
matching algorithm that checks whether a query can be expanded to a concrete code change. We present implementations for Java,
JavaScript, and Python, and show that the approach responds within seconds to queries across one million code changes, has a recall
of 80.7% for Java, 89.6% for Python, and 90.4% for JavaScript, enables users to find relevant code changes more effectively than a
regular expression-based search and GitHub’s search feature, and is helpful for gathering a large-scale dataset of real-world bug fixes.

Index Terms—Software Engineering, Program Analysis, Software Maintenance.

1 INTRODUCTION

UNDREDS of thousands of code changes are stored
Hin the version histories of code repositories. To ben-
efit from this immense source of knowledge, practitioners
and researchers often want to search for specific kinds
of code changes. For example, developers may want to
search through their own repositories to find again a code
change performed in the past, or search for commits that
introduce a specific kind of problem. Developers may also
want to search through changes in repositories by others,
e.g., to understand how code gets migrated from one API
to another, or to retrieve examples of common refactorings
for educational purposes. A question on Stack Overflow on
how to systematically search through code changesﬂ has re-
ceived over half a million views, showing that practitioners
are interested in finding changes from the past.

Besides practitioners, researchers also commonly search
for specific kinds of code changes. For example, a researcher
evaluating a bug finding tool [1] or a program repair tool [2],
[3], [4] may be interested in examples of specific kinds
of bug fixes. Likewise, researchers working on machine
learning models that predict when and where to apply
specific code changes require examples of such changes as
training data [5]]. Finally, researchers systematically study
when and how developers perform specific kinds of changes
to increase our understanding of development practices [6],
(], 8l [9].

Unfortunately, there currently is no efficient and effective
technique for systematically searching large version histo-
ries for specific kinds of changes. The solutions proposed

All authors are with the Department of Computer Science, Univer-
sity of Stuttgart, Germany. Email: luca.di-grazia@iste.uni-stuttgart.de,
paulbredl@gmx.de, michael@binaervarianz.de

1. https:/ /stackoverflow.com/questions /2928584 /
how-to-grep-search-committed-code-in-the-git-history

in the above Stack Overflow post are all based on matching
regular expressions against raw diffs. However, searching
for anything beyond the most simple change patterns with
a regular expression is cumbersome and likely to result
in irrelevant code changes. Another existing technique is
GitHub SearchE] which allows for searching through com-
mits using free-form queries that are matched, e.g., against
commit messages. However, both regular expressions and
GitHub Search have significant drawbacks when searching
for specific code changes, as we show in a user study.
Finally, previous research proposes techniques that linearly
scan version histories for specific patterns [10], [11]], [12],
[13]. However, due to their linear design, these techniques
do not scale well to searching through hundreds of thou-
sands of changes in a short time.

This paper presents DiffSearch, a scalable and precise
search engine for code changes. DiffSearch is enabled by
three key contributions. First, we design a query language
that is intuitive to use and easy to adapt to different pro-
gramming languages. The query language extends the tar-
get programming language with wildcards and placehold-
ers that abstract specific syntactic categories, e.g., expres-
sions. Second, to ensure scalability, the approach is split into
an indexing part, which maps code changes into a feature
space, and a retrieval part, which matches a given query
in the feature space. We design specific features for code
changes, extracting useful information to match different
changes on source code. Finally, to ensure precision, i.e., that
a found code change indeed fits the given query, a crucial
part of the approach is to match candidate code changes
against the given query. We present an efficient algorithm
that checks if a query can be expanded into a code change.

2. https:/ / github.com/search

https://stackoverflow.com/questions/2928584/how-to-grep-search-committed-code-in-the-git-history
https://stackoverflow.com/questions/2928584/how-to-grep-search-committed-code-in-the-git-history
https://github.com/search

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Our approach supports the different usage scenarios we
envision DiffSearch to be useful for. First, the approach sup-
ports users interested in finding one specific code change,
e.g., when searching through the history of their own project
to find some change done by a colleague. In this scenario,
similar to a classical web search engine, the user will con-
sider only the first few search results and stop inspecting
them as soon as the expected code change is found. Second,
DiffSearch supports users interested in finding multiple code
changes, e.g., when searching through a set of popular open-
source projects to find examples of typical ways to refactor a
specific API usage. In this scenario, the user will inspect the
ranked list of search results until having seen a sufficient
number of examples. Third, the approach supports users
interested in finding many code changes, e.g., to build a
large-scale dataset to train a neural model. In this scenario,
the user can formulate and fine-tune the query through the
interactive user interface of DiffSearch, and then download
all matching results at once into a file. Finally, DiffSearch can
also be configured to retrieve all code changes that match a
query, e.g., to quantify how often specific changes occur in
practice. In this scenario, the user turns off the indexing and
retrieval part of the approach, and instead runs the precise
matching of a query against all code changesﬂ

DiffSearch is designed in a mostly language-agnostic
way, making it possible to apply the approach to different
languages. In particular, we restrict ourselves to a very
lightweight static analysis of code changes. The query lan-
guage and parts of the search algorithm build upon the
context-free grammar of the target programming language.
As a proof-of-concept, DiffSearch currently supports three
widely used languages: Java, JavaScript, and Python.

Our approach relates to work on searching for code,
which retrieves code snippets that match keywords [14],
[15], test cases [16], or partial code snippets [17], [18]. While
code search engines often have a design similar to ours,
i.e., based on indexing and retrieval, they consider only a
single snapshot of code, but not code changes. Other related
work synthesizes an edit program from one or more code
changes [10], [19], [20], [21], [22] and infers recurring code
change patterns [8], [23]. Starting from concrete changes,
these approaches yield abstractions of them. Our work
addresses the inverse problem: given a query that describes
a set of code changes, find concrete examples that match
the query. Finally, our work relates to clone detection [24],
[25], [26], [27], [28], as DiffSearch searches for code changes
that resemble a query. Our work differs from clone detection
by considering code changes (and not individual snippets
of code), by focusing on guaranteed matches instead of
similar code, and by responding to queries quickly enough
for interactive use.

We evaluate the effectiveness and scalability of Diff-
Search with one million code changes in each of Java,
Python, and JavaScript. We find that the approach responds
to queries within a few seconds, scaling well to large sets
of code changes. The search has a mean recall of 80.7% for
Java, 89.6% for Python, and 90.4% for JavaScript, which can

3. As shown in the evaluation, guaranteeing to find all matching code
changes comes at the cost of efficiency, as it requires a linear search
through all code changes in the corpus.

2

be increased even further in exchange for a slight increase in
response time. A user study shows that DiffSearch enables
users to effectively retrieve code changes, clearly outper-
forming a regular expression-based search through raw diffs
and GitHub Search. As a case study to show the usefulness
of DiffSearch for researchers, we apply the approach to
gather a dataset of 74,903 bug fixes.
In summary, this paper contributes the following:

e A query language that extends the target program-
ming language with placeholders and wildcards,
making it easy to adapt the approach to different
languages.

e A technique for searching for code changes that
ensures scalability through approximate, indexing-
based retrieval, and that ensures precision via exact
matching.

e Empirical evidence that the approach effectively
finds thousands of relevant code changes, scales
well to more than a million changes from different
projects, and successfully helps users answer a di-
verse set of queries.

The implementation and a web interface of DiffSearch are
publicly available:
http:/ /diftsearch.software-lab.org

2 EXAMPLE AND OVERVIEW

2.1 Motivating Example

To illustrate the problem and how DiffSearch addresses it,
consider the following example query. The query searches
for code changes that swap the arguments passed to a call
that is immediately used in a conditional. Such a query
could be used to find fixes of swapped argument bugs [29].

if (ID<1> (EXPR<1>,
< l>

EXPR<2>)) {

— 1f (ID<1> (EXPR<2>,
< l>

EXPR<1>)) {

Our query language is an extension of the target pro-
gramming language, Java in the example, and adds place-
holders for some syntactic categories. For example, the
1D<1> placeholder matches any identifier, and the EXprR<1>
placeholder matches any expression. Instead of such place-
holders, queries can also include concrete identifiers and
literals, e.g., to search for specific API changes.

As the set of code changes to search through, suppose
we have the following three examples, of which only the
second matches the query:

Code change 1:

if (check(a - 1, b)){ — if(check(a - 1, c)){
Code change 2:

if (isvalidPoint (x, y)){— if(isValidPoint (y, x)) {
Code change 3:

while(var > k - 1

{ — while(var > k) {
)

)
sum += count (var) ; sum += 2 * count (var);

http://diffsearch.software-lab.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

C)~ ————— > Offline

—> Online
Code l Query
changes !
g Y
Parsing &
Feature extraction
, Feature
; vector
Indexing -----= > Retrieval —— Matchlpg & —»@l
Ranking
Learned Candidate Guaranteed
index matches matches

Fig. 1: Overview of the approach.

2.2 Problem Statement

An important design decision is the granularity of code
changes to consider. The options range from changes of indi-
vidual lines, which would limit the approach to very simple
code changes, to entire commits, which may span multiple
files, several dozens of lines [30], often containing multiple
entangled logical changes [11], [31], [32], [33]. We opt for a
middle ground between these two extremes and consider
code changes at the level of “hunks”, i.e., consecutive lines
that are added, modified, or removed together.

Definition 1 (Code change). A code change ¢ — ¢’ consists
of two pieces of code, each of which is a sequence
[11,..,lm] of consecutive lines of code extracted from a
file in the target language.

Definition 2 (Query). A query ¢ — ¢ consists of two
patterns, which each are a sequence [l1, .., 1] of lines
of code in an extension of the target programming lan-
guage. The language extension adds wildcards, a special
“empty” symbol, and placeholders for specific syntactic
categories, e.g., to match an arbitrary expression or iden-
tifier.

Given these two ingredients, the problem we address is:

Definition 3 (Search for code changes). Given a set C' of
code changes and a query ¢ — ¢/, find a set M C C' of
code changes such that each (¢ — ¢) € M matches ¢ —
q'. We say that a code change ¢ — ¢ matches a query
g — ¢ if there exists an expansion of the placeholders
and wildcards in ¢ — ¢’ that leads to ¢ — ¢'.

By ensuring that, for any retrieved code change, the
query can be expanded to the code change, DiffSearch
guarantees that every result of a search precisely matches
the query.

2.3 Main Idea of the Approach

DiffSearch consists of four components that are used in
an offline and an online phase as illustrated in Figure
In the offline phase, the approach analyzes and indexes a
large set of code changes. The Parsing & Feature extraction
component of the approach parses and abstracts concrete
code changes and queries into a set of features, mapping
both into a common feature space. For our example query
in Section 2.1} the features encode, e.g., that a call expression
appearing within the condition of an if statement is changed
and that the changed call has two arguments. To enable

3

quickly searching through hundreds of thousands of code
changes, the Indexing component of DiffSearch indexes the
given feature vectors [34] once before accepting queries.

In the online phase, the input is a query that describes
the kind of code changes to find. Based on the pre-computed
index and the feature vector of a given query, the Retrieval
component retrieves those code changes that are most sim-
ilar to the query. For our motivating example, this yields
Code change 1 and Code change 2 because both change the
arguments passed to a call. The similarity-based retrieval
does not guarantee precision, i.e., that each candidate code
change indeed matches the query. The Matching & Ranking
component of DiffSearch removes any candidates that do
not match the query by checking whether the placeholders
and wildcards in the query can be expanded into concrete
code in a way that yields the candidate code change. For our
example, matching will eliminate Code change 1, as it does
not swap arguments, and eventually returns Code change 2
as a search result to the user.

3 APPROACH

This section presents the approach in detail. Before going
through the four components introduced in Section we
define the query language to specify what kind of code
changes to search for.

3.1 Query Language

To search for specific kinds of code changes, DiffSearch
accepts queries that describe the code before and after
the change. Our goal is to provide a query language that
developers can learn with minimal effort and that sup-
ports all constructs of the target programming language.
We initially considered three possible kinds of code search
queries, as classified by Di Grazia et al. [35]. First, natural
language queries, which are easy to type but inherently im-
precise. Second, programming language queries, which re-
quire knowing the programming language and are precise.
Third, custom languages that are often the most precise, but
they may impose some effort to learn the new language [35].

Comparing the different options and considering the
envisioned users of our approach, we design the query
language of DiffSearch as an extension of the target pro-
gramming language. That is, the query language includes
all rules of the target programming language and additional
features useful for queries. As our approach can support
different target languages, this means that there is a different
query language for each target language, each extending
the target language with search-related keywords. That is, a
user who is already familiar with the target programming
language needs to learn only a handful of new keywords for
using DiffSearch.

Figure [2| shows the grammar of our query language.
A query consists of two sequences of statements, which
describe the old and new code, respectively. The syntax for
statements is inherited from the target programming lan-
guage and not shown in the grammar. Instead of a regular
code snippet, a query may contain an underscore to indicate
the absence of any code, which is useful to describe code
changes that insert or remove code. The grammar extends

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Query = Snippet — Snippet

Snippet u= Stmt* | Expression | _

Stmt == (...) | (Target language rules)

Expression u= EXPR | EXPR(Number) | {...) | (Target lan-

guage rules)
AssignOperator ::= OP | OP(Number) | (Target language rules)
BinaryOperator ::= binOP | binOP(Number) | (Target language

rules)
UnaryOperator ::= unOP | unOP(Number) | (Target language
rules)
Identifier := 1D | ID(Number) | (Target language rules)
Literal u= LT | LT(Number) | (Target language rules)

Fig. 2: Simplified grammar of queries. Non-terminals are in
italics.

TABLE 1: Examples of Java changes and matching queries.

Code change DiffSearch query

- evt.trig(); ID.ID(); —

- if (x > 0) if (EXPR) — 1if (EXPR)

- y = 1; ID OP LT; ID OP LT;

+ 1if (x < 0)

+ y = 0;

- run(k); run (EXPR<0>) ; — runNow (EXPR<0>) ;
- now (k) ; now (EXPR<0>) ;

+ runNow (k) ;

the target language by adding placeholders for specific
syntactic entities, namely expressions, operators, identifiers,
and literals. For each such entity, a query can either describe
with an unnamed placeholder that there should be any such
entity, e.g., EXPR for any expression, or repeatedly refer
to a specific entity with a named placeholder, e.g., using
EXPR<1> and ExPR<2>. Named placeholders will be bound
to the same entity across the entire query, e.g., to say that
the same expression EXPR<1> must appear on both sides.
We also introduce the wildcard <...> that matches any
statement, any expression, or nothing at all.

To illustrate the query language, Table [I| gives a few
examples of code changes and a corresponding query that
matches the code change. The first two examples use un-
named placeholders, e.g., to match arbitrary identifiers. The
third example uses a named placeholder: The ExXPR<0>
in both the old and new part of the query means that
this expression, here k, remains the same despite the code
change, which replaces two calls with one.

3.2 Tree-based Representation of Code Changes and
Queries

One goal of DiffSearch is to be mostly language-agnostic,
making it possible to apply the approach to different pro-
gramming languages. Our current version supports Java,
JavaScript, and Python. To this end, the approach repre-
sents code changes and queries using a parse tree, i.e., a
representation that is straightforward to obtain for any pro-
gramming language. The benefit of parse trees is that they
abstract away some details, such as irrelevant whitespace,
yet provide an accurate representation of code changes.

4

To represent a set of commits in a version history as
pairs of trees, DiffSearch first splits each commit into hunks,
which results in a set of code changes (Definition [I). The
approach then parses the old and new code of a hunk using
the programming language grammar into a single tree that
represents the code change. Likewise, to represent a query,
DiffSearch parses the query into a parse tree using our
extension of the grammar (Figure . For example, Figure
shows the parse trees of a change and a query. The change
on the left corresponds to Code change 2 from Section
which swaps x and y of a call to isvalidPoint. Note that
code edits that do not cause any change of the parse tree,
e.g., because only semantically irrelevant whitespace gets
changed, are not considered as code changes and ignored
by DiffSearch.

An interesting challenge in parsing code changes and
queries is syntactically incomplete code snippets. For exam-
ple, the code changes in Section |2 open a block with { but
do not close it with }, because the line with the closing curly
brace was not changed. DiffSearch addresses this challenge
by relaxing the grammar of the target language so that it ac-
cepts individual code lines even when they are syntactically
incomplete. For example, we relax the grammar to allow for
unmatched parentheses and partial expressions.

As a potential alternative to parse trees, we considered
and eventually decided against abstract syntax trees (ASTs).
While ASTs are a suitable representation, e.g., for compilers,
they abstract away too many syntactic details that may be
relevant in DiffSearch. For example, consider the following
code change that adds parentheses to make a complex
expression easier to read:

flag = alive ||
— flag =

Because the added parentheses preserve the semantics
of the expression, they are abstracted away in a typical AST,
i.e., the old and new code have the same AST. As a result,
an AST-based representation could neither represent this
change nor a query to search for it.

X && y;

alive || (x && Vy);

3.3 Extracting Features

Based on the tree representation of code changes and
queries, the feature extraction component of DiffSearch rep-
resents each tree as a set of features. The goal of this step
is to enable quickly searching through hundreds of thou-
sands of code changes. By projecting both code changes and
queries into the same feature space, we enable the approach
to compare them efficiently. An alternative would be to
pairwise compare each code change with a given query [10],
[13]. However, such a pairwise comparison would require
an amount of computation time that is linear w.rt. the
number of code changes, which would negatively affect the
efficiency of searching through many code changes.
DiffSearch uses two kinds of features. The first kind of
feature is node features, which encode the presence of a node
in the parse tree. For the example in Figure 3| the dotted,
blue lines show three of the extracted node features. The
second kind of feature is parse tree triangles, which encode
the presence of a specific subtree. Each parse tree triangle
is a tree that consists of a node and all its descendants up
to some configurable depth. We use a depth of one as a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

code change

7z N
’ ~
s stmt S -> stmt
s RS "y
zjf parExpr _ _ stmf <_ 2 Ifs parExpr stmt
(expr) block (" expr) block
feails . A alls A

P AY
isValidPoint (,/exprList‘\) isValidPoint (exprList)

expr , expr

primary primary primary primary

X y y X

5
query
stmt -> stmt

If parExpr stmt If parExpr stmt
(" expr) block (expr) block
call { <..> call { <..>
ID<1> (exprList) ID<1> (exprList)
EXPR<1> , EXPR<2> EXPR<2> , EXPR<1>

4 .
y _\ Triangle feature

RTTR
», 1 Node feature
.Il‘

Fig. 3: Parse tree representations of Code change 2 (left) and the query from Section [2| (right). Only some of all considered

features are highlighted for illustration.

Algorithm 1 Represent features as fixed-size vector.

Input: Set F' of features, target size l;grges
Output: Feature vector v

v 4 vector of lygrges Zeros

: forall f € F do

h < hash(f)

v[h mod lygrget] < 1

g e N

return v

default, i.e., a triangle contains a node and its immediate
child nodes. For the example in Figure 3] the dashed, red
lines highlight two of the extracted triangles. The triangle at
the top encodes the fact that there is an if statement, while
the other triangle encodes the fact that the code contains an
expression list with exactly two expressions. The two kinds
of features complement each other because node features
encode information about individual nodes, including iden-
tifiers and operators, whereas parse tree triangles represent
how nodes are connected.

For each code change or query, the approach extracts
a separate set of features for the old and the new code.
With this separation, the features encode whether specific
code elements are added or removed in a code change. The
feature sets for code changes and queries are constructed in
the same way, except that DiffSearch removes node features
for placeholder nodes, e.g., ID or EXPR, from the query.
The rationale is that we want the features of a query to
be a subset of the features of a matching code change, but
placeholder nodes never appear in code changes.

Different code changes and queries yield different num-
bers of features. To efficiently compare a given query
against arbitrary code changes, DiffSearch represents all
features of a code change or query as a fixed-size feature
vector. The feature vector is a binary vector of length
ln + 1, + Uy + 15, = I, where [,, and [/, are the number
of bits to represent the node features of the old and new
code, respectively, and likewise for l;,; and [}, for the parse
tree triangle features. We use [= 1,000 by default, dividing it
equally among the four components, which strikes a balance
between representing a diverse set of features and efficiency
during indexing and retrieval. Section[5.5|evaluates different
sizes for the feature vector length.

Algorithm [I]summarizes how DiffSearch maps a set F' of
features into a fixed-size vector v. The algorithm computes
a hash function over the string representations of individual
nodes in a feature, sums up the hash values into a value £,
and sets the h-th index of the feature vector to one. To ensure
that the index is within the bounds of v, line {4] performs
a modulo operation. For each code change or query, the
algorithm is invoked four times to map each of the four
feature sets into a fixed-size vector: parent-child and triangle
features, for both the old and new code.

3.4

To prepare for responding to queries, DiffSearch runs an
offline phase that indexes the given set of code changes. The
indexing and retrieval components of the approach build
on FAISS, which is prior work on efficiently searching for
similar vectors across a large set of vectors [34]. In the
first step of the offline phase, DiffSearch parses all code
changes and stores the parse trees on disk. In the second
step, DiffSearch generates the feature vectors of the code
changes using the corresponding parse trees. Given the set
Vehanges Of feature vectors of all code changes, the approach
computes an index into these vectors.

After the offline indexing phase, DiffSearch accepts
queries. For a given query, the approach computes a fea-
ture vector vgyery (Section , and then uses the index
to efficiently retrieve the most similar feature vectors of
code changes. FAISS allows for efficiently answering ap-
proximate nearest neighbor queries, without comparing the
query against each vector in Vi j,qnges- The nearest neighbors
are based on the L2 (Euclidean) distance. To ensure that
the presence of matching features is weighted higher than
the absence of features, we multiply v4uery by a constant
factor % + 1 before running the nearest neighbor query.
To illustrate this decision consider an example with three
feature vectors: A query vg = (0,0,1), a potential match
vp = (1,1,1) with the third feature in common, and a
mismatch vy = (0,0,0). Naively computing the Euclidean
distances yields d(vg,vp) = V2 and d(vg,vm) = V1,
i.e.,, the mismatch would be closer to the query than the
potential match. To avoid this scenario, the query vector
should be vg = (0,0, m) such that d(vg, vp) < d(vg, V).
Solving this inequality gives m > é, which we achieve by

Indexing and Retrieving Code Changes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

multiplying the original vg with % + 1. For the example,
after multiplying v with the constant factor 2 + 1, we
have d(vg,vp) = Vv4.25 and d(vg,vm) = V6.25, ie., the
potential match is now closer to the query than to the
mismatch.

The approach retrieves the k£ most similar code changes
for a given query. Setting the value of %k allows users
to control the trade-off between efficiency and recall. For
example, if a user is interested in finding as many code
changes as possible, a larger k£ should be used. In the ex-
treme case, DiffSearch can also be used without the feature-
based retrieval (equivalent to kK = o00), which will reduce
the approach to linearly searching through all code changes,
but guarantees to find each matching code change. We use
k = 5,000 by default, and Section evaluates other values.
The retrieved candidate code changes are ranked based on
their L2 distance to the query, computed by FAISS, and we
use this ranking to sort the final search results shown to a
user.

3.5 Matching of Candidate Search Results

Given the k candidate code changes retrieved for a given
query as described in Section DiffSearch could return
all of them to the user. However, the feature-based search
does not guarantee precision, i.e., that all the retrieved code
changes indeed match the query. One reason is that the
features capture only local information, but do not encode
the entire parse tree in a lossless way. Another reason is
that the features do not encode the semantics of named
placeholders, i.e., they cannot ensure that placeholders are
expanded consistently across the old and new code.

To guarantee that all code changes returned in response
to a query precisely match the query, the matching com-
ponent of DiffSearch takes the candidate search results
obtained via the feature-based retrieval and checks for each
candidate whether it indeed matches the query. Intuitively,
a code change matches a query if the placeholders and
wildcards in the query can be expanded in a way that yields
code identical to the code change or some subset of the code
change. More formally, we define this idea as follows:

Definition 4 (Match). Given a code change ¢ — ¢ and
a query ¢ — ¢, let t.,to,tq,ty be the corresponding
parse trees. The code change matches the query if

e t4 can be expanded into some subtree of ¢. and
e ty can be expanded into some subtree of ./

so that all of the following conditions hold:

o Each placeholder is expanded into a subtree of the
corresponding syntactic entity.

e All occurrences of a named placeholder are consis-
tently mapped to identical subtrees.

e Each wildcard is expanded to an arbitrary, possibly
empty subtree.

For example, consider the query and code change in
Figure 3| again. They match because the tree on the right
can be expanded into the tree on the left. The expansion
maps the named placeholders ID<1> to isValidPoint,
EXPR<1> to the subtree that represents x, and EXpPR<2> to
the subtree that represents y. Moreover the wildcards in the

Algorithm 2 Check if a code change matches a query.

Input: Code change ¢ — ¢’ and query ¢ — ¢
Output: True if they match, False otherwise.

1: te,ter < parse(c — c')
2: tg,ty < parse(q — q')
3: Niomaten < (allNodes(q) U allNodes(q')) \ wildcards
4: W <« candidateMappings(tc,ter,tq,tyr)
5: while W is not empty do
6: M < Take a mapping from W
7: ng < nextUnmatchedNode(M,tq,t,)
8: npq < Parent of n,
9: Npe <— Look up npe in M
10: for c in all not yet matched children of n,. do
11: if canAddToMap(M, c,nq) then
12: M' + Copy of M withng — ¢
13: if keys(M’) N Nyonmtaten = 0
14: and isValid(M,te,ter, tq, ty) then
15: return true
16: else
17: Add M’ to W

query are both mapped to the empty tree. As an example
of a code change that does not match this query, consider
Code change 1 from Section [2 again. The parse tree of the
query cannot be expanded into the parse tree of that code
change because there is no way of expanding the query tree
while consistently mapping EXPR<1> and EXPR<2> to the
three method arguments a-1, b, and c.

To check whether a candidate code change indeed
matches the given query, DiffSearch compares the parse tree
of the query with the parse tree of the code change in a top-
down, left-to-right manner. The basic idea is to search for a
mapping of nodes in the query tree to nodes in the parse
tree that consistently maps named placeholders to identical
subtrees. On top of this basic idea, the matching algorithm
faces two interesting challenges. We illustrate the challenges
with the following query, which searches for code changes
where two call statements get replaced by an assignment of
a literal to an identifier. The following example shows the
query on the left and a matching code change on the right:

ID(); foo(); x = 5;
<.o0> — ID = LT; bar(); — fool();
ID(); baz () ; y =7;

The first challenge is because queries are allowed to
match parts of a change, which is useful to find relevant
changes surrounded by other, irrelevant changed code.
While useful, this property of queries also implies that the
query may match at multiple places within a given code
change. In the above example, the ID = LT; part of the
query may match both x = 5; and y = 7;. The second
challenge is because queries may contain wildcards (<. . .>),
which is useful to leave parts of a query unspecified. Wild-
cards can match none, one, or multiple statements or expres-
sions, and hence, they may cause a single query to match in
multiple ways. For the above example, the wildcard could
be between the calls of foo and baz, between the calls of
foo and bar, or between the calls of bar and baz. Because
of these two challenges, matching must consider different
ways of mapping a query onto a code change, which results
in a search space of possible matches that must be explored.

DiffSearch addresses these challenges in Algorithm
which checks whether a given query and code change

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

match. The algorithm starts by parsing the code change
into trees t. and t., which represent the old and new
part of the change, and likewise for the query. The core of
the algorithm is a worklist-based search through possible
mappings between nodes in the parse tree of the query and
nodes in the parse tree of the code change. These mappings
are represented as a map M from nodes in the query trees
to nodes in the code change trees. Each mapping M in
the worklist W represents a possible way of matching the
query against the code change. To determine whether all
nodes in the query have been successfully mapped, the
algorithm maintains a set Nyopaicn, Of all the nodes in
the query that must be matched. The algorithm explores
mappings in W until it either finds a mapping that covers
all nodes in Ny rqtch, OF until it has unsuccessfully explored
all mappings in W.

Algorithm [2] relies on several helper functions. One of
them, candidateMappings, computes the starting points for
the algorithm by returning all possible mappings of the
roots of ¢, and ¢, to nodes in the code change trees. The
nextUnmatchedNode function performs a top-down, left-to-
right pass through the query trees to find a node that is
not yet in the current map M. The canAddToMap function
checks if adding a mapping n, — c is consistent with an
already existing map M. Specifically, it checks that n, is
not yet among the keys of M, that c is not yet among the
values of M, and that the two nodes are either identical
non-placeholder nodes or that n, is a placeholder that can be
consistently mapped to c as specified in Definition 4] Finally,
the helper function isValid checks whether a mapping M
that covers all to-be-matched nodes ignores nodes in the
change tree only when there is a corresponding wildcard
in the query tree. The algorithm postpones this check to
isValid to reduce the total number of mappings to explore.

Matching a single code change against a query might
cause the algorithm to explore many different mappings,
and DiffSearch typically invokes Algorithm 2]not only once
but for tens or hundreds of candidate search results. To en-
sure that the approach responds to queries quickly enough
for interactive usage, we optimize Algorithm [2|by pruning
code changes that certainly cannot match a given query.
To this end, the approach checks if all leaf nodes in the
parse tree of a query occur at least once in the parse tree
of the code change. For example, consider the following
query, which searches for changes in the right-hand side
of assignments to a variable myVar

myVar = LT; — myVar = LT;

If a code change does not include any token myVvar, then
the optimization immediately decides that the code change
cannot match the query and skips Algorithm [2} similar to
Coccinelle [36].

4 IMPLEMENTATION

We implement the DiffSearch idea in a practical search
engine that supports multiple programming languages, cur-
rently Java, JavaScript, and Python. To gather raw code

4. Because the myVar = part of the code remains the same, the
query expresses that the literal captured by the unnamed placeholder
LT is changing.

7

changes, the implementation uses “git log -p”. For each
change, a parse tree is created using ANTLR4E] using the
grammar of the target programming language, modified to
support queries and to allow for syntactically incomplete
code fragments (Section [3.1I). The indexing and retrieval
components build on the FAISS library [34], which sup-
ports efficient vector similarity queries for up to billions
of vectors. Once changes are indexed, the search engine is
a server that responds to queries via one of two publicly
available interfaces: a web interface for interactive usage
and a web service for larger-scale usage, e.g., to create a
dataset of changesﬁ

5 EVALUATION

Our evaluation focuses on six research questions:

« RQ1: What is the recall of DiffSearch? (Section [5.1)

o RQ2: How efficient and scalable is DiffSearch? (Sec-
tion [5.2)

e RQ3: Does DiffSearch enable users to find rele-
vant code changes more effectively than a regular
expression-based search through raw diffs? (Sec-
tion[5.3)

e RQ4: Is DiffSearch useful for finding examples of
recurring bug fix patterns? (Section

e RQ5: How do parameters of the approach influence
the results? (Section [5.5))

e RQ6: How do queries and search results compare in
terms of their size and absolute number? (Section |5.6)

For each of RQ1, RQ2, RQ5, and RQ6, we present results
for all three currently supported target languages: Java,
JavaScript, and Python. For each language, we gather at
least one million code changes from repositories that are
among the top 100 of their language based on GitHub stars.
We compute the average size of the code change pair (old
code and new code) in these datasets. The datasets do not
contain commit messages, meta-information or code con-
text, but only the removed and added lines, as represented
in the diff. As a result, we count the number of "\n’ in each
pair using the bash command “grep -o "\n’ dataset | wc -1”
and we find an average number of lines per each pair of 13.4,
8.2, and 7.3 for Java, Python and JavaScript, respectively.
For RQ3 and RQ4, we focus on Java as the target language
because RQ3 is based on a user study and because RQ4
builds on a Java dataset created by prior work [37]. The
experiments are performed on a server with 48 Intel Xeon
CPU cores clocked at 2.2GHz, 250GB of RAM, running
Ubuntu 18.04.

5.1 RQ1: Recall

While the precision of DiffSearch’s results is guaranteed by
design (Section [3.5), the approach may miss code changes
due to its feature-based search, which ensures scalability
but may fail to include an expected code change into the
candidate matches. Additionally, DiffSearch only considers
k candidate changes, so it can find at most k results even

5. https:/ /www.antlr.org/
6. http:/ / diffsearch.software-lab.org

http://diffsearch.software-lab.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
TABLE 2: Recall of DiffSearch across 80 queries per lan-
guage.

Queries Java Python JavaScript
As-is 90.6% 100.0% 100.0%
Less-placeholders 83.5% 99.9% 99.8%
More-placeholders 74.2% 96.7% 95.8%
Generalized 76.7% 74.9% 66.1%
Total 80.7% 89.6% 90.4%

though queries could have more than £ matching code
changes.

To establish a ground truth, we randomly sample code
changes ¢ — ¢ from all indexed Java, Python, and
JavaScript code changes and formulate a corresponding
query ¢ — ¢ using the following four strategies. The
as-is strategy simply copies ¢ into ¢ and ¢’ into ¢'. The
less-placeholders strategy replaces some of the identifiers,
operators, and literals with corresponding placeholders or
wildcards. The more-placeholders strategy, similarly, replaces
the majority of the identifiers, operators, and literals. Finally,
the generalized strategy replaces most or all of the identifiers,
operators, and literals. For each strategy and each pro-
gramming language, we randomly sample 20 code changes
and construct a query for each one. We then compare
each query against all 1,001,797 Java, 1,007,543 JavaScript,
and 1,016,619 Python code changes using the matching
component of DiffSearch. While significantly slower than
the feature-supported search that DiffSearch uses otherwise,
this approach allows us to determine the set of all code
changes expected to be found for a query, because Algo-
rithm [2| precisely computes whether a code change matches
a query. By design of DiffSearch (Section and the way
we construct the ground truth, the precision and the mean
reciprocal rank (MRR) are 100% and 1.0, respectively, and
we hence do not report them in Table

Table [2| shows the recall of DiffSearch w.r.t. the ground
truth, i.e., the percentage of all ground truth code changes
that the approach finds. On average across the 80 queries
per programming language, DiffSearch has a recall of 80.7%
for Java, 89.6% for Python, and 90.4% for JavaScript. More
specific queries tend to lead to a higher recall. The reason
is that the parse tree of a more generalized query shares
fewer features with a matching code change, e.g., because a
complex subtree is folded into an EXPR node. The slightly
higher recall for Python and JavaScript can be explained
by two observations. First, code changes in Java tend to be
slightly larger, causing more nodes on the parse trees, which
reduces the chance to find a suitable candidate change,
e.g. because the probability of hash collisions is higher if
there are more features. Second, across the 80 queries, there
are 236,836 ground truth code changes for Java, but only
69,626 and 59,789 for Python and JavaScript, respectively,
making finding all ground truth code changes in Java a
harder problem. We discuss in Section that the recall
can be increased even further by retrieving more candidate
matches, at the expense of a slightly increased response
time.

5.2 RQ2: Efficiency and Scalability

A major goal of this work is to enable quickly searching
through hundreds of thousands of code changes. The fol-
lowing evaluates how the number of code changes to search
through influences the efficiency of queries, i.e., how well
DiffSearch scales to large amounts of changes. As queries to
run, we use the 80 queries described in Section[5.1] For each
query, we measure how long DiffSearch takes to retrieve
code changes from ten increasingly large datasets, ranging
from 10,000 to 1,000,000 code changes.

The top row of Figure {4] shows the results for the full
DiffSearch approach. Answering a query typically takes
between 0.5 and 2 seconds. Moreover, the response time re-
mains constant when searching through more code changes.
The reasons are (i) that FAISS [34] provides constant-time
retrieval in the vector space, and (ii) that the time for match-
ing candidate changes against the query is proportional to
the constant number k of candidate changes. Comparing
the three programming languages, we find that they yield
similar performance results, which is due to the fact that
most parts of our implementation are language-agnostic.
We conclude that DiffSearch scales well to hundreds of
thousands of changes and remains efficient enough for
interactive use.

The bottom row of Figure i shows the same experiment
when removing the indexing and retrieval steps of Diff-
Search (note: different y-axis). Instead, the approach linearly
goes through all code changes and compares them against
a given query using the matching component only. Answer-
ing a query takes up to 41 seconds on average, showing that
the feature-based indexing is essential to ensure DiffSearch’s
scalability.

Even though scalability is most relevant for the online
part of DiffSearch, we also measure how long the offline part
takes. In total, analyzing a million code changes to extract
feature vectors and indexing these vectors takes up to five
hours. As this is a one-time effort that does not influence the
response time, we consider it acceptable in practice.

5.3 RQa3: User Study
5.3.1 Study Setup

We perform a user study to measure whether DiffSearch
enables users to effectively retrieve code changes within a
given time budget, and to compare our approach with a
regular expression-based baseline and the GitHub Search
feature. To this end, we provide natural language descrip-
tions of kinds of code changes and ask each user to find
up to ten matching code changes per description within
two minutes. We choose this time limit based on empirical
results on code search sessions, which are reported to have a
median length of 89 seconds [38], and to control the overall
time participants of the study will have to spend. We then
ask the users how many satisfying code changes they could
find. Each user works on each kind of query with DiffSearch,
the REGEX tool and GitHub Search.

Queries. The descriptions of the queries (Table |3) are de-
signed with two criteria in mind. First, they cover different
syntactic categories of changes, including additions (#3, #4,
#7), modifications (#6), and removals (#10) of statements;
changes within existing statements (#1, #2, #5, #9); and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

5 5 5
4 4 w4
2 2 2
S 31 S 31 S 31
() () (O]
)) 2
0?2 0?2 A
€ € €
E1 4 E1 “t E1
e ST | ek x k kR % %
® (O 0 O (OO ® (OO (O o0 (O O OO O QO ©
MBI %6020000 MBI SN 600 SN MISAMNAS N 600 o
Changes # Changes # Changes
(a) DiffSearch (Java). (b) DiffSearch (Python). (c) DiffSearch (JavaScript).
100 100 100
% 80 @ 80 2 80
2 2 2
S 60 S 60 S 60
(O] (O] (O]
)) o
o 40 3 o 40 o 40
E 20 + E 20 L J‘ E 20 + * +
o 00 R O P © o 00 P O P © o 00 P O QO °
‘)00 qf) ° (-_,0 o° %‘)0200 o° ‘)00 qf) 0 ° (-_,0 o° %‘)0200 o° 6)00 'f) o° 60 o° %60200 o°
Changes # Changes # Changes

(d) DiffSearch without indexing
(Java).

(e) DiffSearch without indexing
(Python).

(f) DiffSearch without indexing
(JavaScript).

Fig. 4: Response time across differently sized datasets (average and 95% confidence interval). Top: Full DiffSearch. Bottom:

DiffSearch without indexing.

changes that surround an existing statement with a new
statement (#8). Second, the queries cover a diverse range of
reasons for changing code, including code improvements to
increase robustness (#4, #7, #8), code cleanup (#10), changes
of functionality (#6, #9), bug fixes (#1, #2, #5), and uses of a
new API (#3).

Baselines. We compare DiffSearch against two existing
tools that users might use to search for code changes. First,
we compare against a regular expression-based approach
suggested in the Stack Overflow question cited in Section
which we call REGEX. Regular expressions are well known
and widely used for general search tasks. Naively applying
regular expressions to the git history of many projects, as
suggested on Stack Overflow, leads to unacceptably high
response times (tens or even hundreds of seconds, depend-
ing on the query). Instead, we preprocess the output of git
log by removing information unrelated to the task, such
as commit messages and file names, which reduces the
size of the file and makes the response time acceptable.
Second, we compare against the search feature offered by
GitHub, which matches free-form queries against commits,
presumably through an indexing and retrieval approach
applied to the commit message and the tokens involved
in a commit. To ensure that our study participants search
through the same dataset as DiffSearch, instead of all com-
mits on GitHub, we create a single repository[] with all code

7. https:/ / github.com /luca-digrazia/DatasetCommitsDiffSearch

changes in our dataset, copied from the original version
histories, and then restrict GitHub’s search to this repository.

Participants and setup. We recruit ten participants, con-
sisting of seven PhD students, two senior undergraduate
students, and one senior developer. The participants do not
overlap with the authors of this paper. The user study is
performed virtually with participants working from their
offices or their homes. We ask each participant to assess
for each of the three tools involved in the study their
level of experience (expert, advanced, intermediate, or beginner)
and their usage frequency (weekly,monthly, yearly, or never
used). None of the participants has previous experience with
DiffSearch. Regarding their experience with REGEX, four
participants are advanced, five are at intermediate level, and
one is a beginner. Seven participants use REGEX monthly,
and three participants even weekly. For GitHub Search, one
participant is advanced, five are intermediate, and four are
beginners. Two participants use it yearly, four monthly, three
weekly, and one has never used it.

The participants access DiffSearch through a web inter-
face that resembles a standard search engine, but has two
text input fields, for the old and new code, respectivelyﬂ For
REGEX, participants use a terminal and their favorite tool
to search with regular expressions, e.g., grep. For GitHub
Search we provide a link to GitHub that already restricts
the search to commits in the repository created for this

8. The web interface is available to reviewers, see end of Section

https://github.com/luca-digrazia/DatasetCommitsDiffSearch

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

user study. We provide 1,050 words of instructions to the
participants, which explain the task, the query language of
DiffSearch, how to search through raw diffs using REGEX,
and GitHub Search.

5.3.2 Quantitative Results

Table 3 shows the number of search results obtained using
DiffSearch and REGEX. Across the entire study, the par-
ticipants find 711 code changes with DiffSearch, but only
303 with REGEX and 302 with GitHub Search. Inspecting
individual queries shows that, while some are harder than
others, at least one user finds ten code changes for each
query. For 77.0% of DiffSearch queries, users retrieve at least
one code change with DiffSearch, whereas with REGEX,
users get at least one code change for only 35.0% of all
queries, and 60.0% of GitHub Search queries lead to at
least one code change. For 65.0% of DiffSearch queries,
users find the desired number of ten code changes, but only
29.0% of users succeed with REGEX and 15.0% with GitHub
Search. Overall, we conclude that DiffSearch enables users
to effectively find code changes, and that the approach
clearly outperforms the REGEX-based and GitHub Search
baseline.

5.3.3 Qualitative Results

To better understand the strengths and weaknesses of
DiffSearch, we manually inspect queries formulated by
users. All the users get enough results for query #6, e.g.,
with queries such as "ID(EXPR); — _”, underlining how
easy it is querying DiffSearch. Another example is query
#10, where all participants use a query similar to ”“Sys-
tem.out.printin(EXPR); — _”, which yields 10 satisfying
results. The user study also shows how fast the participants
learn to use DiffSearch. For example, Users 2 and 5 on query
#3 find zero code changes with DiffSearch, while they find
10 code changes on query #4 because they have learned
more about the query syntax. As another example, User 2 for
query #3 uses queries like ”_— import LT().LT()” and 7 _—
import LT<...>LT<..>”, which are syntactically invalid.
After some tries the user understands the query and they
perform better on the following queries.

When asking participants about their experience after
the experiment, some users report difficulties in formulating
precise queries on GitHub Search. For example, for query #6
a user says: “found many other method calls with more than
one argument that were removed as well”. For query #7 a
user states: I could find some more code that uses assert
but not specifically that inserts an assert keyword”. These
examples illustrate that DiffSearch is particularly useful
when searching for non-trivial code changes and to avoid
false positive results.

While DiffSearch clearly outperforms REGEX and
GitHub Search for all ten queries, there are some user-
query pairs where REGEX and GitHub Search yields more
results than DiffSearch. Analyzing these cases shows two
main reasons. First, some users were effective with regular
expressions by searching for simple code changes that only
add or only remove a single line of code. For example, for
query #3, some users simply searched for “+ import (.*)”.
Instead, for the same query GitHub Search has the best
performance because users find precise commit messages

10

for this kind of code change. Second, some users formulated
regular expression queries that are more general than the
natural language description we provide and then manually
filtered the results to find the ten relevant code changes. For
example, for query #5, a user searched for “if((.*?))” and then
manually checked for conditions that involve null. Finally,
Users 3 and 6 find more code changes with REGEX than the
other two tools. These users judge their REGEX experience
with advanced and intermediate, respectively, and they both
use REGEX monthly, which they affirm to have helped them
to be effective with REGEX on this task.

We also asked for informal feedback about the three
tools, to better understand their strengths and weaknesses.
Users report three reasons for preferring DiffSearch over
REGEX and GitHub Search. First, they find the DiffSearch
query more precise than regular expression syntax or free-
form queries, because it builds upon the underlying pro-
gramming language. In particular, some users affirm that in
two minutes they were able to type a DiffSearch query, but
not a working regular expression, especially for complex
queries, such as multi-line code changes. Second, REGEX
often was much slower than DiffSearch because it linearly
searches through all code changes, while GitHub Search of-
ten shows commits with so many hunks that it is difficult to
find a specific code change. This inefficiency, especially for
more complex code changes, caused some users to not find
any relevant code changes in the given time. Finally, some
users mention that REGEX syntax is not precise enough to
formulate effective queries, leading to many false positives.

5.4 RQ4: Searching for Bug Fixes

As a case study for using DiffSearch, we apply it to search
for instances of bug fix patterns, which could help, e.g., to
establish a dataset for evaluating bug detection tools [1f], au-
tomated program repair tools [5]], or for training a learning-
based bug detection tool [39]. We build on a set of 16
patterns defined by prior work [37], of which we use twelve
(Table). The remaining four bug fix patterns are all about
single-token changes, e.g., changing a numeric literal or
changing a modifier, which currently cannot be expressed
with our query language. For the twelve supported patterns,
we formulate queries based on the descriptions of the pat-
terns and then search for them with DiffSearch. We use two
different datasets for this case study. First, a set of around
10,000 code changes, called SStuBs commits, that contains all
those commits where the prior work [37] found instances of
the bug fix patterns through custom-built analysis scripts,
which we call SStuBs. Second, a set of around 1,000,000
code changes, called Large, sampled from all the repositories
analyzed in the prior work.

Table 4] shows for each bug fix pattern how many code
changes the different approaches find. DiffSearch returns a
total of 15,959 code changes for the first dataset and 74,903
for the second dataset. Computing the intersection with the
results retrieved by SStuBs, DiffSearch finds 79.2% of their
changes, a result consistent with the Java recall computed
in RQ1. Moreover, DiffSearch finds many more matching
code changes, increasing the dataset from 2,867 to 15,959
examples of bug fixes. The reason is that our queries are
more general than the custom analysis scripts in SStuBs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

11

TABLE 3: Query descriptions for user study and summary of search results.

DiffSearch / REGEX / GitHub Search

Id Query description

User1 User2 User3 User4

User5 User6 User7 User8 User9 User10 Total

Find changes in which a return
statement that returns a literal
changes to returning the result
of a method call.
Find changes where the

2 developer swaps the arguments
of a method call.
Find changes that add an import

3 of a class in the form
“import somePkg.SomeClass”.
Find changes that add a call

4 to close some resource, e.g.,
a stream or file reader.
Find changes where the
condition of an if statement
with a bodychanges from
“-=null” to “!= null”.
Find changes that remove

6 a method call with
one argument.
Find changes that insert

7 an assertion using
Java’s “assert” keyword.
Find changes in which a

8 code snippet is surrounded
with a try/catch block.
Find changes where the

9 condition of a while

loop is changed.

Find changes that remove

a call to System.out.println(...).

10/0/0 10/0/0

0/0/0 0/0/0 10/0/6

10/0/10 0/10/10

0/0/3 10/10/1 10/10/1

4/0/0 10/0/0 4/5/0

10/0/10 10/1/110/10/10

10/0/610/10/10 0/10/0

0/0/0 0/0/5 0/0/1

10/0/0 10/10/1 10/2/0

10 10/0/6 10/10/4 10/10/1

0/10/0 0/0/10

10/0/1

10/10/410/10/10

10/0/10

0/0/10

10/0/0

0/2/10

0/0/0

10/0/0

10/0/10 10/10/5 10/10/1

1/0/0 7/0/0 10/0/3 7/0/5 7/0/0 7/0/1] 68/10/19

10/0/6 0/0/0 10/0/0 10/0/010/0/10 10/0/0 70/0/23

0/10/810/10/10 10/10/7 10/0/710/0/10 10/0/10| 80/60/86

10/10/1 0/10/0 10/10/210/0/10 10/0/0 10/10/1 80/60/29

7/0/0 0/0/1 4/0/0 4/0/0 0/0/0 5/0/0 38/7/11

10/0/10 10/10/1 10/10/0 10/0/0 10/0/6 10/0/0| 100/31/38

10/10/2 0/10/0 10/10/2 10/0/3 10/0/0 10/10/0| 70/62/33

0/0/1 10/10/3 4/10/4 10/0/3 0/0/5 1/0/5 25/0/27

10/0/1 0/0/1 10/0/0 0/0/0 10/0/0 10/0/0 90/13/3

10/10/2 10/0/3 10/0/1 10/0/0f 100/60/33

Total

64/0/3570/51/32 64/67/23 64/12/61 60/40/34 47/53/17 88/50/20 81/0/3177/0/3283/30/17|711/303 /302

TABLE 4: Effectiveness of DiffSearch in finding instances of
bug fix patterns [37].

SStuBs commits (10k) Large (1M)
SStuBs DiffSearch Both | DiffSearch

Description

1 Change only caller 132 1,880 121 5,974
2 Change binary operator 211 347 131 2,979
3 More specific if 130 592 116 5,660
4 Less specific if 166 592 150 5,387
5 Wrong function name 1,141 1,439 935 8,109
6 Same caller, more args 557 2,108 432 11,207
7 Same caller, less args 110 2,123 75 10,798
8 Same caller, swap args 98 2,285 89 9,042
9 Change unary operator 126 134 70 6,081
10 Change binary operand 91 347 73 2,136
11 Add throws exception 60 1,834 34 3,848
12 Delete throws exception 45 2,278 44 3,682
Total 2,867 15,959 2,270 | 74,903

and include, e.g., also code changes that perform other
changes besides the specific bug fix. The number of code
changes found by DiffSearch is higher than the number of
commits (10k) because a single commit may match multiple
patterns. For example, a change that swaps two arguments
and modifies a function name will appear in patterns 5
and 8. Overall, DiffSearch is effective at finding various
examples of bug fix patterns, showing the usefulness of the
approach for creating large-scale datasets.

5.5 RQ5: Impact of Parameters

We perform a sensitivity analysis for the two main parame-
ters of DiffSearch: the length [of feature vectors (Section|3.3),

and the number k of candidate matches retrieved via the
feature vectors (Section [3.4). We select a set of values from
1,000 to 20,000 for k£ and from 500 to 4,000 for [, ie.,
values below and above the defaults, and then measure their
impact on the time to answer queries, the recall, and the size
of the index.

Table [5| shows the results. We find that retrieving more
candidate code changes, i.e., a higher k, slightly increases
the response time. The reason is that matching more code
changes against the query increases the time taken by the
matching phase. On the positive side, increasing k increases
the recall, reaching 87.3% for Java, 93.7% for Python, and
95.6% for JavaScript when k£=20,000, while still providing an
acceptable average response time. Parameter [increases the
time to answer a query because a larger feature vector slows
down the nearest neighbor search. Likewise, a larger [also
increases the size of the index. Since increasing [beyond
our default does not significantly increase recall, we use
[=1,000 as the default to have a manageable index size and
a reasonable response time. As a result, users can adjust the
parameters based on their usage scenario. They can use a
higher £ if they prefer recall over efficiency, or a lower £ if
they prefer the opposite.

5.6 RQ6: Queries vs. Search Results

The goal of performing a search is to obtain more infor-
mation than provided in the query. To assess to what extent
DiffSearch serves this purpose by characterizing queries and
the resulting search results in two ways. These experiments
are done on all three currently supported languages, using
the 80 queries described in RQI.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 5: Impact of length [of feature vectors and number
k of candidates (default configuration is bold).

k l Response time (s) Recall Size of
min avg max (%) index (GB)
Java:
1,000 1,000 1.5 1.9 35 71.8 4.0
5,000 1,000 1.5 2.2 9.0 80.7 4.0
10,000 1,000 1.7 2.5 9.4 84.9 4.0
20,000 1,000 1.8 3.1 17.7 87.3 4.0
5,000 500 0.8 1.3 8.1 79.3 2.0
5,000 2,000 3.0 42 9.9 80.6 8.0
5,000 4,000 5.8 7.4 15.3 78.1 16.0
Python:
1,000 1,000 3.0 4.1 55 81.9 4.1
5,000 1,000 1.8 24 3.5 89.8 4.1
10,000 1,000 35 5.0 8.9 91.6 4.1
20,000 1,000 41 6.0 12.4 93.7 41
5,000 500 1.0 1.6 3.1 86.6 2.0
5,000 2,000 2.7 49 40.8 89.8 8.1
5,000 4,000 6.1 7.9 13.1 83.4 16.3
JavaScript:
1,000 1,000 1.2 1.9 2.8 85.4 4.0
5,000 1,000 1.3 2.0 2.8 90.4 4.0
10,000 1,000 14 2.3 33 94.0 4.0
20,000 1,000 1.8 29 5.7 95.6 4.0
5,000 500 0.7 1.2 2.1 90.3 2.0
5,000 2,000 3.1 45 54 92.5 8.0
5,000 4,000 51 9.2 12.8 88.6 16.1

First, we quantify the number of results obtained via
a single query. We compute the average number of code
changes retrieved by DiffSearch among the 80 queries. We
find an average of 646 results for Java, 269 for Python, and
280 for JavaScript. As a result, we can conclude that typing
a single DiffSearch query results in a significant amount of
information retrieved.

Second, we approximate the amount of information in
a query and the resulting search results by counting the
number of characters they are composed of. For the results
with multiple code changes we compute the average of their
size. We find an average query size of 95 and an average
result size of 136 for Java, an average query size of 47 and an
average result size of 67 for Python, and an average query
size of 34 and an average result size of 55 for JavaScript.
As a result, we can conclude that the result of DiffSearch
queries contains 29.9%, 29.8%, and 38.2% more information
than provided in the query for Java, Python and JavaScript,
respectively.

In conclusion, we show that the effort to type a Diff-
Search query has benefits in the quantity of information
retrieved.

6 LIMITATIONS AND FUTURE WORK

Our approach has some limitations that will be interesting to
address in future work. First, in Section we explain the
challenge of parsing incomplete parse trees. We extend the
ANTLR4 grammar for the target programming languages
with optional rules to parse incomplete snippets of code
that commonly occur in hunks. These extensions cover most
but not all hunks, and we plan to enable parsing of an
even larger range of incomplete code snippets in the future.

12

Second, our approach of parsing individual hunks will be
non-trivial to apply to languages that make heavy use of
macros, such as C. The reason is that, when trying to parse
a single hunk, the definitions of macros are not available.
Finally, Section B.3|describes the features we design for code
changes. Future work could either extend those features
with other features or apply neural networks that learn to
map code changes into continuous vector representations,
such as CC2Vec [40] and Commit2Vec [41].

7 RELATED WORK

Code Search. Code search engines allow users to find code
snippets based on method signatures [16], existing code
examples [17], [18], [42], or natural language queries [15],
[43], [44]. Sourcerer provides an infrastructure that combines
several of the above ideas [14]. Early work by Paul et
al. [45] proposes a mechanism similar to the placeholders
in our query language. The most important difference be-
tween these approaches and DiffSearch is that we search
for changes of code, not for code snippets within a single
snapshot of code. Another difference is that DiffSearch
guarantees that all search results match the given query,
whereas the existing techniques, with the exception of [42],
are aimed at similarity only.

Prequel has a goal similar to DiffSearch, and matches
C, and partially also C++ and Java, patches against user-
provided rules that the code before and after a patch must
comply with [13]. The approaches differ in four aspects.
First, Prequel can describe all the parts of a commit, in-
cluding the code surrounding and relationship between
multiple hunks. Instead, DiffSearch focus on single hunks.
Second, Prequel’s rules are based on the semantic patch
language of Coccinelle [36] and may include executable
code, e.g., queries are Turing-complete. In contrast, our
queries are purely declarative and build on the underlying
programming language. Third, Prequel pre-filters commits
based on a regular expression or indexing, followed by a
linear search through all remaining commits. As a result,
answering a query may take minutes or, if the pre-filtering
is not effective, even longer [13]. In contrast, DiffSearch
avoids a linear search via feature-based retrieval, and hence,
responds to queries across hundreds of thousands of code
changes within seconds. The indexing module could be
used also in Prequel in principle. Finally, Prequel is eval-
uated on a different problem than DiffSearch: obtaining
examples to motivate device driver porting from 300,000
commits of the Linux kernel.

Several ideas to improve the user’s interaction with a
code search engine have been proposed, such as refining
search results based on user feedback about the quality of re-
sults [46], [47]. Other work resolves vocabulary mismatches
between queries and code [48]]. Finally, code2vec [49] rep-
resents a code snippet with a single-size feature vector, but
with respect to DiffSearch they use ASTs and neural net-
works. The main difference with our work is that code2vec
converts snippets of code in vectors, instead DiffSearch
converts code changes in vectors. Future work could adopt
similar ideas to searching for code changes.

Code Changes as Edit Scripts. To reason about code
changes, several techniques derive edit scripts on ASTs [10],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[19], [22], [50], providing an abstract description of the
change that can then be applied elsewhere [51]. Lase gen-
eralizes from multiple code changes into a single edit
script [52]]. Future work could explore using an edit script-
based representation of code changes to search for code
changes. An advantage of our parse tree-based feature
extraction is that it does not require aligning the old and
new code, allowing us to featurize hundreds of thousands
of code changes in reasonable time.

Mining Code Changes. Work on mining code repositories
and learning from code changes shows development his-
tories to be a rich source of implicitly stored knowledge.
For example, existing approaches leverage version histories
to extract repetitive code changes [6], [8], [53], predict code
changes [54], predict bugs [55], [56], or to learn about API
usages [57], [58]. Mining approaches typically consider all
code changes in a project’s version history or filter changes
using simple patterns, e.g., keywords in commit messages.
In contrast, DiffSearch allows for identifying code changes
that match a specific query.

Learning from Code Changes. Large sets of code changes
enable learning-based techniques. One line of work learns
from specific kinds of changes, e.g., fixes of particular bug
patterns, how to apply this kind of change to other code
for automated program repair [5], [20], [59]. Another line
of work ranks potential program repairs based on their
similarity to common code change patterns [60]. DiffSearch
could help gather datasets of changes for these approaches
to learn from, e.g., based on queries for bug fixing patterns.

Representation Learning on Commits. The feature extrac-
tor of DiffSearch relates to techniques for learning vec-
tor representations of commits, such as CC2Vec [40] and
Commit2Vec [41]. These techniques train a model on some
“pseudo task” for which abundant training data is eas-
ily available, e.g., predicting the words in the commit
message [40] or whether a commit is labeled as security-
critical [41]. Once trained, the vector representations pro-
duced by a representation learning model could, in prin-
ciple, be used as an alternative to the feature vectors of
DiffSearch. In practice, integrating CC2Vec and Commit2Vec
into our approach is non-trivial because both approaches
focus on entire commits, which may include many hunks
distributed across multiple files, whereas DiffSearch re-
trieves code changes at hunk-level granularity. Finding an
appropriate pseudo task for representation learning on in-
dividual hunks, and integrating the resulting embeddings
into DiffSearch, could be interesting future work.

Other Analyses of Code Changes. There are various other
analyses of code changes, of which we discuss only a subset
here. Hashimoto et al. propose a technique for reducing
a diff to the essence of a bug [61]. Nielsen et al. [62]
use JavaScript code change templates to fix code broken
due to library evolution. Another approach automatically
documents code changes with a natural language descrip-
tion [63]. SCC [64] and Deep]IT [65] are predictive models
that estimate how likely a code change is to introduce a bug.
A related problem is to find the bug-inducing code change
for a given bug report [66], [67]. DiffBase [68] encodes facts
about different versions of a program to facilitate multi-
version program analyses. CodeShovel [69] tracks a method
from its creation to its current state throughout a version

13

history. All these approaches relate to our work by also
reasoning about code changes, but they aim for different
goals than DiffSearch.

Clone Detection. DiffSearch relates to code clone detec-
tors [24], [25], [26]], [27], [28], as answering a query resembles
finding clones of the query. In particular, DiffSearch com-
pares a query against code changes in a way similar to Type-
1 clones, and when using placeholders in the query, similar
to Type-2 and Type-3 clones. Clone detectors are typically
evaluated on a single snapshot of a code base, and they
may take several minutes or even hours to terminate [28]]. In
principle, one could use an off-the-shelf code clone detector
to search for specific kinds of code changes, where the
old and new parts of the query must be clones of the
old and new parts of a change, respectively. However, this
approach would search for clones among all code changes
for each query, which may not be fast enough for an in-
teractive search engine. Some clone detectors summarize
code in ways related to our feature extraction. For example,
Deckard [26] computes characteristic vectors of parse trees
and SourcererCC [28] indexes large amounts of code into a
bag-of-tokens representation. Integrating such ideas into the
feature-based retrieval in DiffSearch could further improve
recall. Inoue et al. [70] propose a code clone detector that
supports special tokens, such as §, *, #, to express exact
matching, repetitions, and more, similar to regular expres-
sions. However, their approach cannot express relationships
between an old and a new code snippet, as supported by
DiffSearch. Nguyen et al. [71] perform an empirical study
on a large dataset of Java and C# using API2VEC based on
Word2Vec to create feature vectors from APIs. They find this
kind of representation successful, because APIs with similar
usage context have closer feature vectors using this repre-
sentation. DiffSearch differs from their approach because
match code changes and because perform a matching based
on the syntax of the code more than their usage context.

8 CONCLUSION

We present a scalable and precise search engine for code
changes. Given a query that describes code before and after
a change, the approach retrieves within seconds relevant ex-
amples from a corpus of a million code changes. Our query
language extends the underlying programming language
with wildcards and placeholders, providing an intuitive
way of formulating queries to search for code changes. Key
to the scalability of DiffSearch is to encode both queries
and code changes into a common feature space, enabling
efficient retrieval of candidate search results. Matching these
candidates against the query guarantees that every returned
search result indeed fits the query. The approach is mostly
language-agnostic, and we empirically evaluate it on Java,
JavaScript, and Python. DiffSearch answers most queries
in less than a second, even when searching through large
datasets. The recall ranges between 80.7% and 90.4%, de-
pending on the target language, and can be further in-
creased at the expense of response time. We also show
that users find relevant code changes more effectively with
DiffSearch than with a regular expression-based search and
GitHub Search. Finally, as an example of how the approach
could help researchers, we use it to gather a dataset of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

74,903 code changes that match recurring bug fix patterns.
We envision DiffSearch to serve as a tool useful to both
practitioners and researchers, and to provide a basis for
future work on searching for code changes.

ACKNOWLEDGMENT

This work was supported by the European Research Coun-
cil (ERC, grant agreement 851895), and by the German
Research Foundation within the ConcSys and DeMoCo
projects.

REFERENCES

(1]
(2]

(3]

(4]

(5]
6]

(71

(8]

(9]

[10]

[11]

[12]

(13]

[14]

A. Habib and M. Pradel, “How many of all bugs do we find? A
study of static bug detectors,” in ASE, 2018.

C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated
program repair,” Commun. ACM, vol. 62, no. 12, pp. 5665, 2019.
[Online]. Available: https://doi.org/10.1145/3318162

S. H. Tan, J. Yi, Yulis, S. Mechtaev, and A. Roychoudhury,
“Codeflaws: a programming competition benchmark for
evaluating automated program repair tools,” in Proceedings
of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume,
S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE
Computer Society, 2017, pp. 180-182. [Online]. Available:
https://doi.org/10.1109 /ICSE-C.2017.76

M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues, “Quality
of automated program repair on real-world defects,” IEEE Trans-
actions on Software Engineering, 2020.

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” in OOPSLA, 2019, pp. 159:1-159:27.

S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-
grained code changes to detect unknown change patterns,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
2014, pp. 803-813.

I. Rak-amnouykit, D. McCrevan, A. Milanova, M. Hirzel, and
J. Dolby, “Python 3 types in the wild: A tale of two type systems,”
in DLS, 2020.

H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran,
and M. Hilton, “Graph-based mining of in-the-wild, fine-
grained, semantic code change patterns,” in Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, 2019, pp. 819-830. [Online].
Available: https:/ /doi.org/10.1109 /ICSE.2019.00089

A. Eghbali and M. Pradel, “No strings attached:
An empirical study of string-related software bugs,”
in 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020, Melbourne, Australia, September 21-
25, 2020. 1IEEE, 2020, pp. 956-967. [Online]. Available:
https:/ /ieeexplore.ieee.org/document /9286132

B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,”
IEEE Transactions on software engineering, vol. 33, no. 11, pp. 725~
743, 2007.

D. Kawrykow and M. P. Robillard, “Non-essential changes in
version histories,” in 2011 33rd International Conference on Software
Engineering (ICSE). 1EEE, 2011, pp. 351-360.

K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286-315, 2009.

J. Lawall, D. Palinski, L. Gnirke, and G. Muller, “Fast and precise
retrieval of forward and back porting information for linux device
drivers,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17), 2017, pp. 15-26.

S. K. Bajracharya, T. C. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. V. Lopes, “Sourcerer: a search engine for open
source code supporting structure-based search,” in Companion
to the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2006,
October 22-26, 2006, Portland, Oregon, USA, P. L. Tarr and W. R.
Cook, Eds. ACM, 2006, pp. 681-682. [Online]. Available:
https://doi.org/10.1145/1176617.1176671

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

14

X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
933-944. [Online]. Available: https://doi.org/10.1145/3180155.
3180167

S. P. Reiss, “Semantics-based code search,” in 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings. 1EEE, 2009, pp. 243-253. [Online].
Available: https://doi.org/10.1109/ICSE.2009.5070525

S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma:
Code recommendation via structural code search,” Proceedings of
the ACM on Programming Languages, vol. 3, no. OOPSLA, p. 152,
2019.

K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L.
Traon, “Facoy: a code-to-code search engine,” in Proceedings of the
40th International Conference on Software Engineering, 2018, pp. 946—
957.

J. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Monperrus, “Fine-grained and accurate source code
differencing,” in ACMY/IEEE International Conference on Auto-

mated Software Engineering, ASE "14, Vasteras, Sweden - September
15 - 19, 2014, 2014, pp. 313-324. [Online]. Available:
https://doi.org/10.1145/2642937.2642982

R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani,
R. Gheyi, R. Suzuki, and B. Hartmann, “Learning syntactic
program transformations from examples,” in Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 404-415.
[Online]. Available: https://doi.org/10.1109/1CSE.2017.44

X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani,
A. Leung, N. Nagappan, and A. Tiwari, “Feedback-driven
semi-supervised synthesis of program transformations,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 219:1-219:30, 2020.
[Online]. Available: https://doi.org/10.1145/3428287

S. Erdweg, T. Szab6, and A. Pacak, “Concise, type-safe, and
efficient structural diffing,” in PLDI, 2021.

R. Paletov, P. Tsankov, V. Raychev, and M. T. Vechev, “Inferring
crypto API rules from code changes,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018,]. S. Foster and D. Grossman, Eds. ACM, 2018, pp. 450-464.
[Online]. Available: https://doi.org/10.1145/3192366.3192403

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source
code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.
654-670, 2002.

Z. 1i, S. Lu, S. Myagmar, and Y. Zhou, “CP-miner: Finding
copy-paste and related bugs in large-scale software code,” IEEE
Transactions on Software Engineering, vol. 32, no. 3, pp. 176-192,
2006.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). 1EEE, 2007, pp.
96-105.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code nor-
malization,” in 2008 16th iEEE international conference on program
comprehension. 1EEE, 2008, pp. 172-181.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 1157-1168.

A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and
Y. Arroyo-Paredes, “Detecting argument selection defects,” in
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2017.

A. Alali, H. H. Kagdi, and]J. I Maleticc “What's a
typical commit? A characterization of open source software
repositories,” in The 16th IEEE International Conference on Program
Comprehension, ICPC 2008, Amsterdam, The Netherlands, June 10-13,
2008, R. L. Krikhaar, R. Liammel, and C. Verhoef, Eds.
IEEE Computer Society, 2008, pp. 182-191. [Online]. Available:
https:/ /doi.org/10.1109/1CPC.2008.24

M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping
developers help themselves: Automatic decomposition of code
review changesets,” in 37th IEEE/ACM International Conference

https://doi.org/10.1145/3318162
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/ICSE.2019.00089
https://ieeexplore.ieee.org/document/9286132
https://doi.org/10.1145/1176617.1176671
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3428287
https://doi.org/10.1145/3192366.3192403
https://doi.org/10.1109/ICPC.2008.24

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, A. Bertolino, G. Canfora, and S. G. Elbaum, Eds.
IEEE Computer Society, 2015, pp. 134-144. [Online]. Available:
https://doi.org/10.1109/ICSE.2015.35

K. Herzig, S. Just, and A. Zeller, “The impact of tangled
code changes on defect prediction models,” Empir. Softw.
Eng., vol. 21, no. 2, pp. 303-336, 2016. [Online]. Available:
https://doi.org/10.1007 /s10664-015-9376-6

P. Partachi, S. K. Dash, M. Allamanis, and E. T. Barr,
“Flexeme: untangling commits using lexical flows,” in ESEC/FSE
'20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and
T. Zimmermann, Eds. ACM, 2020, pp. 63-74. [Online]. Available:
https://doi.org/10.1145/3368089.3409693

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, 2019.

L. Di Grazia and M. Pradel, “Code search: A survey of
techniques for finding code,” ACM Comput. Surv., sep 2022.
[Online]. Available: https://doi.org/10.1145/3565971

J. Lawall and G. Muller, “Coccinelle: 10 years of automated
evolution in the linux kernel,” in 2018 USENIX Annual Technical
Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
H. S. Gunawi and B. Reed, Eds. USENIX Association,
2018, pp. 601-614. [Online]. Available: https://www.usenix.org/
conference/atc18/presentation/lawall

R.-M. Karampatsis and C. Sutton, “How often do single-statement
bugs occur? the manysstubs4j dataset,” in Proceedings of the 17th
International Conference on Mining Software Repositories, ser. MSR
20. New York, NY, USA: Association for Computing Machinery,
2020, p. 573-577. [Online]. Available: https://doi.org/10.1145/
3379597.3387491

C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: a case study,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 191-201.

M. Pradel and K. Sen, “DeepBugs: A learning approach to
name-based bug detection,” PACMPL, vol. 2, no. OOPSLA, pp.
147:1-147:25, 2018. [Online]. Available: https://doi.org/10.1145/
3276517

T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 518—
529.

R. Cabrera Lozoya, A. Baumann, A. Sabetta, and M. Bezzi, “Com-
mit2vec: Learning distributed representations of code changes,”
SN Computer Science, vol. 2, no. 3, pp. 1-16, 2021.

V. Premtoon, J. Koppel, and A. Solar-Lezama, “Semantic code
search via equational reasoning,” in PLDI, 2020.

S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra,
“Retrieval on source code: a neural code search,” in Proceedings of
the 2nd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. ACM, 2018, pp. 31-41.

J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964-974.

S. Paul and A. Prakash, “A framework for source code search us-
ing program patterns,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 463475, 1994.

L. Martie, A. v. d. Hoek, and T. Kwak, “Understanding the impact
of support for iteration on code search,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
774-785.

A. Sivaraman, T. Zhang, G. Van den Broeck, and M. Kim, “Active
inductive logic programming for code search,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 1EEE,
2019, pp. 292-303.

R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and
Y. Le Traon, “Augmenting and structuring user queries to support
efficient free-form code search,” Empirical Software Engineering,
vol. 23, no. 5, pp. 2622-2654, 2018.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec:
learning distributed representations of code,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 40:1-40:29, 2019. [Online]. Available:
https://doi.org/10.1145/3290353

M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained
structural change analysis,” in WCRE 2008, Proceedings of the

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

15

15th Working Conference on Reverse Engineering, Antwerp, Belgium,
October 15-18, 2008, 2008, pp. 279-288. [Online]. Available:
https://doi.org/10.1109/WCRE.2008.44

N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: gener-
ating program transformations from an example.” in PLDI, 2011,
pp- 329-342.

——, “Lase: locating and applying systematic edits by learning
from examples.” in ICSE, 2013, pp. 502-511.

H. A. Nguyen, A. T. Nguyen, T. . Nguyen, T. N. Nguyen, and
H. Rajan, “A study of repetitiveness of code changes in software
evolution,” in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2013, pp. 180-190.

M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and
D. Poshyvanyk, “On learning meaningful code changes
via neural machine translation,” in Proceedings of the

41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, 2019, pp. 25-36. [Online].
Available: https:/ /dl.acm.org/ citation.cfm?id=3339509

V. B. Livshits and T. Zimmermann, “DynaMine: Finding common
error patterns by mining software revision histories,” in European
Software Engineering Conference and Symposium on Foundations of
Software Engineering (ESEC/FSE). ACM, 2005, pp. 296-305.

S. Kim, E. J. W. Jr.,, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181-196, 2008.

A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 511-522.

R. Paletov, P. Tsankov, V. Raychev, and M. T. Vechev, “Inferring
crypto API rules from code changes,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
2018, pp. 450—464.

R. Sousa, G. Soares, R. Gheyi, T. Barik, and L. D’Antoni,
“Learning quick fixes from code repositories,” in Proceedings of the
XXXV Brazilian Symposium on Software Engineering, ser. SBES "21.
New York, NY, USA: Association for Computing Machinery, 2021,
p- 74-83. [Online]. Available: https://doi.org/10.1145/3474624.
3474650

X. D. Le, D. Lo, and C. Le Goues, “History driven
program repair,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, 2016, pp. 213-224. [Online].
Available: https://doi.org/10.1109/SANER.2016.76

M. Hashimoto, A. Mori, and T. Izumida, “Automated patch
extraction via syntax- and semantics-aware delta debugging on
source code changes,” in Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 598-609.
[Online]. Available: https://doi.org/10.1145/3236024.3236047

B. B. Nielsen, M. T. Torp, and A. Moller, “Semantic patches for
adaptation of javascript programs to evolving libraries,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 74-85.

R. P. L. Buse and W. Weimer, “Automatically documenting pro-
gram changes,” in Conference on Automated Software Engineering
(ASE). ACM, 2010, pp. 33-42.

E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained
source code changes and code churn for bug prediction,” in
Proceedings of the 8th Working Conference on Mining Software Reposi-
tories, 2011, pp. 83-92.

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi,
“Deepjit: an end-to-end deep learning framework for just-in-
time defect prediction,” in Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 2019, 26-27 May
2019, Montreal, Canada., 2019, pp. 34-45. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00016

M. Wen, R. Wu, and S. Cheung, “Locus: locating bugs
from software changes,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE
2016, Singapore, September 3-7, 2016, 2016, pp. 262-273. [Online].
Available: https:/ /doi.org/10.1145/2970276.2970359

R. Wu, M. Wen, S. Cheung, and H. Zhang, “Changelocator:
locate crash-inducing changes based on crash reports,” Empirical

https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1145/3368089.3409693
https://doi.org/10.1145/3565971
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3290353
https://doi.org/10.1109/WCRE.2008.44
https://dl.acm.org/citation.cfm?id=3339509
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1145/3236024.3236047
https://doi.org/10.1109/MSR.2019.00016
https://doi.org/10.1145/2970276.2970359

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Software Engineering, vol. 23, no. 5, pp. 2866-2900, 2018. [Online].
Available: https:/ /doi.org/10.1007 /s10664-017-9567-4

[68] X. Wu, C. Zhu, and Y. Li, “Diffbase: A differential factbase for
effective software evolution management,” in ESEC/FSE, 2021.

[69] E Grund, S. A. Chowdhury, N. Bradley, B. Hall, and R. Holmes,
“Codeshovel: Constructing method-level source code histories,”
in ICSE, 2021.

[70] K. Inoue, Y. Miyamoto, D. M. German, and T. Ishio, “Code
clone matching: A practical and effective approach to find code
snippets,” arXiv preprint arXiv:2003.05615, 2020.

[71] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen,
“Exploring api embedding for api usages and applications,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE). 1IEEE, 2017, pp. 438—449.

Luca Di Grazia is a PhD student in the De-
partment of Computer Science at the Univer-
sity of Stuttgart in Germany, advised by Michael
Pradel. His main research interests are code
evolution and maintenance, mining software
repositories, and program analysis.

Paul Bredl is a master student in Software En-
gineering at the University of Stuttgart. During
and after his bachelor studies he worked as a
software developer, maintaining and extending
enterprise systems.

Michael Pradel is a full professor at the Uni-
versity of Stuttgart. His research interests span
software engineering, programming languages,
security, and machine learning, with a focus on
tools and techniques for building reliable, effi-
cient, and secure software.

https://doi.org/10.1007/s10664-017-9567-4

	Introduction
	Example and Overview
	Motivating Example
	Problem Statement
	Main Idea of the Approach

	Approach
	Query Language
	Tree-based Representation of Code Changes and Queries
	Extracting Features
	Indexing and Retrieving Code Changes
	Matching of Candidate Search Results

	Implementation
	Evaluation
	RQ1: Recall
	RQ2: Efficiency and Scalability
	RQ3: User Study
	Study Setup
	Quantitative Results
	Qualitative Results

	RQ4: Searching for Bug Fixes
	RQ5: Impact of Parameters
	RQ6: Queries vs. Search Results

	Limitations and Future Work
	Related Work
	Conclusion
	References
	Biographies
	Luca Di Grazia
	Paul Bredl
	Michael Pradel

