
In Search of
Silver Bullets for Polyglots

Arto Bendiken

Overview
1. The Challenge
2. A Solution?
3. A Paradigm?
4. Something Crazy
5. An Opportunity
6. Silver Bullets?
7. Questions & Answers

Polyglot Programming
The Challenge

polyglot | ˈpälēˌɡlät |

adjective
• knowing or using several languages

noun
• someone who knows and is able to use several languages
• a mixture or confusion of languages

http://carlcheo.com/startcoding

“We are entering a new era of software development.
For most of our (short) history, we’ve primarily written code in

a single language. […] Now, increasingly, we’re expanding
our horizons […] Applications of the future will take

advantage of the polyglot nature of the language world.”

— Neal Ford, Polyglot Programming (2006)

http://memeagora.blogspot.com/2006/12/polyglot-programming.html

“We’re entering a polyglot era in software development,
driven by cloud and multicore systems architectures,

as new languages emerge to challenge, and coexist with,
the long hegemony of Java and .NET. [...] IT isn’t getting any

easier, and scale demands are increasing exponentially.
Therefore – it’s time to start seeing other languages.”

— James Governor, The Polyglot Revolution Continues Apace (2011)

http://redmonk.com/jgovernor/2011/05/12/typesafe-the-polyglot-revolution-continues-apace/

● Best tool for the job at hand?
○ And there are just many more programmers and many more tools now…

● Best-of-class frameworks and tools have driven novel language adoption
○ Ruby on Rails!

● Pursuit of productivity on critical platforms with subpar base languages
○ Client side: JavaScript

■ Stagnation of JS language development until ES6 (2015)
■ Two polarized responses:

● Double down on JS (cf. Node.js), for both client and server
● Don’t develop in JS, just generate it (e.g., GWT, RJS/SJR, CoffeeScript, TypeScript, Elm,

ocaml_of_js, and hundreds more)
○ Server side: the Java Virtual Machine (JVM) ecosystem

■ Stagnation of Java language development until Java 8 (2014)
■ Emergence of alternative language ecosystem (Groovy, Scala, Clojure, Kotlin, etc)

Why Polyglot Programming?

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

“There was no way this polyglot reality could persist. Not
given its cost. I’m not referring as much to the cost of the

enterprise—which is very real—but rather, the cost to
developers in terms of time and attention.

Make no mistake: the cost is enormous.”

— Matt Asay, Developers Are Calling it Quits on Polyglot Programming (2014)

https://www.techrepublic.com/article/developers-are-calling-it-quits-on-polyglot-programming/

“There is a real cost to this continuous widening of the base
of knowledge a developer has to have [...] One of today’s

buzzwords is “full-stack developer”. Which sounds good, but
there’s a little guy in the back of my mind screaming:
you mean I have to know Gradle internals and ListView failure modes and

NSManagedObject quirks and Ember containers and the Actor model and what
interface{} means in Go and Docker support variation in Cloud providers?

Color me suspicious.”

— Tim Bray, Discouraged Developer (2014)

https://www.tbray.org/ongoing/When/201x/2014/07/17/Discouraged-Developer

● The maintenance cost
○ Initial implementation is often a small part of the total effort over an application’s lifetime
○ People tasked with maintenance need be at least comfortable with languages used

● The paradox of choice
○ The set of technologies isn’t static, new entrants appear frequently (cf. Dart, because Flutter)
○ The continuing trade-off analysis is exhausting

● The Red Queen effect
○ “Now, here, you see, it takes all the running you can do, to keep in the same place.”
○ Technology never stays still, and it takes continuing effort just to keep up with existing tech

● The cognitive load
○ We aren’t CPUs: we multitask rather badly, with large context-switch costs
○ Cognitive costs are proportional to quantity (# of languages) and quality (differing paradigms)

Some Polyglot Problems

Cognitive Load: The Shallow End
Language Type System Main Paradigm Class Naming Method Naming

JS dynamic, weak object-oriented* CamelCase mixedCase

Ruby dynamic, strong object-oriented CamelCase snake_case

Elixir dynamic, strong functional CamelCase snake_case

Go static, inferred procedural CamelCase {M,m}ixedCase

Java static, manifest* object-oriented CamelCase mixedCase

Kotlin static, inferred object-oriented CamelCase mixedCase

Swift static, inferred object-oriented CamelCase mixedCase

Dart optional object-oriented CamelCase mixedCase

Cognitive Load: The Deeper End
Language Type System Main Paradigm Class Naming Method Naming

Julia dynamic, strong multi-dispatch CamelCase snake_case

Erlang dynamic, strong functional snake_case snake_case

Common Lisp dynamic, strong multi-dispatch lisp-case lisp-case

C/C++ static, weak multi-paradigm various… various…

D static, inferred multi-paradigm CamelCase mixedCase

Rust static, inferred functional* CamelCase snake_case

OCaml static, inferred functional*/OO CamelCase snake_case

Haskell static, inferred functional, lazy CamelCase mixedCase

// Java 8+

import java.nio.file.*;

new String(Files.readAllBytes(Paths.get("input.txt")));

Cognitive Load: Simple Tasks

// Kotlin

File("input.txt").readText()

// Node.js

require("fs").readFileSync("input.txt")

// Java 6: 20+ lines omitted

// Ruby

File.read("input.txt")

// Go

data, err := ioutil.ReadFile("input.txt")

Cognitive Load: Ecosystems
Language Package Mgr Test

Framework
Code Coverage Doc Generation

JS NPM Mocha Istanbul JSDoc

Ruby RubyGems RSpec SimpleCov YARD

Elixir Hex.pm ESpec ExCoveralls ExDoc

Go Go/Git Ginkgo Go GoDoc

Java Maven/Gradle JUnit5+AssertJ JaCoCo Javadoc

Kotlin Maven/Gradle JUnit5+AssertJ JaCoCo KDoc

Swift Git XCTest Xcode Jazzy

Dart Pub pkg:test pkg:coverage pkg:dartdoc

Code Generation
A Solution?

“Will write code that writes code that
writes code that writes code for money.”

— seen on comp.lang.lisp

https://groups.google.com/d/forum/comp.lang.lisp
http://lispers.org

“I object to doing things that
computers can do.”

— Olin Shivers

Code Generation FTW
● Code generation is a force multiplier for productivity: it gives you leverage

○ One line of high-level input code can be worth ten or twenty lines in the target language

● For some problems in computing, already the de-facto solution:
○ Lexing & parsing: writing parsers by hand is tedious and rarely needed (exceptions: the C++

grammar); parser generators (ideally) take a declarative EBNF grammar spec and churn out
the code for a complicated automaton to parse it

○ On-the-wire serialization: the serialization & deserialization code for binary RPC protocols is
tedious and prone to error: commonly, specs written in interface description languages (IDLs)
are used to generate the actual code (Avro, Protocol Buffers, Thrift, etc)

○ Foreign-function interfaces: interfacing higher-level languages (such as Python and Ruby)
to large low-level native APIs in C (for example, Qt) is tedious and prone to error: hence SWIG
to churn out thousands of lines of glue code

Model-Oriented Programming
A Paradigm?

“MOP works as a layer on top of everything you know today
[...] MOP works for every kind of area you write code for.
Whether you write games, Linux drivers, servers, apps,
plugins, whether you use Java, C, Perl, Ruby, Python,

Gnome or KDE... once you start to see the world as models
you’ll find yourself writing more code, faster, than you ever

thought possible.”

— Pieter Hintjens, Model-Oriented Programming (MOP)

https://github.com/imatix/gsl#model-oriented-programming

● You already know model-oriented programming, kind of…
● MOP is writing behavioral specs with RSpec instead of tests with xUnit
● MOP is writing HTML and CSS instead of PostScript
● MOP is writing Makefiles instead of Bash scripts
● MOP is part and parcel with metaprogramming, declarative programming (the

what instead of the how), and domain-specific languages (DSLs)
● No single do-it-all modeling language can cover every possible abstraction or

solve every problem; instead, need the right models and abstractions
● Need tech to quickly and easily build arbitrarily modeling languages
● MOP is immune to tech changes: it is abstract from specific programming

languages, operating systems, and trends; good models will work for decades

Model-Oriented Programming (MOP)

“GSL is a code construction tool. It will generate code in all
languages and for all purposes. If this sounds too good to be
true, welcome to 1996, when we invented these techniques.
Magic is simply technology that is twenty years ahead of its

time. In addition to code construction, GSL has been used to
generate database schema definitions, user interfaces,
reports, system administration tools and much more.”

— Pieter Hintjens, imatix/gsl on GitHub

https://github.com/imatix/gsl

● An AMQP middleware server by Pieter Hintjens et al
● The reference implementation for the original AMQP (pre-1.0) protocol
● Designed as high-level models fed into a code-generation process

○ Classes to encapsulating functions, finite state machines for protocol handlers, grammar
definitions for parsers and code generators, project definitions for building and packaging
sources, a test scripting language, etc

● Used C as the target language for maximum portability and performance
● Generated almost 100% of the middleware server—more than 500 KLOC of

C code—from about 60 KLOC of modeling code

Case Study: OpenAMQ

“We can produce extremely high-quality code. This is an
effect of doing code generation: the generated code we

produce has no errors, and is as good as a human
programmer can write, consistently. [...]

“On many projects where we’ve used MOP, I’m able to
deliver hundreds of thousands of lines of code, and say, with

confidence: there is not a single bug in this code.”

— Pieter Hintjens, Model-Oriented Programming (MOP)

https://github.com/imatix/gsl#model-oriented-programming

What If…
Something Crazy

What If…
● What if there existed a uniform surface layer on top of all these languages…

○ Clearly, there would be some variation across languages in terms of naming conventions
○ However, the overall package/module/class/term taxonomy would be a close match between

languages, reducing cognitive load when switching between languages

● What if this universal standard library shim simply wrapped those parts of
each target language’s standard library that are adequate

○ And provided polyfills for what the language was missing or didn’t adequately implement
natively

○ For example, plugged the UTF-8 string situation in Java and JVM languages…

● What if didn’t carry with it all the legacy baggage of standard libraries we’re
used to?

○ A good place to start: null safety, immutability by default, and safe arithmetic.

● What if this library accommodated concepts that actually matter in the world?
● Why do so few standard libraries provide models for real stuff that matters?

○ Contacts: email addresses, phone numbers, street addresses
○ Identifiers and locators: UUIDs, URIs, URNs, URLs, ISBNs, etc.
○ Locations: WGS84 latitudes & longitudes, altitudes, angles, cities, countries, etc.
○ Countries (ISO 3166 codes) and languages (ISO 639 codes)
○ Quantities: lengths, durations, masses, the SI units, and the combinations thereof
○ Tensors: scalars, vectors, matrices, and beyond

● The notable exception is Wolfram Language, used in Mathematica (demo)

What If…

https://www.youtube.com/watch?v=_P9HqHVPeik

You know what they say about standards…

https://xkcd.com/927/

What Then?
An Opportunity?

“I call it my billion-dollar mistake. It was the invention of the
null reference in 1965. [...] I couldn’t resist the temptation to

put in a null reference, simply because it was so easy to
implement. This has led to innumerable errors, vulnerabilities,

and system crashes, which have probably caused a billion
dollars of pain and damage in the last forty years.”

— Tony Hoare, QCon London (2009)

“Greenspun’s Tenth Rule of Programming:
any sufficiently complicated C or Fortran program

contains an ad hoc informally-specified
bug-ridden slow implementation of half of

Common Lisp.”

— Philip Greenspun, 1993

The Numerical Tower

Number

Complex

Real

Rational

Integer

“If PHP encounters a number beyond the bounds of the integer type, it will be interpreted as a float
instead. Also, an operation which results in a number beyond the bounds of the integer type will return a
float instead.”
http://php.net/manual/en/language.types.integer.php

"If you compare a number with a string or the comparison involves numerical strings, then each string is
converted to a number and the comparison performed numerically."
http://php.net/manual/en/language.operators.comparison.php

Ad-Hoc Numerical Absurdity

<?php

var_dump("1e3" == "1000"); // bool(true)

http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/language.operators.comparison.php

https://www.reddit.com/r/Bitcoin/comments/1c9hoa/another_scary_stackoverflow_question_from/

https://www.reddit.com/r/Bitcoin/comments/1c9hoa/another_scary_stackoverflow_question_from/
https://www.reddit.com/r/Bitcoin/comments/1c77qg/bitcoin24_down_after_a_corrupt_trade_engine_gives/

“One of the biggest causes of crypto losses is bad code, and
it’s not usually the fault of the coin’s developers. Instead, third

parties, including shoddy smart contract developers and
shady exchanges, are to blame for losses that have reached

half a billion dollars in the last seven months.”

— Bad Code Has Lost $500M of Cryptocurrency in Under a Year (Feb 2018)

https://news.bitcoin.com/bad-code-has-lost-500-million-of-cryptocurrency-in-under-a-year/

“The [Ariane 5] launch [in 1996] ended in failure due to
[integer overflow]. This resulted in the rocket veering off its
flight path 37 seconds after launch, beginning to disintegrate
under high aerodynamic forces, and finally self-destructing by

its automated flight termination system. The failure has
become known as one of the most infamous and expensive

software bugs in history. The failure resulted in
a loss of more than $370M.”

— Cluster (spacecraft), Wikipedia

https://en.wikipedia.org/wiki/Cluster_(spacecraft)

“The Mars Climate Orbiter [was a] space probe launched by
NASA [in 1998] to [Mars]. However, [comms] with the

spacecraft [were] lost as the spacecraft went into orbital
insertion, due to ground-based computer software which

produced output in non-SI units of pound-force seconds
(lbf·s) instead of the SI units of newton-seconds (N·s).
The spacecraft [came] too close to the planet, causing it to

pass through the upper atmosphere and disintegrate.”

— Mars Climate Orbiter, Wikipedia

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

“Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code

as cleverly as possible, you are, by definition, not
smart enough to debug it.”

— Brian Kernighan, paraphrased in Kernighan’s Lever (2012)

http://www.linusakesson.net/programming/kernighans-lever/

Silver Bullets?

“I believe the hard part of building software to be the
specification, design, and testing of this conceptual construct,

not the labor of representing it and testing the fidelity of the
representation. We still make syntax errors, to be sure; but
they are fuzz compared with the conceptual errors in most

systems. If this is true, building software will always be hard.
There is inherently no silver bullet.”

— Fred Brooks, No Silver Bullet: Essence and Accident
in Software Engineering (1986)

https://en.wikipedia.org/wiki/No_Silver_Bullet

Questions?
Find me at http://ar.to

http://ar.to

