Building a Home Security

System with Elixir and Nerves
Arto Bendiken

@
v

Nerves?

Elixir?

The Killer App for Elixir?

Nerves (nerves-project.orqg) is the true killer app of Elixir.
It's not yet widely known outside of the Elixir community, but
that is changing quickly (even in this very room, right now).

Nerves is doing to embedded development and Elixir
what Rails did for web development and Ruby.

The current statistics from the Elixir community on Slack as of February 2019:
#phoenix 21,100+ members, #nerves 1,800+ members

http://nerves-project.org/

What is Nerves?

Nerves (nerves-project.org) enables you to “craft and deploy
bulletoroof embedded software in Elixir’.

Nerves is an umbrella project consisting of tooling and
libraries enabling the development of robust, reliable
firmware for smart hardware devices written in a high-level
functional language (Elixir) and running on a carrier-grade
runtime (Erlang/OTP).

http://nerves-project.org/

What is Nerves?

|"|+|+|

Produces firmware images as small as

12 MB, which includes the Linux kernel,
the Erlang/OTP runtime, and your Nerves
application

Firmware images are burned to an SD
card for deployment to target hardware
The firmware boots in a few seconds: your
application code can be running in as little
3-4 seconds after power on

An incredibly stable runtime platform with
low and predictable steady-state RAM
consumption: on the order of 8 MB, and
your application probably will fit in 32 MB

Hobbyist Hardware for Nerves

Raspberry Pi 3 Model A/B/B+ (RPi3) BeagleBone Black/Green/Blue (BBB/BBG/BBGW)

[
c
o
(o)
&
o
b
v
0

Why Elixir for Embedded Development?

This is what the Erlang platform (OTP, BEAM) was designed for
(telecomms switches)—good soft-realtime support

Pattern matching (with bitstring support) is great for
Implementing wire protocols robustly

The real world and real hardware is inherently concurrent,
asynchronous, and unpredictable—message passing with the
actor model is a good way to model that

Fault tolerance and error recovery actually matter (just let it
crash—so long as the user doesn’t notice)

Hobbyist Hardware for Nerves

Raspberry Pi 3 Model B+ (RPi3) BeagleBone Green (BBG)

e $35MSRP o %44 MSRP

e 1.4 GHz Cortex-A53 (4% cores) e 1.0 GHz Cortex-A8

e 1GBLPDDR2 RAM e 512 MB DDR3 RAM

e 4x USB ports, 1x Ethernet port, e 1x USB port, 1x Ethernet port,

1x HDMI port, etc micro-HDMI as add-on, etc

e 40x GPIO pins e 92x GPIO pins and

e 802.11ac Wi-Fi (dual band) 2% Grove connectors

e Bluetooth 4.1 and LE e Open-source hardware,

customizable for production
designs

Hobbyist Hardware for Nerves

Seeed Studio’s Grove System 100s of sensors and actuators

Grove — Button Grove — LED Socket Kit

Grove —
Grove — Buzzer Grove — Rotary Angle Sensor ~ Grove — Temperature Sensor rove — Jemperatursiand

Humidity Sensor Pro

Grove — Vibration Motor Grove — Ultrasonic Ranger Grove — PIR Motion Sensor Grove — OLED Display 96*96 Grove — Magnetic Switch Grove — Dry-Reed Relay Grove — Electromagnet

Commercial Products Based on Nerves

Com mercial Radar |nte I'face http://www.rosepoint.com/commercial-radar-interface/

-
9.32
050°M &

054°M |

» “imin x»

1 ft/sec

http://www.rosepoint.com/commercial-radar-interface/

Future Products Based on Nerves

Anything and everything... Your imagination is the limit.

https://commons.wikimedia.org/wiki/File:Interspect_UAV_B_3.1.png
https://commons.wikimedia.org/wiki/File:Smartwatch-828786.jpg

Hello, Blinky

$ git clone https://github.com/nerves-project/nerves examples

https://github.com/nerves-project/nerves_examples

TERM DEFINITION

host The computer on which you are editing source code, compiling, and assembling
firmware

target The platform for which your firmware is built (for example, Raspberry Pi, Raspberry Pi 2,
or Beaglebone Black)

toolchain The tools required to build code for the target, such as compilers, linkers, binutils, and C
runtime

system A lean Buildroot-based Linux distribution that has been customized and cross-compiled
for a particular target

assemble The process of combining system, application, and configuration into a firmware bundle

firmware A single file that contains an assembled version of everything needed to burn firmware

bundle

firmware Built from a firmware bundle and contains the partition table, partitions, bootloader, etc.

image

Project Structure

S tree blinky/

Firmware Update
The Slow & Hard Way:

S mix firmware.burn

Firmware Update
The Quick & Easy Way:

$ mix firmware.gen.script && ./upload.sh

Home Alarm System

Work in Progress

Demo

Remote Console

$ iex —--name me@0.0.0.0 --cookie pivorak —--remsh home@nerves.local

S ssh nerves.local

Remote Debugging

1ex> Logger.configure (level: :debugqg)

Local Debugging

iex> :o0bserver.start ()

Technologies

Elixir
Erlang/OTP
C++
OpenCV
FaceNet
Dlib

Nerves
Linux kernel

gRPC

Protocol Buffers
Python

Go?

Ruby?

etc

Camera Driver
C++, V4L2, OpenCV — Elixir

Alarm System

Elixir, GenStateMachine (gen_statem)

Siren State Diagram

on

N~

System State

Home Protocol & API
Elixir, gRPC, PB <« Python, Go, Ruby, etc

Camera Client
Python, OpenCV, gRPC «— gRPC, Elixir

Face Recognition...
OpenCV, Dlib, FaceNet

Home Getstarted Watch Code Libraries

Built with e
See Nerv%ei

https://nerves-project.org

https://nerves-project.org

See Also

gokrazy is a pure-Go userland for
your Raspberry Pi 3 appliances
For a long time, we were unhappy with having to

care about security issues and Linux distribution
maintenance on our various Raspberry Pis.

Then, we had a crazy idea: what if we got rid of
memory-unsafe languages and all software we don't strictly need?

Turns out this is feasible. gokrazy is the result.

https://gokrazy.org

https://gokrazy.org

[akyto!

Find me at:
https://ar.to & @bendiken

https://ar.to/
https://twitter.com/bendiken

