
Accurate mobile malware detection
and classification in the cloud
Xiaolei Wang1*  , Yuexiang Yang1 and Yingzhi Zeng2

Background
As reported, Android is the most popular platform for Smartphone today with a mar-
ket share of 84.7 % (Lindorfer et al. 2015). In contrast to other platforms, such as iOS
which allow users to install apps only available in the iTunes App Store, Android allows
to install applications from many sources, such as Google Play Store, third-party mar-
kets, torrents, or direct downloads, etc. Naturally, this liberty makes bundling and dis-
tributing applications with malware easy for attackers, who try to lure users into running
malicious code, e.g. by repackaging popular apps with malicious payload (Lindorfer et al.
2015). Privacy breaches (e.g., access to address book and GPS coordinates), monetiza-
tion through premium SMS and calls, other harmful malicious attack (Shang et al. 2011)
have become real threats. Although there have already been some drive-by download

Abstract 

As the dominator of the Smartphone operating system market, consequently android
has attracted the attention of smalware authors and researcher alike. The number of
types of android malware is increasing rapidly regardless of the considerable number
of proposed malware analysis systems. In this paper, by taking advantages of low
false-positive rate of misuse detection and the ability of anomaly detection to detect
zero-day malware, we propose a novel hybrid detection system based on a new open-
source framework CuckooDroid, which enables the use of Cuckoo Sandbox’s features
to analyze Android malware through dynamic and static analysis. Our proposed system
mainly consists of two parts: anomaly detection engine performing abnormal apps
detection through dynamic analysis; signature detection engine performing known
malware detection and classification with the combination of static and dynamic anal-
ysis. We evaluate our system using 5560 malware samples and 6000 benign samples.
Experiments show that our anomaly detection engine with dynamic analysis is capable
of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable
false positive rate (1.30 %); it is worth noting that our signature detection engine with
hybrid analysis can accurately classify malware samples with an average positive rate
98.94 %. Considering the intensive computing resources required by the static and
dynamic analysis, our proposed detection system should be deployed off-device, such
as in the Cloud. The app store markets and the ordinary users can access our detection
system for malware detection through cloud service.

Keywords:  Mobile malware detection, Android, CuckooDroid, Static analysis, Dynamic
analysis, Classification, Signature detection, Anomaly detection, Mobile cloud service

Open Access

© 2015 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

RESEARCH

Wang et al. SpringerPlus (2015) 4:583
DOI 10.1186/s40064-015-1356-1

*Correspondence:
nuaawangxiaolei@163.com;
xiaoleiwang@nudt.edu.cn
1 College of Computer,
National University
of Defense Technology,
Changsha, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-5342-4275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1356-1&domain=pdf

Page 2 of 23Wang et al. SpringerPlus (2015) 4:583

sightings for Android (Protalinski 2012), the most prevalent infection vector is still user-
based installation.

Several security measures have been proposed by the Android platform providers to
prevent the installation of malware, most notable of which is the Android permission
system. Each application has to explicitly request some permission from the user dur-
ing the installation to perform certain tasks on the device, such as sending SMS mes-
sage, etc. (Arp et al. 2014). However, many users tend to blindly grant permission to
unknown applications and thereby undermine the purpose of the permission system.
To help users, some information sources (Lindorfer et al. 2015) are provided for them
to decide whether or not to install an app, such as trustworthiness of the app’s origin,
app reviews by other users, results from antivirus (AV) scanners, results from Google’s
app verification service, etc. However, as introduced in Lindorfer et al. (2015), all of
these sources have major shortcomings and cannot prevent the installation of malware
efficiently.

To solve this problem, many research methods have been proposed for analyzing and
detecting Android malware prior to the installation. These methods are mainly catego-
rized into two generic approaches, namely static analysis and dynamic analysis. For
example, TaintDroid (Enck et al. 2010), DroidRanger (Zhou et al. 2012) and DroidScope
(Yan and Yin 2012) are dynamic analysis methods that can monitor the behavior of
applications during runtime. Although very effective in identifying malicious activity,
run-time monitoring suffers from significant overhead and cannot be directly applied on
mobile devices. In addition, pure dynamic analysis systems are prone to analysis evasion.
By contrast, static analysis methods, such as Drebin (Arp et al. 2014), RiskRanker (Grace
et al. 2012), introduce only small run-time overhead, but struggle with increasingly pop-
ular obfuscation and dynamic code loading techniques.

In this paper, we proposed a hybrid mobile malware detection and classification sys-
tem by extending a new open source analysis framework CuckooDroid (CuckooDroid
2015) to detect and classify malware accurately before installation. Our proposed system
is designed for both app markets and ordinary users. For app markets, our system can
perform a large-scale detection and classification aided by an automated and compre-
hensive analysis with CuckooDroid. For ordinary users, this detection and classification
system can be provided as a service through mobile cloud service (MCS). In addition,
a detailed report that is easy to grab and understand is provided, which is generated
by CuckooDroid. Our proposed detection system mainly consists of two parts: anom-
aly detection engine and signature detection engine. Firstly, by using dynamic analysis
results, anomaly detection engine can detect new zero-day and unknown malware, as
done in Sahs and Khan (2012). During the dynamic analysis, some vital dynamic features
of an app in runtime are tested in runtime during dynamic analysis, such as SMS, Phone,
dynamic code loading, etc. The anomaly detection engine is built on one-class support
vector machine classifiers. Secondly, the signature detection engine which is built based
on linearSVC classifier is responsible for detecting and classifying known malware or
new variants using static and dynamic analysis results. During the static analysis, many
features from the source code and manifest are extracted as possible, as did in Arp et al.
(2014). Aided by the static and dynamic analysis results, signature detection engine

Page 3 of 23Wang et al. SpringerPlus (2015) 4:583

can efficiently detect new variants and identify their corresponding families through
classification.

Note that the features collected during static and dynamic analysis are organized in
sets of strings (such as permissions, receivers, hardware) and embedded in a joint vector
space. Then each application is represented with a feature vector which can be fed to a
certain machine learning technique. Due to the intensive computing resources required
by the static and dynamic analysis, both anomaly detection engine and signature detec-
tion engine should be deployed off-device, such as in the Cloud. Using a classifier that is
trained on a large set of known malicious apps (malware) and benign apps (goodware),
our proposed system can detect whether a new app is abnormal or not firstly. Once a new
app is detected as abnormal by anomaly detection engine, it is malware sample with high
probability in our system. Therefore, a further comprehensive analysis by signature detec-
tion engine is started to analyze which family this malware belongs to. In case a new app
is detected as normal by anomaly detection engine, we assume it is benign in this paper.
The assumption is reasonable according to the high true detection rate of anomaly detec-
tion engine in experiments, which we will discuss it in detail in evaluation part.

In summary, our contributions are as follows:

1.	 Effective malware detection and classification Based on two phase detection by static
analysis and dynamic analysis respectively, our proposed system is capable of detect-
ing and classifying malware with high accuracy and few false alarms.

2.	 Zero-day malware and new variants detection Our proposed hybrid detection sys-
tem consists of two phase: anomaly detection engine and signature detection engine.
Anomaly detection engine is coarse-grained and can detect new malware which is
anomalous from a large number of benign apps. Signature detection engine is a fine-
grained, which can detect known malware or new variants of a known family. Exper-
iment results show that the two detection engines both achieve high true positive
accuracy and low false negative.

3.	 Integrating anomaly detection and misuse detection Considering the fact that the
purely anomaly detection has a relative high false positive rate and the purely misuse
detection has a relative high false negative rate, we integrate them to achieve high
true positive and low false negative. As we know, we are the first to do this in mobile
malware detection.

4.	 Detailed analysis reports Our proposed system generates a detailed analysis report
that is easy to understand during the detection, which includes the extracted static
and dynamic information.

5.	 System implementation We implemented our proposed detection system using
CuckooDroid. Based on this implementation, many experiments are executed to
evaluate the performance of this system.

The rest of this paper is organized as follows: related work is introduced in “Related
work”. Architecture overview is presented in “Architecture overview”. Our proposed
system implementation and evaluation are discussed in detail in “Implementation” and
“Evaluation”, respectively. “Discussion” concludes the paper.

Page 4 of 23Wang et al. SpringerPlus (2015) 4:583

Related work
In the last years, mobile malware detection has been a hot area of research, especially
android malware detection. To counter the growing amount and sophistication of this
malware, a large number of concepts and techniques have been proposed and are mainly
categorized to: (1) static analysis; (2) dynamic analysis. A detailed and comprehensive
review of the current mobile malware detection is provided in the studies of Zhou and
Jiang (2012) (Suarez-Tangil et al. 2013; Sufatrio et al. 2015; Faruki et al. 2015). And since
that we use the machine learning in our detection system, the related work of machine
learning based detection is introduced.

Detection using static analysis and limitation

The first approaches for detecting Android malware have been inspired by concepts from
static program analysis. A static analyzer inspects an app by just disassembly, de-compi-
lation without actually running it, hence does not infect the device. Since it analyzes an
app’s whole source or recovered code, the analyzer can achieve high code coverage.

A large number of methods that inspect applications and disassemble their code have
been proposed (e.g. Arp et al. 2014; Lindorfer et al. 2015; Grace et al. 2012; Aafer et al.
2013; Chakranomaly et al. 2013; Chin et al. 2011; Zhu et al. 2014. RiskRanker (Grace
et al. 2012) detects high and medium risk apps according to several predetermined fea-
tures, such as the presence of native code, the use of functionality that can cost the user
money without her interaction, the dynamic loading of code that is stored encrypted
in the app, etc. Comdroid (Chin et al. 2011) analyze the vulnerability in inter-app com-
munication in Android apps and find a number of exploitable vulnerabilities. DroidAPI-
Miner (Aafer et al. 2013) and Drebin (Arp et al. 2014) classify apps based on features
learned from a number of benign and malicious apps during static analysis. An app rec-
ommender system is proposed in Zhu et al. (2014) to rank apps based on their popularity
as well as their security risk, considering requested permissions only. FlowDroid (Arzt
et al. 2014) performs a flow-, context-, object-, and field-sensitive static taint analysis
on Android apps. It models Android app’s lifecycle states and handles taint propagation
due to callbacks and UI objects. As the most closely related to our signature detection
engine module, some static features such as permissions, intent filters, and the presence
of native code are also extracted in MAST (Chakranomaly et al. 2013) to perform mar-
ket-scale triage and to select potentially malicious samples for further analysis.

The limitation of static analysis

Static analysis lacks the actual execution path and relevant execution context. Moreover,
there exist challenges in the presence of code obfuscation as well as dynamic code load-
ing (Poeplau et al. 2014). All those approaches lack the ability to analyze code that is
obfuscated or loaded dynamically at runtime, a prevalent feature of apps as evidenced by
a recent large scale study (Lindorfer et al. 2014), unless they are complemented by some
form of dynamic analysis, as recently proposed in StaDynA (Zhauniarovich et al. 2015).

Our solution to the limitation of static analysis

In contrast, our proposed system does not suffer from those limitations, since our anom-
aly detection engine performs abnormal detection firstly through dynamic analysis.

Page 5 of 23Wang et al. SpringerPlus (2015) 4:583

Detection using dynamic analysis and limitation

Static analysis and detection approaches are quick, they fail against the encrypted,
polymorphic and code transformed malware. In order to overcome the shortcomings
of static analysis, some dynamic analysis based methods (Zhang et al. 2013b; Yan and
Yin 2012; Enck et al. 2010; Burguera et al. 2011; Wu and Hung 2014; Gilbert et al. 2011;
Rastogi et al. 2013) are proposed. Dynamic analysis is conducted by executing an app,
on either a real or virtual execution environment such as the Android Virtual Device
(AVD), and observing the app during its execution.

The analysis system TaintDroid (Enck et al. 2010) and DroidScope (Yan and Yin 2012)
are the most notably, which enable dynamically monitoring applications in a protected
environment. TaintDroid focuses on taint analysis and DroidScope make introspection
at different layers of the platform. Although both systems provide detailed information
about the behavior of apps, they require too many resources to deploy on Smartphones
directly.

A first step towards the use of dynamic analysis results for Android malware detec-
tion is anomaly detection engine by CrowDroid (Burguera et al. 2011), which performs
k-means cluster based on system-call counts. The number of invocations of API and
system calls is selected as coarse-grained features to train various classifiers to analyze
apps. However, their monitoring approach relies on modifying the app under analysis,
which can be easily detected by malware. Another related approach combining static
with dynamic analysis is DroidDolphin (Wu and Hung 2014). Again, the approach
relies on repackaging and injecting an app with monitoring code. Although the authors
observed that the accuracy increased with the size of the training set, DroidDolphin (Wu
and Hung 2014) achieves an accuracy of only 86.1 % in the best case. At the meantime,
these dynamic analysis methods are all prone to analysis evasion due to the increas-
ing use of emulator detection technology in malware. VetDroid is a dynamic analysis
platform for reconstructing sensitive behaviors in Android apps from a permissions
use perspective (Zhang et al. 2013b). Zhang et al. points out that traditional system
call analysis is not appropriate for characterizing the behaviors of Android apps, as it
misses high-level Android-specific semantics and fails at reconstructing IPC and RPC
interactions. Afonso et al. (2014) dynamically analyze Android apps using the number
of invocations of API and system calls as coarse-grained features to train various clas-
sifiers. However, their monitoring approach relies on modifying the app under analysis,
which is easily detectable by malware. AppsPlayground (Rastogi et al. 2013) performs a
TaintDroid-based dynamic taint tracing, API monitoring, and kernel-level monitoring.
Event triggering and intelligent execution techniques are adopted to realize comprehen-
sive execution coverage and achieve code coverage of 33 %.

The limitation of dynamic analysis

Although dynamic analysis surpasses the static analysis in many aspects, dynamic anal-
ysis also has some drawbacks. Firstly, dynamic analysis requires too many resources
relative to static analysis, which hinders it from being deploying on resource constraint
smartphone. Secondly, dynamic analysis is subject to low code coverage. Sasnauskas and
Regehr (2014) mentioned that producing highly structured inputs that get high code
coverage is an open research challenge. Thirdly, recently malware attempts to detect

Page 6 of 23Wang et al. SpringerPlus (2015) 4:583

the emulator and other dynamic analysis systems (Vidas and Christin 2014; Petsas et al.
2014; Jing et al. 2014), avoiding launching their payloads. Thus, some dynamic analysis
systems are prone to analysis evasion.

Our solution to the limitation of dynamic analysis

On contrast to the above mentioned methods, anomaly detection engine in our pro-
posed detection system performs dynamic analysis through Dalvik Hooking based on
Xposed Framework. Therefore, our analysis module is difficult to be detected by avoid-
ing repackaging and injecting monitoring code. As we know, most of dynamic analy-
sis methods don not integrate the anti-emulator tools and thus are prone to analysis
evasion. To solve this problem, some emulator anti-detection tools (such as Content
Generator, etc.) are integrated to make a more transparent dynamic analysis environ-
ment, which can avoid emulator detection at a certain extent and extract more valuable
dynamic information. As for code coverage, we adopt MonkeyRunner (Android Devel-
opers 2015) to stimulate the inputs during app execution.

Detection using machine learning and limitation

The difficulty of manually crafting and updating detection patterns for Android malware
has motivated the application of machine learning. Several methods have been proposed
to detect and analyze applications automatically using machine learning methods (e. g.
Arp et al. 2014; Lindorfer et al. 2015; Grace et al. 2012; Aafer et al. 2013; Afonso et al.
2014; Spreitzenbarth et al. 2013; Amos et al. 2013). For example, the method proposed
in Arp et al. (2014) applies linearSVC learning methods to the static features of applica-
tions for detecting malware. Similarly, the methods RiskRanker (Grace et al. 2012) and
DroidAPIMiner (Aafer et al. 2013) use machine learning techniques to detect malware
with features statically extracted from Android applications. In contrast, the method
proposed in Afonso et al. (2014) detects malware with a machine learning technique and
dynamically extract features. A framework is proposed in Amos et al. (2013) to evalu-
ate mobile malware classifiers based on the same features as Andromaly with an equally
limited testing set of only 50 applications. Additionally, the tested classifiers achieve
substantial false positive rates ranging from 14.55 % up to 44.36 %, rendering them
completely impractical. Closest to our work are MARVIN (Lindorfer et al. 2015) and
MobileSandbox (Spreitzenbarth et al. 2013), which use the static and dynamic features
by machine learning and achieve high accuracy.

The limitation of machine learning based detection

Overall, previous work focuses on detecting malware using machine learning tech-
niques, which are either misuse-based detection or anomaly-based detection. Misuse
based detector tries to detect malware based on signatures of known malware. Misuse
detector is specifically designed to detect known malware, leading to low number of false
alarms. However, misuse detector could not detect zero-day malware. Anomaly detector
refers to identifying malware that is anomalous with respect to the normal apps. Despite
their capability in detecting zero-day malware, anomaly detector suffers from high false
positive rate. The misuse and anomaly detector are complementary.

Page 7 of 23Wang et al. SpringerPlus (2015) 4:583

Our solution to the limitation of machine learning based detection

Hence, by taking advantages of low false-positive rate of misuse detector and the ability
of anomaly detector to detect zero-day malware, a hybrid malware detection method is
proposed in this paper, which is the novelty in this paper.

Architecture overview
As described in Fig. 1, our proposed detection system mainly consists of two engines:
anomaly detection engine and signature detection engine. Anomaly detection engine is
responsible for performing zero-day malware detection through dynamic analysis. And
signature detection engine is responsible for performing new variant detection by com-
bining static analysis results with dynamic analysis results. Signature detection engine is
trained on known malware and benign apps.

Considering the resource-consumption process of detection and the constraint com-
puting resource on mobile devices, both anomaly detection engine and signature detec-
tion engine should be deployed off-device at somewhere with rich resources, such as in
the Cloud.

The process is outlined as follows:

Static and dynamic analysis

Firstly, all the train datasets and test datasets are processed statically and dynamically.
As done in Drebin (Arp et al. 2014), we extract the static features from the manifest file
and the disassemble dex code. In order to extract the dynamic features of apps during
runtime, CuckooDroid is used to run the apps in an emulator environment. As shown
in Fig. 2, CuckooDroid is composed of one manage node, and a number of slave nodes,
which can be either Android emulators or linux-based virtual machines in the Cloud.
Contrast to other dynamic analysis, CuckooDroid has integrated a collection of known
emulator anti-detection techniques for hiding the Android emulator and providing
a transparent analysis environment. At the meantime, a Dalvik API hooking based on
Xposed framework is adopted to capture the dynamic API calls and information. Also
the analysis results of submitted app are stored in a database in our proposed method.

Fig. 1  System overview

Page 8 of 23Wang et al. SpringerPlus (2015) 4:583

Through this way, when a submitted app has been analyzed before, its analysis results
will be returned directly.

Anomaly detection

Anomaly detection engine is responsible for detecting normal and abnormal apps
through dynamic analysis and providing a preliminary analysis results. In contrast to sig-
nature detection, dynamic features will be used in anomaly detection and be embedded
into vector space. Also a Variance treshold- based feature selection method is applied
to these feature vectors. In order to detect abnormal apps, a One-Class SVM classifier
model is built on benign apps. A new app will be labeled as either zero-day malware or
benign app by this trained classifier. When an unknown app is submitted, its feature vec-
tor will be fed to the classifier and a decision about whether is malware or not is made.

If an unknown app is categorized as abnormal and it is not known malware, further
signature detection will be triggered to classify this malware and determine which family
it belongs to.

In order to maintain the detection accuracy of the two detection engines, all the new
variants, zero-day malware and benign apps will be stored to update the training dataset
at a specific period.

Signature detection

At first, the extracted static and dynamic string features will be embedded into vector
space, generating feature vectors. Then, a Chi2-based feature selection method is applied
to these feature vectors.

During signature detection, the feature vectors of malicious and benign apps will be
generated first, as stated above. Then a linearSVC classifier model is trained based on
these train feature vectors which consist of known malware and benign apps.

The detected abnormal app during anomaly detection will be further classified using a
multi-family classifier. When the classification ends, the detected abnormal app will be
classified into a certain malware family. Since the detected malware is unknown, it will
be a new variant of a family with a high probability.

Fig. 2  Framework of Cuckoodroid

Page 9 of 23Wang et al. SpringerPlus (2015) 4:583

Implementation
Feature extraction

Feature extraction is an essential part of both anomaly detection engine and signature
detection engine. Both the static analysis and dynamic analysis are performed before
anomaly detection and signature detection. CuckooDroid is used to extract the dynamic
features of each app. At the meantime, some static features are extracted.

Static analysis features

For android apps, static analysis can provide a rich feature set about the app, such as
requested permissions, registered activities, etc. In this paper, our static analysis mainly
focus on the manifest and the disassembled dex code of the app, which both can be
obtained by a linear sweep over the app’s source code and files. We adopt the Android
Asset Packaging Tool to extract the static features, as Drebin (Arp et al. 2014). Addition-
ally, several aspects of the app’s code are statically determined in case they might not
be triggered during the dynamic analysis phase, as done in (Lindorfer et al. 2015), such
as the use of reflection API, the dynamic loading of code, the use of cryptographic API.
Specially, the static feature extracted mainly includes two parts: the static features from
manifest and disassembled code.

Every application developed for Android must include a manifest file, which provides
data supporting the installation and later execution of the application. As did in Arp
et al. (2014), we extract the information stored in this file. The specific static features
extracted include: Hardware components, Activities, Intents-filters, etc. Also, some
static signatures about an app are generated according to the extracted static informa-
tion, such as “Application request dangerous permission”, “Application uses native code”,
etc. Compared to Arp et al. (2014), we do not extract the network address features and
restricted API calls features. The detailed extracted static features are shown in Table 1.

Table 1  Categories and numbers of extracted features

Source Category #Feature

Dynamic File operations 19,038

Static and dynamic Signatures 1283

Dynamic Registered_receivers 8334

Dynamic Reflection_calls 14,799

Static Used/required permissions 1267

Static and dynamic SMS, phone, contacts 1493

Static Application components 21,523

Static and dynamic Dynamic code loading 916

Static and dynamic Crypto operation 41

Dynamic Data_leak 828

Dynamic Commands 937

Static and dynamic Network activity 37,734

Static The use of special API 20,162

Dynamic System properties 13,081

Page 10 of 23Wang et al. SpringerPlus (2015) 4:583

Dynamic analysis features

As research on ×86 malware detection, purely static analysis techniques are prone to evasion
by some anti-detection techniques, such as code obfuscation, etc. In order to prevent attack-
ers from evading the learning method, e.g. with mimicry attacks (Šrndić and Laskov 2014),
features should inherently represent the malicious behavior to be detected. Thus the corre-
sponding dynamic analysis features capturing the harmful behavior should be extracted.

In order to extract the dynamic analysis features, we extend the open-source and auto-
mated dynamic analysis framework CuckooDroid proposed in CuckooDroid (2015).
CuckooDroid performs dynamic analysis at Dalvik-level through a Dalvik API monitor-
ing based on Xposed framework. In addition, a new stimulation tool is integrated to trig-
ger program behavior and increase code coverage Robotium (Robotium 2014), which is
used to enhance original CuckooDroid by simulating user’s interactions with the mobile
apps and can automate the testing process. During the dynamic analysis, we monitor the
following events: “File access and operations”, “Register receivers”, “Executed commands”,
“Content resolver queries”, “Telephony Manager listen”, “Find resource”, “Dynamic suspi-
cious calls”, “SMS”, “Phone Events”, “Data leaks”, “Network operations”, etc. Compared to
(Lindorfer et al. 2015), we also extract the crypto keys that apps use, then the encrypted
traffic can be transformed to plaintext traffic.

Embedding into vector space

The extracted static analysis features and dynamic analysis features are expressed as
strings, which cannot be fed to machine learning directly. For example, a malware sample
sending premium SMS messages may contain the requested permissions “SEND_SMS”,
and the hardware components “android.hardware.telephony”. During our evaluation on
dataset of 11,560 benign and malware samples, we extracted 190,367 different static and
dynamic features, as shown in Table 1.

As most machine learning methods operate on numerical vectors, we need to map
the extracted feature sets into a vector space first. Thus, we need to represent an app
as an appropriate vector in order to machine learning algorithm. To this end, we use a
simple bag of words representation. Firstly, we defines a features set S, which comprises
all observable extracted string features. Secondly, a |S|-dimensional vector space can be
defined using the feature set S, where each dimension is either 0 or 1. Then an app X can
be mapped to this space by constructing a vector ϕ(X), for each feature s extracted from
X the corresponding dimension is set to 1 and all other dimensions are set to 0.

where the indicator function I(x, s) is simply defined as

Choosing a classifier

When got feature vectors of apps, our proposed hybrid system uses different classifiers
to perform anomaly detection and signature classification. In this paper, 1-class SVM
algorithms and linear classifier are used to build the anomaly detection models and sig-
nature classification models, as introduced below.

ϕ : X → {0, 1}|s|, ϕ(x) → (I(x, s))s∈S,

I(x, s) =

{

1 if the application x contain features

0 otherwise

Page 11 of 23Wang et al. SpringerPlus (2015) 4:583

Anomaly detection

Consider a data set of n observations from the same distribution described by p features.
Consider now that we add one more observation to that data set. Is the new observation
so different from the others that we can doubt it is regular? (i.e. does it come from the
same distribution?) Or on the contrary, is it so similar to the other that we cannot dis-
tinguish it from the original observation? This is the question addressed by the novelty
detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the
initial observations distribution, plotted in embedding p-dimensional space. Then, if
further observations lay within the frontier-delimited subspace, they are considered as
coming from the same population than the initial observations. Otherwise, if they lay
outside the frontier, we can say that they are abnormal with a given confidence in our
assessment.

A one-class support vector machine (1-class SVM) is a popular anomaly detection
algorithm in various applications. In our proposed detection system, we use the novelty
detection provided by 1-class SVM in Scikit-learn to detect anomaly malware.

The One-Class SVM has been introduced by Schölkopf et al. for that purpose and
implemented in the Support Vector Machines module in the svm. OneClassSVM
(http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.
html#sklearn.svm.OneClassSVM) object. It requires the choice of a kernel and a scalar
parameter to define a frontier. The RBF kernel is usually chosen, although there exists
no exact formula or algorithm to set its bandwidth parameter. This is the default in the
scikit-learn implementation, we also choose the RBF kernel. The ‘nu’ parameter (we set
nu = 0.01), also known as the margin of the One-Class SVM, corresponds to the proba-
bility of finding a new, but regular, observation outside the frontier. The ‘gamma’ param-
eter is set to 0.01, too.

Signature detection

The signature detection is responsible for classifying abnormal malware to its family. Due
to that we classify the abnormal malware by the static and dynamic features, thus, the
chosen classifier should adapt to high-dimensional feature space, as we extract 190,367
different static and dynamic features. Also the chosen classifier should adapt to sparse
data, considering the single app only exhibit a small subset of the possible features.

Given these characteristics, we explore three machine learning approaches: a linear
SVC classifier with L1 regularized logistic regression, a linear SVC classifier with L2 reg-
ularized logistic regression and a Support Vector Machine classifier (LinearSVM). Here,
we apply sklearn.svm (http://www.scikitlearn.org/stable/modules/generated/sklearn.
svm.OneClassSVM.html#sklearn.svm.OneClassSVM) to perform these three classifiers.

LinearSVC classifier

Compared to SVM, linear SVC implements “one-vs-the-rest” multi-class strategy. Given
a feature vector ϕ (x↽, a linear classifier computes the scalar product with a weight vec-
tor �w : y =

∑

i xiwi. The outcome, y, is the margin of the classification.
Similar to SVC with parameter kernel=’linear’, linear SVC implemented in terms of

liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss

http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM

Page 12 of 23Wang et al. SpringerPlus (2015) 4:583

functions and should scale better (to large numbers of samples). Furthermore, linear
SVC supports both dense and sparse input and the multiclass support is handled accord-
ing to a one-vs-the-rest scheme.

As suggested in (Lindorfer et al. 2015), linear SVC with L1 regularization are superior
to linear SVC with L2 regularization when dealing with many irrelevant features, while
linear SVC with L2 regularization is extremely sensitive to the presence of irrelevant fea-
tures. We show in our evaluation in Sect. 5 that both methods lead to similar results
during classification, while linear SVC with L2 classifier performs slight better.

LinearSVM classifier

In principle, an SVM works the same way as a linear classifier. However, it does address
one problem of linear classifiers: as the name already suggests, the latter classifies sam-
ples only accurately if the problem is linearly separable. To overcome this limitation,
SVMs use the “kernel trick”, implicitly mapping the input into an even higher-dimen-
sional space, where the problem is more easily separable.

However, the LinearSVM implementation is based on libsvm. The fit time complexity
is more than quadratic with the number of samples which makes it hard to scale to data-
set with more than a couple of 10,000 samples.

Furthermore, as further detailed in “Evaluation”, pure linear classification performs
better than LinearSVM and has high classification accuracy. Thus, our signature classifi-
cation chooses purely linear classifier.

Feature selection

The features extracted during feature extracted include a large number of static and
dynamic features, as we introduced in Table 1. However, this not means that they are all
useful for anomaly detection and signature classification. To improve the performance
and accuracy of our hybrid detection system, we apply different feature selection meth-
ods to anomaly detection and signature classification.

The classes in the sklearn.feature_selection (http://www.scikitlearn.org/stable/mod-
ules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) module
can be used for feature selection/dimensionality reduction on sample sets, either to
improve estimators’ accuracy scores or to boost their performance on very high-dimen-
sional datasets. So we choose this class to perform our feature selection.

For anomaly detection

VarianceThreshold is a simple baseline approach to feature selection. It removes all fea-
tures whose variance doesn’t meet some threshold. By default, it removes all zero-var-
iance features, i.e. features that have the same value in all samples. In our system, the
parameter of VarianceThreshold is set “threshold = (0.12 × (1 − 0.12))”.

For signature classification

Univariate feature selection works by selecting the best features based on univari-
ate statistical tests. It can be seen as a preprocessing step to an estimator. Scikit-learn
exposes feature selection routines as objects that implement mutiple transform meth-
ods, includes: SelectKBest(), SelectPercentile(), Generic UnivariateSelect(). In our system,

http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM

Page 13 of 23Wang et al. SpringerPlus (2015) 4:583

we implement the SelectKBest method to removes all but the k highest scoring features.
The parameter of SelectKBest is set “score_func = chi2, k = 2000”.

Evaluation
After presenting our hybrid detection system in detail, we now proceed to an empirical
evaluation of its efficacy.

Dataset

For all experiments, we consider a dataset of real Android applications and real mal-
ware. To acquire benign apps, we design our crawler and craw a large number of apps in
China app stores, such as http://www.appchina.com, http://www.as.baidu.com, http://
www.mm.10086.cn, etc. To collect benign apps, we submit the crawled apps to VirusTo-
tal, we label an app as benign if it does not trigger a response from 55 AV scanners used
by VirusTotal. The malware samples we used in experiment are acquired from Drebin
(Arp et al. 2014), The malware samples have been collected in the period of August 2010
to October 2012 and were anomaly detection engine available to us by the MobileSand-
box project (Spreitzenbarth et al. 2013). The final dataset contains 6000 benign apps and
5560 malware samples. As clamed in Arp et al. (2014), this is one of the largest malware
datasets that has been used to evaluate a malware detection method on Android.

An overview of the top malware families in our dataset is provides in Table 2, which
contains several families that are currently actively distributed in app markets.

Anomaly detection performance

In this experiment, we evaluate the detection performance of our anomaly detection
engine and compared it with other related detection approaches, some common AV
scanners.

Detection performance of anomaly detection engine

Firstly, a one-class SVM model is trained using 4000 benign samples. Then we test our
5560 malware samples on this model. The false negative rate is 1.16 %, which indicates
that 65 malware samples are not detected.

Table 2  Top 20 malware families in our dataset

Id Family # Id Family #

A FakeInstaller 925 K Adrd 91

B DroidKungFu 667 L Droiddreru 81

C Plankton 625 M LinuxLotoor 70

D Opfake 613 N GoldDream 69

E GingerMaster 339 O MobileTx 69

F BaseBridge 330 P FakeRun 61

G Iconosys 152 Q SendPay 59

H Kmin 147 R Gappusin 58

I FakeDoc 132 S Imlog 43

J Geinimi 92 T SMSreg 41

http://www.appchina.com
http://www.as.baidu.com
http://www.mm.10086.cn
http://www.mm.10086.cn

Page 14 of 23Wang et al. SpringerPlus (2015) 4:583

Next, we used the remaining 2000 benign samples as test samples to evaluate the false
positive rate of our anomaly detector. The result shows that 1.30 % of benign apps are
mistakenly recognized as abnormal apps during anomaly detection. This means, if our
anomaly detector is applied to Google Play, a world’s android app market, among the
approximately 1200 new apps per day, around 15 apps will be mislabeled as abnormal. This
anomaly detection accuracy has surpassed the proposed methods in Zhang et al. (2014).

Here we use a confusion matrix to characterize the performance of anomaly detection
engine, as shown in Fig. 3. From the confusion matrix, it is obvious that our anomaly
detection engine can accurately detect abnormal malware.

Compared it with other related detection approaches

As discussed above, our anomaly detection engine anomaly detection engine can detect
malware samples with true positive rate of 98.84 %, false negative rate of 1.16 %. Also
anomaly detection engine can correctly label benign apps with a true positive rate of
98.7 %, a false negative rate of 1.3 %. To evaluate the performance accurately, a 10-fold
cross validation is further performed, which is shown as ROC curve in Fig. 4.

As a comparison, we use the ROC figures in (Arp et al. 2014), as shown in Fig. 5. It
is obvious that our anomaly detection engine outperforms other related detection
methods.

Due to that our anomaly detection engine uses benign apps to train model, thus, no
malware sample of certain families are required in advance. Therefore, whether our
anomaly detection engine can detect unknown families are worth studying. To evaluate
the detection unknown families malware performance of our anomaly detection engine,
we use the top 20 malware families as test dataset. The detection rate of each family
based on our anomaly detection engine is shown in Table 3, with an amazing result. All
families except for FakeInstaller can be detected with a true rate of 100 %. Two instances
of FakeInstaller are falsely labeled as benign apps.

Fig. 3  The confusion matrix of anomaly detection

Page 15 of 23Wang et al. SpringerPlus (2015) 4:583

Compared it with other AV scanners

Although our anomaly detection engine anomaly detection engine shows a better per-
formance compared to related approaches, in the end it has to compete with common
anti-virus products in practice. Consequently, we also compare our anomaly detection
engine against the nineteen selected common AV scanners on our malware datasets.
The detection rate of each scanner is computed. The nineteen AV scanners include CAT-
QuickHeal, Alibaba, Symantec, ESET-NOD32, TrendMicro-HouseCall, Kaspersky, Ten-
cent, Fortinet, Microsoft, Qihoo-360, Ikarus, Baidu, etc. These ninetees AV scanners are
represented as A1-19. The detection performance of AV scanners and ours are shown in
Fig. 6.

Fig. 4  The ROC curve of anomaly detection

Fig. 5  The ROC curve of other detection methods

Page 16 of 23Wang et al. SpringerPlus (2015) 4:583

Signature detection performance

In this experiment, we evaluate the signature classification performance of our signature
detection engine based on Linear SVC–L1, Linear SVC–L2 and LinearSVM classifier,
respectively.

We use a multi-label classification to identify the malware family of the unrecognized
malicious samples. To compare the classification performance of three signature detec-
tion methods, a 10-fold validation is performed. In each fold, we split the dataset into
train dataset (70 %), test dataset (30 %) respectively. The confusion matrix of classifica-
tion results using three methods are shown in Figs. 7, 8, 9.

The classification rate of three methods is shown in Fig. 10. Above all, it is obvious that
the linear SVC with L2 surpasses the other classification methods. Therefore, we use the
linear SVC with L2 in our hybrid detection system.

Table 3  The detection rate of top 20 malware families

Family Detection rate (%) Family Detection rate (%)

A 99.71 K 100

B 100 L 100

C 100 M 100

D 100 N 100

E 100 O 100

F 100 P 100

G 100 Q 100

H 100 R 100

I 100 S 100

J 100 T 100

Fig. 6  The detection performance of AV scanners and ours

Page 17 of 23Wang et al. SpringerPlus (2015) 4:583

In addition to high accuracy during misuse detection and anomaly detection, all the
extracted features will be exhibited to users as a detailed analysis report. The analysis
report is shown in Fig. 11. From the analysis report, an ordinary uses or expert can grasp
and understand more information about the detected app.

Discussion
In this section, we discuss the limitation of our proposed system, potential evasion tech-
niques for our system and future work.

Fig. 7  Linear SVC-L1 based multi-family classifie

Fig. 8  Linear SVC- L2 based multi-family classifier

Page 18 of 23Wang et al. SpringerPlus (2015) 4:583

Limitation 1

In our proposed system, the static analysis and dynamic analysis both work on Dalvik
level. In general, our proposed system cannot handle native code or HTML5-based
applications. This is because both the ARM binary running on the underlying Linux
and the JavaScript code executed in WebView are not visible from a Dalvik bytecode

Fig. 9  LinearSVM based multi-family classifier

Fig. 10  The classification performance of three methods

Page 19 of 23Wang et al. SpringerPlus (2015) 4:583

perspective. Therefore, a future work is needed to defeat malware hidden from the Dal-
vik bytecode.

Limitation 2

Although some anti-emulator detection techniques are adopted to make our dynamic
analysis environment more real, more new emulator detection methods are proposed
(Vidas and Christin 2014; Petsas et al. 2014; Jing et al. 2014) and can detect our emulator

Fig. 11  The detailed analysis report

Page 20 of 23Wang et al. SpringerPlus (2015) 4:583

analysis easily. As a part of our future work, we consider adopting the dynamic hooking
methods proposed in Hu and Xiao (2014) to prevent emulator evading.

Poential evasion

As we know, learning-based detection is subject to poisoning attacks (Zhang et al. 2014).
An adversary may deliberately poison the benign dataset through introducing clean apps
with malicious features to confuse a training system. For example, he can inject harmless
code intensively to make sensitive API calls that are rarely observed in clean apps. Once
such samples are accepted as the benign samples, these APIs are therefore no longer the
distinctive features to detect related malware instances.

However, our proposed system is slightly different from prior works. Firstly, the
static and dynamic features are extracted to construct feature vector. Therefore, it is
much harder for an attacker to make confusing samples at the behavioral-level during
dynamic execution. Secondly, our anomaly detection engine serves as a sanitizer for new
unknown samples. Owing to the high true positive rate of anomaly detection, any abnor-
mal samples will be detected and further signature classification will be triggered.

Future work

As we stated above, some future works are need to improve our proposed system.

Future work 1

In order to solve limitation 1, we will adopt virtual machine inspection technique (Tam
et al. 2015) to include system-level events as part of the behavioral aspects (dynamic
features) of an app. Incorporating system calls into our feature space can improve the
behavioral models, leading to more accurate results for detecting malware using native
code. Furthermore, malware utilizing root exploits can be detected and characterized
more precisely by using system-level events.

To improve the code coverage in dynamic analysis, we also explore more intelligent
user interactions which surpasses the MonkeyRunner (Android Developers 2015) we
currently used.

Future work 2

As the limitation 2 stated above, in order to prevent malware from detecting emualtor
and evading analysis, we will adopt new dynamic hooking mehtods (Hu and Xiao 2014)
to construct a more real dynamic analysis environment.

Future work 3

Although we mentioned that our proposed system can be deployed in the Cloud, how to
deploy it is not clear. As a important part of our future work, we will refer some recent
moile cloud computing researches (Titze 2012; Chun and Maniatis 2009; Kosta et al.
2013; Borcea et al. 2015; Barakat et al. 2014) to provide a security, efficient and convient
service for both app markets and ordinary users.

Page 21 of 23Wang et al. SpringerPlus (2015) 4:583

Conclusion
In this paper, we proposed a novel hybrid mobile malware detection and classification
system using an open-source framework CuckooDroid. Our proposed detection system
integrates anomaly detection and misuse detection through static analysis and dynamic
analysis of apps, providing a detail and accurate detection results. To detect zero-day
malware, we design an anomaly detection engine, which exhibits amazing detection
accuracy in experiment. To classify unknown malware sample, we design a signature
detection engine, which can classify malware with a high positive rate. We evaluate our
detection system using 6000 benign samples and 5560 malware samples. Experiment
shows that our anomaly detection engine can detect abnormal malware with a high true
positive rate 98.84 %, relatively low false negative rate (1.16 %) and false positive rate
(1.3 %); our signature detection engine can classify 98.94 % malware samples.

Aiding by automate and comprehensive features of CuckooDroid, our detection sys-
tem can be deployed in Cloud service to provide malware detection and classification for
both some app markets and ordinary users through a web interface.
Authors’ contributions
XW carried out conception generation and experimental design, acquisition of data, analysis and interpretation of data,
drafting the manuscript and revising the manuscript. YY and YZ carried out the concept generation and experimental
design, revising the manuscript. All authors read and approved the final manuscript.

Author details
1 College of Computer, National University of Defense Technology, Changsha, China. 2 Information Center, National
University of Defense Technology, Changsha, China.

Acknowledgements
We would like to thank anonymous reviewers for their comments. This research was supported in part by MobileSand-
Box group. Any opinions, findings, and conclusions anomaly detection engine in this material are those of the authors
and do not necessarily reflect the views of the funding agencies.

Competing interests
The authors declare that they have no competing interests.

Received: 30 July 2015 Accepted: 20 September 2015

References
Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-Level Features for Robust Malware Detection in Android. In: Inter-

national Conference on Security and Privacy in Communication Networks (SecureComm)
Afonso VM, de Amorim MF, Gregio, Junquera, de Geus (2014) Identifying android malware using dynamically obtained

features. J Comp Virol Hacking Tech
Amos B, Turner HA, White J (2013) Applying machine learning classifiers to dynamic android malware detection at scale.

In: International Conference on Wireless Communications and Mobile Computing (IWCMC)
Android Developers (2015) Monkey Runner. http://www.developer.android.com/tools/help/ monkeyrunner_concepts.

html
Arp D, Spreitzenbarth M, Huebner M, Gascon H, Rieck K (2014) Drebin: efficient and explainable detection of android

malware in your pocket. 21th Annual Network and Distributed System Security Symposium (NDSS)
Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014) FlowDroid: precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In :Proceedings of the 35th Confer-
ence on Programming Language Design and Implementation (PLDI’14), pp 259–269

Barakat OL, Hashim SJ, Abdullah RSABR, Ramli AR, Hashim F, Samsudin K, AbRahman M (2014) Malware analysis perfor-
mance enhancement using cloud computing. J Comp Virol Hacking Tech 10(1):1–10

Borcea C, Ding X, Gehani N, Curtmola R, Khan MA, Debnath H (2015) Avatar: Mobile distributed computing in the cloud.
In: Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE International Conference on
March 30 2015–April 3 2015, pp 151–156

Burguera I, Zurutuza U, Nadjm-Tehrani (2011) Crowdroid: BehaviorBased malware detection system for android. In: ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM)

Chakranomaly S, Reaves B, Traynor P, Enck W (2013) MAST: Triage for market-scale mobile malware analysis. In: ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks (WiSec). (S. Chakranomaly detection engineo)

Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing inter-application communication in android. In: Proceedings of
the 9th Annual Symposium on Network and Distributed System Security, MobiSys 2011

http://www.developer.android.com/tools/help/

Page 22 of 23Wang et al. SpringerPlus (2015) 4:583

Chun BG, Maniatis P (2009) Augmented smartphone applications through clone cloud execution. In: Proceedings of the
12th conference on Hot topics in operating systems, Berkeley

CuckooDroid 2015. http://www.cuckoo-droid.readthedocs.org/
Enck W, Gilbert P, gon Chun B, Cox LP, Jung J, McDaniel P, Sheth A (2010) Taintdroid: An information-flow tracking system

for realtime privacy monitoring on smartphones. In: Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp 393–407

Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2015) Android security: a survey of issues, mal-
ware penetration, and defenses. Commun Surv Tutor IEEE 17(2):998–1022

Gilbert, P., Chun, B-G., Cox, LP, Jung J (2011) Vision: automated security validation of mobile apps at app markets. In:
Proceedings of the second international workshop on Mobile cloud computing and services, MCS’11, ACM, New
York, pp 21–26

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) Riskranker: scalable and accurate zero-day android malware detection.
In: Proc. of International Conference on Mobile Systems, Applications, and Services (MOBISYS), pp 281–294

Hu W, Xiao Z (2014) Guess where i am-android: detection and prevention of emulator evading on android. HitCon
Jing Y, Zhao Z, Ahn G-J, Hu (2014) Morpheus: automatically generating heuristics to detect Android emulators. In: Pro-

ceedings of the 30th Annual Computer Security Applications Conference (ACSAC ‘14), ACM, New York, pp 216–225.
doi:10.1145/2664243.2664250

Kosta S, Perta VC, Stefa J, Hui P, Mei A (2013) Clone2clone (c2c): peer-to-peer networking of smartphones on the cloud.
In: 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud13)

Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, van der Veen V, Platzer C (2014) Andrubis—1,000,000
Apps Later: a view on current android malware behaviors. In: International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS)

Lindorfer M, Neugschwandtner M, Platzer C (2015) MARVIN: efficient and comprehensive mobile app classification
through static and dynamic analysis[J]. http://www.iseclab.org/papers/marvin_compsac15.pdf

Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S (2014) Rage against the virtual machine: hin-
dering dynamic analysis of android malware, In: Seventh European Workshop on System Security, pp 1–6.
doi:10.1145/2592791.2592796

Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G (2014) Execute this! Analyzing unsafeand malicious dynamic code
loading in Android applications. In: Proceedings of the 21st Network and Distributed System Security Symposium
(NDSS’14)

Protalinski E (2012) A first: hacked sites with android drive-by download malware. http://www.zdnet.com/blog/
security/a-first-hacked-sites-withandroid-drive-by-download-malware/11810

Rastogi V, Chen Y, Enck W (2013) Appsplayground: automatic security analysis of smartphone applications. In: third ACM
conference on Data and application security and privacy, pp 209–220. doi:10.1145/2435349.2435379

Robotium (2014) Robotium, the world’s leading AndroidTM test automation framework. https://www.code.google.
com/p/robotium/

Sahs J, Khan L (2012) A machine learning approach to android malware detection. In: European Intelligence and Security
Informatics Conference (EISIC). IEEE, pp 141e7. http://dx.doi.org/10.1109/EISIC

Sasnauskas R, Regehr J (2014) Intent fuzzer: crafting intents of death. doi:10.1145/2632168.2632169
Shang Y, Luo W, Xu S (2011) L-hop percolation on networks with arbitrary degree distributions and its applications. Phys

Rev E 84:031113
Spreitzenbarth M, Echtler F, Schreck T, Freling FC, Hoffmann J (2013) MobileSandbox: looking deeper into android appli-

cations. In: 28th International ACM Symposium on Applied Computing (SAC)
Šrndić N, Laskov P (2014) Practical evasion of a learning-based classifier: a case study. In: IEEE Symposium on Security and

Privacy (S&P)
Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Ribagorda A (2013) Evolution, detection and analysis of malware for smart

devices. IEEE Commun Surv Tutor 16(2):961–987. doi:10.1109/SURV.2013.101613.00077
Sufatrio, Tan DJJ, Chua T-W, Vrizlynn LL (2015) Securing android: a survey, taxonomy, and challenges. ACM Comput. Surv

47(4):58. doi:10.1145/2733306 (45 pages)
Tam K, Khan SJ, Fattori A, Cavallaro L (2015) CopperDroid: automatic reconstruction of android malware behaviors. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS’15), San Diego .Internet Society
Titze D (2012) A cloud-based security service for smartphones. Master’s thesis, Technische Universitat München
Vidas T, Christin N (2014) Evading android runtime analysis via sandbox detection. In: Proceedings of the 9th ACM

Symposium on Information, Computer and Communications Security, ASIA CCS’14, ACM, New York, pp 447–458.
doi:10.1145/2590296.2590325

Wu W-C, Hung S-H (2014) DroidDolphin: a dynamic android malware detection framework using big data and machine
learning. In: Conference on Research in Adaptive and Convergent Systems (RACS)

Yan L-K, Yin H (2012) Droidscope: seamlessly reconstructing os and dalvik semantic views for dynamic android malware
analysis. In: Proc. of USENIX Security Symposium

Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, Wang XS, Zang B (2013b) Vetting undesirable behaviors in Android apps
with permission use analysis. In :Proceedings of the 20th ACM Conference on Computer and Communications
Security (CCS’13), pp 611–622

Zhang M, Duan Y, Yin H, et al (2014) Semantics-aware android malware classification using weighted contextual API
dependency graphs[C]. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, pp 1105–1116

Zhauniarovich Y, Ahmad M, Gadyatskaya O, Crispo B, Massacci F (2015) StaDynA: addressing the problem of dynamic
code updates in the security analysis of android applications. In: ACM Conference on Data and Application Security
and Privacy (CODASPY)

Zhou Y, Jiang X (2012) Dissecting android malware: Characterization and evolution. In: Proc. of IEEE Symposium on
Security and Privacy, pp 95–109

http://www.cuckoo-droid.readthedocs.org/
http://dx.doi.org/10.1145/2664243.2664250
http://www.iseclab.org/papers/marvin_compsac15.pdf
http://dx.doi.org/10.1145/2592791.2592796
http://www.zdnet.com/blog/security/a-first-hacked-sites-withandroid-drive-by-download-malware/11810
http://www.zdnet.com/blog/security/a-first-hacked-sites-withandroid-drive-by-download-malware/11810
http://dx.doi.org/10.1145/2435349.2435379
https://www.code.google.com/p/robotium/
https://www.code.google.com/p/robotium/
http://dx.doi.org/10.1109/EISIC
http://dx.doi.org/10.1145/2632168.2632169
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://dx.doi.org/10.1145/2733306
http://dx.doi.org/10.1145/2590296.2590325

Page 23 of 23Wang et al. SpringerPlus (2015) 4:583

Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: Detecting malicious apps in official and alterna-
tive android markets. In: Proc. of Network and Distributed System Security Symposium (NDSS)

Zhu H, Xiong H, Ge Y, Chen E (2014) Mobile App recommendations with security and privacy awareness. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2014

	Accurate mobile malware detection and classification in the cloud
	Abstract
	Background
	Related work
	Detection using static analysis and limitation
	The limitation of static analysis
	Our solution to the limitation of static analysis

	Detection using dynamic analysis and limitation
	The limitation of dynamic analysis
	Our solution to the limitation of dynamic analysis

	Detection using machine learning and limitation
	The limitation of machine learning based detection
	Our solution to the limitation of machine learning based detection

	Architecture overview
	Static and dynamic analysis
	Anomaly detection
	Signature detection

	Implementation
	Feature extraction
	Static analysis features
	Dynamic analysis features

	Embedding into vector space
	Choosing a classifier
	Anomaly detection
	Signature detection
	LinearSVC classifier
	LinearSVM classifier

	Feature selection
	For anomaly detection
	For signature classification

	Evaluation
	Dataset
	Anomaly detection performance
	Detection performance of anomaly detection engine
	Compared it with other related detection approaches
	Compared it with other AV scanners

	Signature detection performance

	Discussion
	Limitation 1
	Limitation 2
	Poential evasion
	Future work
	Future work 1
	Future work 2
	Future work 3

	Conclusion
	Authors’ contributions
	References

