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Background
As reported, Android is the most popular platform for Smartphone today with a mar-
ket share of 84.7 % (Lindorfer et al. 2015). In contrast to other platforms, such as iOS 
which allow users to install apps only available in the iTunes App Store, Android allows 
to install applications from many sources, such as Google Play Store, third-party mar-
kets, torrents, or direct downloads, etc. Naturally, this liberty makes bundling and dis-
tributing applications with malware easy for attackers, who try to lure users into running 
malicious code, e.g. by repackaging popular apps with malicious payload (Lindorfer et al. 
2015). Privacy breaches (e.g., access to address book and GPS coordinates), monetiza-
tion through premium SMS and calls, other harmful malicious attack (Shang et al. 2011) 
have become real threats. Although there have already been some drive-by download 
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sightings for Android (Protalinski 2012), the most prevalent infection vector is still user-
based installation.

Several security measures have been proposed by the Android platform providers to 
prevent the installation of malware, most notable of which is the Android permission 
system. Each application has to explicitly request some permission from the user dur-
ing the installation to perform certain tasks on the device, such as sending SMS mes-
sage, etc. (Arp et  al. 2014). However, many users tend to blindly grant permission to 
unknown applications and thereby undermine the purpose of the permission system. 
To help users, some information sources (Lindorfer et al. 2015) are provided for them 
to decide whether or not to install an app, such as trustworthiness of the app’s origin, 
app reviews by other users, results from antivirus (AV) scanners, results from Google’s 
app verification service, etc. However, as introduced in Lindorfer et  al. (2015), all of 
these sources have major shortcomings and cannot prevent the installation of malware 
efficiently.

To solve this problem, many research methods have been proposed for analyzing and 
detecting Android malware prior to the installation. These methods are mainly catego-
rized into two generic approaches, namely static analysis and dynamic analysis. For 
example, TaintDroid (Enck et al. 2010), DroidRanger (Zhou et al. 2012) and DroidScope 
(Yan and Yin 2012) are dynamic analysis methods that can monitor the behavior of 
applications during runtime. Although very effective in identifying malicious activity, 
run-time monitoring suffers from significant overhead and cannot be directly applied on 
mobile devices. In addition, pure dynamic analysis systems are prone to analysis evasion. 
By contrast, static analysis methods, such as Drebin (Arp et al. 2014), RiskRanker (Grace 
et al. 2012), introduce only small run-time overhead, but struggle with increasingly pop-
ular obfuscation and dynamic code loading techniques.

In this paper, we proposed a hybrid mobile malware detection and classification sys-
tem by extending a new open source analysis framework CuckooDroid (CuckooDroid 
2015) to detect and classify malware accurately before installation. Our proposed system 
is designed for both app markets and ordinary users. For app markets, our system can 
perform a large-scale detection and classification aided by an automated and compre-
hensive analysis with CuckooDroid. For ordinary users, this detection and classification 
system can be provided as a service through mobile cloud service (MCS). In addition, 
a detailed report that is easy to grab and understand is provided, which is generated 
by CuckooDroid. Our proposed detection system mainly consists of two parts: anom-
aly detection engine and signature detection engine. Firstly, by using dynamic analysis 
results, anomaly detection engine can detect new zero-day and unknown malware, as 
done in Sahs and Khan (2012). During the dynamic analysis, some vital dynamic features 
of an app in runtime are tested in runtime during dynamic analysis, such as SMS, Phone, 
dynamic code loading, etc. The anomaly detection engine is built on one-class support 
vector machine classifiers. Secondly, the signature detection engine which is built based 
on linearSVC classifier is responsible for detecting and classifying known malware or 
new variants using static and dynamic analysis results. During the static analysis, many 
features from the source code and manifest are extracted as possible, as did in Arp et al. 
(2014). Aided by the static and dynamic analysis results, signature detection engine 
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can efficiently detect new variants and identify their corresponding families through 
classification.

Note that the features collected during static and dynamic analysis are organized in 
sets of strings (such as permissions, receivers, hardware) and embedded in a joint vector 
space. Then each application is represented with a feature vector which can be fed to a 
certain machine learning technique. Due to the intensive computing resources required 
by the static and dynamic analysis, both anomaly detection engine and signature detec-
tion engine should be deployed off-device, such as in the Cloud. Using a classifier that is 
trained on a large set of known malicious apps (malware) and benign apps (goodware), 
our proposed system can detect whether a new app is abnormal or not firstly. Once a new 
app is detected as abnormal by anomaly detection engine, it is malware sample with high 
probability in our system. Therefore, a further comprehensive analysis by signature detec-
tion engine is started to analyze which family this malware belongs to. In case a new app 
is detected as normal by anomaly detection engine, we assume it is benign in this paper. 
The assumption is reasonable according to the high true detection rate of anomaly detec-
tion engine in experiments, which we will discuss it in detail in evaluation part.

In summary, our contributions are as follows:

1.	 Effective malware detection and classification Based on two phase detection by static 
analysis and dynamic analysis respectively, our proposed system is capable of detect-
ing and classifying malware with high accuracy and few false alarms.

2.	 Zero-day malware and new variants detection Our proposed hybrid detection sys-
tem consists of two phase: anomaly detection engine and signature detection engine. 
Anomaly detection engine is coarse-grained and can detect new malware which is 
anomalous from a large number of benign apps. Signature detection engine is a fine-
grained, which can detect known malware or new variants of a known family. Exper-
iment results show that the two detection engines both achieve high true positive 
accuracy and low false negative.

3.	 Integrating anomaly detection and misuse detection Considering the fact that the 
purely anomaly detection has a relative high false positive rate and the purely misuse 
detection has a relative high false negative rate, we integrate them to achieve high 
true positive and low false negative. As we know, we are the first to do this in mobile 
malware detection.

4.	 Detailed analysis reports Our proposed system generates a detailed analysis report 
that is easy to understand during the detection, which includes the extracted static 
and dynamic information.

5.	 System implementation We implemented our proposed detection system using 
CuckooDroid. Based on this implementation, many experiments are executed to 
evaluate the performance of this system.

The rest of this paper is organized as follows: related work is introduced in “Related 
work”. Architecture overview is presented in “Architecture overview”. Our proposed 
system implementation and evaluation are discussed in detail in “Implementation” and 
“Evaluation”, respectively. “Discussion” concludes the paper.
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Related work
In the last years, mobile malware detection has been a hot area of research, especially 
android malware detection. To counter the growing amount and sophistication of this 
malware, a large number of concepts and techniques have been proposed and are mainly 
categorized to: (1) static analysis; (2) dynamic analysis. A detailed and comprehensive 
review of the current mobile malware detection is provided in the studies of Zhou and 
Jiang (2012) (Suarez-Tangil et al. 2013; Sufatrio et al. 2015; Faruki et al. 2015). And since 
that we use the machine learning in our detection system, the related work of machine 
learning based detection is introduced.

Detection using static analysis and limitation

The first approaches for detecting Android malware have been inspired by concepts from 
static program analysis. A static analyzer inspects an app by just disassembly, de-compi-
lation without actually running it, hence does not infect the device. Since it analyzes an 
app’s whole source or recovered code, the analyzer can achieve high code coverage.

A large number of methods that inspect applications and disassemble their code have 
been proposed (e.g. Arp et al. 2014; Lindorfer et al. 2015; Grace et al. 2012; Aafer et al. 
2013; Chakranomaly et  al. 2013; Chin et  al. 2011; Zhu et  al. 2014. RiskRanker (Grace 
et al. 2012) detects high and medium risk apps according to several predetermined fea-
tures, such as the presence of native code, the use of functionality that can cost the user 
money without her interaction, the dynamic loading of code that is stored encrypted 
in the app, etc. Comdroid (Chin et al. 2011) analyze the vulnerability in inter-app com-
munication in Android apps and find a number of exploitable vulnerabilities. DroidAPI-
Miner (Aafer et  al. 2013) and Drebin (Arp et al. 2014) classify apps based on features 
learned from a number of benign and malicious apps during static analysis. An app rec-
ommender system is proposed in Zhu et al. (2014) to rank apps based on their popularity 
as well as their security risk, considering requested permissions only. FlowDroid (Arzt 
et  al. 2014) performs a flow-, context-, object-, and field-sensitive static taint analysis 
on Android apps. It models Android app’s lifecycle states and handles taint propagation 
due to callbacks and UI objects. As the most closely related to our signature detection 
engine module, some static features such as permissions, intent filters, and the presence 
of native code are also extracted in MAST (Chakranomaly et al. 2013) to perform mar-
ket-scale triage and to select potentially malicious samples for further analysis.

The limitation of static analysis

Static analysis lacks the actual execution path and relevant execution context. Moreover, 
there exist challenges in the presence of code obfuscation as well as dynamic code load-
ing (Poeplau et  al. 2014). All those approaches lack the ability to analyze code that is 
obfuscated or loaded dynamically at runtime, a prevalent feature of apps as evidenced by 
a recent large scale study (Lindorfer et al. 2014), unless they are complemented by some 
form of dynamic analysis, as recently proposed in StaDynA (Zhauniarovich et al. 2015).

Our solution to the limitation of static analysis

In contrast, our proposed system does not suffer from those limitations, since our anom-
aly detection engine performs abnormal detection firstly through dynamic analysis.
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Detection using dynamic analysis and limitation

Static analysis and detection approaches are quick, they fail against the encrypted, 
polymorphic and code transformed malware. In order to overcome the shortcomings 
of static analysis, some dynamic analysis based methods (Zhang et al. 2013b; Yan and 
Yin 2012; Enck et al. 2010; Burguera et al. 2011; Wu and Hung 2014; Gilbert et al. 2011; 
Rastogi et al. 2013) are proposed. Dynamic analysis is conducted by executing an app, 
on either a real or virtual execution environment such as the Android Virtual Device 
(AVD), and observing the app during its execution.

The analysis system TaintDroid (Enck et al. 2010) and DroidScope (Yan and Yin 2012) 
are the most notably, which enable dynamically monitoring applications in a protected 
environment. TaintDroid focuses on taint analysis and DroidScope make introspection 
at different layers of the platform. Although both systems provide detailed information 
about the behavior of apps, they require too many resources to deploy on Smartphones 
directly.

A first step towards the use of dynamic analysis results for Android malware detec-
tion is anomaly detection engine by CrowDroid (Burguera et al. 2011), which performs 
k-means cluster based on system-call counts. The number of invocations of API and 
system calls is selected as coarse-grained features to train various classifiers to analyze 
apps. However, their monitoring approach relies on modifying the app under analysis, 
which can be easily detected by malware. Another related approach combining static 
with dynamic analysis is DroidDolphin (Wu and Hung 2014). Again, the approach 
relies on repackaging and injecting an app with monitoring code. Although the authors 
observed that the accuracy increased with the size of the training set, DroidDolphin (Wu 
and Hung 2014) achieves an accuracy of only 86.1 % in the best case. At the meantime, 
these dynamic analysis methods are all prone to analysis evasion due to the increas-
ing use of emulator detection technology in malware. VetDroid is a dynamic analysis 
platform for reconstructing sensitive behaviors in Android apps from a permissions 
use perspective (Zhang et  al. 2013b). Zhang et  al. points out that traditional system 
call analysis is not appropriate for characterizing the behaviors of Android apps, as it 
misses high-level Android-specific semantics and fails at reconstructing IPC and RPC 
interactions. Afonso et al. (2014) dynamically analyze Android apps using the number 
of invocations of API and system calls as coarse-grained features to train various clas-
sifiers. However, their monitoring approach relies on modifying the app under analysis, 
which is easily detectable by malware. AppsPlayground (Rastogi et al. 2013) performs a 
TaintDroid-based dynamic taint tracing, API monitoring, and kernel-level monitoring. 
Event triggering and intelligent execution techniques are adopted to realize comprehen-
sive execution coverage and achieve code coverage of 33 %.

The limitation of dynamic analysis

Although dynamic analysis surpasses the static analysis in many aspects, dynamic anal-
ysis also has some drawbacks. Firstly, dynamic analysis requires too many resources 
relative to static analysis, which hinders it from being deploying on resource constraint 
smartphone. Secondly, dynamic analysis is subject to low code coverage. Sasnauskas and 
Regehr (2014) mentioned that producing highly structured inputs that get high code 
coverage is an open research challenge. Thirdly, recently malware attempts to detect 
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the emulator and other dynamic analysis systems (Vidas and Christin 2014; Petsas et al. 
2014; Jing et al. 2014), avoiding launching their payloads. Thus, some dynamic analysis 
systems are prone to analysis evasion.

Our solution to the limitation of dynamic analysis

On contrast to the above mentioned methods, anomaly detection engine in our pro-
posed detection system performs dynamic analysis through Dalvik Hooking based on 
Xposed Framework. Therefore, our analysis module is difficult to be detected by avoid-
ing repackaging and injecting monitoring code. As we know, most of dynamic analy-
sis methods don not integrate the anti-emulator tools and thus are prone to analysis 
evasion. To solve this problem, some emulator anti-detection tools (such as Content 
Generator, etc.) are integrated to make a more transparent dynamic analysis environ-
ment, which can avoid emulator detection at a certain extent and extract more valuable 
dynamic information. As for code coverage, we adopt MonkeyRunner (Android Devel-
opers 2015) to stimulate the inputs during app execution.

Detection using machine learning and limitation

The difficulty of manually crafting and updating detection patterns for Android malware 
has motivated the application of machine learning. Several methods have been proposed 
to detect and analyze applications automatically using machine learning methods (e. g. 
Arp et al. 2014; Lindorfer et al. 2015; Grace et al. 2012; Aafer et al. 2013; Afonso et al. 
2014; Spreitzenbarth et al. 2013; Amos et al. 2013). For example, the method proposed 
in Arp et al. (2014) applies linearSVC learning methods to the static features of applica-
tions for detecting malware. Similarly, the methods RiskRanker (Grace et al. 2012) and 
DroidAPIMiner (Aafer et al. 2013) use machine learning techniques to detect malware 
with features statically extracted from Android applications. In contrast, the method 
proposed in Afonso et al. (2014) detects malware with a machine learning technique and 
dynamically extract features. A framework is proposed in Amos et al. (2013) to evalu-
ate mobile malware classifiers based on the same features as Andromaly with an equally 
limited testing set of only 50 applications. Additionally, the tested classifiers achieve 
substantial false positive rates ranging from 14.55  % up to 44.36  %, rendering them 
completely impractical. Closest to our work are MARVIN (Lindorfer et  al. 2015) and 
MobileSandbox (Spreitzenbarth et al. 2013), which use the static and dynamic features 
by machine learning and achieve high accuracy.

The limitation of machine learning based detection

Overall, previous work focuses on detecting malware using machine learning tech-
niques, which are either misuse-based detection or anomaly-based detection. Misuse 
based detector tries to detect malware based on signatures of known malware. Misuse 
detector is specifically designed to detect known malware, leading to low number of false 
alarms. However, misuse detector could not detect zero-day malware. Anomaly detector 
refers to identifying malware that is anomalous with respect to the normal apps. Despite 
their capability in detecting zero-day malware, anomaly detector suffers from high false 
positive rate. The misuse and anomaly detector are complementary.
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Our solution to the limitation of machine learning based detection

Hence, by taking advantages of low false-positive rate of misuse detector and the ability 
of anomaly detector to detect zero-day malware, a hybrid malware detection method is 
proposed in this paper, which is the novelty in this paper.

Architecture overview
As described in Fig. 1, our proposed detection system mainly consists of two engines: 
anomaly detection engine and signature detection engine. Anomaly detection engine is 
responsible for performing zero-day malware detection through dynamic analysis. And 
signature detection engine is responsible for performing new variant detection by com-
bining static analysis results with dynamic analysis results. Signature detection engine is 
trained on known malware and benign apps.

Considering the resource-consumption process of detection and the constraint com-
puting resource on mobile devices, both anomaly detection engine and signature detec-
tion engine should be deployed off-device at somewhere with rich resources, such as in 
the Cloud.

The process is outlined as follows:

Static and dynamic analysis

Firstly, all the train datasets and test datasets are processed statically and dynamically. 
As done in Drebin (Arp et al. 2014), we extract the static features from the manifest file 
and the disassemble dex code. In order to extract the dynamic features of apps during 
runtime, CuckooDroid is used to run the apps in an emulator environment. As shown 
in Fig. 2, CuckooDroid is composed of one manage node, and a number of slave nodes, 
which can be either Android emulators or linux-based virtual machines in the Cloud. 
Contrast to other dynamic analysis, CuckooDroid has integrated a collection of known 
emulator anti-detection techniques for hiding the Android emulator and providing 
a transparent analysis environment. At the meantime, a Dalvik API hooking based on 
Xposed framework is adopted to capture the dynamic API calls and information. Also 
the analysis results of submitted app are stored in a database in our proposed method. 

Fig. 1  System overview



Page 8 of 23Wang et al. SpringerPlus  (2015) 4:583 

Through this way, when a submitted app has been analyzed before, its analysis results 
will be returned directly.

Anomaly detection

Anomaly detection engine is responsible for detecting normal and abnormal apps 
through dynamic analysis and providing a preliminary analysis results. In contrast to sig-
nature detection, dynamic features will be used in anomaly detection and be embedded 
into vector space. Also a Variance treshold- based feature selection method is applied 
to these feature vectors. In order to detect abnormal apps, a One-Class SVM classifier 
model is built on benign apps. A new app will be labeled as either zero-day malware or 
benign app by this trained classifier. When an unknown app is submitted, its feature vec-
tor will be fed to the classifier and a decision about whether is malware or not is made.

If an unknown app is categorized as abnormal and it is not known malware, further 
signature detection will be triggered to classify this malware and determine which family 
it belongs to.

In order to maintain the detection accuracy of the two detection engines, all the new 
variants, zero-day malware and benign apps will be stored to update the training dataset 
at a specific period.

Signature detection

At first, the extracted static and dynamic string features will be embedded into vector 
space, generating feature vectors. Then, a Chi2-based feature selection method is applied 
to these feature vectors.

During signature detection, the feature vectors of malicious and benign apps will be 
generated first, as stated above. Then a linearSVC classifier model is trained based on 
these train feature vectors which consist of known malware and benign apps.

The detected abnormal app during anomaly detection will be further classified using a 
multi-family classifier. When the classification ends, the detected abnormal app will be 
classified into a certain malware family. Since the detected malware is unknown, it will 
be a new variant of a family with a high probability.

Fig. 2  Framework of Cuckoodroid
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Implementation
Feature extraction

Feature extraction is an essential part of both anomaly detection engine and signature 
detection engine. Both the static analysis and dynamic analysis are performed before 
anomaly detection and signature detection. CuckooDroid is used to extract the dynamic 
features of each app. At the meantime, some static features are extracted.

Static analysis features

For android apps, static analysis can provide a rich feature set about the app, such as 
requested permissions, registered activities, etc. In this paper, our static analysis mainly 
focus on the manifest and the disassembled dex code of the app, which both can be 
obtained by a linear sweep over the app’s source code and files. We adopt the Android 
Asset Packaging Tool to extract the static features, as Drebin (Arp et al. 2014). Addition-
ally, several aspects of the app’s code are statically determined in case they might not 
be triggered during the dynamic analysis phase, as done in (Lindorfer et al. 2015), such 
as the use of reflection API, the dynamic loading of code, the use of cryptographic API. 
Specially, the static feature extracted mainly includes two parts: the static features from 
manifest and disassembled code.

Every application developed for Android must include a manifest file, which provides 
data supporting the installation and later execution of the application. As did in Arp 
et  al. (2014), we extract the information stored in this file. The specific static features 
extracted include: Hardware components, Activities, Intents-filters, etc. Also, some 
static signatures about an app are generated according to the extracted static informa-
tion, such as “Application request dangerous permission”, “Application uses native code”, 
etc. Compared to Arp et al. (2014), we do not extract the network address features and 
restricted API calls features. The detailed extracted static features are shown in Table 1.

Table 1  Categories and numbers of extracted features

Source Category #Feature

Dynamic File operations 19,038

Static and dynamic Signatures 1283

Dynamic Registered_receivers 8334

Dynamic Reflection_calls 14,799

Static Used/required permissions 1267

Static and dynamic SMS, phone, contacts 1493

Static Application components 21,523

Static and dynamic Dynamic code loading 916

Static and dynamic Crypto operation 41

Dynamic Data_leak 828

Dynamic Commands 937

Static and dynamic Network activity 37,734

Static The use of special API 20,162

Dynamic System properties 13,081
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Dynamic analysis features

As research on ×86 malware detection, purely static analysis techniques are prone to evasion 
by some anti-detection techniques, such as code obfuscation, etc. In order to prevent attack-
ers from evading the learning method, e.g. with mimicry attacks (Šrndić and Laskov 2014), 
features should inherently represent the malicious behavior to be detected. Thus the corre-
sponding dynamic analysis features capturing the harmful behavior should be extracted.

In order to extract the dynamic analysis features, we extend the open-source and auto-
mated dynamic analysis framework CuckooDroid proposed in CuckooDroid (2015). 
CuckooDroid performs dynamic analysis at Dalvik-level through a Dalvik API monitor-
ing based on Xposed framework. In addition, a new stimulation tool is integrated to trig-
ger program behavior and increase code coverage Robotium (Robotium 2014), which is 
used to enhance original CuckooDroid by simulating user’s interactions with the mobile 
apps and can automate the testing process. During the dynamic analysis, we monitor the 
following events: “File access and operations”, “Register receivers”, “Executed commands”, 
“Content resolver queries”, “Telephony Manager listen”, “Find resource”, “Dynamic suspi-
cious calls”, “SMS”, “Phone Events”, “Data leaks”, “Network operations”, etc. Compared to 
(Lindorfer et al. 2015), we also extract the crypto keys that apps use, then the encrypted 
traffic can be transformed to plaintext traffic.

Embedding into vector space

The extracted static analysis features and dynamic analysis features are expressed as 
strings, which cannot be fed to machine learning directly. For example, a malware sample 
sending premium SMS messages may contain the requested permissions “SEND_SMS”, 
and the hardware components “android.hardware.telephony”. During our evaluation on 
dataset of 11,560 benign and malware samples, we extracted 190,367 different static and 
dynamic features, as shown in Table 1.

As most machine learning methods operate on numerical vectors, we need to map 
the extracted feature sets into a vector space first. Thus, we need to represent an app 
as an appropriate vector in order to machine learning algorithm. To this end, we use a 
simple bag of words representation. Firstly, we defines a features set S, which comprises 
all observable extracted string features. Secondly, a |S|-dimensional vector space can be 
defined using the feature set S, where each dimension is either 0 or 1. Then an app X can 
be mapped to this space by constructing a vector ϕ(X), for each feature s extracted from 
X the corresponding dimension is set to 1 and all other dimensions are set to 0.

where the indicator function I(x, s) is simply defined as

Choosing a classifier

When got feature vectors of apps, our proposed hybrid system uses different classifiers 
to perform anomaly detection and signature classification. In this paper, 1-class SVM 
algorithms and linear classifier are used to build the anomaly detection models and sig-
nature classification models, as introduced below.

ϕ : X → {0, 1}|s|, ϕ(x) → (I(x, s))s∈S,

I(x, s) =

{

1 if the application x contain features

0 otherwise
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Anomaly detection

Consider a data set of n observations from the same distribution described by p features. 
Consider now that we add one more observation to that data set. Is the new observation 
so different from the others that we can doubt it is regular? (i.e. does it come from the 
same distribution?) Or on the contrary, is it so similar to the other that we cannot dis-
tinguish it from the original observation? This is the question addressed by the novelty 
detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the 
initial observations distribution, plotted in embedding p-dimensional space. Then, if 
further observations lay within the frontier-delimited subspace, they are considered as 
coming from the same population than the initial observations. Otherwise, if they lay 
outside the frontier, we can say that they are abnormal with a given confidence in our 
assessment.

A one-class support vector machine (1-class SVM) is a popular anomaly detection 
algorithm in various applications. In our proposed detection system, we use the novelty 
detection provided by 1-class SVM in Scikit-learn to detect anomaly malware.

The One-Class SVM has been introduced by Schölkopf et  al. for that purpose and 
implemented in the Support Vector Machines module in the svm. OneClassSVM 
(http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.
html#sklearn.svm.OneClassSVM) object. It requires the choice of a kernel and a scalar 
parameter to define a frontier. The RBF kernel is usually chosen, although there exists 
no exact formula or algorithm to set its bandwidth parameter. This is the default in the 
scikit-learn implementation, we also choose the RBF kernel. The ‘nu’ parameter (we set 
nu = 0.01), also known as the margin of the One-Class SVM, corresponds to the proba-
bility of finding a new, but regular, observation outside the frontier. The ‘gamma’ param-
eter is set to 0.01, too.

Signature detection

The signature detection is responsible for classifying abnormal malware to its family. Due 
to that we classify the abnormal malware by the static and dynamic features, thus, the 
chosen classifier should adapt to high-dimensional feature space, as we extract 190,367 
different static and dynamic features. Also the chosen classifier should adapt to sparse 
data, considering the single app only exhibit a small subset of the possible features.

Given these characteristics, we explore three machine learning approaches: a linear 
SVC classifier with L1 regularized logistic regression, a linear SVC classifier with L2 reg-
ularized logistic regression and a Support Vector Machine classifier (LinearSVM). Here, 
we apply sklearn.svm (http://www.scikitlearn.org/stable/modules/generated/sklearn.
svm.OneClassSVM.html#sklearn.svm.OneClassSVM) to perform these three classifiers.

LinearSVC classifier

Compared to SVM, linear SVC implements “one-vs-the-rest” multi-class strategy. Given 
a feature vector ϕ (x↽, a linear classifier computes the scalar product with a weight vec-
tor �w : y =

∑

i xiwi. The outcome, y, is the margin of the classification.
Similar to SVC with parameter kernel=’linear’, linear SVC implemented in terms of 

liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss 

http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
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functions and should scale better (to large numbers of samples). Furthermore, linear 
SVC supports both dense and sparse input and the multiclass support is handled accord-
ing to a one-vs-the-rest scheme.

As suggested in (Lindorfer et al. 2015), linear SVC with L1 regularization are superior 
to linear SVC with L2 regularization when dealing with many irrelevant features, while 
linear SVC with L2 regularization is extremely sensitive to the presence of irrelevant fea-
tures. We show in our evaluation in Sect.  5 that both methods lead to similar results 
during classification, while linear SVC with L2 classifier performs slight better.

LinearSVM classifier

In principle, an SVM works the same way as a linear classifier. However, it does address 
one problem of linear classifiers: as the name already suggests, the latter classifies sam-
ples only accurately if the problem is linearly separable. To overcome this limitation, 
SVMs use the “kernel trick”, implicitly mapping the input into an even higher-dimen-
sional space, where the problem is more easily separable.

However, the LinearSVM implementation is based on libsvm. The fit time complexity 
is more than quadratic with the number of samples which makes it hard to scale to data-
set with more than a couple of 10,000 samples.

Furthermore, as further detailed in “Evaluation”, pure linear classification performs 
better than LinearSVM and has high classification accuracy. Thus, our signature classifi-
cation chooses purely linear classifier.

Feature selection

The features extracted during feature extracted include a large number of static and 
dynamic features, as we introduced in Table 1. However, this not means that they are all 
useful for anomaly detection and signature classification. To improve the performance 
and accuracy of our hybrid detection system, we apply different feature selection meth-
ods to anomaly detection and signature classification.

The classes in the sklearn.feature_selection (http://www.scikitlearn.org/stable/mod-
ules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) module 
can be used for feature selection/dimensionality reduction on sample sets, either to 
improve estimators’ accuracy scores or to boost their performance on very high-dimen-
sional datasets. So we choose this class to perform our feature selection.

For anomaly detection

VarianceThreshold is a simple baseline approach to feature selection. It removes all fea-
tures whose variance doesn’t meet some threshold. By default, it removes all zero-var-
iance features, i.e. features that have the same value in all samples. In our system, the 
parameter of VarianceThreshold is set “threshold = (0.12 × (1 − 0.12))”.

For signature classification

Univariate feature selection works by selecting the best features based on univari-
ate statistical tests. It can be seen as a preprocessing step to an estimator. Scikit-learn 
exposes feature selection routines as objects that implement mutiple transform meth-
ods, includes: SelectKBest(), SelectPercentile(), Generic UnivariateSelect(). In our system, 

http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
http://www.scikitlearn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html%23sklearn.svm.OneClassSVM
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we implement the SelectKBest method to removes all but the k highest scoring features. 
The parameter of SelectKBest is set “score_func = chi2, k = 2000”.

Evaluation
After presenting our hybrid detection system in detail, we now proceed to an empirical 
evaluation of its efficacy.

Dataset

For all experiments, we consider a dataset of real Android applications and real mal-
ware. To acquire benign apps, we design our crawler and craw a large number of apps in 
China app stores, such as http://www.appchina.com, http://www.as.baidu.com, http://
www.mm.10086.cn, etc. To collect benign apps, we submit the crawled apps to VirusTo-
tal, we label an app as benign if it does not trigger a response from 55 AV scanners used 
by VirusTotal. The malware samples we used in experiment are acquired from Drebin 
(Arp et al. 2014), The malware samples have been collected in the period of August 2010 
to October 2012 and were anomaly detection engine available to us by the MobileSand-
box project (Spreitzenbarth et al. 2013). The final dataset contains 6000 benign apps and 
5560 malware samples. As clamed in Arp et al. (2014), this is one of the largest malware 
datasets that has been used to evaluate a malware detection method on Android.

An overview of the top malware families in our dataset is provides in Table 2, which 
contains several families that are currently actively distributed in app markets.

Anomaly detection performance

In this experiment, we evaluate the detection performance of our anomaly detection 
engine and compared it with other related detection approaches, some common AV 
scanners.

Detection performance of anomaly detection engine

Firstly, a one-class SVM model is trained using 4000 benign samples. Then we test our 
5560 malware samples on this model. The false negative rate is 1.16 %, which indicates 
that 65 malware samples are not detected.

Table 2  Top 20 malware families in our dataset

Id Family # Id Family #

A FakeInstaller 925 K Adrd 91

B DroidKungFu 667 L Droiddreru 81

C Plankton 625 M LinuxLotoor 70

D Opfake 613 N GoldDream 69

E GingerMaster 339 O MobileTx 69

F BaseBridge 330 P FakeRun 61

G Iconosys 152 Q SendPay 59

H Kmin 147 R Gappusin 58

I FakeDoc 132 S Imlog 43

J Geinimi 92 T SMSreg 41

http://www.appchina.com
http://www.as.baidu.com
http://www.mm.10086.cn
http://www.mm.10086.cn
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Next, we used the remaining 2000 benign samples as test samples to evaluate the false 
positive rate of our anomaly detector. The result shows that 1.30  % of benign apps are 
mistakenly recognized as abnormal apps during anomaly detection. This means, if our 
anomaly detector is applied to Google Play, a world’s android app market, among the 
approximately 1200 new apps per day, around 15 apps will be mislabeled as abnormal. This 
anomaly detection accuracy has surpassed the proposed methods in Zhang et al. (2014).

Here we use a confusion matrix to characterize the performance of anomaly detection 
engine, as shown in Fig. 3. From the confusion matrix, it is obvious that our anomaly 
detection engine can accurately detect abnormal malware.

Compared it with other related detection approaches

As discussed above, our anomaly detection engine anomaly detection engine can detect 
malware samples with true positive rate of 98.84 %, false negative rate of 1.16 %. Also 
anomaly detection engine can correctly label benign apps with a true positive rate of 
98.7 %, a false negative rate of 1.3 %. To evaluate the performance accurately, a 10-fold 
cross validation is further performed, which is shown as ROC curve in Fig. 4.

As a comparison, we use the ROC figures in (Arp et al. 2014), as shown in Fig. 5. It 
is obvious that our anomaly detection engine outperforms other related detection 
methods.

Due to that our anomaly detection engine uses benign apps to train model, thus, no 
malware sample of certain families are required in advance. Therefore, whether our 
anomaly detection engine can detect unknown families are worth studying. To evaluate 
the detection unknown families malware performance of our anomaly detection engine, 
we use the top 20 malware families as test dataset. The detection rate of each family 
based on our anomaly detection engine is shown in Table 3, with an amazing result. All 
families except for FakeInstaller can be detected with a true rate of 100 %. Two instances 
of FakeInstaller are falsely labeled as benign apps.

Fig. 3  The confusion matrix of anomaly detection
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Compared it with other AV scanners

Although our anomaly detection engine anomaly detection engine shows a better per-
formance compared to related approaches, in the end it has to compete with common 
anti-virus products in practice. Consequently, we also compare our anomaly detection 
engine against the nineteen selected common AV scanners on our malware datasets. 
The detection rate of each scanner is computed. The nineteen AV scanners include CAT-
QuickHeal, Alibaba, Symantec, ESET-NOD32, TrendMicro-HouseCall, Kaspersky, Ten-
cent, Fortinet, Microsoft, Qihoo-360, Ikarus, Baidu, etc. These ninetees AV scanners are 
represented as A1-19. The detection performance of AV scanners and ours are shown in 
Fig. 6.

Fig. 4  The ROC curve of anomaly detection

Fig. 5  The ROC curve of other detection methods
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Signature detection performance

In this experiment, we evaluate the signature classification performance of our signature 
detection engine based on Linear SVC–L1, Linear SVC–L2 and LinearSVM classifier, 
respectively.

We use a multi-label classification to identify the malware family of the unrecognized 
malicious samples. To compare the classification performance of three signature detec-
tion methods, a 10-fold validation is performed. In each fold, we split the dataset into 
train dataset (70 %), test dataset (30 %) respectively. The confusion matrix of classifica-
tion results using three methods are shown in Figs. 7, 8, 9.

The classification rate of three methods is shown in Fig. 10. Above all, it is obvious that 
the linear SVC with L2 surpasses the other classification methods. Therefore, we use the 
linear SVC with L2 in our hybrid detection system.

Table 3  The detection rate of top 20 malware families

Family Detection rate (%) Family Detection rate (%)

A 99.71 K 100

B 100 L 100

C 100 M 100

D 100 N 100

E 100 O 100

F 100 P 100

G 100 Q 100

H 100 R 100

I 100 S 100

J 100 T 100

Fig. 6  The detection performance of AV scanners and ours
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In addition to high accuracy during misuse detection and anomaly detection, all the 
extracted features will be exhibited to users as a detailed analysis report. The analysis 
report is shown in Fig. 11. From the analysis report, an ordinary uses or expert can grasp 
and understand more information about the detected app.

Discussion
In this section, we discuss the limitation of our proposed system, potential evasion tech-
niques for our system and future work.

Fig. 7  Linear SVC-L1 based multi-family classifie

Fig. 8  Linear SVC- L2 based multi-family classifier
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Limitation 1

In our proposed system, the static analysis and dynamic analysis both work on Dalvik 
level. In general, our proposed system cannot handle native code or HTML5-based 
applications. This is because both the ARM binary running on the underlying Linux 
and the JavaScript code executed in WebView are not visible from a Dalvik bytecode 

Fig. 9  LinearSVM based multi-family classifier

Fig. 10  The classification performance of three methods
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perspective. Therefore, a future work is needed to defeat malware hidden from the Dal-
vik bytecode.

Limitation 2

Although some anti-emulator detection techniques are adopted to make our dynamic 
analysis environment more real, more new emulator detection methods are proposed 
(Vidas and Christin 2014; Petsas et al. 2014; Jing et al. 2014) and can detect our emulator 

Fig. 11  The detailed analysis report
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analysis easily. As a part of our future work, we consider adopting the dynamic hooking 
methods proposed in Hu and Xiao (2014) to prevent emulator evading.

Poential evasion

As we know, learning-based detection is subject to poisoning attacks (Zhang et al. 2014). 
An adversary may deliberately poison the benign dataset through introducing clean apps 
with malicious features to confuse a training system. For example, he can inject harmless 
code intensively to make sensitive API calls that are rarely observed in clean apps. Once 
such samples are accepted as the benign samples, these APIs are therefore no longer the 
distinctive features to detect related malware instances.

However, our proposed system is slightly different from prior works. Firstly, the 
static and dynamic features are extracted to construct feature vector. Therefore, it is 
much harder for an attacker to make confusing samples at the behavioral-level during 
dynamic execution. Secondly, our anomaly detection engine serves as a sanitizer for new 
unknown samples. Owing to the high true positive rate of anomaly detection, any abnor-
mal samples will be detected and further signature classification will be triggered.

Future work

As we stated above, some future works are need to improve our proposed system.

Future work 1

In order to solve limitation 1, we will adopt virtual machine inspection technique (Tam 
et  al. 2015) to include system-level events as part of the behavioral aspects (dynamic 
features) of an app. Incorporating system calls into our feature space can improve the 
behavioral models, leading to more accurate results for detecting malware using native 
code. Furthermore, malware utilizing root exploits can be detected and characterized 
more precisely by using system-level events.

To improve the code coverage in dynamic analysis, we also explore more intelligent 
user interactions which surpasses the MonkeyRunner (Android Developers 2015) we 
currently used.

Future work 2

As the limitation 2 stated above, in order to prevent malware from detecting emualtor 
and evading analysis, we will adopt new dynamic hooking mehtods (Hu and Xiao 2014) 
to construct a more real dynamic analysis environment.

Future work 3

Although we mentioned that our proposed system can be deployed in the Cloud, how to 
deploy it is not clear. As a important part of our future work, we will refer some recent 
moile cloud computing researches (Titze 2012; Chun and Maniatis 2009; Kosta et  al. 
2013; Borcea et al. 2015; Barakat et al. 2014) to provide a security, efficient and convient 
service for both app markets and ordinary users.
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Conclusion
In this paper, we proposed a novel hybrid mobile malware detection and classification 
system using an open-source framework CuckooDroid. Our proposed detection system 
integrates anomaly detection and misuse detection through static analysis and dynamic 
analysis of apps, providing a detail and accurate detection results. To detect zero-day 
malware, we design an anomaly detection engine, which exhibits amazing detection 
accuracy in experiment. To classify unknown malware sample, we design a signature 
detection engine, which can classify malware with a high positive rate. We evaluate our 
detection system using 6000 benign samples and 5560 malware samples. Experiment 
shows that our anomaly detection engine can detect abnormal malware with a high true 
positive rate 98.84  %, relatively low false negative rate (1.16  %) and false positive rate 
(1.3 %); our signature detection engine can classify 98.94 % malware samples.

Aiding by automate and comprehensive features of CuckooDroid, our detection sys-
tem can be deployed in Cloud service to provide malware detection and classification for 
both some app markets and ordinary users through a web interface.
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