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ABSTRACT
Symbolic execution is a powerful program analysis technique that

systematically explores multiple program paths. However, despite

important technical advances, symbolic execution often struggles to

reach deep parts of the code due to the well-known path explosion

problem and constraint solving limitations.

In this paper, we propose chopped symbolic execution, a novel
form of symbolic execution that allows users to specify uninter-

esting parts of the code to exclude during the analysis, thus only

targeting the exploration to paths of importance. However, the

excluded parts are not summarily ignored, as this may lead to

both false positives and false negatives. Instead, they are executed

lazily, when their effect may be observable by code under anal-

ysis. Chopped symbolic execution leverages various on-demand

static analyses at runtime to automatically exclude code fragments

while resolving their side effects, thus avoiding expensive manual

annotations and imprecision.

Our preliminary results show that the approach can effectively

improve the effectiveness of symbolic execution in several different

scenarios, including failure reproduction and test suite augmenta-

tion.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Symbolic execution lies at the core of many modern techniques

to software testing, automatic program repair, and reverse engi-

neering [3, 11, 16, 24, 32, 35]. At a high-level, symbolic execution

systematically explores multiple paths in a program by running
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the code with symbolic values instead of concrete ones. Symbolic

execution engines thus replace concrete program operations with

ones that manipulate symbols, and add appropriate constraints on

the symbolic values. In particular, whenever the symbolic executor

reaches a branch condition that depends on the symbolic inputs, it

determines the feasibility of both sides of the branch, and creates

two new independent symbolic states which are added to a worklist

to follow each feasible side separately. This process, referred to as

forking, refines the conditions on the symbolic values by adding

appropriate constraints on each path according to the conditions

on the branch. Test cases are generated by finding concrete values

for the symbolic inputs that satisfy the path conditions. To both

determine the feasibility of path conditions and generate concrete

solutions that satisfies them, symbolic execution engines employ

satisfiability-modulo theory (SMT) constraint solvers [19].

The Challenge. Symbolic execution has proven to be effective at

finding subtle bugs in a variety of software [3, 11, 12, 25, 39], and

has started to see industrial take-up [13, 15, 25]. However, a key

remaining challenge is scalability, particularly related to constraint

solving cost and path explosion [14].

Symbolic execution engines issue a huge number of queries to the

constraint solver that are often large and complex when analyzing

real-world programs. As a result, constraint solving dominates

runtime for the majority of non-trivial programs [30, 33]. Recent

research has tackled the challenge by proposing several constraint

solving optimizations that can help reduce constraint solving cost [5,

12, 21, 27, 33–35, 41, 45].

Path explosion represents the other big challenge facing sym-

bolic execution, and the main focus of this paper. Path explosion

refers to the challenge of navigating the huge number of paths in

real programs, which is usually at least exponential to the number

of static branches in the code. The common mechanism employed

by symbolic executors to deal with this problem is the use of search

heuristics to prioritise path exploration. One particularly effec-

tive heuristic focuses on achieving high coverage by guiding the

exploration towards the path closest to uncovered instructions [10–

12, 43]. In practice, these heuristics only partially alleviate the path

explosion problem, as the following example demonstrates.

Motivating Example. The extract_octet() function, shown in

Figure 1, is a simplified version of a function from the libtasn1
library which parses ASN.1 encoding rules from an input string.

1

The ASN.1 protocol is used in many networking and cryptographic

applications, such as those handling public key certificates and

electronic mail. Versions of libtasn1 before 4.5 are affected by a

heap-overflow security vulnerability that could be exploited via a

crafted certificate.
2
Unfortunately, given a time budget of 24 hours,

1
https://www.gnu.org/software/libtasn1

2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3622

https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://www.gnu.org/software/libtasn1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3622
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1 int extract_octet(asn_t asn, char *str, int str_len) {

2 int len3, counter, counter_end, result;

3 int len2 = get_length(str, str_len, &len3);

4 counter = len3+1;

5 counter_end = str_len;

6 while (counter < counter_end) {

7 // call to get_length() leads to a heap overflow:

8 len2 = get_length(str+counter, str_len, &len3);

9 if (len2 >= 0) {

10 DECR_LEN(str_len, len2+len3);

11 append_value(asn, str+counter+len3, len2);

12 } else {

13 DECR_LEN(str_len, len3);

14 result = extract_octet(asn, str+counter+len3, str_len);

15 if (result != SUCCESS)

16 return result;

17 len2 = 0;

18 }

19 // str_len should have been decremented at the

20 // beginning of the while block

21 DECR_LEN(str_len, 1);

22 counter += len2+len3+1;

23 }

24 return SUCCESS;

25 }

Figure 1: A simplified excerpt from the extract_octet rou-
tine in libtasn1. The invocation of get_length() in line 8
leads to a heap overflow because str_len has not been decre-
mented before the call.

the analysis of the extract_octet() function using the state-of-

the-art symbolic execution engine KLEE [11] fails to identify the

vulnerability due to path explosion.

At each loop iteration (lines 6–23), the function decodes the

length of the current data element with get_length (line 8). Func-

tion get_length scans through the input string and decodes the

ASN.1 fields. Then, the execution either recursively iterates over the

input string (line 14), or invokes append_value (line 11). Function

append_value creates the actual node in the Abstract Syntax Tree

(AST) by decoding the input string given the obtained length. This

function scans once more over the input string, performs several

checks over the selected element, and allocates memory for the

node in the recursive data structure.

Path explosion in this function occurs due to several nested

function calls. Symbolically executing function get_length alone

with a symbolic string of n characters leads to 4 ∗ n different paths.

Function append_value increases even more the number of paths

and also affects the efficiency of the symbolic execution engine due

to a huge number of constraint solver invocations. As a result, the

symbolic executor fails to identify the heap-overflow vulnerability

at line 8.

Our Approach. Identifying the vulnerability from the entry point

of the library is not trivial: To reach the faulty invocation of func-

tion get_length, the input triggering the vulnerability traverses

2,945 calls to 98 different functions, for a total amount of 386,727

instructions. Our key observation is that most of the functions

required during the execution are not relevant for finding the vul-
nerability. The vulnerability occurs due to an incorrect update of

the remaining bytes for parsing (line 21), which results in a memory

out-of-bound read when calling get_length. The bug thus occurs

in code which deals with the parsing, which is independent from the

functions that construct the corresponding ASN.1 representation,

such as append_value. Therefore, we could have quickly reached

the bug if we had skipped the irrelevant functions that build the

AST.

In this paper, we propose a novel form of symbolic execution

called chopped symbolic execution that provides the ability to spec-

ify parts of the code to exclude during the analysis, thus enabling

symbolic execution to focus on significant paths only. The skipped

code is not trivially excluded from symbolic execution, since this

may lead to spurious results. Instead, chopped symbolic execution

lazily executes the relevant parts of the excluded code when ex-

plicitly required. In this way, chopped symbolic execution does not

sacrifice the soundness guarantees provided by standard symbolic

execution—except for non-termination of the skipped functions,

which may be considered a bug on its own—in that only feasible

paths are explored, but effectively discards paths irrelevant to the

task at hand.

We developed a prototype implementation of chopped symbolic

execution and report the results of an initial experimental eval-

uation that demonstrates that this technique can indeed lead to

efficient and effective exploration of the code under analysis.

Main Contributions. In summary, in this paper we make the

following contributions:

(1) We introduce chopped symbolic execution, a novel form of sym-

bolic execution that leverages a lightweight specification of

uninteresting code parts to significantly improve the scalability

of symbolic execution, without sacrificing soundness.

(2) We present Chopper, a prototype implementation of our tech-

nique within KLEE [11], and make it publicly available.

(3) We report on an experimental evaluation of Chopper in two

different scenarios: failure reproduction and test suite augmen-

tation, and show that chopped symbolic execution can improve

and respectively complement standard symbolic execution.

This paper is organised as follows. Section 2 gives a high-level

overview of chopped symbolic execution, and Section 3 presents

our technique in detail. Section 4 briefly discusses our implementa-

tion inside the KLEE symbolic execution engine. Section 5 presents

the experimental evaluation of our technique, and in particular it

shows that chopped symbolic execution can overcome the limita-

tions of state-of-the-art symbolic executors. Section 6 surveys the

main approaches related to this work. Section 7 summarises the

contributions of the paper and describes ongoing research work.

2 OVERVIEW
In this section, we give a high-level overview of chopped symbolic

execution using the simple program in Figure 2. In particular, Fig-

ure 2a shows the entry point of the program (function main), while
Figure 2c shows the uninteresting code which we would like to

skip (function f).
We start the chopped execution by executing main symbolically.

When a state reaches the function call for f at line 7, we create a
snapshot state by cloning the current state, and skip the function

call. The snapshot state is shown graphically in Figure 2b, where

each gray oval represents a symbolic execution state.

With a snapshot created, we then continue the execution on

the current state, but from this point we must consider that some
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1 struct point { int x, y, z;};

2

3 int main() {

4 struct point p = {0, 0, 0};

5 int j, k; // symbolic

6

7 f(&p, k); // skip

8 if (j > 0)

9 if (p.y)

10 bug();

11 else
12 allgood();

13 return 0;

14 }

(a)
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(b)

15 void f(struct point *p, int k) {

16 if (k % 2)

17 p->z++;

18

19 if (k > 0)

20 p->x++;

21 else
22 p->y++;

23 }

(c)

Figure 2: Graphical illustration of chopped symbolic execution on a simple example.

load instructions may depend on the side effects of the skipped

function f, i.e. the memory locations that f may update. In our

example, the side effects of f are the memory locations pointed

to by p.z, p.x, and p.y, which are updated at lines 17, 20, and 22

respectively. (We compute the side effects of f using conservative
static pointer analysis [4, 26, 37] before the symbolic exploration

starts, see §3.) We define those instructions that read from the side

effects of the skipped functions as dependent loads.
On some paths, symbolic execution does not encounter such

dependent loads. For example, the path following the else side

of the branch at line 8 accesses neither p.x nor p.y nor p.z, so
no further action is needed on those paths, and the exploration

may correctly terminate without ever going through the code of f.
Indeed, in real programs there are often paths that do not depend

on the skipped functions, and in such cases symbolic execution

immediately benefits from our approach: irrelevant paths are safely

skipped, thus reducing path explosion.

However, on other paths symbolic execution encounters depen-
dent loads. This happens for our example on the path which explores

the then side of the branch at line 8, when it loads the value of

p.y at line 9. At this point, the current state needs to be suspended

until the relevant paths in function f are explored, and becomes a

dependent state. To recover a path, we create a new recovery state
which inherits the snapshot state generated before skipping f at

line 7 and start executing symbolically the function.

While symbolic execution is in the recovery state, if the exe-

cution forks, then the same fork is performed in the dependent

state. Furthermore, as we run the recovery state, any stores to the

memory location read by the dependent load are also performed

in the dependent state. For example, if the symbolic execution of f
traverses the else branch at lines 21–22, then the value of p.y (the
memory location pointed to by p->y) is set to 1 in the dependent

state too. If the recovery state returns successfully, the dependent

state is resumed successfully. If an error occurs while executing

the recovery state (e.g., an invalid memory access or a division by

zero error, which could have occurred if p->z were set in line 17 to

4/p->y) the corresponding dependent state is terminated.

When we execute a recovery state, not all paths might be com-

patible with the execution which the dependent state reached. For

example, if line 8 were changed from if (j>0) to if (k>0), then
the dependent state would have k > 0 in its path condition, ren-

dering the dependent state incompatible with the path in f where
k ≤ 0.

One way to filter such incompatible paths would be to execute

all possible paths thorough f during recovery, and later filter the

ones that are incompatible with the dependent state. However,

this would potentially lead to the exploration of a large number

of infeasible paths. We thus designed a more efficient solution:

Each state maintains a list of guiding constraints, which are those

constraints added since the call to the skipped function. In our

example, the guiding constraints for the dependent state are j > 0.

Before we execute a recovery state, we add these guiding constraints
from the dependent state to the path condition of the recovery state.

By doing this, we guarantee that every path explored in the recovery

state is consistent with respect to its dependent state.

During recovery, one could execute all possible paths through

the skipped function f which are compatible with the dependent

state, as we could in the example above. However, for real programs

this could be unnecessarily expensive, as many paths do not influ-

ence the dependent load which started the recovery. To avoid this

possible path explosion, and reduce the cost of constraint solving,

we aim to only execute the paths that could influence the depen-

dent load. We accomplish this by statically slicing [7, 40, 42, 44] the

function f with respect to the store instructions that write to the

memory location read by the dependent load, that is, the side effects

observable from the dependent load. Note that function f could call
other functions, so the slicing is done for all these functions too. In

our example, the slicing would likely be able to completely remove

the if statement at lines 16–17, which would halve the number of

explored paths, thus reducing path explosion. It would also likely

remove the then side of the if statement at line 19, which in this

case does not bring significant benefits, but it could, if that side of

the branch were replaced by say, an expensive loop. Slicing away

these code parts is possible because they do not update p.y on

which the dependent load on line 9 relies.
3

3
In practice, the success of the slicing algorithm in reducing the size of the code

depends on the precision of the underlying pointer analysis.
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Figure 2b shows how chopped symbolic execution works on

our example in a graphical way. To recapitulate, when the call to

f is reached at line 7, a snapshot state is created by cloning the

current state (step 1⃝ in the figure). Then, on the execution state

that reaches line 9, the current state becomes a dependent state and

is suspended (step 2⃝), and a recovery state is created by cloning

the snapshot state and adding the guiding constraints from the

dependent state (step 3⃝). At this point, function f is statically

sliced with respect to the dependent load, in our case removing the

first if statement and the then slide of the second if statement. Then,

the recovery state starts symbolically running the sliced version of

f. When execution is forked at line 19, then the dependent state is

also forked along the same constraints (steps 4⃝ and 5⃝). One of the

forked recovery states (Recovery’) updates the location p->y on

which our dependent load relies on, so this location is also updated

in the corresponding dependent state (step 6⃝). Finally, when a

recovery state terminates, it gets discarded (step 7⃝), and symbolic

execution is resumed from its dependent states and other normal

states in the program.

3 CHOPPED SYMBOLIC EXECUTION
In this section, we describe our technique in detail and provide the

background regarding the main static analysis it employs, namely

pointer analysis [4, 26, 37].
Algorithm 1 presents the key steps in chopped symbolic exe-

cution, which we gradually explain. The algorithm operates on a

simple imperative C-like heap-manipulating language with assign-

ments, assertions, conditional jumps, dynamic memory allocation

and reclamation, and function calls with call-by-value parameter

passing.
4
Functions may have pointer parameters. Thus, without

loss of generality, we assume that functions do not have a return

value.
5
To simplify the explanation, we now assume that we may

skip at most one function invocation at every explored path, and

discuss the general case in §3.3.
6
For the same reason, we also as-

sume that the program does not dynamically allocate memory, and

discuss this aspect in §3.4.

Chopped symbolic execution begins by invoking function cse

with an initial symbolic state (s0) and a set containing the names

of the functions that the user wishes to skip (skipFunctions). We

expect a symbolic state s to encode, among other properties, the

next instruction to be executed (denoted by nextInstruction(s )),
the activation record stack, and a (symbolic) description of the pro-

gram heap. For example, the chopped symbolic execution described

in Section 2 begins with s0 in which the stack contains only the

activation record of main, with the next instruction at line 4, an

empty heap, and skipFunctions = {f}.
At the beginning of the algorithm the worklist is empty (line 1),

and we initialize it with s0 (line 3). Then, a standard worklist-based

algorithm starts executing until either the worklist is empty (line 4),

or the algorithm exhausts the time budget (elided). As usual, the

algorithm selects a symbolic state s to explore out of the worklist

(line 5). Unconventionally, however, the worklist only has the states

which are not suspended, as suspended states are blocked until the

4
Our implementation operates on LLVM bitcode [29].

5
A function with a return value can always be rewritten with an additional parameter

that points to the memory location of the return value.

6
For completeness of presentation, Algorithms 1, 2 and 3 handle the general case.

Algorithm 1 Chopped symbolic execution (simplified).

1: worklist ← ∅
2: function cse(s0, skipFunctions)
3: worklist ← worklist ∪ {s0}
4: while worklist , ∅ do
5: s ← select(worklist)
6: inst ← nextInstruction(s )
7: switch inst do
8: case Call
9: f ← targetFunction(s )
10: if f ∈ skipFunctions then
11: snapshot ← createSnapshot(s )
12: s .skipped ← s .skipped + ( f , snapshot)
13: else
14: executeCall(s )

15: case Load
16: addr ← getLoadAddress(s )
17: if mayMod(s, s .skipped, addr ) then
18: createRecoveryState(s, addr )
19: else
20: executeLoad(s, inst)
21: case Branch
22: if s .isRecoveryState then
23: dependentState ← getDependent(s )
24: φ = condition(inst)
25: s ′ ← fork(s,φ)
26: dependentState′ ← fork(dependentState,φ)
27: if feasible(s ′) ∧ feasible(dependentState′) then
28: worklist ← worklist ∪ {s ′}
29: s ′′ ← fork(s,¬φ)
30: dependentState′′ ← fork(dependentState,¬φ)
31: if feasible(s ′′) ∧ feasible(dependentState′′) then
32: worklist ← worklist ∪ {s ′′}
33: worklist ← worklist \ {s}
34: else
35: executeBranch(s)

36: case Store
37: addr ← getStoreAddress(s )
38: executeStore(s, addr )
39: if s .isRecoveryState then
40: updateDependentState(s, addr)
41: else
42: s .overwrittenSet ← s .overwrittenSet ∪ {addr}
43: case Return
44: if s .isRecoveryState ∧ returnInSkipped(s ) then
45: terminate(recoveryState)
46: dependentState ← getDependent(s )
47: resume(dependentState)
48: worklist ← worklist ∪ {dependentState}
49: else
50: executeReturn(s)

51: end switch
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Algorithm 2 Auxiliary function: createRecoveryState

1: function createRecoveryState(dependentState, addr)
2: foreach ( f , snapshot) ∈ dependentState.skipped do
3: if mayMod(dependentState, ( f , snapshot), addr ) then
4: suspend(dependentState)
5: gc ← getGuidingConstraints(dependentState)
6: recoveryState ← fork(snapshot, gc)
7: recoveryState.isRecoveryState ← true
8: slice(recoveryState, addr )
9: linkDependent(recoveryState, addr, dependentState)
10: worklist ← worklist ∪ {recoveryState}

Algorithm 3 Auxiliary function: mayMod

1: function mayMod(s, funclist, addr)
2: foreach ( f , snapshot) ∈ funclist do
3: if allocSite(s, addr ) ∈ modSet( f ) then
4: if addr < s .overwrittenSet then
5: return true
6: return false

value of the depended load is resolved (see §2). The next step of the

algorithm depends on the instruction type (line 7).

Handling Call instructions (lines 8–14): A Call instruction is

handled as illustrated by step 1⃝ in Figure 2 (see §2): First, the

algorithm determines the name f of the invoked function (line 9).

Then, if f is one of the skipped functions, the algorithm creates a

snapshot of the current state s (line 11) and records the snapshot
state at the end of its list of skipped invocations (line 12). A skipped

invocation is represented as a tuple ( f , snapshot) composed of the

name of a skipped function f , and a snapshot of the symbolic state

at the time f was skipped.

Conversely, if f should not be skipped, the algorithm handles

its invocation as usual in symbolic execution. For brevity, we omit

the standard handling of commands by symbolic execution.

Handling Load instructions (lines 15–20): Chopped symbolic exe-

cution uses mayMod(s, s .skipped, addr ), shown in Algorithm 3 and

explained in §3.1, to determine whether the address from which a

value is read (addr) might have been modified by one of the skipped

functions on the path followed by the current state s . If so, the al-
gorithm generates recovery states by calling createRecovery−

State(s, addr ). Otherwise, the Load instruction is handled as usual

in symbolic execution (line 20).

Function createRecoveryState is shown in Algorithm 2. The

function handles Load instructions as illustrated by step 2⃝ in Fig-

ure 2 (see §2): It iterates over the list of skipped functions (line 2),

and uses mayMod to determine which of the skipped functions f
might have modified addr (line 3). Once it finds such a function, the

current dependent state is immediately suspended (line 4). The func-

tion then generates the corresponding recovery state recoveryState
by forking snapshot and by augmenting its path condition with the

guiding constraints gc (lines 5 to 7), i.e. the path constraints accumu-

lated in s since the snapshot state was created. The algorithm then

invokes a static program slicer to remove from the skipped function

f instructions which cannot affect the address of the dependent

load (line 8); records that dependentState spawned recoveryState

to determine the value written in address addr of dependentState
(line 9); and pushes the recovery state into the worklist (line 10).

HandlingBranch instructions (lines 21–35): The algorithm checks

whether the current state s is a recovery state. If so, then the

Branch instruction is handled as illustrated by steps 4⃝ and 5⃝

in Figure 2 (see §2): It first retrieves the (suspended) dependent

state dependentState, which spawned s as a recovery state (line 23).

It then determines the branch condition φ (line 24); forks both the

current (recovery) state s and the dependent state dependentState,
and adds φ to their path condition (lines 25–26). After the fork,

it checks whether the resulting states are feasible, i.e. their path

conditions are satisfiable (line 27), and if so, adds the new recovery

state to the worklist (line 28). If either one is not feasible, the newly

forked recovery and dependent states are simultaneously discarded.

Lines 29–32 act similarly to lines 25–28, except that we use the

negation of the branch condition ¬φ. Finally, the original recovery
state s is removed from the worklist (line 33). If the state s is not a
recovery state, then the Branch instruction is handled as usual in

symbolic execution (line 35).

Handling Store instructions (lines 36–42): The algorithm exe-

cutes the Store instruction on the current state in two steps. First, it

performs the actual store (lines 37–38). If s is a recovery state, then

the algorithm invokes updateDependentState (line 40, function

body elided for space reasons) to update the dependent state, as

illustrated by step 6⃝ in Figure 2. Otherwise, if s is not a recovery
state, it updates the set of overwritten addresses in the current

state to record that a value was stored in addr after the skipped
invocation, and thus any value they may write is no longer relevant

(line 42).

HandlingReturn instructions (lines 43–50): If s is a recovery state
and the Return instruction is invoked inside the skipped function

(line 44), then the recovery is terminated and the instruction is

handled as illustrated by step 7⃝ in Figure 2 (see §2): Specifically,

the recovery state itself is discarded (line 45) and the dependent

state is resumed (lines 46–47). Otherwise, the Return instruction is

handled as usual in symbolic execution (line 50).

3.1 Static Inference of Function Side-Effects
The auxiliary function mayMod(s, funclist, addr ), shown in Algo-

rithm 3, receives as parameters a symbolic state s , a list of skipped
invocations funclist, and an address addr which is the target of

a Load instruction, and determines whether one of the skipped

functions in funclist may store a value in addr . The function makes

this decision using a points-to graph computed by a preliminary

pointer analysis stage [26, 37].

More specifically, we perform a whole-program flow-insensitive,

context-insensitive, and field-sensitive points-to analysis which de-

termines, in a conservative way, the memory location each pointer

variable may point to. In this analysis, memory locations are conser-

vatively abstracted using their allocation sites: Every definition of a

local or a global variable is considered to be an allocation site, as

well as every program point in which memory is allocated. For ex-

ample, if the program contains while (..) do L: p=malloc(4)
then we represent all the memory locations allocated in L by a sin-

gle allocation site ASL . We then say that p may point to allocation

site ASL , and if the program contains p=q, we say the same about



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Trabish, Mattavelli, Rinetzky and Cadar

q. The nodes of the points-to graph of a program are the variable

names and allocation sites, and its edges represent points-to rela-
tions: An edge from node v tow means that the memory location

represented by v may hold a pointer tow .

The points-to graph, which is computed once for every program,

conservatively represents all the possible points-to relations in any

possible program execution. Using the points-to graph, we use a

standard may-mod analysis (see, e.g., [1]), in which we find the

side effects of every function f , i.e. the set of possible locations,
represented by their allocation sites, that the function itself or any

function that it may (transitively) invoke, may modify.

During the chopped symbolic execution, we instrument the sym-

bolic state to record the allocation site of every memory location.

This instrumentation, together with the program points-to graph,

allows mayMod to determine whether a skipped function may

write to a given address. Recall that the pointer analysis is flow-

insensitive, and thus it might record that a skipped function may

modify a location which is updated later on in the symbolic ex-

ecution. More specifically, a load instruction from address addr
is dependent on an invocation of a skipped function if and only if:

(1) addr is among the locations thatmay be modified by the skipped

function (according to the may-mod analysis), and (2) no stores to

that location happened between the skipped invocation function

and the load. In particular, when the second condition does not

hold, no recovery is needed as the stores performed by the skipped

function are irrelevant. mayMod() utilises the information gathered

during the symbolic execution regarding overwritten locations (al-

gorithm 1, line 42) to refine on-the-fly the detection of the relevant
side effects of skipped functions.

3.2 Multiple Recovery States
In some cases, we need to create several recovery states during a

single chopped symbolic execution.

For example, consider the following code fragment which re-

places lines 7 to 12 of the main() function in Figure 2:

7 f(&p,k); // skip

8 // next two branches depend on the side effects of f

9 if (p.x)

10 p.z++;

11 if (p.y)

12 p.z--;

If we wish to skip the invocation to f() then a recovery state

and a dependent state are created at each of the branches on lines 9

and 11. Note that the second dependent state is produced from

the first dependent one and that the resumed state encapsulates

the changes made by the first recovery state. Assume that these

changes involve a modification of the value of p.x inside the k > 0

branch at line 20. If the symbolic execution of the second recovery

state goes through the path in which p.y is updated (k ≤ 0), the

induced combined execution would be infeasible. To avoid this

undesirable situation, when a recovery state terminates, it adds the

new constraints accumulated in its path condition to the guiding
constraints of its dependent state. The added constraints are then

used in subsequent recovery states. In our example in Figure 2, the

constraint k > 0 is propagated from the first recovery state to the

first dependent state, thus ensuring that the symbolic execution of

the second recovery state does not follow an infeasible path.

1 struct point { int x, y;};

2 void f1(struct point *p) {

3 p->y = 1;

4 }

5 void f2(struct point *p) {

6 if (p->y)

7 p->x = 1;

8 }

9 void g() {

10 struct point p;

11 f1(&p); // skip

12 f2(&p); // skip

13 if (p.x) {

14 // ...

15 }

16 }

Figure 3: Multiple skipped functions.

3.3 Handling Multiple Skipped Functions
So far, we have assumed that every symbolic state has at most one

skipped invocation. When multiple invocations are skipped and

more than one may modify the dependent load address addr , we
need to decide which functions to use for recovery and in which

order. We solve this issue by executing the skipped invocations

according to their order along the path, thus ensuring that the

value stored in addr at the end of the recovery process is indeed

the last value written there along the chopped path.

Another issue thatwe need to address to supportmultiple skipped

functions is that a skipped invocation might depend on the side

effects of an earlier skipped function. When this happens, we ap-

ply our recovery approach in a recursive manner, and treat the

current recovery state as a dependent state. For example, consider

the code in Figure 3. When the execution reaches the dependent

load at line 13, we create a recovery state for f2, since f1 does

not modify the field x . When the created recovery state reaches

the load instruction at line 6, it identifies it as a dependent load.

Chopped symbolic execution then creates another recovery state

which executes f1. Once the recovery of f1 is terminated, we can

continue with the recovery of f2.
To make the symbolic execution more efficient in these cases,

we maintain for each state a recovery cache. The recovery cache
records for each skipped invocation and slice, the resulting values

which were written by the skipped function during the recovery

process. This enables us to avoid re-executing the recovery process

in certain cases. For example, if g had read p->y after the invocation
of f2, we could have found the value of p->y in the cache.

3.4 Memory Allocations
Let us consider the example from Figure 4, where the skipped func-

tion f allocates memory with malloc. After skipping the function

call at line 7, the chopped symbolic execution encounters two de-

pendent loads at lines 8 and 9 and thus spawns two consecutive

recovery states: one which executes only line 3 (as line 4 is removed

by the static slicer), and one which executes lines 3 and 4. If we

allowed malloc to return two different addresses while executing

the recovery states, this could lead to an incorrect execution since

the second recovery would write to a different memory address.

To prevent this, and maintain consistency across recovery states
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1 struct point { int x, y; } *p = NULL;

2 void f() {

3 p = malloc(sizeof(struct point));

4 p->x = 0;

5 }

6 void g() {

7 f(); // skip

8 if (p)

9 if (p->x) {

10 // ...

11 }

12 }

Figure 4: Example of skipped function with allocation.

originating from the same function call, we maintain a list of re-

turned addresses for each allocation site in f, which are identified

by their call stack. This way, subsequent recovery states will use

this information while re-executing allocating instructions. Other

nondeterministic routines, such as random, can be handled in a

similar way.

3.5 Chopping-Aware Search Heuristic
Search heuristics are the main approach to reduce path explosion

and steer symbolic execution to uncovered paths for a more effec-

tive exploration [10–12, 43], and chopped symbolic execution is

no exception. However, these heuristics do not take into account

the particular nature of the states in chopped symbolic execution,

particularly the distinction between normal and recovery states.

We propose a chopping-aware search heuristic, which attempts

to optimize the exploration of chopped symbolic execution. The

search heuristic favors the selection of normal states, which do

not require any recovery, thus fostering code exploration. Since

always favoring normal states over recovery states may lead to

saturation in code exploration, we allow the searcher to select a

recovery state at a lower probability. Through experimentation,

we determined that choosing to execute a recovery state with a

probability of 0.2 produces the best results, and this is the value we

use in our evaluation.

Technically, we maintain two worklists, one for normal states

and one for recovery states. When the symbolic execution engine

selects the next state to explore, it first selects a worklist according

to the specified probability, and only then extracts the next state.

As a result, it is possible to manage the two worklists according to

different heuristics.

3.6 Limitations
The current main limitation of the technique is related to symbolic

addresses. Handling a symbolic address is difficult, as it may refer

to multiple allocation sites, which in turn may lead to the recovery

of several different skipped functions. Moreover, chopped symbolic

execution needs a concrete load address to update when stores are

performed to that address during recovery.

Chopped symbolic execution currently focuses on skipping func-

tions. However, the approach is more generic: In theory, we could

skip any arbitrary code portion that preserves the control-flow of

the program. We are currently working on such an extension, par-

ticularly on designing an appropriate API for specifying arbitrary

code portions to skip.

4 IMPLEMENTATION
We implemented chopped symbolic execution into Chopper, an

extension to the KLEE symbolic execution engine [11]. We make

Chopper available at https://srg.doc.ic.ac.uk/projects/chopper/.

We forked KLEE from commit b2f93ff. A user can run Chopper

by specifying the list of functions to skip along with specific call

sites via command-line switches.

Chopper combines static analysis—in particular mod-ref analy-

sis and slicing—with symbolic execution. Since KLEE operates on

LLVM bitcode, we rely on libraries that statically analyse LLVM

bitcode. In particular, we implemented a library for static analysis

that exposes APIs to KLEE, so new or better static analyses can be

integrated in Chopper with ease.

We compute mod-ref analysis by using the pointer analysis pro-

vided by SVF [38]. In particular, we rely on a flow-insensitive and

context-insensitive pointer analysis based on the Andersen algo-

rithm [4]. We compute static backward slicing using the DG static

slicer [20]. We modified the slicer to be able to generate slices of

arbitrary functions and not only of the entry point of the program.

Note that static slicing is computed on-demand, when a recovery

is required. The same slice may be reused for multiple recoveries,

so each slice is computed only once.

5 EXPERIMENTAL EVALUATION
Our evaluation aims to provide preliminary evidence that this novel

form of symbolic execution can lead to significant scalability gains.

More specifically, we evaluate its effectiveness when embodied in

the following two scenarios:

(1) Failure reproduction, where the research questionwe explore
is: How does chopped symbolic execution perform with respect

to standard symbolic execution in generating an input that

triggers a failure? In particular, can it reproduce more failures

than standard symbolic execution, or can it reproduce the same

failures faster?

(2) Test suite augmentation, where the research question we ex-

plore is: How does chopped symbolic execution perform when

steered to generate test cases that improve the structural cover-

age of code? Can chopped symbolic execution complement the

exploration of standard symbolic execution?

Note that our objective is not to claim that chopped symbolic

execution is generally a superior technique for a specific task—

and thus omits a direct comparison with other state-of-the-art

techniques for each scenario—but rather to assess the attainable

benefits of chopped symbolic execution when applied to techniques

built upon symbolic execution engines.

We compare Chopper with baseline KLEE.We use the same KLEE

commit (b2f93ff) from which we based Chopper. Both tools are

compiled with LLVM 3.4.2 [29] and use STP 2.1.2 as the constraint

solver [22].We conduct our experiments on servers running Ubuntu

14.04, equipped with an 8-core Intel processor at 3.5 GHz and 16GB

of RAM.

5.1 Failure Reproduction
In this experiment we use chopped symbolic execution for failure

reproduction. In particular, we run a symbolic executor to generate

inputs that trigger known security vulnerabilities.

https://srg.doc.ic.ac.uk/projects/chopper/
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Table 1: Security vulnerabilities and libtasn1 versions con-
sidered for reproduction.

Vulnerability Version C SLOC
CVE-2012-1569 2.11 24,448

CVE-2014-3467 3.5 22,091

CVE-2015-2806 4.3 28,115

CVE-2015-3622 4.4 28,109

Benchmarks. The subjects of this part of the evaluation are vul-

nerabilities taken from GNU libtasn1. As briefly discussed in the

introduction, GNU libtasn1 is a library for serialising and deseri-

alising data in Abstract Syntax Notation One (ASN.1) format. For

example, libtasn1 is used in GnuTLS to define X.509 certificates.

We selected the libtasn1 library because its code is complex, with

nested and deep function calls, and can be successfully analysed

by the KLEE symbolic executor. Table 1 lists the vulnerabilities

selected for our experiment, which are memory out-of-bounds ac-

cesses. Note that each vulnerability requires the reproduction of a

single failure, except for CVE-2014-3467, for which the vulnerability

can be exploited in three different code locations, so we consider

three different failures. Therefore, in this experiment we aim to

reproduce a total of six failures.

Methodology. We proceed with the following evaluation process:

(1) We manually create an execution driver for the libtasn1 library
to exercise the library from its public interface, simulating the

interactions of an external program (e.g., GnuTLS).

(2) We manually derive the set of functions to skip by inspecting

the code and the vulnerability report which usually includes the

stack trace and sometimes results from a dynamic analysis tool

(e.g., Valgrind [31]). For the selected case studies we managed

to identify a candidate set of function to exclude in less than

30 minutes per failure, but a developer familiar with the code

should be able to do so faster.

(3) We invoke KLEE and Chopper on the subject with several dif-

ferent search heuristics for normal states (random, DFS, and

coverage-based
7
) and DFS for recovery states. We use a timeout

of 24 hours. We also configure the symbolic executors to termi-

nate the execution as soon as the vulnerability is identified. We

do that by adding a new option to KLEE that, given a list of code

locations, terminates the execution as soon as a vulnerability is

discovered at all locations.

Results. Table 2 summarises the high-level results of our failure

reproduction experiment. For each vulnerability and search heuris-

tic we report the effectiveness of KLEE and Chopper at reproducing

the failure as the time required to generate an input that triggers

the vulnerability.

As can be seen, Chopper outperforms KLEE on all but one case

study both in terms of number of failures reproduced and perfor-

mance, regardless of the search heuristic applied. Overall, KLEE

reproduces four failures, CVE-2014-34671, CVE-2014-34672, CVE-

2015-2806 and CVE-2015-3622, and only failure CVE-2014-34671

can be reproduced with all search heuristics. This latter case seems

7
KLEE search options dfs, random-state and nurs:covnew respectively.

Table 2: Results for the failure reproduction experiment on
libtasn1. For each case we report either the time required
for exploration if the vulnerability was reproduced success-
fully (inmm:ss), Timeout (if execution is terminated after 24
hours), or OOM (if the execution runs out of memory, with
the respective time at which this happened).

Vulnerability Search KLEE Chopper

CVE-2012-1569

Random OOM (11:52) 02:27

DFS OOM (05:08) 03:29

Coverage OOM (11:28) 02:45

CVE-2014-34671

Random 00:05 00:45

DFS 16:31 00:08

Coverage 00:03 00:58

CVE-2014-34672

Random 1:02:13 06:18

DFS Timeout 00:09

Coverage 1:33:56 02:48

CVE-2014-34673

Random Timeout 09:55

DFS Timeout 12:31

Coverage Timeout 09:50

CVE-2015-2806

Random 1:07:46 02:18

DFS 2:46:13 12:04

Coverage OOM (38:56) 01:02

CVE-2015-3622

Random Timeout 00:16

DFS Timeout 18:41

Coverage 20:25:20 00:18

to be relatively easy to identify, since KLEE requires only a few

seconds. On the other cases, KLEE requires between 1 and 20 hours.

The problem of path explosion in KLEE is particularly visible in

CVE-2012-1569 where the symbolic executor quickly runs out of

available memory (4096 MB) and thus fails to reproduce the failure.

In contrast, Chopper can identify all vulnerabilities and gener-

ates a test case to reproduce each failure in less than 20 minutes,

and often much faster. Overall, for the vulnerabilities that KLEE

can also reproduce, Chopper can significantly beat KLEE in terms

of performance by at least an order of magnitude, with the only

exception of CVE-2014-34671 where Chopper can be slowed by the

cost of static analyses.

Table 3 summarises the detailed results of Chopper for the fail-

ure reproduction experiment. For each vulnerability and search

heuristic we report the number of snapshots and recovery states

generated during chopped symbolic execution (Snapshots and Re-

coveries, respectively), the execution times for Chopper with and

without slicing (Sliced F and Full F , respectively) as well as sta-

tistics on the generated slices, which includes the number of slices

generated (Num), and the total size of the original (F size) and

sliced (S size) skipped functions in terms of LLVM instructions.

Table 3 shows that the number of skipped function calls (as

deduced by the number of snapshot states) and recovery states

varies with the nature of the case study, the skipped functions, and

the search heuristic. In the case of vulnerability CVE-2015-2806,

Chopper could reproduce the failure without recovering. This is

the exemplar case that highlights the benefits of chopped symbolic

execution: While KLEE spent hours interpreting code unrelated
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Table 3: Detailed results of Chopper for the failure reproduction experiment on libtasn1.

Vulnerability Search Snapshots Recoveries Function Slice
Full F Sliced F Num F Size S Size

CVE-2012-1569

Random 5,315 7,447 01:21 02:27 4 694 320 (46%)

DFS 381 1,078 00:10 03:29 4 694 320 (46%)

Coverage 6,258 9,053 01:53 02:45 4 694 320 (46%)

CVE-2014-34671

Random 6,607 6,883 00:30 00:45 4 3,740 2,318 (62%)

DFS 656 1,003 00:07 00:08 4 3,740 2,318 (62%)

Coverage 5,642 7,357 00:50 00:58 4 3,740 2,318 (62%)

CVE-2014-34672

Random 16,279 26,300 07:38 06:18 4 3,740 2,318 (62%)

DFS 656 1,003 00:11 00:09 4 3,740 2,318 (62%)

Coverage 10,147 18,916 04:43 02:48 4 3,740 2,318 (62%)

CVE-2014-34673

Random 26,762 43,480 17:30 09:55 4 3,740 2,318 (62%)

DFS 38,696 61,113 17:07 12:31 4 3,740 2,318 (62%)

Coverage 30,947 42,797 17:13 09:50 4 3,740 2,318 (62%)

CVE-2015-2806

Random 173,065 0 02:31 02:18 - - -

DFS 2,708,849 0 12:30 12:04 - - -

Coverage 36,549 0 01:04 01:02 - - -

CVE-2015-3622

Random 584 8,980 00:25 00:16 6 1,269 343 (27%)

DFS 23,846 20,188 21:24 18:41 7 1,453 398 (27%)

Coverage 608 9,043 00:23 00:18 6 1,269 343 (27%)

with the failure, Chopper excluded the uninteresting code portions

and could proceed analysing only code of interest, consistently

identifying the failure with all search heuristics in as little as one

minute.

Table 3 also shows that the benefit of slicing the skipped func-

tions depends on the case study. For example, for the CVE-2014-

34673 vulnerability, Chopper is on average 70% faster when slicing

the skipped functions. Conversely, Chopper performs the best with-

out slicing in CVE-2012-1569. A plausible explanation is that the

additional analyses required for slicing were more expensive than

directly analysing the functions. We plan to develop a lightweight

analysis to speculatively identify when to apply slicing on the

skipped functions.

5.2 Test Suite Augmentation
In this experiment we use chopped symbolic execution for test

suite augmentation. We do that by running Chopper on a subject

program where we skip functions already exercised by an existing

test suite. As initial test suite we rely on tests generated by KLEE.

In essence, we want to assess the effectiveness of chopped symbolic

execution in complementing standard symbolic execution in test

generation, for the goal of increasing structural coverage.

Benchmarks. The subjects of this part of the evaluation are GNU

BC 2.27, LibYAML 0.1.5, and GNU oSIP 4.0.0. BC8
is an arbitrary-

precision calculator that solves mathematical expressions written in

a C-style language. LibYAML9 is a well-known library for parsing

and emitting data in YAML format, which is a human-friendly

data serialisation standard. oSIP10 implements the SIP protocol and

provides an interface for creating SIP based applications. We choose

8
https://www.gnu.org/software/bc

9
https://pyyaml.org/wiki/LibYAML

10
https://www.gnu.org/software/osip

these benchmarks because KLEE has a hard time generating high-

coverage tests. As a result, the code not covered by KLEE is usually

related to complex features, and we challenge Chopper to exercise

it. For each program, we rely on the program’s documentation and

personal experience with the subject to identify the best argument

configuration that can maximise coverage.

Methodology. We proceed with the following evaluation process:

(1) We generate the initial test suite by running KLEE on each

subject with the coverage-based search heuristic and a time limit

of one hour. We use this configuration to maximise structural

coverage of the code under analysis, in particular we focus on

line and branch coverage.

(2) We compute the structural coverage obtained with the test

suites that KLEE generates using GNU GCov.
11

(3) We use the coverage information and the call graph to select for

each program the set of functions to skip. For example, suppose

that function f calls function д and h, and that f and h are

covered by a test. We include in the set of the skipped functions

only h, since f is required to reach uncovered function д.
(4) We invoke Chopper on the subjects with the coverage-based

search heuristic for normal states and DFS for the recovery

states. We use a timeout of one hour.

Results. Table 4 summarises the results of our test suite augmen-

tation experiment. For each case study we report the structural cov-

erage of a symbolic executor as percentages of lines and branches

covered by its generated test suite. For KLEE+Chopper we report

the structural coverage results with and without performing slicing

(Sliced F and Full F , respectively).

Table 4 shows that Chopper effectively complements KLEE and

increases code coverage even on complex subjects. Specifically, on

11
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://www.gnu.org/software/bc
https://pyyaml.org/wiki/LibYAML
https://www.gnu.org/software/osip
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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Table 4: Line (L) and branch (B) coverage achieved by KLEE
and KLEE+Chopper for BC, LibYaml and oSIP in one hour.

Program KLEE KLEE+Chopper
Full F Sliced F

L B L B L B
BC 23.2% 15.6% 26.6% 19.9% 27.2% 20.8%

LibYAML 10.8% 4.2% 19.9% 11.5% 19.9% 11.5%

oSIP 5.7% 5.1% 9.8% 8.7% 9.8% 8.7%

BC, Chopper increased statement and branch coverage by 4% and

5.2%, respectively; on LibYAML it approximately doubled coverage;

and in oSIP it also led to significant gains.

In BC, Chopper managed to skip expensive functions that ini-

tialize the parsing of the input file and reached the actual parsing

functions. Unfortunately, the analysis quickly got stuck in the pars-

ing routine due to timeouts in the constraint solver, resulting in a

limited increase in coverage.

In the case of LibYAML we observed that KLEE spent almost

all its budget analysing one function that contains complex logic

responsible for ensuring that the buffer contains enough characters

for parsing while handling different encodings, such as UTF-8 or

UTF-16. This function is invoked at the beginning of program

execution, and KLEE got stuck in it, not being able to execute any

subsequent line of code. Conversely, Chopper skipped the expensive

invocation and continued to explore other parts of the code. Our

chopping-aware search heuristic also allowed us to recover paths

inside the expensive function while giving higher priority to non-

recovery states, in turn resulting in a more in-depth exploration of

the code.

A similar scenario was encountered in oSIP, where KLEE spent

a considerable amount of resources on a white character process-

ing routine which is invoked at the beginning of the execution.

By skipping this routine, Chopper was able to perform a deeper

exploration of the code.

As for the previous experiment, the benefit of slicing strictly de-

pends on the case study. In this experiment, slicing is not beneficial

in LibYAML and oSIP, while it leads to increased coverage in BC.

5.3 Threats to Validity
Here we briefly discuss the countermeasures we adopted to mitigate

the threats to validity. The internal validity depends on the correct-

ness of our prototype implementation, and may be threatened by

the evaluation setting and the execution of the experiments. We

carefully tested our prototype with respect to the original KLEE

baseline, and make it available for further inspection.

Threats to external validity may derive from the selection of

benchmarks. We validated our approach on three real-world sub-

jects. Different results could be obtained for different subjects. The

only way to further reduce the external validity threat consists in

replicating our study on more subjects. For this reason we make

our experimental package publicly available to other researchers.
12

12
https://srg.doc.ic.ac.uk/projects/chopper/

6 RELATEDWORK
The research community has invested significant effort in address-

ing the path explosion challenge in symbolic execution, and this

paper aligns with this line of work.

As we already mentioned in the introduction, the most com-

mon and often most effective mechanism employed by symbolic

executors are search heuristics, whose goal is to guide program

exploration to the most promising paths in the program. Popu-

lar heuristics include random path exploration [11], generational

search [25] and coverage-optimized search [10, 12], to name just

a few. Unfortunately, search heuristics only partly alleviate path

explosion, and symbolic execution can still get stuck in irrelevant

parts of the code.

Another effective technique is to try to prune equivalent program

paths [8, 9]. For instance, if a path reaches a program point with a

set of constraints equivalent to those of a previous path that reached

that point, then the second path (and all paths that it would have

spawned) can be terminated. This technique is similar in spirit to

our approach, but orthogonal, as it does nothing to prevent the

exploration of code irrelevant to the task at hand. Chopped symbolic

execution can be combined with path pruning, in order to prune

both irrelevant paths, as well as those relevant paths which are

equivalent to other relevant paths.

Merging paths can also help alleviate path explosion. Paths can

be merged either ahead-of-time [17, 18] or at runtime [28, 36]. A

particular type of path merging are function summaries, in which

paths within a function are merged into a summary that can be

reused on subsequent invocations [2, 23]. Path merging can lead

to exponential reduction in the number of paths explored, but the

cost is often offloaded to the constraint solver, which has to deal

with significantly harder constraints. Again, chopped symbolic

execution could be combined with path merging, in order to get

the benefit of both.

Chopped symbolic execution makes use of program slicing in

order to explore only the relevant parts of code through the skipped

functions. Program slicing has been explored in symbolic execution

before, e.g., in the context of patch testing [6].

7 CONCLUSION
Chopped symbolic execution is a novel form of symbolic execution

which allows users to specify uninteresting parts of the code that

can be excluded during analysis, thus focusing the exploration on

those paths most relevant to the task at hand. Our preliminary

evaluation shows that chopped symbolic execution can lead to

significant improvements in scalability for different scenarios such

as vulnerability reproduction and test suite augmentation. Future

work can explore these scenarios and others in more depth, aim to

further automate the identification of functions to skip, and extend

the approach with the ability to skip arbitrary code fragments.
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