MA-Project "System Structure and Parameterization" - Current Status and Plans

presented by Jochen Köhler (ZF), Pierre R. Mai (PMSF)

T. Sommer

FMI User Meeting 2017-05-15 Prague / Czech Republic

Modelon Logo

TLK Thermo

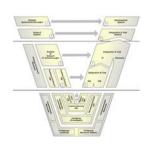
M. Deppe 2017-05-15 J. Köhler

J. Krasser

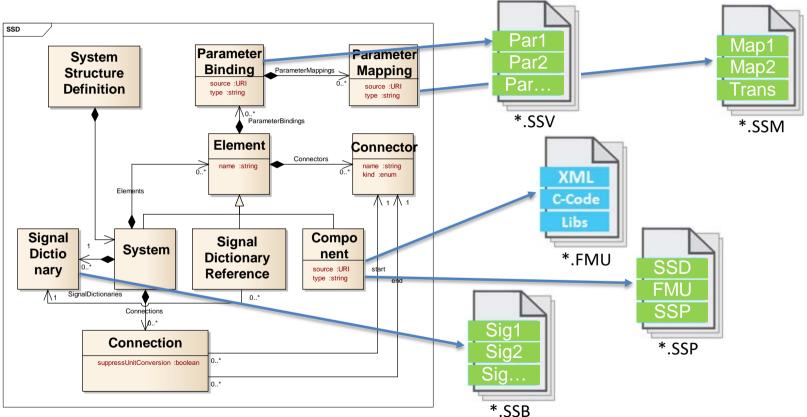
P. R. Mai

M. Nagasawa

M. Henningsson


J.N. Jäschke

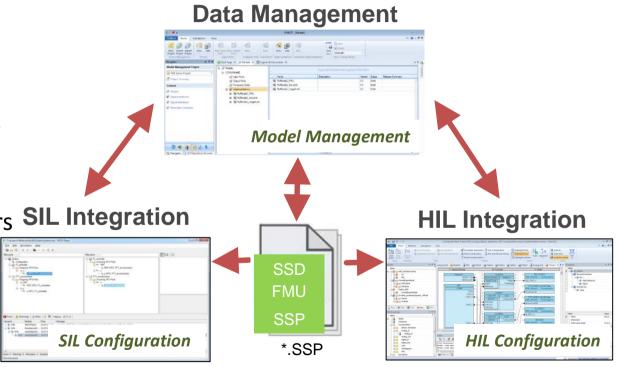
Slide 1


Main Purposes of SSP – Based on FMI standard

- Define a standardized format for the connection structure of a network of components (FMUs in particular).
- Define a standardized way to store and apply parameters to these components.
- The developed standard / APIs should be usable in all stages of development process (architecture definition, integration, simulation, test in MiL, SiL, HiL).
- The work in this project shall be coordinated with other standards and organizations (FMI, ASAM, OMG).

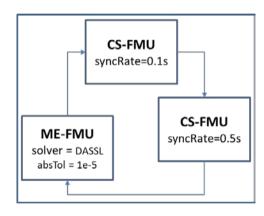
Overview of File Definitions

List of features


- Hierarchical description of systems of connected components
- Components: FMUs and external SSPs/SSDs, extensible to models, ...
- Parameter bindings both at component and system-level, including transformations and name/unit-mapping
- Signal dictionaries support cross-hierarchical data pools (e.g for busses)
- Packaging of SSDs, FMUs, Parameters, ... into one bundle (SSP)
- Light-weight support for variant handling at SSP level (multiple SSDs sharing components, parameters, resources)
- Optional exchange of graphical information (similar display across tools)
- URI references to all resources: Integration with other systems via URIs

Parameter Handling with Simulation Data Management Systems and Authoring Tools

- Results from workshop with SDM vendors:
 - Direct connection between SDM and authoring tools is not the preferred way
 - Parameter and system structure exchange could be done via file transfer (SSP standard)
 - Further measures will be taken to make a proof of concept


Integration of FMUs for SIL & HIL with SSP: Reuse of the System Structure

- The System Structure defined for SIL can be reused for HIL testing
- It becomes possible to reuse more models, configurations, tests, layouts and parameters
- A Data Management tool controls the lifecycle of the SSP

Potential further work

- Components can support more than FMUs/SSPs:
 - New ADAS Sensor Interfaces currently in development (Object Lists)
- Open Issues in SSP
 - Start values for Inputs
 - Subsystems / t=0
 - Initial state of the system
 - Experiment setup
 - Start time, stop time, selected results
 - Selection of solver, -settings, subsystem handling
 - FMU-instance specific settings
 - e.g. Sync rate, (Co-)Simulation mode, Import Settings
- Reliability check
 - Similar to FMI Crosschecks

Existing prototypes with support of SSP

- Model.CONNECTTM by AVL Scope
- Integration Tool FMI Bench by PMSF
- Co-Simulation Player" (Cybernet)
- TLK MoBA Lab by TLK
- FMI Composer by Modelon
- FMI Kit FMI Library for Simulink by Dassault
- SSP support by solidThinking Activate® by Altair

Requested Features from FMI

Nice support of vectors / arrays for parameters and signals

Current Roadmap for First Release

Topic	Due Date
Presenting on Modelica Conference	2017-05-15/17
End of Beta test phase	2017-09-30
Initiate website	2017-05-31
Review of existing documents	2017-05-31
Release Beta version	2017-06-01
Review of existing documents	2017-10-14
Release version 1.0	2017-11-30