Female zebra finches Taeniopygia guttata will copy the novel foraging choice of males. The degree... more Female zebra finches Taeniopygia guttata will copy the novel foraging choice of males. The degree to which they do so, however, can vary considerably. Among-individual differences in social learning and their underlying neural pathways have received relatively little attention and remain poorly understood. Here, then, we allowed female zebra finches to observe livestreamed male demonstrators feeding from one of two novel-coloured feeders (social information acquisition phase). After this social information acquisition phase, we tested from which feeder the females preferred to feed to determine whether they copied the feeder choice of the male demonstrator (social learning test phase). We then examined the brains of these females for immediate early gene activity (c-fos) in the neural social behaviour network for the time during which they were observing the male feeding. Of the 12 regions and sub-regions in the brain examined we found only one weak correlation: greater copying was associated with lower activity in the bed nucleus of the stria terminalis, BSTmv. Future work should perhaps focus on neural activity that occurs during the stage in which there is evidence that animals have copied a demonstrator (i.e., social learning test phase in the current experiment) rather than during the period in which those animals observe that demonstrator (i.e., social information acquisition phase in the current experiment). What is clear is that the considerable emphasis on examining the behavioural component of social learning has not yet been accompanied by neural analyses. Keywords Bird • c-fos • Foraging • Immediate early gene • Social behaviour network • Social learning • Zebra finch Abbreviations AH anterior hypothalamus AMV* anterior ventral mesopallium BSTmd bed nucleus of the stria terminalis, dorsalmedial BSTmv bed nucleus of the stria terminalis, ventromedial BSTl bed nucleus of the stria terminalis, lateral dHP dorsal hippocampus LScv lateral septum, ventral caudal LScvl lateral septum, lateral ventral caudal LSr lateral septum, rostral mHP media hippocampus MS medial septum POM medial preoptic area VMH ventromedial hypothalamus
Nest-building behaviour in birds may be particularly relevant to investigating the evolution of p... more Nest-building behaviour in birds may be particularly relevant to investigating the evolution of physical cognition, as nest building engages cognitive mechanisms for the use and manipulation of materials. We hypothesized that nest-building ecology may be related to physical cognitive abilities. To test our hypothesis, we used zebra finches, which have sex-differentiated roles in nest building. We tested 16 male and 16 female zebra finches on three discrimination tasks in the following order: length discrimination, flexibility discrimination, and color discrimination, using different types of string. We predicted that male zebra finches, which select and deposit the majority of nesting material and are the primary nest builders in this species, would learn to discriminate string length and flexibility-structural traits relevant to nest building-in fewer trials compared to females, but that the sexes would learn color discrimination (not structurally relevant to nest building) in a similar number of trials. Contrary to these predictions, male and female zebra finches did not differ in their speed to learn any of the three tasks. There was, however, consistent among-individual variation in performance: learning speed was positively correlated across the tasks. Our findings suggest that male and female zebra finches either (1) do not differ in their physical cognitive abilities, or (2) any cognitive sex differences in zebra finches are more specific to tasks more closely associated with nest building. Our experiment is the first to examine the potential evolutionary relationship between nest building and physical cognitive abilities.
In slot machine play, near wins are stimuli that approximate winning stimuli but deliver no reinf... more In slot machine play, near wins are stimuli that approximate winning stimuli but deliver no reinforcer (e.g., two winning symbols and a losing symbol). Pigeons pecked lighted side keys on a fixed ratio 3 schedule. Across 4 trial types, the side key was lighted red or green, or changed from red to green after a specified number of pecks, simulating a slot machine reel. Winning trials involved 3 red presentations. Clear-loss trials involved 3 green presentations. Intermediate, near-win trials involved 2 red presentations before the key turned green. After the fixed ratio was completed, the side key was darkened and the center 'collect' key was lighted white for 5 s. Food was delivered on a winning trial so long as the pigeon pecked the collect key at least once during the 5-s interval. Non-winning trials were not reinforced with food. Throughout several conditions, trial-type density was manipulated and responding on the collect key was recorded. Rates of collect-key pecking were higher for trial types with more red presentations. Differences in rates at different trial-type densities may clarify the discriminative and conditioned reinforcing properties of near wins.
Coordination of actions requires that organisms actively monitor the movements of others. The cur... more Coordination of actions requires that organisms actively monitor the movements of others. The current study examined acoustic cues within the fee-bee song of chickadees that may provide listening conspecifics with information about the movements of singers. The difference between direct and reverberant acoustic energy present during the second note of the fee-bee song provided clear indications of how far the song had traveled. Preliminary analyses suggest that this distance cue may be robust to variations in the spectra and amplitude of song components, and that the acoustic features of the fee-bee song may facilitate simultaneous comparisons of reverberating fees with directly received bees by listening birds. Comparing coincident reverberation with directly received sounds may be a previously unsuspected way that animals living in reverberant environments can monitor the movements and interactions of conspecifics.
Variation in animal material technology, such as tool use and nest construction, is thought to be... more Variation in animal material technology, such as tool use and nest construction, is thought to be caused, in part, by differences in the early-life socio-ecological environment—that is, who and what is around—but this developmental hypothesis remains unconfirmed. We used a tightly controlled developmental paradigm to determine whether adult and/or raw-material access in early life shape first-time nest construction in laboratory-bred zebra finches Taeniopygia guttata at sexual maturity. We found that juvenile access to both an unrelated adult and raw material of one color led to a majority preference (75%) by novice builders for this color of material over that for either natal-nest or novel-colored material, whereas a lack of juvenile access to both an unrelated adult and raw material led to a 4- and nearly 3-fold reduction in the speed at which novice builders initiated and completed nest construction, respectively. Contrary to expectation, neither the amount of time juveniles nor...
International Journal of Comparative Psychology, 2015
Contemporary models for the evolution of learning suggest that environmental predictability plays... more Contemporary models for the evolution of learning suggest that environmental predictability plays a critical role in whether learning is expected to evolve in a particular species, a claim originally made over 50 years ago. However, amongst many behavioral scientists who study insect learning, as well as amongst neuroscientists who study the brain architecture of insects, a very different view is emerging, namely that all animals possessing a nervous system should be able to learn. More specifically, the capacity for associative learning may be an emergent property of nervous systems such that, whenever selection pressures favor the evolution of nervous systems, for whatever reason, the capacity for associative learning follows ipso facto. One way to reconcile these disparate views of learning is to suggest that the assumed default in these evolutionary models, namely the non-learning phenotype, is incorrect: The ability to learn is, in fact, the default but, under certain condition...
Contemporary models for the evolution of learning suggest that environmental predictability plays... more Contemporary models for the evolution of learning suggest that environmental predictability plays a critical role in whether learning is expected to evolve in a particular species, a claim originally made over 50 years ago. However, amongst many behavioral scientists who study insect learning, as well as amongst neuroscientists who study the brain architecture of insects, a very different view is emerging, namely that all animals possessing a nervous system should be able to learn. More specifically, the capacity for associative learning may be an emergent property of nervous systems such that, whenever selection pressures favor the evolution of nervous systems, for whatever reason, the capacity for associative learning follows ipso facto. One way to reconcile these disparate views of learning is to suggest that the assumed default in these evolutionary models, namely the non-learning phenotype, is incorrect: The ability to learn is, in fact, the default but, under certain conditions, selection pressures can override that ability, resulting in hard-wired, or considerably less plastic, responses. Thus, models for the evolution of learning actually may be models for the conditions under which inherent plasticity is overridden. Moreover, what have been revealed as the costs of learning in insects may, instead, be costs associated with cognitive abilities that go beyond forming simple associations-cognitive abilities that researchers are just now beginning to reveal. The ability of animals, vertebrates and invertebrates alike, to use learned cues enables them to find food and hosts, locate and court mates, avoid predators and poisons, locate new territories, protect alreadyestablished territories, repel rivals, and recognize their young, to name but a few of the many situations critical to survival (Domjan, 2005; Dugatkin, 2014). Relying on learned cues long has been understood to make accomplishing these tasks faster, more efficient, or more effective, compared to situations in which no such cues are available (e.g., Hollis, 1982, 1997; Staddon, 1983). Given the biological importance of these tasks, the fitness benefits of learning would appear to be so large as to dwarf any costs. However, the supposed costs of learning-machinery and start-up costs typically are proposed-could, at least theoretically, be too high a price to pay under certain conditions. Nonetheless, what appears to be a different view of learning is emerging, a view that is very much at odds with current models for the evolution of learning, namely that the ability to learn is an emergent property of all nervous systems. That is, learning is inherent in the way that neural cells communicate with one another, with the way that neural cell networks are built, a view espoused by neuroscientists (e.g.,
Among-individual variation in performance on cognitive tasks is ubiquitous across species that ha... more Among-individual variation in performance on cognitive tasks is ubiquitous across species that have been examined, and understanding the evolution of cognitive abilities requires investigating among-individual variation because natural selection acts on individual differences. However, relatively little is known about the extent to which individual differences in cognition are determined by domain-specific compared with domain-general cognitive abilities. We examined individual differences in learning speed of zebra finches across seven different tasks to determine the extent of domain-specific versus domain-general learning abilities, as well as the relationship between learning speed and learning generalization. Thirtytwo zebra finches completed a foraging board experiment that included visual and structural discriminations, and then these same birds went through an acoustic operant discrimination experiment that required discriminating between different natural categories of acoustic stimuli. We found evidence of domain-general learning abilities as birds' relative performance on the seven learning tasks was weakly repeatable and a principal components analysis found a first principal component that explained 36% of the variance in performance across tasks with all tasks loading unidirectionally on this component. However, the few significant correlations between tasks and high repeatability within each experiment suggest the potential for domain-specific abilities. Learning speed did not influence an individual's ability to generalize learning. These results suggest that zebra finch performance across visual, structural, and auditory learning relies upon some common mechanism; some might call this evidence of "general intelligence"(g), but it is also possible that this finding is due to other noncognitive mechanisms such as motivation.
Exploratory behaviour is related to performance on a line-orientation generalization Fast-exp... more Exploratory behaviour is related to performance on a line-orientation generalization Fast-explorers have steeper generalization gradients compared to slow-explorers There is a link between information use, post-acquisition, and personality.
It is becoming apparent that birds learn from their own experiences of nest building. What is not... more It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influence how nest-building expertise is socially transmitted in ...
The transmission of information from an experienced demonstrator to a naïve observer often depend... more The transmission of information from an experienced demonstrator to a naïve observer often depends on characteristics of the demonstrator, such as familiarity, success or dominance status. Whether or not the demonstrator pays attention to and/or interacts with the observer may also affect social information acquisition or use by the observer. Here we used a video-demonstrator paradigm first to test whether video demonstrators have the same effect as using live demonstrators in zebra finches, and second, to test the importance of visual and vocal interactions between the demonstrator and observer on social information use by the observer. We found that female zebra finches copied novel food choices of male demonstrators they saw via live-streaming video while they did not consistently copy from the demonstrators when they were seen in playbacks of the same videos. Although naive observers copied in the absence of vocalizations by the demonstrator, as they copied from playback of vide...
For many years nest building in birds has been considered a remarkable behaviour. Perhaps just as... more For many years nest building in birds has been considered a remarkable behaviour. Perhaps just as remarkable is the public and scholarly consensus that bird nests are achieved by instinct alone. Here we take the opportunity to review nearly 150 years of observational and experimental data on avian nest building. As a result we find that instinct alone is insufficient to explain the data: birds use information they gather themselves and from other individuals to make nest-building decisions. Importantly, these data confirm that learning plays a significant role in a variety of nest-building decisions. We outline, then, the multiplicity of ways in which learning (e.g., imprinting, associative learning, social learning) might act to affect nest building and how these might help to explain the diversity both of nest-building behaviour and in the resulting structure. As a consequence, we contend that nest building is a much under-investigated behaviour that holds promise both for determining a variety of roles for learning in that behaviour as well as a new model system for examining brain-behaviour relationships.
Australian magpies living in larger social groups learned quicker and made fewer errors across fo... more Australian magpies living in larger social groups learned quicker and made fewer errors across four cognitive tasks compared with birds living in smaller social groups, and this pattern may be driven by a developmental effect associated with the cognitive demands of living in larger groups.
One source of public information may be the enduring products of others' behaviour, such as disca... more One source of public information may be the enduring products of others' behaviour, such as discarded tools or vacated nests. Here, we examined whether observation of a nest affects the material captive zebra finch males prefer when they construct their first nest. It does: for first-time nest construction, males that viewed only an empty cage preferred the colour of material each initially favoured but those males that had observed a pre-built nest of material of their non-preferred colour lost their material-colour preference altogether. Additionally, half of the males that viewed a nest were tested in an environment (the laboratory) different to that in which they were reared (an outdoor aviary). We had expected the aviary-reared (versus laboratory-reared) males would be more uncertain, and thus more likely to select material for their first nest that matched in colour to the colour of the 'demonstrated' nest-but this was not the case. The aviary-reared males did, however, tend to touch first the demonstrated colour of material more than did the laboratory-reared males. Together these results show that both observation of a nest and a change in environment can influence the material choices of novice builders. For naïve animal builders, then, construction artefacts can be information resources for learning about potential construction material.
Female zebra finches Taeniopygia guttata will copy the novel foraging choice of males. The degree... more Female zebra finches Taeniopygia guttata will copy the novel foraging choice of males. The degree to which they do so, however, can vary considerably. Among-individual differences in social learning and their underlying neural pathways have received relatively little attention and remain poorly understood. Here, then, we allowed female zebra finches to observe livestreamed male demonstrators feeding from one of two novel-coloured feeders (social information acquisition phase). After this social information acquisition phase, we tested from which feeder the females preferred to feed to determine whether they copied the feeder choice of the male demonstrator (social learning test phase). We then examined the brains of these females for immediate early gene activity (c-fos) in the neural social behaviour network for the time during which they were observing the male feeding. Of the 12 regions and sub-regions in the brain examined we found only one weak correlation: greater copying was associated with lower activity in the bed nucleus of the stria terminalis, BSTmv. Future work should perhaps focus on neural activity that occurs during the stage in which there is evidence that animals have copied a demonstrator (i.e., social learning test phase in the current experiment) rather than during the period in which those animals observe that demonstrator (i.e., social information acquisition phase in the current experiment). What is clear is that the considerable emphasis on examining the behavioural component of social learning has not yet been accompanied by neural analyses. Keywords Bird • c-fos • Foraging • Immediate early gene • Social behaviour network • Social learning • Zebra finch Abbreviations AH anterior hypothalamus AMV* anterior ventral mesopallium BSTmd bed nucleus of the stria terminalis, dorsalmedial BSTmv bed nucleus of the stria terminalis, ventromedial BSTl bed nucleus of the stria terminalis, lateral dHP dorsal hippocampus LScv lateral septum, ventral caudal LScvl lateral septum, lateral ventral caudal LSr lateral septum, rostral mHP media hippocampus MS medial septum POM medial preoptic area VMH ventromedial hypothalamus
Nest-building behaviour in birds may be particularly relevant to investigating the evolution of p... more Nest-building behaviour in birds may be particularly relevant to investigating the evolution of physical cognition, as nest building engages cognitive mechanisms for the use and manipulation of materials. We hypothesized that nest-building ecology may be related to physical cognitive abilities. To test our hypothesis, we used zebra finches, which have sex-differentiated roles in nest building. We tested 16 male and 16 female zebra finches on three discrimination tasks in the following order: length discrimination, flexibility discrimination, and color discrimination, using different types of string. We predicted that male zebra finches, which select and deposit the majority of nesting material and are the primary nest builders in this species, would learn to discriminate string length and flexibility-structural traits relevant to nest building-in fewer trials compared to females, but that the sexes would learn color discrimination (not structurally relevant to nest building) in a similar number of trials. Contrary to these predictions, male and female zebra finches did not differ in their speed to learn any of the three tasks. There was, however, consistent among-individual variation in performance: learning speed was positively correlated across the tasks. Our findings suggest that male and female zebra finches either (1) do not differ in their physical cognitive abilities, or (2) any cognitive sex differences in zebra finches are more specific to tasks more closely associated with nest building. Our experiment is the first to examine the potential evolutionary relationship between nest building and physical cognitive abilities.
In slot machine play, near wins are stimuli that approximate winning stimuli but deliver no reinf... more In slot machine play, near wins are stimuli that approximate winning stimuli but deliver no reinforcer (e.g., two winning symbols and a losing symbol). Pigeons pecked lighted side keys on a fixed ratio 3 schedule. Across 4 trial types, the side key was lighted red or green, or changed from red to green after a specified number of pecks, simulating a slot machine reel. Winning trials involved 3 red presentations. Clear-loss trials involved 3 green presentations. Intermediate, near-win trials involved 2 red presentations before the key turned green. After the fixed ratio was completed, the side key was darkened and the center 'collect' key was lighted white for 5 s. Food was delivered on a winning trial so long as the pigeon pecked the collect key at least once during the 5-s interval. Non-winning trials were not reinforced with food. Throughout several conditions, trial-type density was manipulated and responding on the collect key was recorded. Rates of collect-key pecking were higher for trial types with more red presentations. Differences in rates at different trial-type densities may clarify the discriminative and conditioned reinforcing properties of near wins.
Coordination of actions requires that organisms actively monitor the movements of others. The cur... more Coordination of actions requires that organisms actively monitor the movements of others. The current study examined acoustic cues within the fee-bee song of chickadees that may provide listening conspecifics with information about the movements of singers. The difference between direct and reverberant acoustic energy present during the second note of the fee-bee song provided clear indications of how far the song had traveled. Preliminary analyses suggest that this distance cue may be robust to variations in the spectra and amplitude of song components, and that the acoustic features of the fee-bee song may facilitate simultaneous comparisons of reverberating fees with directly received bees by listening birds. Comparing coincident reverberation with directly received sounds may be a previously unsuspected way that animals living in reverberant environments can monitor the movements and interactions of conspecifics.
Variation in animal material technology, such as tool use and nest construction, is thought to be... more Variation in animal material technology, such as tool use and nest construction, is thought to be caused, in part, by differences in the early-life socio-ecological environment—that is, who and what is around—but this developmental hypothesis remains unconfirmed. We used a tightly controlled developmental paradigm to determine whether adult and/or raw-material access in early life shape first-time nest construction in laboratory-bred zebra finches Taeniopygia guttata at sexual maturity. We found that juvenile access to both an unrelated adult and raw material of one color led to a majority preference (75%) by novice builders for this color of material over that for either natal-nest or novel-colored material, whereas a lack of juvenile access to both an unrelated adult and raw material led to a 4- and nearly 3-fold reduction in the speed at which novice builders initiated and completed nest construction, respectively. Contrary to expectation, neither the amount of time juveniles nor...
International Journal of Comparative Psychology, 2015
Contemporary models for the evolution of learning suggest that environmental predictability plays... more Contemporary models for the evolution of learning suggest that environmental predictability plays a critical role in whether learning is expected to evolve in a particular species, a claim originally made over 50 years ago. However, amongst many behavioral scientists who study insect learning, as well as amongst neuroscientists who study the brain architecture of insects, a very different view is emerging, namely that all animals possessing a nervous system should be able to learn. More specifically, the capacity for associative learning may be an emergent property of nervous systems such that, whenever selection pressures favor the evolution of nervous systems, for whatever reason, the capacity for associative learning follows ipso facto. One way to reconcile these disparate views of learning is to suggest that the assumed default in these evolutionary models, namely the non-learning phenotype, is incorrect: The ability to learn is, in fact, the default but, under certain condition...
Contemporary models for the evolution of learning suggest that environmental predictability plays... more Contemporary models for the evolution of learning suggest that environmental predictability plays a critical role in whether learning is expected to evolve in a particular species, a claim originally made over 50 years ago. However, amongst many behavioral scientists who study insect learning, as well as amongst neuroscientists who study the brain architecture of insects, a very different view is emerging, namely that all animals possessing a nervous system should be able to learn. More specifically, the capacity for associative learning may be an emergent property of nervous systems such that, whenever selection pressures favor the evolution of nervous systems, for whatever reason, the capacity for associative learning follows ipso facto. One way to reconcile these disparate views of learning is to suggest that the assumed default in these evolutionary models, namely the non-learning phenotype, is incorrect: The ability to learn is, in fact, the default but, under certain conditions, selection pressures can override that ability, resulting in hard-wired, or considerably less plastic, responses. Thus, models for the evolution of learning actually may be models for the conditions under which inherent plasticity is overridden. Moreover, what have been revealed as the costs of learning in insects may, instead, be costs associated with cognitive abilities that go beyond forming simple associations-cognitive abilities that researchers are just now beginning to reveal. The ability of animals, vertebrates and invertebrates alike, to use learned cues enables them to find food and hosts, locate and court mates, avoid predators and poisons, locate new territories, protect alreadyestablished territories, repel rivals, and recognize their young, to name but a few of the many situations critical to survival (Domjan, 2005; Dugatkin, 2014). Relying on learned cues long has been understood to make accomplishing these tasks faster, more efficient, or more effective, compared to situations in which no such cues are available (e.g., Hollis, 1982, 1997; Staddon, 1983). Given the biological importance of these tasks, the fitness benefits of learning would appear to be so large as to dwarf any costs. However, the supposed costs of learning-machinery and start-up costs typically are proposed-could, at least theoretically, be too high a price to pay under certain conditions. Nonetheless, what appears to be a different view of learning is emerging, a view that is very much at odds with current models for the evolution of learning, namely that the ability to learn is an emergent property of all nervous systems. That is, learning is inherent in the way that neural cells communicate with one another, with the way that neural cell networks are built, a view espoused by neuroscientists (e.g.,
Among-individual variation in performance on cognitive tasks is ubiquitous across species that ha... more Among-individual variation in performance on cognitive tasks is ubiquitous across species that have been examined, and understanding the evolution of cognitive abilities requires investigating among-individual variation because natural selection acts on individual differences. However, relatively little is known about the extent to which individual differences in cognition are determined by domain-specific compared with domain-general cognitive abilities. We examined individual differences in learning speed of zebra finches across seven different tasks to determine the extent of domain-specific versus domain-general learning abilities, as well as the relationship between learning speed and learning generalization. Thirtytwo zebra finches completed a foraging board experiment that included visual and structural discriminations, and then these same birds went through an acoustic operant discrimination experiment that required discriminating between different natural categories of acoustic stimuli. We found evidence of domain-general learning abilities as birds' relative performance on the seven learning tasks was weakly repeatable and a principal components analysis found a first principal component that explained 36% of the variance in performance across tasks with all tasks loading unidirectionally on this component. However, the few significant correlations between tasks and high repeatability within each experiment suggest the potential for domain-specific abilities. Learning speed did not influence an individual's ability to generalize learning. These results suggest that zebra finch performance across visual, structural, and auditory learning relies upon some common mechanism; some might call this evidence of "general intelligence"(g), but it is also possible that this finding is due to other noncognitive mechanisms such as motivation.
Exploratory behaviour is related to performance on a line-orientation generalization Fast-exp... more Exploratory behaviour is related to performance on a line-orientation generalization Fast-explorers have steeper generalization gradients compared to slow-explorers There is a link between information use, post-acquisition, and personality.
It is becoming apparent that birds learn from their own experiences of nest building. What is not... more It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influence how nest-building expertise is socially transmitted in ...
The transmission of information from an experienced demonstrator to a naïve observer often depend... more The transmission of information from an experienced demonstrator to a naïve observer often depends on characteristics of the demonstrator, such as familiarity, success or dominance status. Whether or not the demonstrator pays attention to and/or interacts with the observer may also affect social information acquisition or use by the observer. Here we used a video-demonstrator paradigm first to test whether video demonstrators have the same effect as using live demonstrators in zebra finches, and second, to test the importance of visual and vocal interactions between the demonstrator and observer on social information use by the observer. We found that female zebra finches copied novel food choices of male demonstrators they saw via live-streaming video while they did not consistently copy from the demonstrators when they were seen in playbacks of the same videos. Although naive observers copied in the absence of vocalizations by the demonstrator, as they copied from playback of vide...
For many years nest building in birds has been considered a remarkable behaviour. Perhaps just as... more For many years nest building in birds has been considered a remarkable behaviour. Perhaps just as remarkable is the public and scholarly consensus that bird nests are achieved by instinct alone. Here we take the opportunity to review nearly 150 years of observational and experimental data on avian nest building. As a result we find that instinct alone is insufficient to explain the data: birds use information they gather themselves and from other individuals to make nest-building decisions. Importantly, these data confirm that learning plays a significant role in a variety of nest-building decisions. We outline, then, the multiplicity of ways in which learning (e.g., imprinting, associative learning, social learning) might act to affect nest building and how these might help to explain the diversity both of nest-building behaviour and in the resulting structure. As a consequence, we contend that nest building is a much under-investigated behaviour that holds promise both for determining a variety of roles for learning in that behaviour as well as a new model system for examining brain-behaviour relationships.
Australian magpies living in larger social groups learned quicker and made fewer errors across fo... more Australian magpies living in larger social groups learned quicker and made fewer errors across four cognitive tasks compared with birds living in smaller social groups, and this pattern may be driven by a developmental effect associated with the cognitive demands of living in larger groups.
One source of public information may be the enduring products of others' behaviour, such as disca... more One source of public information may be the enduring products of others' behaviour, such as discarded tools or vacated nests. Here, we examined whether observation of a nest affects the material captive zebra finch males prefer when they construct their first nest. It does: for first-time nest construction, males that viewed only an empty cage preferred the colour of material each initially favoured but those males that had observed a pre-built nest of material of their non-preferred colour lost their material-colour preference altogether. Additionally, half of the males that viewed a nest were tested in an environment (the laboratory) different to that in which they were reared (an outdoor aviary). We had expected the aviary-reared (versus laboratory-reared) males would be more uncertain, and thus more likely to select material for their first nest that matched in colour to the colour of the 'demonstrated' nest-but this was not the case. The aviary-reared males did, however, tend to touch first the demonstrated colour of material more than did the laboratory-reared males. Together these results show that both observation of a nest and a change in environment can influence the material choices of novice builders. For naïve animal builders, then, construction artefacts can be information resources for learning about potential construction material.
Uploads
Papers by Lauren Guillette