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1. Introduction

00AP Basic commutative algebra will be explained in this document. A reference is
[Mat70].

2. Conventions

00AQ A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring
that does not have a prime ideal. The Kronecker symbol δij will be used. If R→ S
is a ring map and q a prime of S, then we use the notation “p = R∩ q” to indicate
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the prime which is the inverse image of q under R → S even if R is not a subring
of S and even if R→ S is not injective.

3. Basic notions

00AR The following is a list of basic notions in commutative algebra. Some of these
notions are discussed in more detail in the text that follows and some are defined
in the list, but others are considered basic and will not be defined. If you are
not familiar with most of the italicized concepts, then we suggest looking at an
introductory text on algebra before continuing.

(1) R is a ring,00AS
(2) x ∈ R is nilpotent,00AT
(3) x ∈ R is a zerodivisor,00AU
(4) x ∈ R is a unit,00AV
(5) e ∈ R is an idempotent,00AW
(6) an idempotent e ∈ R is called trivial if e = 1 or e = 0,00AX
(7) φ : R1 → R2 is a ring homomorphism,00AY
(8)00AZ φ : R1 → R2 is of finite presentation, or R2 is a finitely presented R1-

algebra, see Definition 6.1,
(9)00B0 φ : R1 → R2 is of finite type, or R2 is a finite type R1-algebra, see Definition

6.1,
(10)00B1 φ : R1 → R2 is finite, or R2 is a finite R1-algebra,
(11) R is a (integral) domain,00B2
(12) R is reduced,00B3
(13) R is Noetherian,00B4
(14) R is a principal ideal domain or a PID,00B5
(15) R is a Euclidean domain,00B6
(16) R is a unique factorization domain or a UFD,00B7
(17) R is a discrete valuation ring or a dvr,00B8
(18) K is a field,00B9
(19) L/K is a field extension,00BA
(20) L/K is an algebraic field extension,00BB
(21) {ti}i∈I is a transcendence basis for L over K,00BC
(22) the transcendence degree trdeg(L/K) of L over K,00BD
(23) the field k is algebraically closed,00BE
(24)00BF if L/K is algebraic, and Ω/K an extension with Ω algebraically closed, then

there exists a ring map L→ Ω extending the map on K,
(25) I ⊂ R is an ideal,00BG
(26) I ⊂ R is radical,00BH
(27) if I is an ideal then we have its radical

√
I,00BI

(28)00BJ I ⊂ R is nilpotent means that In = 0 for some n ∈ N,
(29)0543 I ⊂ R is locally nilpotent means that every element of I is nilpotent,
(30) p ⊂ R is a prime ideal,00BK
(31)00BL if p ⊂ R is prime and if I, J ⊂ R are ideal, and if IJ ⊂ p, then I ⊂ p or

J ⊂ p.
(32) m ⊂ R is a maximal ideal,00BM
(33) any nonzero ring has a maximal ideal,00BN
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(34)00BO the Jacobson radical of R is rad(R) =
⋂

m⊂Rm the intersection of all the
maximal ideals of R,

(35) the ideal (T ) generated by a subset T ⊂ R,00BP
(36) the quotient ring R/I,00BQ
(37) an ideal I in the ring R is prime if and only if R/I is a domain,00BR
(38)00BS an ideal I in the ring R is maximal if and only if the ring R/I is a field,
(39)00BT if φ : R1 → R2 is a ring homomorphism, and if I ⊂ R2 is an ideal, then

φ−1(I) is an ideal of R1,
(40)00BU if φ : R1 → R2 is a ring homomorphism, and if I ⊂ R1 is an ideal, then

φ(I) · R2 (sometimes denoted I · R2, or IR2) is the ideal of R2 generated
by φ(I),

(41)00BV if φ : R1 → R2 is a ring homomorphism, and if p ⊂ R2 is a prime ideal,
then φ−1(p) is a prime ideal of R1,

(42) M is an R-module,00BW
(43)055Y for m ∈M the annihilator I = {f ∈ R | fm = 0} of m in R,
(44) N ⊂M is an R-submodule,00BX
(45) M is an Noetherian R-module,00BY
(46) M is a finite R-module,00BZ
(47) M is a finitely generated R-module,00C0
(48) M is a finitely presented R-module,00C1
(49) M is a free R-module,00C2
(50)0516 if 0 → K → L → M → 0 is a short exact sequence of R-modules and K,

M are free, then L is free,
(51) if N ⊂M ⊂ L are R-modules, then L/M = (L/N)/(M/N),00C3
(52) S is a multiplicative subset of R,00C4
(53) the localization R→ S−1R of R,00C5
(54)00C6 if R is a ring and S is a multiplicative subset of R then S−1R is the zero

ring if and only if S contains 0,
(55)00C7 if R is a ring and if the multiplicative subset S consists completely of

nonzerodivisors, then R→ S−1R is injective,
(56) if φ : R1 → R2 is a ring homomorphism, and S is a multiplicative subset

of R1, then φ(S) is a multiplicative subset of R2,
(57)00C8 if S, S′ are multiplicative subsets ofR, and if SS′ denotes the set of products

SS′ = {r ∈ R | ∃s ∈ S, ∃s′ ∈ S′, r = ss′} then SS′ is a multiplicative subset
of R,

(58)00C9 if S, S′ are multiplicative subsets of R, and if S denotes the image of S in
(S′)−1R, then (SS′)−1R = S

−1((S′)−1R),
(59) the localization S−1M of the R-module M ,00CA
(60)00CB the functor M 7→ S−1M preserves injective maps, surjective maps, and

exactness,
(61)00CC if S, S′ are multiplicative subsets of R, and if M is an R-module, then

(SS′)−1M = S−1((S′)−1M),
(62)00CD if R is a ring, I an ideal of R, and S a multiplicative subset of R, then S−1I

is an ideal of S−1R, and we have S−1R/S−1I = S
−1(R/I), where S is the

image of S in R/I,
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(63)00CE if R is a ring, and S a multiplicative subset of R, then any ideal I ′ of S−1R

is of the form S−1I, where one can take I to be the inverse image of I ′ in
R,

(64)00CF if R is a ring, M an R-module, and S a multiplicative subset of R, then any
submodule N ′ of S−1M is of the form S−1N for some submodule N ⊂M ,
where one can take N to be the inverse image of N ′ in M ,

(65) if S = {1, f, f2, . . .} then Rf = S−1R and Mf = S−1M ,00CG
(66)00CH if S = R \ p = {x ∈ R | x ̸∈ p} for some prime ideal p, then it is customary

to denote Rp = S−1R and Mp = S−1M ,
(67) a local ring is a ring with exactly one maximal ideal,00CI
(68) a semi-local ring is a ring with finitely many maximal ideals,03C0
(69)00CJ if p is a prime in R, then Rp is a local ring with maximal ideal pRp,
(70)00CK the residue field, denoted κ(p), of the prime p in the ring R is the field of

fractions of the domain R/p; it is equal to Rp/pRp = (R \ p)−1R/p,
(71) given R and M1, M2 the tensor product M1 ⊗RM2,00CL
(72)0F0K given matrices A and B in a ring R of sizes m × n and n × m we have

det(AB) =
∑

det(AS) det(SB) in R where the sum is over subsets S ⊂
{1, . . . , n} of size m and AS is the m × m submatrix of A with columns
corresponding to S and SB is the m×m submatrix of B with rows corre-
sponding to S,

(73) etc.

4. Snake lemma

07JV The snake lemma and its variants are discussed in the setting of abelian categories
in Homology, Section 5.

Lemma 4.1.07JW [CE56, III, Lemma
3.3]

Given a commutative diagram

X //

α

��

Y //

β

��

Z //

γ

��

0

0 // U // V // W

of abelian groups with exact rows, there is a canonical exact sequence

Ker(α)→ Ker(β)→ Ker(γ)→ Coker(α)→ Coker(β)→ Coker(γ)

Moreover: if X → Y is injective, then the first map is injective; if V → W is
surjective, then the last map is surjective.

Proof. The map ∂ : Ker(γ) → Coker(α) is defined as follows. Take z ∈ Ker(γ).
Choose y ∈ Y mapping to z. Then β(y) ∈ V maps to zero in W . Hence β(y) is
the image of some u ∈ U . Set ∂z = u, the class of u in the cokernel of α. Proof of
exactness is omitted. □

5. Finite modules and finitely presented modules

0517 Just some basic notation and lemmas.

Definition 5.1.0518 Let R be a ring. Let M be an R-module.

https://stacks.math.columbia.edu/tag/07JW
https://stacks.math.columbia.edu/tag/0518
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(1) We say M is a finite R-module, or a finitely generated R-module if there
exist n ∈ N and x1, . . . , xn ∈M such that every element of M is an R-linear
combination of the xi. Equivalently, this means there exists a surjection
R⊕n →M for some n ∈ N.

(2) We say M is a finitely presented R-module or an R-module of finite presen-
tation if there exist integers n,m ∈ N and an exact sequence

R⊕m −→ R⊕n −→M −→ 0

Informally, M is a finitely presented R-module if and only if it is finitely generated
and the module of relations among these generators is finitely generated as well. A
choice of an exact sequence as in the definition is called a presentation of M .

Lemma 5.2.07JX Let R be a ring. Let α : R⊕n → M and β : N → M be module
maps. If Im(α) ⊂ Im(β), then there exists an R-module map γ : R⊕n → N such
that α = β ◦ γ.

Proof. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of R⊕n. Let xi ∈ N
be an element with α(ei) = β(xi) which exists by assumption. Set γ(a1, . . . , an) =∑
aixi. By construction α = β ◦ γ. □

Lemma 5.3.0519 Let R be a ring. Let
0→M1 →M2 →M3 → 0

be a short exact sequence of R-modules.
(1) If M1 and M3 are finite R-modules, then M2 is a finite R-module.
(2) If M1 and M3 are finitely presented R-modules, then M2 is a finitely pre-

sented R-module.
(3) If M2 is a finite R-module, then M3 is a finite R-module.
(4) If M2 is a finitely presented R-module and M1 is a finite R-module, then

M3 is a finitely presented R-module.
(5) If M3 is a finitely presented R-module and M2 is a finite R-module, then

M1 is a finite R-module.

Proof. Proof of (1). If x1, . . . , xn are generators of M1 and y1, . . . , ym ∈ M2 are
elements whose images in M3 are generators of M3, then x1, . . . , xn, y1, . . . , ym
generate M2.
Part (3) is immediate from the definition.
Proof of (5). Assume M3 is finitely presented and M2 finite. Choose a presentation

R⊕m → R⊕n →M3 → 0
By Lemma 5.2 there exists a map R⊕n →M2 such that the solid diagram

R⊕m //

��

R⊕n //

��

M3 //

id
��

0

0 // M1 // M2 // M3 // 0

commutes. This produces the dotted arrow. By the snake lemma (Lemma 4.1) we
see that we get an isomorphism

Coker(R⊕m →M1) ∼= Coker(R⊕n →M2)

https://stacks.math.columbia.edu/tag/07JX
https://stacks.math.columbia.edu/tag/0519
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In particular we conclude that Coker(R⊕m → M1) is a finite R-module. Since
Im(R⊕m →M1) is finite by (3), we see that M1 is finite by part (1).

Proof of (4). Assume M2 is finitely presented and M1 is finite. Choose a pre-
sentation R⊕m → R⊕n → M2 → 0. Choose a surjection R⊕k → M1. By
Lemma 5.2 there exists a factorization R⊕k → R⊕n → M2 of the composition
R⊕k →M1 →M2. Then R⊕k+m → R⊕n →M3 → 0 is a presentation.

Proof of (2). Assume that M1 and M3 are finitely presented. The argument in the
proof of part (1) produces a commutative diagram

0 // R⊕n

��

// R⊕n+m

��

// R⊕m

��

// 0

0 // M1 // M2 // M3 // 0

with surjective vertical arrows. By the snake lemma we obtain a short exact se-
quence

0→ Ker(R⊕n →M1)→ Ker(R⊕n+m →M2)→ Ker(R⊕m →M3)→ 0

By part (5) we see that the outer two modules are finite. Hence the middle one is
finite too. By (4) we see that M2 is of finite presentation. □

Lemma 5.4.00KZ Let R be a ring, and let M be a finite R-module. There exists a
filtration by finite R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/Ii for some ideal Ii of R.

Proof. By induction on the number of generators of M . Let x1, . . . , xr ∈ M be
generators. LetM ′ = Rx1 ⊂M . ThenM/M ′ has r−1 generators and the induction
hypothesis applies. And clearly M ′ ∼= R/I1 with I1 = {f ∈ R | fx1 = 0}. □

Lemma 5.5.0560 Let R→ S be a ring map. Let M be an S-module. If M is finite as
an R-module, then M is finite as an S-module.

Proof. In fact, any R-generating set of M is also an S-generating set of M , since
the R-module structure is induced by the image of R in S. □

6. Ring maps of finite type and of finite presentation

00F2
Definition 6.1.00F3 Let R→ S be a ring map.

(1) We say R→ S is of finite type, or that S is a finite type R-algebra if there
exist an n ∈ N and an surjection of R-algebras R[x1, . . . , xn]→ S.

(2) We say R→ S is of finite presentation if there exist integers n,m ∈ N and
polynomials f1, . . . , fm ∈ R[x1, . . . , xn] and an isomorphism of R-algebras
R[x1, . . . , xn]/(f1, . . . , fm) ∼= S.

Informally, R → S is of finite presentation if and only if S is finitely generated as
an R-algebra and the ideal of relations among the generators is finitely generated.
A choice of a surjection R[x1, . . . , xn] → S as in the definition is sometimes called
a presentation of S.

https://stacks.math.columbia.edu/tag/00KZ
https://stacks.math.columbia.edu/tag/0560
https://stacks.math.columbia.edu/tag/00F3
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Lemma 6.2.00F4 The notions finite type and finite presentation have the following
permanence properties.

(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R→ S′ → S with R→ S of finite type, then S′ → S is of finite type.
(4) Given R → S′ → S, with R → S of finite presentation, and R → S′ of

finite type, then S′ → S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[x1, . . . , xn]/(f1, . . . , fm) and
S′ = R[y1, . . . , ya]/I. Say that the class ȳi of yi maps to hi mod (f1, . . . , fm) in S.
Then it is clear that S = S′[x1, . . . , xn]/(f1, . . . , fm, h1 − ȳ1, . . . , ha − ȳa). □

Lemma 6.3.00R2 Let R→ S be a ring map of finite presentation. For any surjection
α : R[x1, . . . , xn]→ S the kernel of α is a finitely generated ideal in R[x1, . . . , xn].

Proof. Write S = R[y1, . . . , ym]/(f1, . . . , fk). Choose gi ∈ R[y1, . . . , ym] which
are lifts of α(xi). Then we see that S = R[xi, yj ]/(fl, xi − gi). Choose hj ∈
R[x1, . . . , xn] such that α(hj) corresponds to yj mod (f1, . . . , fk). Consider the
map ψ : R[xi, yj ]→ R[xi], xi 7→ xi, yj 7→ hj . Then the kernel of α is the image of
(fl, xi − gi) under ψ and we win. □

Lemma 6.4.0561 Let R→ S be a ring map. Let M be an S-module. Assume R→ S
is of finite type and M is finitely presented as an R-module. Then M is finitely
presented as an S-module.

Proof. This is similar to the proof of part (4) of Lemma 6.2. We may assume S =
R[x1, . . . , xn]/J . Choose y1, . . . , ym ∈ M which generate M as an R-module and
choose relations

∑
aijyj = 0, i = 1, . . . , t which generate the kernel of R⊕m →M .

For any i = 1, . . . , n and j = 1, . . . ,m write

xiyj =
∑

aijkyk

for some aijk ∈ R. Consider the S-module N generated by y1, . . . , ym subject to
the relations

∑
aijyj = 0, i = 1, . . . , t and xiyj =

∑
aijkyk, i = 1, . . . , n and

j = 1, . . . ,m. Then N has a presentation
S⊕nm+t −→ S⊕m −→ N −→ 0

By construction there is a surjective map φ : N →M . To finish the proof we show
φ is injective. Suppose z =

∑
bjyj ∈ N for some bj ∈ S. We may think of bj

as a polynomial in x1, . . . , xn with coefficients in R. By applying the relations of
the form xiyj =

∑
aijkyk we can inductively lower the degree of the polynomials.

Hence we see that z =
∑
cjyj for some cj ∈ R. Hence if φ(z) = 0 then the vector

(c1, . . . , cm) is an R-linear combination of the vectors (ai1, . . . , aim) and we conclude
that z = 0 as desired. □

7. Finite ring maps

0562 Here is the definition.

Definition 7.1.0563 Let φ : R→ S be a ring map. We say φ : R→ S is finite if S is
finite as an R-module.

Lemma 7.2.00GJ Let R → S be a finite ring map. Let M be an S-module. Then M
is finite as an R-module if and only if M is finite as an S-module.

https://stacks.math.columbia.edu/tag/00F4
https://stacks.math.columbia.edu/tag/00R2
https://stacks.math.columbia.edu/tag/0561
https://stacks.math.columbia.edu/tag/0563
https://stacks.math.columbia.edu/tag/00GJ
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Proof. One of the implications follows from Lemma 5.5. To see the other assume
that M is finite as an S-module. Pick x1, . . . , xn ∈ S which generate S as an
R-module. Pick y1, . . . , ym ∈ M which generate M as an S-module. Then xiyj
generate M as an R-module. □

Lemma 7.3.00GL Suppose that R→ S and S → T are finite ring maps. Then R→ T
is finite.

Proof. If ti generate T as an S-module and sj generate S as an R-module, then
tisj generate T as an R-module. (Also follows from Lemma 7.2.) □

Lemma 7.4.0D46 Let φ : R→ S be a ring map.
(1) If φ is finite, then φ is of finite type.
(2) If S is of finite presentation as an R-module, then φ is of finite presentation.

Proof. For (1) if x1, . . . , xn ∈ S generate S as an R-module, then x1, . . . , xn gen-
erate S as an R-algebra. For (2), suppose that

∑
rijxi = 0, j = 1, . . . ,m is a set

of generators of the relations among the xi when viewed as R-module generators
of S. Furthermore, write 1 =

∑
rixi for some ri ∈ R and xixj =

∑
rkijxk for some

rkij ∈ R. Then

S = R[t1, . . . , tn]/(
∑

rijti, 1−
∑

riti, titj −
∑

rkijtk)

as an R-algebra which proves (2). □

For more information on finite ring maps, please see Section 36.

8. Colimits

07N7 Some of the material in this section overlaps with the general discussion on col-
imits in Categories, Sections 14 – 21. The notion of a preordered set is defined in
Categories, Definition 21.1. It is a slightly weaker notion than a partially ordered
set.

Definition 8.1.00D4 Let (I,≤) be a preordered set. A system (Mi, µij) of R-modules
over I consists of a family of R-modules {Mi}i∈I indexed by I and a family of
R-module maps {µij : Mi →Mj}i≤j such that for all i ≤ j ≤ k

µii = idMi
µik = µjk ◦ µij

We say (Mi, µij) is a directed system if I is a directed set.

This is the same as the notion defined in Categories, Definition 21.2 and Section
21. We refer to Categories, Definition 14.2 for the definition of a colimit of a
diagram/system in any category.

Lemma 8.2.00D5 Let (Mi, µij) be a system of R-modules over the preordered set I.
The colimit of the system (Mi, µij) is the quotient R-module (

⊕
i∈IMi)/Q where

Q is the R-submodule generated by all elements

ιi(xi)− ιj(µij(xi))

where ιi : Mi →
⊕

i∈IMi is the natural inclusion. We denote the colimit M =
colimiMi. We denote π :

⊕
i∈IMi →M the projection map and ϕi = π ◦ ιi : Mi →

M .

https://stacks.math.columbia.edu/tag/00GL
https://stacks.math.columbia.edu/tag/0D46
https://stacks.math.columbia.edu/tag/00D4
https://stacks.math.columbia.edu/tag/00D5
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Proof. This lemma is a special case of Categories, Lemma 14.12 but we will also
prove it directly in this case. Namely, note that ϕi = ϕj ◦ µij in the above con-
struction. To show the pair (M,ϕi) is the colimit we have to show it satisfies the
universal property: for any other such pair (Y, ψi) with ψi : Mi → Y , ψi = ψj ◦µij ,
there is a unique R-module homomorphism g : M → Y such that the following
diagram commutes:

Mi

µij //

ϕi

  
ψi

��

Mj

ϕj

}}
ψj

��

M

g

��
Y

And this is clear because we can define g by taking the map ψi on the summand
Mi in the direct sum

⊕
Mi. □

Lemma 8.3.00D6 Let (Mi, µij) be a system of R-modules over the preordered set I.
Assume that I is directed. The colimit of the system (Mi, µij) is canonically iso-
morphic to the module M defined as follows:

(1) as a set let
M =

(∐
i∈I

Mi

)
/ ∼

where for m ∈Mi and m′ ∈Mi′ we have
m ∼ m′ ⇔ µij(m) = µi′j(m′) for some j ≥ i, i′

(2) as an abelian group for m ∈ Mi and m′ ∈ Mi′ we define the sum of the
classes of m and m′ in M to be the class of µij(m) + µi′j(m′) where j ∈ I
is any index with i ≤ j and i′ ≤ j, and

(3) as an R-module define for m ∈ Mi and x ∈ R the product of x and the
class of m in M to be the class of xm in M .

The canonical maps ϕi : Mi → M are induced by the canonical maps Mi →∐
i∈IMi.

Proof. Omitted. Compare with Categories, Section 19. □

Lemma 8.4.00D7 Let (Mi, µij) be a directed system. Let M = colimMi with µi :
Mi → M . Then, µi(xi) = 0 for xi ∈ Mi if and only if there exists j ≥ i such that
µij(xi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 8.3. □

Example 8.5.00D8 Consider the partially ordered set I = {a, b, c} with a < b and a < c
and no other strict inequalities. A system (Ma,Mb,Mc, µab, µac) over I consists of
three R-modules Ma,Mb,Mc and two R-module homomorphisms µab : Ma → Mb

and µac : Ma →Mc. The colimit of the system is just
M := colimi∈IMi = Coker(Ma →Mb ⊕Mc)

where the map is µab ⊕ −µac. Thus the kernel of the canonical map Ma → M is
Ker(µab) + Ker(µac). And the kernel of the canonical map Mb → M is the image
of Ker(µac) under the map µab. Hence clearly the result of Lemma 8.4 is false for
general systems.

https://stacks.math.columbia.edu/tag/00D6
https://stacks.math.columbia.edu/tag/00D7
https://stacks.math.columbia.edu/tag/00D8
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Definition 8.6.00D9 Let (Mi, µij), (Ni, νij) be systems of R-modules over the same
preordered set I. A homomorphism of systems Φ from (Mi, µij) to (Ni, νij) is by
definition a family of R-module homomorphisms ϕi : Mi → Ni such that ϕj ◦µij =
νij ◦ ϕi for all i ≤ j.

This is the same notion as a transformation of functors between the associated
diagrams M : I → ModR and N : I → ModR, in the language of categories. The
following lemma is a special case of Categories, Lemma 14.8.

Lemma 8.7.00DA Let (Mi, µij), (Ni, νij) be systems of R-modules over the same pre-
ordered set. A morphism of systems Φ = (ϕi) from (Mi, µij) to (Ni, νij) induces a
unique homomorphism

colimϕi : colimMi −→ colimNi

such that
Mi

//

ϕi

��

colimMi

colimϕi

��
Ni // colimNi

commutes for all i ∈ I.

Proof. Write M = colimMi and N = colimNi and ϕ = colimϕi (as yet to be
constructed). We will use the explicit description of M and N in Lemma 8.2
without further mention. The condition of the lemma is equivalent to the condition
that ⊕

i∈IMi
//⊕

ϕi

��

M

ϕ

��⊕
i∈I Ni

// N

commutes. Hence it is clear that if ϕ exists, then it is unique. To see that ϕ exists,
it suffices to show that the kernel of the upper horizontal arrow is mapped by

⊕
ϕi

to the kernel of the lower horizontal arrow. To see this, let j ≤ k and xj ∈ Mj .
Then

(
⊕

ϕi)(xj − µjk(xj)) = ϕj(xj)− ϕk(µjk(xj)) = ϕj(xj)− νjk(ϕj(xj))

which is in the kernel of the lower horizontal arrow as required. □

Lemma 8.8.00DB Let I be a directed set. Let (Li, λij), (Mi, µij), and (Ni, νij) be
systems of R-modules over I. Let φi : Li → Mi and ψi : Mi → Ni be morphisms
of systems over I. Assume that for all i ∈ I the sequence of R-modules

Li
φi // Mi

ψi // Ni

is a complex with homology Hi. Then the R-modules Hi form a system over I, the
sequence of R-modules

colimi Li
φ // colimiMi

ψ // colimiNi

is a complex as well, and denoting H its homology we have
H = colimiHi.

https://stacks.math.columbia.edu/tag/00D9
https://stacks.math.columbia.edu/tag/00DA
https://stacks.math.columbia.edu/tag/00DB
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Proof. It is clear that colimi Li
φ // colimiMi

ψ // colimiNi is a complex.
For each i ∈ I, there is a canonical R-module morphism Hi → H (sending each
[m] ∈ Hi = Ker(ψi)/ Im(φi) to the residue class in H = Ker(ψ)/ Im(φ) of the image
of m in colimiMi). These give rise to a morphism colimiHi → H. It remains to
show that this morphism is surjective and injective.

We are going to repeatedly use the description of colimits over I as in Lemma 8.3
without further mention. Let h ∈ H. Since H = Ker(ψ)/ Im(φ) we see that h is
the class mod Im(φ) of an element [m] in Ker(ψ) ⊂ colimiMi. Choose an i such
that [m] comes from an element m ∈Mi. Choose a j ≥ i such that νij(ψi(m)) = 0
which is possible since [m] ∈ Ker(ψ). After replacing i by j and m by µij(m) we
see that we may assume m ∈ Ker(ψi). This shows that the map colimiHi → H is
surjective.

Suppose that hi ∈ Hi has image zero on H. Since Hi = Ker(ψi)/ Im(φi) we may
represent hi by an element m ∈ Ker(ψi) ⊂Mi. The assumption on the vanishing of
hi in H means that the class of m in colimiMi lies in the image of φ. Hence there
exists a j ≥ i and an l ∈ Lj such that φj(l) = µij(m). Clearly this shows that the
image of hi in Hj is zero. This proves the injectivity of colimiHi → H. □

Example 8.9.00DC Taking colimits is not exact in general. Consider the partially
ordered set I = {a, b, c} with a < b and a < c and no other strict inequalities, as in
Example 8.5. Consider the map of systems (0,Z,Z, 0, 0)→ (Z,Z,Z, 1, 1). From the
description of the colimit in Example 8.5 we see that the associated map of colimits
is not injective, even though the map of systems is injective on each object. Hence
the result of Lemma 8.8 is false for general systems.

Lemma 8.10.04B0 Let I be an index category satisfying the assumptions of Categories,
Lemma 19.8. Then taking colimits of diagrams of abelian groups over I is exact
(i.e., the analogue of Lemma 8.8 holds in this situation).

Proof. By Categories, Lemma 19.8 we may write I =
∐
j∈J Ij with each Ij a

filtered category, and J possibly empty. By Categories, Lemma 21.5 taking colimits
over the index categories Ij is the same as taking the colimit over some directed set.
Hence Lemma 8.8 applies to these colimits. This reduces the problem to showing
that coproducts in the category of R-modules over the set J are exact. In other
words, exact sequences Lj →Mj → Nj of R modules we have to show that⊕

j∈J
Lj −→

⊕
j∈J

Mj −→
⊕

j∈J
Nj

is exact. This can be verified by hand, and holds even if J is empty. □

9. Localization

00CM
Definition 9.1.00CN Let R be a ring, S a subset of R. We say S is a multiplicative
subset of R if 1 ∈ S and S is closed under multiplication, i.e., s, s′ ∈ S ⇒ ss′ ∈ S.

Given a ring A and a multiplicative subset S, we define a relation on A × S as
follows:

(x, s) ∼ (y, t)⇔ ∃u ∈ S such that (xt− ys)u = 0

https://stacks.math.columbia.edu/tag/00DC
https://stacks.math.columbia.edu/tag/04B0
https://stacks.math.columbia.edu/tag/00CN
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It is easily checked that this is an equivalence relation. Let x/s (or x
s ) be the

equivalence class of (x, s) and S−1A be the set of all equivalence classes. Define
addition and multiplication in S−1A as follows:

x/s+ y/t = (xt+ ys)/st, x/s · y/t = xy/st

One can check that S−1A becomes a ring under these operations.

Definition 9.2.00CO This ring is called the localization of A with respect to S.

We have a natural ring map from A to its localization S−1A,

A −→ S−1A, x 7−→ x/1

which is sometimes called the localization map. In general the localization map is
not injective, unless S contains no zerodivisors. For, if x/1 = 0, then there is a
u ∈ S such that xu = 0 in A and hence x = 0 since there are no zerodivisors in S.
The localization of a ring has the following universal property.

Proposition 9.3.00CP Let f : A→ B be a ring map that sends every element in S to
a unit of B. Then there is a unique homomorphism g : S−1A → B such that the
following diagram commutes.

A
f //

""

B

S−1A

g

<<

Proof. Existence. We define a map g as follows. For x/s ∈ S−1A, let g(x/s) =
f(x)f(s)−1 ∈ B. It is easily checked from the definition that this is a well-defined
ring map. And it is also clear that this makes the diagram commutative.

Uniqueness. We now show that if g′ : S−1A → B satisfies g′(x/1) = f(x), then
g = g′. Hence f(s) = g′(s/1) for s ∈ S by the commutativity of the diagram.
But then g′(1/s)f(s) = 1 in B, which implies that g′(1/s) = f(s)−1 and hence
g′(x/s) = g′(x/1)g′(1/s) = f(x)f(s)−1 = g(x/s). □

Lemma 9.4.00CQ The localization S−1A is the zero ring if and only if 0 ∈ S.

Proof. If 0 ∈ S, any pair (a, s) ∼ (0, 1) by definition. If 0 ̸∈ S, then clearly
1/1 ̸= 0/1 in S−1A. □

Lemma 9.5.07JY Let R be a ring. Let S ⊂ R be a multiplicative subset. The category
of S−1R-modules is equivalent to the category of R-modules N with the property
that every s ∈ S acts as an automorphism on N .

Proof. The functor which defines the equivalence associates to an S−1R-module
M the same module but now viewed as an R-module via the localization map
R → S−1R. Conversely, if N is an R-module, such that every s ∈ S acts via an
automorphism sN , then we can think of N as an S−1R-module by letting x/s act
via xN ◦ s−1

N . We omit the verification that these two functors are quasi-inverse to
each other. □

https://stacks.math.columbia.edu/tag/00CO
https://stacks.math.columbia.edu/tag/00CP
https://stacks.math.columbia.edu/tag/00CQ
https://stacks.math.columbia.edu/tag/07JY
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The notion of localization of a ring can be generalized to the localization of a
module. Let A be a ring, S a multiplicative subset of A and M an A-module. We
define a relation on M × S as follows

(m, s) ∼ (n, t)⇔ ∃u ∈ S such that (mt− ns)u = 0
This is clearly an equivalence relation. Denote by m/s (or m

s ) be the equivalence
class of (m, s) and S−1M be the set of all equivalence classes. Define the addition
and scalar multiplication as follows

m/s+ n/t = (mt+ ns)/st, m/s · n/t = mn/st

It is clear that this makes S−1M an S−1A-module.

Definition 9.6.07JZ The S−1A-module S−1M is called the localization of M at S.

Note that there is an A-module map M → S−1M , m 7→ m/1 which is sometimes
called the localization map. It satisfies the following universal property.

Lemma 9.7.07K0 Let R be a ring. Let S ⊂ R a multiplicative subset. Let M , N be
R-modules. Assume all the elements of S act as automorphisms on N . Then the
canonical map

HomR(S−1M,N) −→ HomR(M,N)
induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let α ∈
HomR(S−1M,N) and take an arbitrary element m/s ∈ S−1M . Then, since s ·
α(m/s) = α(m/1), we have α(m/s) = s−1(α(m/1)), so α is completely determined
by what it does on the image of M in S−1M . Surjectivity: Let β : M → N be a
given R-linear map. We need to show that it can be "extended" to S−1M . Define
a map of sets

M × S → N, (m, s) 7→ s−1β(m)
Clearly, this map respects the equivalence relation from above, so it descends to a
well-defined map α : S−1M → N . It remains to show that this map is R-linear, so
take r, r′ ∈ R as well as s, s′ ∈ S and m,m′ ∈M . Then

α(r ·m/s+ r′ ·m′/s′) = α((r · s′ ·m+ r′ · s ·m′)/(ss′))
= (ss′)−1β(r · s′ ·m+ r′ · s ·m′)
= (ss′)−1(r · s′β(m) + r′ · sβ(m′))
= rα(m/s) + r′α(m′/s′)

and we win. □

Example 9.8.02C5 Let A be a ring and let M be an A-module. Here are some
important examples of localizations.

(1) Given p a prime ideal of A consider S = A\p. It is immediately checked that
S is a multiplicative set. In this case we denote Ap and Mp the localization
of A and M with respect to S respectively. These are called the localization
of A, resp. M at p.

(2) Let f ∈ A. Consider S = {1, f, f2, . . .}. This is clearly a multiplicative
subset of A. In this case we denote Af (resp. Mf ) the localization S−1A
(resp. S−1M). This is called the localization of A, resp. M with respect to
f . Note that Af = 0 if and only if f is nilpotent in A.

https://stacks.math.columbia.edu/tag/07JZ
https://stacks.math.columbia.edu/tag/07K0
https://stacks.math.columbia.edu/tag/02C5
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(3) Let S = {f ∈ A | f is not a zerodivisor in A}. This is a multiplicative
subset of A. In this case the ring Q(A) = S−1A is called either the total
quotient ring, or the total ring of fractions of A.

(4) If A is a domain, then the total quotient ring Q(A) is the field of fractions
of A. Please see Fields, Example 3.4.

Lemma 9.9.00CR Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be an
R-module. Then

S−1M = colimf∈SMf

where the preorder on S is given by f ≥ f ′ ⇔ f = f ′f ′′ for some f ′′ ∈ R in which
case the map Mf ′ →Mf is given by m/(f ′)e 7→ m(f ′′)e/fe.

Proof. Omitted. Hint: Use the universal property of Lemma 9.7. □

In the following paragraph, let A denote a ring, and M,N denote modules over A.

If S and S′ are multiplicative sets of A, then it is clear that

SS′ = {ss′ : s ∈ S, s′ ∈ S′}

is also a multiplicative set of A. Then the following holds.

Proposition 9.10.02C6 Let S be the image of S in S′−1A, then (SS′)−1A is isomorphic
to S−1(S′−1A).

Proof. The map sending x ∈ A to x/1 ∈ (SS′)−1A induces a map sending x/s ∈
S′−1A to x/s ∈ (SS′)−1A, by universal property. The image of the elements in S are
invertible in (SS′)−1A. By the universal property we get a map f : S−1(S′−1A)→
(SS′)−1A which maps (x/s′)/(s/1) to x/ss′.

On the other hand, the map from A to S−1(S′−1A) sending x ∈ A to (x/1)/(1/1)
also induces a map g : (SS′)−1A→ S

−1(S′−1A) which sends x/ss′ to (x/s′)/(s/1),
by the universal property again. It is immediately checked that f and g are inverse
to each other, hence they are both isomorphisms. □

For the module M we have

Proposition 9.11.02C7 View S′−1M as an A-module, then S−1(S′−1M) is isomorphic
to (SS′)−1M .

Proof. Note that given a A-module M, we have not proved any universal property
for S−1M . Hence we cannot reason as in the preceding proof; we have to construct
the isomorphism explicitly.

We define the maps as follows

f : S−1(S′−1M) −→ (SS′)−1M,
x/s′

s
7→ x/ss′

g : (SS′)−1M −→ S−1(S′−1M), x/t 7→ x/s′

s
for some s ∈ S, s′ ∈ S′, and t = ss′

We have to check that these homomorphisms are well-defined, that is, independent
the choice of the fraction. This is easily checked and it is also straightforward to
show that they are inverse to each other. □

https://stacks.math.columbia.edu/tag/00CR
https://stacks.math.columbia.edu/tag/02C6
https://stacks.math.columbia.edu/tag/02C7


COMMUTATIVE ALGEBRA 18

If u : M → N is an A homomorphism, then the localization indeed induces a
well-defined S−1A homomorphism S−1u : S−1M → S−1N which sends x/s to
u(x)/s. It is immediately checked that this construction is functorial, so that S−1

is actually a functor from the category of A-modules to the category of S−1A-
modules. Moreover this functor is exact, as we show in the following proposition.

Proposition 9.12.00CS Let L u−→ M
v−→ N be an exact sequence of R-modules. Then

S−1L→ S−1M → S−1N is also exact.

Proof. First it is clear that S−1L → S−1M → S−1N is a complex since lo-
calization is a functor. Next suppose that x/s maps to zero in S−1N for some
x/s ∈ S−1M . Then by definition there is a t ∈ S such that v(xt) = v(x)t = 0 in
M , which means xt ∈ Ker(v). By the exactness of L→M → N we have xt = u(y)
for some y in L. Then x/s is the image of y/st. This proves the exactness. □

Lemma 9.13.02C8 Localization respects quotients, i.e. if N is a submodule of M , then
S−1(M/N) ≃ (S−1M)/(S−1N).

Proof. From the exact sequence

0 −→ N −→M −→M/N −→ 0

we have
0 −→ S−1N −→ S−1M −→ S−1(M/N) −→ 0

The corollary then follows. □

If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we
see that S−1A/S−1I ≃ S−1(A/I) as A-modules. The next proposition shows that
they are isomorphic as rings.

Proposition 9.14.00CT Let I be an ideal of A, S a multiplicative set of A. Then S−1I

is an ideal of S−1A and S
−1(A/I) is isomorphic to S−1A/S−1I, where S is the

image of S in A/I.

Proof. The fact that S−1I is an ideal is clear since I itself is an ideal. Define

f : S−1A −→ S
−1(A/I), x/s 7→ x/s

where x and s are the images of x and s in A/I. We shall keep similar notations in
this proof. This map is well-defined by the universal property of S−1A, and S−1I
is contained in the kernel of it, therefore it induces a map

f : S−1A/S−1I −→ S
−1(A/I), x/s 7→ x/s

On the other hand, the map A → S−1A/S−1I sending x to x/1 induces a map
A/I → S−1A/S−1I sending x to x/1. The image of S is invertible in S−1A/S−1I,
thus induces a map

g : S−1(A/I) −→ S−1A/S−1I,
x

s
7→ x/s

by the universal property. It is then clear that f and g are inverse to each other,
hence are both isomorphisms. □

We now consider how submodules behave in localization.

https://stacks.math.columbia.edu/tag/00CS
https://stacks.math.columbia.edu/tag/02C8
https://stacks.math.columbia.edu/tag/00CT
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Lemma 9.15.00CU Any submodule N ′ of S−1M is of the form S−1N for some N ⊂M .
Indeed one can take N to be the inverse image of N ′ in M .

Proof. Let N be the inverse image of N ′ in M . Then one can see that S−1N ⊃ N ′.
To show they are equal, take x/s in S−1N , where s ∈ S and x ∈ N . This yields
that x/1 ∈ N ′. Since N ′ is an S−1R-submodule we have x/s = x/1 · 1/s ∈ N ′.
This finishes the proof. □

Taking M = A and N = I an ideal of A, we have the following corollary, which can
be viewed as a converse of the first part of Proposition 9.14.

Lemma 9.16.02C9 Each ideal I ′ of S−1A takes the form S−1I, where one can take I
to be the inverse image of I ′ in A.

Proof. Immediate from Lemma 9.15. □

10. Internal Hom

0581 If R is a ring, and M , N are R-modules, then
HomR(M,N) = {φ : M → N}

is the set of R-linear maps from M to N . This set comes with the structure of an
abelian group by setting (φ+ψ)(m) = φ(m)+ψ(m), as usual. In fact, HomR(M,N)
is also an R-module via the rule (xφ)(m) = xφ(m) = φ(xm).
Given maps a : M → M ′ and b : N → N ′ of R-modules, we can pre-compose and
post-compose homomorphisms by a and b. This leads to the following commutative
diagram

HomR(M ′, N)

−◦a
��

b◦−
// HomR(M ′, N ′)

−◦a
��

HomR(M,N) b◦− // HomR(M,N ′)
In fact, the maps in this diagram are R-module maps. Thus HomR defines an
additive functor

ModoppR ×ModR −→ ModR, (M,N) 7−→ HomR(M,N)

Lemma 10.1.0582 Exactness and HomR. Let R be a ring.
(1) Let M1 → M2 → M3 → 0 be a complex of R-modules. Then M1 → M2 →

M3 → 0 is exact if and only if 0 → HomR(M3, N) → HomR(M2, N) →
HomR(M1, N) is exact for all R-modules N .

(2) Let 0 → M1 → M2 → M3 be a complex of R-modules. Then 0 → M1 →
M2 → M3 is exact if and only if 0 → HomR(N,M1) → HomR(N,M2) →
HomR(N,M3) is exact for all R-modules N .

Proof. Omitted. □

Lemma 10.2.0583 Let R be a ring. Let M be a finitely presented R-module. Let N
be an R-module.

(1) For f ∈ R we have HomR(M,N)f = HomRf
(Mf , Nf ) = HomR(Mf , Nf ),

(2) for a multiplicative subset S of R we have
S−1 HomR(M,N) = HomS−1R(S−1M,S−1N) = HomR(S−1M,S−1N).

https://stacks.math.columbia.edu/tag/00CU
https://stacks.math.columbia.edu/tag/02C9
https://stacks.math.columbia.edu/tag/0582
https://stacks.math.columbia.edu/tag/0583
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Proof. Part (1) is a special case of part (2). The second equality in (2) follows
from Lemma 9.5. Choose a presentation⊕

j=1,...,m
R −→

⊕
i=1,...,n

R→M → 0.

By Lemma 10.1 this gives an exact sequence

0→ HomR(M,N)→
⊕

i=1,...,n
N −→

⊕
j=1,...,m

N.

Inverting S and using Proposition 9.12 we get an exact sequence

0→ S−1 HomR(M,N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

and the result follows since S−1M sits in an exact sequence⊕
j=1,...,m

S−1R −→
⊕

i=1,...,n
S−1R→ S−1M → 0

which induces (by Lemma 10.1) the exact sequence

0→ HomS−1R(S−1M,S−1N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

which is the same as the one above. □

11. Characterizing finite and finitely presented modules

0G8M Given a module N over a ring R, you can characterize whether or not N is a finite
module or a finitely presented module in terms of the functor HomR(N,−).

Lemma 11.1.0G8N Let R be a ring. Let N be an R-module. The following are equiv-
alent

(1) N is a finite R-module,
(2) for any filtered colimit M = colimMi of R-modules the map colim HomR(N,Mi)→

HomR(N,M) is injective.

Proof. Assume (1) and choose generators x1, . . . , xm for N . If N →Mi is a module
map and the composition N → Mi → M is zero, then because M = colimi′≥iMi′

for each j ∈ {1, . . . ,m} we can find a i′ ≥ i such that xj maps to zero in Mi′ . Since
there are finitely many xj we can find a single i′ which works for all of them. Then
the composition N →Mi →Mi′ is zero and we conclude the map is injective, i.e.,
part (2) holds.

Assume (2). For a finite subset E ⊂ N denote NE ⊂ N the R-submodule generated
by the elements of E. Then 0 = colimN/NE is a filtered colimit. Hence we see
that id : N → N maps into NE for some E, i.e., N is finitely generated. □

For purposes of reference, we define what it means to have a relation between
elements of a module.

Definition 11.2.07N8 Let R be a ring. Let M be an R-module. Let n ≥ 0 and xi ∈M
for i = 1, . . . , n. A relation between x1, . . . , xn in M is a sequence of elements
f1, . . . , fn ∈ R such that

∑
i=1,...,n fixi = 0.

Lemma 11.3.00HA Let R be a ring and let M be an R-module. Then M is the colimit of
a directed system (Mi, µij) of R-modules with all Mi finitely presented R-modules.

https://stacks.math.columbia.edu/tag/0G8N
https://stacks.math.columbia.edu/tag/07N8
https://stacks.math.columbia.edu/tag/00HA
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Proof. Consider any finite subset S ⊂ M and any finite collection of relations E
among the elements of S. So each s ∈ S corresponds to xs ∈ M and each e ∈ E
consists of a vector of elements fe,s ∈ R such that

∑
fe,sxs = 0. Let MS,E be the

cokernel of the map

R#E −→ R#S , (ge)e∈E 7−→ (
∑

gefe,s)s∈S .

There are canonical maps MS,E → M . If S ⊂ S′ and if the elements of E corre-
spond, via this map, to relations in E′, then there is an obvious mapMS,E →MS′,E′

commuting with the maps to M . Let I be the set of pairs (S,E) with ordering by
inclusion as above. It is clear that the colimit of this directed system is M . □

Lemma 11.4.0G8P Let R be a ring. Let N be an R-module. The following are equiv-
alent

(1) N is a finitely presented R-module,
(2) for any filtered colimit M = colimMi of R-modules the map colim HomR(N,Mi)→

HomR(N,M) is bijective.

Proof. Assume (1) and choose an exact sequence F−1 → F0 → N → 0 with Fi
finite free. Then we have an exact sequence

0→ HomR(N,M)→ HomR(F0,M)→ HomR(F−1,M)

functorial in the R-module M . The functors HomR(Fi,M) commute with filtered
colimits as HomR(R⊕n,M) = M⊕n. Since filtered colimits are exact (Lemma 8.8)
we see that (2) holds.

Assume (2). By Lemma 11.3 we can write N = colimNi as a filtered colimit such
that Ni is of finite presentation for all i. Thus idN factors through Ni for some i.
This means that N is a direct summand of a finitely presented R-module (namely
Ni) and hence finitely presented. □

12. Tensor products

00CV
Definition 12.1.00CW Let R be a ring, M,N,P be three R-modules. A mapping
f : M × N → P (where M × N is viewed only as Cartesian product of two R-
modules) is said to be R-bilinear if for each x ∈ M the mapping y 7→ f(x, y) of N
into P is R-linear, and for each y ∈ N the mapping x 7→ f(x, y) is also R-linear.

Lemma 12.2.00CX Let M,N be R-modules. Then there exists a pair (T, g) where T
is an R-module, and g : M × N → T an R-bilinear mapping, with the following
universal property: For any R-module P and any R-bilinear mapping f : M ×N →
P , there exists a unique R-linear mapping f̃ : T → P such that f = f̃ ◦ g. In other
words, the following diagram commutes:

M ×N
f //

g
##

P

T
f̃

??

Moreover, if (T, g) and (T ′, g′) are two pairs with this property, then there exists a
unique isomorphism j : T → T ′ such that j ◦ g = g′.

https://stacks.math.columbia.edu/tag/0G8P
https://stacks.math.columbia.edu/tag/00CW
https://stacks.math.columbia.edu/tag/00CX
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The R-module T which satisfies the above universal property is called the tensor
product of R-modules M and N , denoted as M ⊗R N .

Proof. We first prove the existence of such R-module T . Let M,N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module R(M×N) and Q
is the R-module generated by all elements of the following types: (x ∈M,y ∈ N)

(x+ x′, y)− (x, y)− (x′, y),
(x, y + y′)− (x, y)− (x, y′),

(ax, y)− a(x, y),
(x, ay)− a(x, y)

Let π : M × N → T denote the natural map. This map is R-bilinear, as implied
by the above relations when we check the bilinearity conditions. Denote the image
π(x, y) = x ⊗ y, then these elements generate T . Now let f : M × N → P be
an R-bilinear map, then we can define f ′ : T → P by extending the mapping
f ′(x⊗ y) = f(x, y). Clearly f = f ′ ◦π. Moreover, f ′ is uniquely determined by the
value on the generating sets {x⊗ y : x ∈M,y ∈ N}. Suppose there is another pair
(T ′, g′) satisfying the same properties. Then there is a unique j : T → T ′ and also
j′ : T ′ → T such that g′ = j ◦ g, g = j′ ◦ g′. But then both the maps (j ◦ j′) ◦ g
and g satisfies the universal properties, so by uniqueness they are equal, and hence
j′ ◦ j is identity on T . Similarly (j′ ◦ j) ◦ g′ = g′ and j ◦ j′ is identity on T ′. So j is
an isomorphism. □

Lemma 12.3.00CY Let M,N,P be R-modules, then the bilinear maps

(x, y) 7→ y ⊗ x
(x+ y, z) 7→ x⊗ z + y ⊗ z

(r, x) 7→ rx

induce unique isomorphisms

M ⊗R N → N ⊗RM,

(M ⊕N)⊗R P → (M ⊗R P )⊕ (N ⊗R P ),
R⊗RM →M

Proof. Omitted. □

We may generalize the tensor product of twoR-modules to finitely manyR-modules,
and set up a correspondence between the multi-tensor product with multilinear
mappings. Using almost the same construction one can prove that:

Lemma 12.4.00CZ Let M1, . . . ,Mr be R-modules. Then there exists a pair (T, g)
consisting of an R-module T and an R-multilinear mapping g : M1× . . .×Mr → T
with the universal property: For any R-multilinear mapping f : M1× . . .×Mr → P
there exists a unique R-module homomorphism f ′ : T → P such that f ′ ◦ g = f .
Such a module T is unique up to unique isomorphism. We denote it M1⊗R. . .⊗RMr

and we denote the universal multilinear map (m1, . . . ,mr) 7→ m1 ⊗ . . .⊗mr.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/00CY
https://stacks.math.columbia.edu/tag/00CZ
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Lemma 12.5.00D0 The homomorphisms

(M ⊗R N)⊗R P →M ⊗R N ⊗R P →M ⊗R (N ⊗R P )

such that f((x⊗y)⊗z) = x⊗y⊗z and g(x⊗y⊗z) = x⊗(y⊗z), x ∈M,y ∈ N, z ∈ P
are well-defined and are isomorphisms.

Proof. We shall prove f is well-defined and is an isomorphism, and this proof
carries analogously to g. Fix any z ∈ P , then the mapping (x, y) 7→ x ⊗ y ⊗
z, x ∈ M,y ∈ N , is R-bilinear in x and y, and hence induces homomorphism
fz : M ⊗ N → M ⊗ N ⊗ P which sends fz(x ⊗ y) = x ⊗ y ⊗ z. Then consider
(M ⊗N)× P →M ⊗N ⊗ P given by (w, z) 7→ fz(w). The map is R-bilinear and
thus induces f : (M ⊗RN)⊗R P →M ⊗RN ⊗R P and f((x⊗ y)⊗ z) = x⊗ y⊗ z.
To construct the inverse, we note that the map π : M ×N × P → (M ⊗N)⊗ P is
R-trilinear. Therefore, it induces an R-linear map h : M ⊗N ⊗P → (M ⊗N)⊗P
which agrees with the universal property. Here we see that h(x⊗y⊗z) = (x⊗y)⊗z.
From the explicit expression of f and h, f◦h and h◦f are identity maps of M⊗N⊗P
and (M ⊗N)⊗ P respectively, hence f is our desired isomorphism. □

Doing induction we see that this extends to multi-tensor products. Combined with
Lemma 12.3 we see that the tensor product operation on the category of R-modules
is associative, commutative and distributive.

Definition 12.6.00D1 An abelian group N is called an (A,B)-bimodule if it is both an
A-module and a B-module and for all a ∈ A and b ∈ B the multiplication by a and
b commute, so b(an) = a(bn) for all n ∈ N . In this situation we usually write the
B-action on the right: so for b ∈ B and n ∈ N the result of multiplying n by b is
denoted nb. With this convention the compatibility above is that (ax)b = a(xb) for
all a ∈ A, b ∈ B, x ∈ N . The shorthand ANB is used to denote an (A,B)-bimodule
N .

Lemma 12.7.00D2 For A-module M , B-module P and (A,B)-bimodule N , the modules
(M ⊗AN)⊗B P and M ⊗A (N ⊗B P ) can both be given (A,B)-bimodule structure,
and moreover

(M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P ).

Proof. A priori M ⊗AN is an A-module, but we can give it a B-module structure
by letting

(x⊗ y)b = x⊗ yb, x ∈M,y ∈ N, b ∈ B
Thus M ⊗A N becomes an (A,B)-bimodule. Similarly for N ⊗B P , and thus for
(M ⊗A N) ⊗B P and M ⊗A (N ⊗B P ). By Lemma 12.5, these two modules are
isomorphic as both as A-module and B-module via the same mapping. □

Lemma 12.8.00DE For any three R-modules M,N,P ,

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

Proof. An R-linear map f̂ ∈ HomR(M⊗RN,P ) corresponds to an R-bilinear map
f : M × N → P . For each x ∈ M the mapping y 7→ f(x, y) is R-linear by the
universal property. Thus f corresponds to a map ϕf : M → HomR(N,P ). This
map is R-linear since

ϕf (ax+ y)(z) = f(ax+ y, z) = af(x, z) + f(y, z) = (aϕf (x) + ϕf (y))(z),

https://stacks.math.columbia.edu/tag/00D0
https://stacks.math.columbia.edu/tag/00D1
https://stacks.math.columbia.edu/tag/00D2
https://stacks.math.columbia.edu/tag/00DE
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for all a ∈ R, x ∈M , y ∈M and z ∈ N . Conversely, any f ∈ HomR(M,HomR(N,P ))
defines an R-bilinear map M ×N → P , namely (x, y) 7→ f(x)(y). So this is a nat-
ural one-to-one correspondence between the two modules HomR(M ⊗R N,P ) and
HomR(M,HomR(N,P )). □

Lemma 12.9 (Tensor products commute with colimits).00DD Let (Mi, µij) be a system
over the preordered set I. Let N be an R-module. Then

colim(Mi ⊗N) ∼= (colimMi)⊗N.

Moreover, the isomorphism is induced by the homomorphisms µi ⊗ 1 : Mi ⊗ N →
M ⊗N where M = colimiMi with natural maps µi : Mi →M .

Proof. First proof. The functor M ′ 7→ M ′ ⊗R N is left adjoint to the functor
N ′ 7→ HomR(N,N ′) by Lemma 12.8. Thus M ′ 7→ M ′ ⊗R N commutes with all
colimits, see Categories, Lemma 24.5.

Second direct proof. Let P = colim(Mi ⊗N) with coprojections λi : Mi ⊗N → P .
Let M = colimMi with coprojections µi : Mi → M . Then for all i ≤ j, the
following diagram commutes:

Mi ⊗N
µi⊗1

//

µij⊗1
��

M ⊗N

id
��

Mj ⊗N
µj⊗1 // M ⊗N

By Lemma 8.7 these maps induce a unique homomorphism ψ : P → M ⊗N such
that µi ⊗ 1 = ψ ◦ λi.

To construct the inverse map, for each i ∈ I, there is the canonical R-bilinear
mapping gi : Mi ×N →Mi ⊗N . This induces a unique mapping ϕ̂ : M ×N → P

such that ϕ̂◦(µi×1) = λi◦gi. It is R-bilinear. Thus it induces an R-linear mapping
ϕ : M ⊗N → P . From the commutative diagram below:

Mi ×N
gi //

µi×id
��

Mi ⊗N id
//

λi

��

Mi ⊗N

µi⊗id
��

λi

##
M ×N

ϕ̂ // P
ψ // M ⊗N

ϕ // P

we see that ψ ◦ ϕ̂ = g, the canonical R-bilinear mapping g : M ×N →M ⊗N . So
ψ ◦ ϕ is identity on M ⊗N . From the right-hand square and triangle, ϕ ◦ ψ is also
identity on P . □

Lemma 12.10.00DF Let

M1
f−→M2

g−→M3 → 0

be an exact sequence of R-modules and homomorphisms, and let N be any R-
module. Then the sequence

(12.10.1)00DG M1 ⊗N
f⊗1−−−→M2 ⊗N

g⊗1−−→M3 ⊗N → 0

is exact. In other words, the functor − ⊗R N is right exact, in the sense that
tensoring each term in the original right exact sequence preserves the exactness.

https://stacks.math.columbia.edu/tag/00DD
https://stacks.math.columbia.edu/tag/00DF
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Proof. We apply the functor Hom(−,Hom(N,P )) to the first exact sequence. We
obtain

0→ Hom(M3,Hom(N,P ))→ Hom(M2,Hom(N,P ))→ Hom(M1,Hom(N,P ))

By Lemma 12.8, we have

0→ Hom(M3 ⊗N,P )→ Hom(M2 ⊗N,P )→ Hom(M1 ⊗N,P )

Using the pullback property again, we arrive at the desired exact sequence. □

Remark 12.11.00DH However, tensor product does NOT preserve exact sequences in
general. In other words, if M1 →M2 →M3 is exact, then it is not necessarily true
that M1 ⊗N →M2 ⊗N →M3 ⊗N is exact for arbitrary R-module N .

Example 12.12.00DI Consider the injective map 2 : Z → Z viewed as a map of
Z-modules. Let N = Z/2. Then the induced map Z ⊗ Z/2 → Z ⊗ Z/2 is NOT
injective. This is because for x⊗ y ∈ Z⊗ Z/2,

(2⊗ 1)(x⊗ y) = 2x⊗ y = x⊗ 2y = x⊗ 0 = 0

Therefore the induced map is the zero map while Z⊗N ̸= 0.

Remark 12.13.00DJ For R-modules N , if the functor −⊗R N is exact, i.e. tensoring
with N preserves all exact sequences, then N is said to be flat R-module. We will
discuss this later in Section 39.

Lemma 12.14.05BS Let R be a ring. Let M and N be R-modules.
(1) If N and M are finite, then so is M ⊗R N .
(2) If N and M are finitely presented, then so is M ⊗R N .

Proof. Suppose M is finite. Then choose a presentation 0→ K → R⊕n →M → 0.
This gives an exact sequence K ⊗R N → N⊕n → M ⊗R N → 0 by Lemma 12.10.
We conclude that if N is finite too then M ⊗R N is a quotient of a finite module,
hence finite, see Lemma 5.3. Similarly, if both N and M are finitely presented,
then we see that K is finite and that M ⊗RN is a quotient of the finitely presented
module N⊕n by a finite module, namely K ⊗RN , and hence finitely presented, see
Lemma 5.3. □

Lemma 12.15.00DK Let M be an R-module. Then the S−1R-modules S−1M and
S−1R⊗RM are canonically isomorphic, and the canonical isomorphism f : S−1R⊗R
M → S−1M is given by

f((a/s)⊗m) = am/s,∀a ∈ R,m ∈M, s ∈ S

Proof. Obviously, the map f ′ : S−1R ×M → S−1M given by f ′(a/s,m) = am/s
is bilinear, and thus by the universal property, this map induces a unique S−1R-
module homomorphism f : S−1R ⊗R M → S−1M as in the statement of the
lemma. Actually every element in S−1M is of the form m/s, m ∈ M, s ∈ S and
every element in S−1R ⊗RM is of the form 1/s⊗m. To see the latter fact, write
an element in S−1R⊗RM as∑

k

ak
sk
⊗mk =

∑
k

aktk
s
⊗mk = 1

s
⊗
∑
k

aktkmk = 1
s
⊗m

https://stacks.math.columbia.edu/tag/00DH
https://stacks.math.columbia.edu/tag/00DI
https://stacks.math.columbia.edu/tag/00DJ
https://stacks.math.columbia.edu/tag/05BS
https://stacks.math.columbia.edu/tag/00DK
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Where m =
∑
k aktkmk. Then it is obvious that f is surjective, and if f( 1

s ⊗m) =
m/s = 0 then there exists t′ ∈ S with tm = 0 in M . Then we have

1
s
⊗m = 1

st
⊗ tm = 1

st
⊗ 0 = 0

Therefore f is injective. □

Lemma 12.16.00DL Let M,N be R-modules, then there is a canonical S−1R-module
isomorphism f : S−1M ⊗S−1R S

−1N → S−1(M ⊗R N), given by

f((m/s)⊗ (n/t)) = (m⊗ n)/st

Proof. We may use Lemma 12.7 and Lemma 12.15 repeatedly to see that these
two S−1R-modules are isomorphic, noting that S−1R is an (R,S−1R)-bimodule:

S−1(M ⊗R N) ∼= S−1R⊗R (M ⊗R N)
∼= S−1M ⊗R N
∼= (S−1M ⊗S−1R S

−1R)⊗R N
∼= S−1M ⊗S−1R (S−1R⊗R N)
∼= S−1M ⊗S−1R S

−1N

This isomorphism is easily seen to be the one stated in the lemma. □

13. Tensor algebra

00DM Let R be a ring. Let M be an R-module. We define the tensor algebra of M over
R to be the noncommutative R-algebra

T(M) = TR(M) =
⊕

n≥0
Tn(M)

with T0(M) = R, T1(M) = M , T2(M) = M ⊗R M , T3(M) = M ⊗R M ⊗R M ,
and so on. Multiplication is defined by the rule that on pure tensors we have

(x1 ⊗ x2 ⊗ . . .⊗ xn) · (y1 ⊗ y2 ⊗ . . .⊗ ym) = x1 ⊗ x2 ⊗ . . .⊗ xn ⊗ y1 ⊗ y2 ⊗ . . .⊗ ym
and we extend this by linearity.

We define the exterior algebra ∧(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements x⊗x ∈ T2(M). The image of a pure
tensor x1 ⊗ . . . ⊗ xn in ∧n(M) is denoted x1 ∧ . . . ∧ xn. These elements generate
∧n(M), they are R-linear in each xi and they are zero when two of the xi are equal
(i.e., they are alternating as functions of x1, x2, . . . , xn). The multiplication on
∧(M) is graded commutative, i.e., every x ∈M and y ∈M satisfy x ∧ y = −y ∧ x.

An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case ∧(M) is free over R with basis the elements

xi1 ∧ . . . ∧ xir
with 0 ≤ r ≤ n and 1 ≤ i1 < i2 < . . . < ir ≤ n.

We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M)
by the two sided ideal generated by the elements x ⊗ y − y ⊗ x ∈ T2(M). The
image of a pure tensor x1 ⊗ . . .⊗ xn in Symn(M) is denoted just x1 . . . xn. These
elements generate Symn(M), these are R-linear in each xi and x1 . . . xn = x′

1 . . . x
′
n

https://stacks.math.columbia.edu/tag/00DL
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if the sequence of elements x1, . . . , xn is a permutation of the sequence x′
1, . . . , x

′
n.

Thus we see that Sym(M) is commutative.

An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case Sym(M) = R[x1, . . . , xn] is a polynomial algebra.

Lemma 13.1.00DN Let R be a ring. Let M be an R-module. If M is a free R-module,
so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. □

Lemma 13.2.00DO Let R be a ring. Let M2 →M1 →M → 0 be an exact sequence of
R-modules. There are exact sequences

M2 ⊗R Symn−1(M1)→ Symn(M1)→ Symn(M)→ 0

and similarly
M2 ⊗R ∧n−1(M1)→ ∧n(M1)→ ∧n(M)→ 0

Proof. Omitted. □

Lemma 13.3.00DP Let R be a ring. Let M be an R-module. Let xi, i ∈ I be a given
system of generators of M as an R-module. Let n ≥ 2. There exists a canonical
exact sequence⊕

1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)⊕
⊕

1≤j1<j2≤n

⊕
i∈I

Tn−2(M)→ Tn(M)→ ∧n(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 in the first summand maps to

m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi1 and xi2 occupying slots j1 and j2 in the tensor

+ m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor

and m1 ⊗ . . .⊗mn−2 in the second summand maps to

m1 ⊗ . . .⊗ xi ⊗ . . .⊗ xi ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi and xi occupying slots j1 and j2 in the tensor

There is also a canonical exact sequence⊕
1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)→ Tn(M)→ Symn(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 maps to

m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi1 and xi2 occupying slots j1 and j2 in the tensor

− m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/00DN
https://stacks.math.columbia.edu/tag/00DO
https://stacks.math.columbia.edu/tag/00DP
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Lemma 13.4.0H1C Let A→ B be a ring map. Let M be a B-module. Let n > 1. The
kernel of the A-linear map M ⊗A . . .⊗AM → ∧nB(M) is generated as an A-module
by the elements m1 ⊗ . . . ⊗ mn with mi = mj for i ̸= j, m1, . . . ,mn ∈ M and
the elements m1 ⊗ . . . ⊗ bmi ⊗ . . . ⊗ mn − m1 ⊗ . . . ⊗ bmj ⊗ . . . ⊗ mn for i ̸= j,
m1, . . . ,mn ∈M , and b ∈ B.

Proof. Omitted. □

Lemma 13.5.00DQ Let R be a ring. Let Mi be a directed system of R-modules. Then
colimi T(Mi) = T(colimiMi) and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 12.9. □

Lemma 13.6.0C6F Let R be a ring and let S ⊂ R be a multiplicative subset. Then
S−1TR(M) = TS−1R(S−1M) for any R-module M . Similar for symmetric and
exterior algebras.

Proof. Omitted. Hint: Apply Lemma 12.16. □

14. Base change

05G3 We formally introduce base change in algebra as follows.

Definition 14.1.05G4 Let φ : R → S be a ring map. Let M be an S-module. Let
R → R′ be any ring map. The base change of φ by R → R′ is the ring map
R′ → S ⊗R R′. In this situation we often write S′ = S ⊗R R′. The base change of
the S-module M is the S′-module M ⊗R R′.

If S = R[xi]/(fj) for some collection of variables xi, i ∈ I and some collection of
polynomials fj ∈ R[xi], j ∈ J , then S⊗RR′ = R′[xi]/(f ′

j), where f ′
j ∈ R′[xi] is the

image of fj under the map R[xi]→ R′[xi] induced by R→ R′. This simple remark
is the key to understanding base change.

Lemma 14.2.05G5 Let R→ S be a ring map. Let M be an S-module. Let R→ R′ be
a ring map and let S′ = S ⊗R R′ and M ′ = M ⊗R R′ be the base changes.

(1) If M is a finite S-module, then the base change M ′ is a finite S′-module.
(2) If M is an S-module of finite presentation, then the base change M ′ is an

S′-module of finite presentation.
(3) If R→ S is of finite type, then the base change R′ → S′ is of finite type.
(4) If R→ S is of finite presentation, then the base change R′ → S′ is of finite

presentation.

Proof. Proof of (1). Take a surjective, S-linear map S⊕n → M → 0. By Lemma
12.3 and 12.10 the result after tensoring with R′ is a surjection S′⊕n → M ′ → 0,
so M ′ is a finitely generated S′-module. Proof of (2). Take a presentation S⊕m →
S⊕n →M → 0. By Lemma 12.3 and 12.10 the result after tensoring with R′ gives
a finite presentation S′⊕m → S′⊕n →M ′ → 0, of the S′-module M ′. Proof of (3).
This follows by the remark preceding the lemma as we can take I to be finite by
assumption. Proof of (4). This follows by the remark preceding the lemma as we
can take I and J to be finite by assumption. □

Let φ : R → S be a ring map. Given an S-module N we obtain an R-module NR
by the rule r · n = φ(r)n. This is sometimes called the restriction of N to R.
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Lemma 14.3.05DQ Let R→ S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR → ModS, M 7→M⊗RS (base change) are adjoint functors.
In a formula

HomR(M,NR) = HomS(M ⊗R S,N)

Proof. If α : M → NR is an R-module map, then we define α′ : M ⊗R S → N by
the rule α′(m ⊗ s) = sα(m). If β : M ⊗R S → N is an S-module map, we define
β′ : M → NR by the rule β′(m) = β(m ⊗ 1). We omit the verification that these
constructions are mutually inverse. □

The lemma above tells us that restriction has a left adjoint, namely base change.
It also has a right adjoint.

Lemma 14.4.08YP Let R→ S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR → ModS, M 7→ HomR(S,M) are adjoint functors. In a
formula

HomR(NR,M) = HomS(N,HomR(S,M))

Proof. If α : NR →M is an R-module map, then we define α′ : N → HomR(S,M)
by the rule α′(n) = (s 7→ α(sn)). If β : N → HomR(S,M) is an S-module map,
we define β′ : NR →M by the rule β′(n) = β(n)(1). We omit the verification that
these constructions are mutually inverse. □

Lemma 14.5.08YQ Let R→ S be a ring map. Given S-modules M,N and an R-module
P we have

HomR(M ⊗S N,P ) = HomS(M,HomR(N,P ))

Proof. This can be proved directly, but it is also a consequence of Lemmas 14.4
and 12.8. Namely, we have

HomR(M ⊗S N,P ) = HomS(M ⊗S N,HomR(S, P ))
= HomS(M,HomS(N,HomR(S, P )))
= HomS(M,HomR(N,P ))

as desired. □

15. Miscellany

00DR The proofs in this section should not refer to any results except those from the
section on basic notions, Section 3.

Lemma 15.1.07K1 Let R be a ring, I and J two ideals and p a prime ideal containing
the product IJ . Then p contains I or J .

Proof. Assume the contrary and take x ∈ I \ p and y ∈ J \ p. Their product is an
element of IJ ⊂ p, which contradicts the assumption that p was prime. □

Lemma 15.2 (Prime avoidance).00DS Let R be a ring. Let Ii ⊂ R, i = 1, . . . , r, and
J ⊂ R be ideals. Assume

(1) J ̸⊂ Ii for i = 1, . . . , r, and
(2) all but two of Ii are prime ideals.

Then there exists an x ∈ J , x ̸∈ Ii for all i.
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Proof. The result is true for r = 1. If r = 2, then let x, y ∈ J with x ̸∈ I1 and
y ̸∈ I2. We are done unless x ∈ I2 and y ∈ I1. Then the element x + y cannot be
in I1 (since that would mean x+ y − y ∈ I1) and it also cannot be in I2.
For r ≥ 3, assume the result holds for r − 1. After renumbering we may assume
that Ir is prime. We may also assume there are no inclusions among the Ii. Pick
x ∈ J , x ̸∈ Ii for all i = 1, . . . , r − 1. If x ̸∈ Ir we are done. So assume x ∈ Ir.
If JI1 . . . Ir−1 ⊂ Ir then J ⊂ Ir (by Lemma 15.1) a contradiction. Pick y ∈
JI1 . . . Ir−1, y ̸∈ Ir. Then x+ y works. □

Lemma 15.3.0EHL Let R be a ring. Let x ∈ R, I ⊂ R an ideal, and pi, i = 1, . . . , r
be prime ideals. Suppose that x+ I ̸⊂ pi for i = 1, . . . , r. Then there exists a y ∈ I
such that x+ y ̸∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. After reordering we
may assume x ̸∈ pi for i < s and x ∈ pi for i ≥ s. If s = r + 1 then we are done.
If not, then we can find y ∈ I with y ̸∈ ps. Choose f ∈

⋂
i<s pi with f ̸∈ ps. Then

x+ fy is not contained in p1, . . . , ps. Thus we win by induction on s. □

Lemma 15.4 (Chinese remainder).00DT Let R be a ring.
(1) If I1, . . . , Ir are ideals such that Ia+Ib = R when a ̸= b, then I1∩ . . .∩Ir =

I1I2 . . . Ir and R/(I1I2 . . . Ir) ∼= R/I1 × . . .×R/Ir.
(2) If m1, . . . ,mr are pairwise distinct maximal ideals then ma + mb = R for

a ̸= b and the above applies.

Proof. Let us first prove I1∩. . .∩Ir = I1 . . . Ir as this will also imply the injectivity
of the induced ring homomorphism R/(I1 . . . Ir)→ R/I1×. . .×R/Ir. The inclusion
I1∩ . . .∩ Ir ⊃ I1 . . . Ir is always fulfilled since ideals are closed under multiplication
with arbitrary ring elements. To prove the other inclusion, we claim that the ideals

I1 . . . Îi . . . Ir, i = 1, . . . , r
generate the ring R. We prove this by induction on r. It holds when r = 2. If
r > 2, then we see that R is the sum of the ideals I1 . . . Îi . . . Ir−1, i = 1, . . . , r − 1.
Hence Ir is the sum of the ideals I1 . . . Îi . . . Ir, i = 1, . . . , r − 1. Applying the
same argument with the reverse ordering on the ideals we see that I1 is the sum
of the ideals I1 . . . Îi . . . Ir, i = 2, . . . , r. Since R = I1 + Ir by assumption we see
that R is the sum of the ideals displayed above. Therefore we can find elements
ai ∈ I1 . . . Îi . . . Ir such that their sum is one. Multiplying this equation by an
element of I1 ∩ . . . ∩ Ir gives the other inclusion. It remains to show that the
canonical map R/(I1 . . . Ir) → R/I1 × . . . × R/Ir is surjective. For this, consider
its action on the equation 1 =

∑r
i=1 ai we derived above. On the one hand, a ring

morphism sends 1 to 1 and on the other hand, the image of any ai is zero in R/Ij
for j ̸= i. Therefore, the image of ai in R/Ii is the identity. So given any element
(b̄1, . . . , b̄r) ∈ R/I1 × . . .×R/Ir, the element

∑r
i=1 ai · bi is an inverse image in R.

To see (2), by the very definition of being distinct maximal ideals, we have ma+mb =
R for a ̸= b and so the above applies. □

Lemma 15.5.07DQ Let R be a ring. Let n ≥ m. Let A be an n × m matrix with
coefficients in R. Let J ⊂ R be the ideal generated by the m×m minors of A.

(1) For any f ∈ J there exists a m× n matrix B such that BA = f1m×m.
(2) If f ∈ R and BA = f1m×m for some m× n matrix B, then fm ∈ J .
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Proof. For I ⊂ {1, . . . , n} with |I| = m, we denote by EI the m× n matrix of the
projection

R⊕n =
⊕

i∈{1,...,n}
R −→

⊕
i∈I

R

and set AI = EIA, i.e., AI is the m × m matrix whose rows are the rows of A
with indices in I. Let BI be the adjugate (transpose of cofactor) matrix to AI ,
i.e., such that AIBI = BIAI = det(AI)1m×m. The m × m minors of A are the
determinants detAI for all the I ⊂ {1, . . . , n} with |I| = m. If f ∈ J then we can
write f =

∑
cI det(AI) for some cI ∈ R. Set B =

∑
cIBIEI to see that (1) holds.

If f1m×m = BA then by the Cauchy-Binet formula (72) we have fm =
∑
bI det(AI)

where bI is the determinant of the m ×m matrix whose columns are the columns
of B with indices in I. □

Lemma 15.6.080R Let R be a ring. Let n ≥ m. Let A = (aij) be an n ×m matrix
with coefficients in R, written in block form as

A =
(
A1
A2

)
where A1 has size m×m. Let B be the adjugate (transpose of cofactor) matrix to
A1. Then

AB =
(
f1m×m
C

)
where f = det(A1) and cij is (up to sign) the determinant of the m×m minor of
A corresponding to the rows 1, . . . , ĵ, . . . ,m, i.

Proof. Since the adjugate has the property A1B = BA1 = f the first block of the
expression for AB is correct. Note that

cij =
∑

k
aikbkj =

∑
(−1)j+kaik det(Ajk1 )

where Aij1 means A1 with the jth row and kth column removed. This last expression
is the row expansion of the determinant of the matrix in the statement of the
lemma. □

Lemma 15.7.05WI Let R be a nonzero ring. Let n ≥ 1. Let M be an R-module
generated by < n elements. Then any R-module map f : R⊕n →M has a nonzero
kernel.

Proof. Choose a surjection R⊕n−1 → M . We may lift the map f to a map
f ′ : R⊕n → R⊕n−1 (Lemma 5.2). It suffices to prove f ′ has a nonzero kernel. The
map f ′ : R⊕n → R⊕n−1 is given by a matrix A = (aij). If one of the aij is not
nilpotent, say a = aij is not, then we can replace R by the localization Ra and we
may assume aij is a unit. Since if we find a nonzero kernel after localization then
there was a nonzero kernel to start with as localization is exact, see Proposition
9.12. In this case we can do a base change on both R⊕n and R⊕n−1 and reduce to
the case where

A =


1 0 0 . . .
0 a22 a23 . . .
0 a32 . . .
. . . . . .


Hence in this case we win by induction on n. If not then each aij is nilpotent. Set
I = (aij) ⊂ R. Note that Im+1 = 0 for some m ≥ 0. Let m be the largest integer
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such that Im ̸= 0. Then we see that (Im)⊕n is contained in the kernel of the map
and we win. □

Lemma 15.8.0FJ7 Let R be a nonzero ring. Let n,m ≥ 0 be integers. If R⊕n is
isomorphic to R⊕m as R-modules, then n = m.

Proof. Immediate from Lemma 15.7. □

16. Cayley-Hamilton

05G6
Lemma 16.1.00DX Let R be a ring. Let A = (aij) be an n×n matrix with coefficients in
R. Let P (x) ∈ R[x] be the characteristic polynomial of A (defined as det(xidn×n −
A)). Then P (A) = 0 in Mat(n× n,R).

Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If ϕ : S → R is a ring morphism and bij are inverse images of the aij under
this map, then it suffices to show the statement for S and (bij) since ϕ is a
ring morphism.

(2) If ψ : R ↪→ S is an injective ring morphism, it clearly suffices to show the
result for S and the aij considered as elements of S.

(3) Thus we may first reduce to the case R = Z[Xij ], aij = Xij of a polynomial
ring and then further to the case R = Q(Xij) where we may finally apply
Cayley-Hamilton.

□

Lemma 16.2.05BT Let R be a ring. Let M be a finite R-module. Let φ : M → M
be an endomorphism. Then there exists a monic polynomial P ∈ R[T ] such that
P (φ) = 0 as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ R⊕n such that φ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

φ

��
R⊕n // M

is commutative where A = (aij). By Lemma 16.1 there exists a monic polynomial
P such that P (A) = 0. Then it follows that P (φ) = 0. □

Lemma 16.3.05G7 Let R be a ring. Let I ⊂ R be an ideal. Let M be a finite R-module.
Let φ : M → M be an endomorphism such that φ(M) ⊂ IM . Then there exists a
monic polynomial P = tn+a1t

n−1 +. . .+an ∈ R[T ] such that aj ∈ Ij and P (φ) = 0
as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ I⊕n such that φ(xi) =
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aijxj . In other words the diagram

R⊕n

A
��

// M

φ

��
I⊕n // M

is commutative whereA = (aij). By Lemma 16.1 the polynomial P (t) = det(tidn×n−
A) has all the desired properties. □

As a fun example application we prove the following surprising lemma.

Lemma 16.4.05G8 Let R be a ring. Let M be a finite R-module. Let φ : M → M be
a surjective R-module map. Then φ is an isomorphism.

First proof. Write R′ = R[x] and think of M as a finite R′-module with x acting
via φ. Set I = (x) ⊂ R′. By our assumption that φ is surjective we have IM = M .
Hence we may apply Lemma 16.3 to M as an R′-module, the ideal I and the
endomorphism idM . We conclude that (1 + a1 + . . . + an)idM = 0 with aj ∈ I.
Write aj = bj(x)x for some bj(x) ∈ R[x]. Translating back into φ we see that
idM = −(

∑
j=1,...,n bj(φ))φ, and hence φ is invertible. □

Second proof. We perform induction on the number of generators of M over R.
If M is generated by one element, then M ∼= R/I for some ideal I ⊂ R. In this
case we may replace R by R/I so that M = R. In this case φ : R→ R is given by
multiplication on M by an element r ∈ R. The surjectivity of φ forces r invertible,
since φ must hit 1, which implies that φ is invertible.

Now assume that we have proven the lemma in the case of modules generated by
n − 1 elements, and are examining a module M generated by n elements. Let
A mean the ring R[t], and regard the module M as an A-module by letting t
act via φ; since M is finite over R, it is finite over R[t] as well, and since we’re
trying to prove φ injective, a set-theoretic property, we might as well prove the
endomorphism t : M → M over A injective. We have reduced our problem to the
case our endomorphism is multiplication by an element of the ground ring. Let
M ′ ⊂M denote the sub-A-module generated by the first n− 1 of the generators of
M , and consider the diagram

0 // M ′ //

φ|M′

��

M

φ

��

// M/M ′

φ mod M ′

��

// 0

0 // M ′ // M // M/M ′ // 0,

where the restriction of φ to M ′ and the map induced by φ on the quotient M/M ′

are well-defined since φ is multiplication by an element in the base, and M ′ and
M/M ′ are A-modules in their own right. By the case n = 1 the map M/M ′ →
M/M ′ is an isomorphism. A diagram chase implies that φ|M ′ is surjective hence
by induction φ|M ′ is an isomorphism. This forces the middle column to be an
isomorphism by the snake lemma. □
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17. The spectrum of a ring

00DY We arbitrarily decide that the spectrum of a ring as a topological space is part of
the algebra chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 17.1.00DZ Let R be a ring.
(1) The spectrum of R is the set of prime ideals of R. It is usually denoted

Spec(R).
(2) Given a subset T ⊂ R we let V (T ) ⊂ Spec(R) be the set of primes contain-

ing T , i.e., V (T ) = {p ∈ Spec(R) | ∀f ∈ T, f ∈ p}.
(3) Given an element f ∈ R we let D(f) ⊂ Spec(R) be the set of primes not

containing f .

Lemma 17.2.00E0 Let R be a ring.
(1) The spectrum of a ring R is empty if and only if R is the zero ring.
(2) Every nonzero ring has a maximal ideal.
(3) Every nonzero ring has a minimal prime ideal.
(4) Given an ideal I ⊂ R and a prime ideal I ⊂ p there exists a prime I ⊂ q ⊂ p

such that q is minimal over I.
(5) If T ⊂ R, and if (T ) is the ideal generated by T in R, then V ((T )) = V (T ).
(6) If I is an ideal and

√
I is its radical, see basic notion (27), then V (I) =

V (
√
I).

(7) Given an ideal I of R we have
√
I =

⋂
I⊂p p.

(8) If I is an ideal then V (I) = ∅ if and only if I is the unit ideal.
(9) If I, J are ideals of R then V (I) ∪ V (J) = V (I ∩ J).

(10) If (Ia)a∈A is a set of ideals of R then
⋂
a∈A V (Ia) = V (

⋃
a∈A Ia).

(11) If f ∈ R, then D(f)⨿ V (f) = Spec(R).
(12) If f ∈ R then D(f) = ∅ if and only if f is nilpotent.
(13) If f = uf ′ for some unit u ∈ R, then D(f) = D(f ′).
(14) If I ⊂ R is an ideal, and p is a prime of R with p ̸∈ V (I), then there exists

an f ∈ R such that p ∈ D(f), and D(f) ∩ V (I) = ∅.
(15) If f, g ∈ R, then D(fg) = D(f) ∩D(g).
(16) If fi ∈ R for i ∈ I, then

⋃
i∈I D(fi) is the complement of V ({fi}i∈I) in

Spec(R).
(17) If f ∈ R and D(f) = Spec(R), then f is a unit.

Proof. We address each part in the corresponding item below.
(1) This is a direct consequence of (2) or (3).
(2) Let A be the set of all proper ideals of R. This set is ordered by inclusion

and is non-empty, since (0) ∈ A is a proper ideal. Let A be a totally ordered
subset of A. Then

⋃
I∈A I is in fact an ideal. Since 1 /∈ I for all I ∈ A,

the union does not contain 1 and thus is proper. Hence
⋃
I∈A I is in A and

is an upper bound for the set A. Thus by Zorn’s lemma A has a maximal
element, which is the sought-after maximal ideal.

(3) Since R is nonzero, it contains a maximal ideal which is a prime ideal. Thus
the set A of all prime ideals of R is nonempty. A is ordered by reverse-
inclusion. Let A be a totally ordered subset of A. It’s pretty clear that
J =

⋂
I∈A I is in fact an ideal. Not so clear, however, is that it is prime.

Let xy ∈ J . Then xy ∈ I for all I ∈ A. Now let B = {I ∈ A|y ∈ I}. Let
K =

⋂
I∈B I. Since A is totally ordered, either K = J (and we’re done,
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since then y ∈ J) or K ⊃ J and for all I ∈ A such that I is properly
contained in K, we have y /∈ I. But that means that for all those I, x ∈ I,
since they are prime. Hence x ∈ J . In either case, J is prime as desired.
Hence by Zorn’s lemma we get a maximal element which in this case is a
minimal prime ideal.

(4) This is the same exact argument as (3) except you only consider prime
ideals contained in p and containing I.

(5) (T ) is the smallest ideal containing T . Hence if T ⊂ I, some ideal, then
(T ) ⊂ I as well. Hence if I ∈ V (T ), then I ∈ V ((T )) as well. The other
inclusion is obvious.

(6) Since I ⊂
√
I, V (

√
I) ⊂ V (I). Now let p ∈ V (I). Let x ∈

√
I. Then

xn ∈ I for some n. Hence xn ∈ p. But since p is prime, a boring induction
argument gets you that x ∈ p. Hence

√
I ⊂ p and p ∈ V (

√
I).

(7) Let f ∈ R \
√
I. Then fn /∈ I for all n. Hence S = {1, f, f2, . . .} is

a multiplicative subset, not containing 0. Take a prime ideal p̄ ⊂ S−1R
containing S−1I. Then the pull-back p in R of p̄ is a prime ideal containing
I that does not intersect S. This shows that

⋂
I⊂p p ⊂

√
I. Now if a ∈

√
I,

then an ∈ I for some n. Hence if I ⊂ p, then an ∈ p. But since p is prime,
we have a ∈ p. Thus the equality is shown.

(8) I is not the unit ideal if and only if I is contained in some maximal ideal
(to see this, apply (2) to the ring R/I) which is therefore prime.

(9) If p ∈ V (I) ∪ V (J), then I ⊂ p or J ⊂ p which means that I ∩ J ⊂ p. Now
if I ∩ J ⊂ p, then IJ ⊂ p and hence either I of J is in p, since p is prime.

(10) p ∈
⋂
a∈A V (Ia)⇔ Ia ⊂ p,∀a ∈ A⇔ p ∈ V (

⋃
a∈A Ia)

(11) If p is a prime ideal and f ∈ R, then either f ∈ p or f /∈ p (strictly) which
is what the disjoint union says.

(12) If a ∈ R is nilpotent, then an = 0 for some n. Hence an ∈ p for any prime
ideal. Thus a ∈ p as can be shown by induction and D(a) = ∅. Now, as
shown in (7), if a ∈ R is not nilpotent, then there is a prime ideal that does
not contain it.

(13) f ∈ p⇔ uf ∈ p, since u is invertible.
(14) If p /∈ V (I), then ∃f ∈ I \ p. Then f /∈ p so p ∈ D(f). Also if q ∈ D(f),

then f /∈ q and thus I is not contained in q. Thus D(f) ∩ V (I) = ∅.
(15) If fg ∈ p, then f ∈ p or g ∈ p. Hence if f /∈ p and g /∈ p, then fg /∈ p. Since

p is an ideal, if fg /∈ p, then f /∈ p and g /∈ p.
(16) p ∈

⋃
i∈I D(fi)⇔ ∃i ∈ I, fi /∈ p⇔ p ∈ Spec(R) \ V ({fi}i∈I)

(17) If D(f) = Spec(R), then V (f) = ∅ and hence fR = R, so f is a unit.
□

The lemma implies that the subsets V (T ) from Definition 17.1 form the closed
subsets of a topology on Spec(R). And it also shows that the sets D(f) are open
and form a basis for this topology.

Definition 17.3.00E1 Let R be a ring. The topology on Spec(R) whose closed sets
are the sets V (T ) is called the Zariski topology. The open subsets D(f) are called
the standard opens of Spec(R).

It should be clear from context whether we consider Spec(R) just as a set or as a
topological space.

https://stacks.math.columbia.edu/tag/00E1
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Lemma 17.4.00E2 Suppose that φ : R → R′ is a ring homomorphism. The induced
map

Spec(φ) : Spec(R′) −→ Spec(R), p′ 7−→ φ−1(p′)
is continuous for the Zariski topologies. In fact, for any element f ∈ R we have
Spec(φ)−1(D(f)) = D(φ(f)).

Proof. It is basic notion (41) that p := φ−1(p′) is indeed a prime ideal of R. The
last assertion of the lemma follows directly from the definitions, and implies the
first. □

If φ′ : R′ → R′′ is a second ring homomorphism then the composition
Spec(R′′) −→ Spec(R′) −→ Spec(R)

equals Spec(φ′ ◦ φ). In other words, Spec is a contravariant functor from the
category of rings to the category of topological spaces.

Lemma 17.5.00E3 Let R be a ring. Let S ⊂ R be a multiplicative subset. The map
R→ S−1R induces via the functoriality of Spec a homeomorphism

Spec(S−1R) −→ {p ∈ Spec(R) | S ∩ p = ∅}
where the topology on the right hand side is that induced from the Zariski topology
on Spec(R). The inverse map is given by p 7→ S−1p = p(S−1R).

Proof. Denote the right hand side of the arrow of the lemma by D. Choose a
prime p′ ⊂ S−1R and let p the inverse image of p′ in R. Since p′ does not contain
1 we see that p does not contain any element of S. Hence p ∈ D and we see that
the image is contained in D. Let p ∈ D. By assumption the image S does not
contain 0. By basic notion (54) S−1(R/p) is not the zero ring. By basic notion
(62) we see S−1R/S−1p = S

−1(R/p) is a domain, and hence S−1p is a prime.
The equality of rings also shows that the inverse image of S−1p in R is equal to
p, because R/p → S

−1(R/p) is injective by basic notion (55). This proves that
the map Spec(S−1R) → Spec(R) is bijective onto D with inverse as given. It is
continuous by Lemma 17.4. Finally, let D(g) ⊂ Spec(S−1R) be a standard open.
Write g = h/s for some h ∈ R and s ∈ S. Since g and h/1 differ by a unit we have
D(g) = D(h/1) in Spec(S−1R). Hence by Lemma 17.4 and the bijectivity above
the image of D(g) = D(h/1) is D ∩D(h). This proves the map is open as well. □

Lemma 17.6.00E4 Let R be a ring. Let f ∈ R. The map R → Rf induces via the
functoriality of Spec a homeomorphism

Spec(Rf ) −→ D(f) ⊂ Spec(R).
The inverse is given by p 7→ p ·Rf .

Proof. This is a special case of Lemma 17.5. □

It is not the case that every “affine open” of a spectrum is a standard open. See
Example 27.4.

Lemma 17.7.00E5 Let R be a ring. Let I ⊂ R be an ideal. The map R→ R/I induces
via the functoriality of Spec a homeomorphism

Spec(R/I) −→ V (I) ⊂ Spec(R).
The inverse is given by p 7→ p/I.

https://stacks.math.columbia.edu/tag/00E2
https://stacks.math.columbia.edu/tag/00E3
https://stacks.math.columbia.edu/tag/00E4
https://stacks.math.columbia.edu/tag/00E5


COMMUTATIVE ALGEBRA 37

Proof. It is immediate that the image is contained in V (I). On the other hand, if
p ∈ V (I) then p ⊃ I and we may consider the ideal p/I ⊂ R/I. Using basic notion
(51) we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal.
From this it is immediately clear that the image of D(f + I) is D(f) ∩ V (I), and
hence the map is a homeomorphism. □

Lemma 17.8.00E8 Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can
be refined by a finite covering. Thus suppose that Spec(R) = ∪D(fi) for a set of
elements {fi}i∈I of R. This means that ∩V (fi) = ∅. According to Lemma 17.2
this means that V ({fi}) = ∅. According to the same lemma this means that the
ideal generated by the fi is the unit ideal of R. This means that we can write
1 as a finite sum: 1 =

∑
i∈J rifi with J ⊂ I finite. And then it follows that

Spec(R) = ∪i∈JD(fi). □

Lemma 17.9.04PM Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma 17.8. It has a basis
for the topology consisting of the standard opens D(f) = Spec(Rf ) (Lemma 17.6)
which are quasi-compact by the first remark. The intersection of two standard
opens is quasi-compact as D(f) ∩ D(g) = D(fg). Given any two quasi-compact
opens U, V ⊂ X we may write U = D(f1)∪. . .∪D(fn) and V = D(g1)∪. . .∪D(gm).
Then U ∩ V =

⋃
D(figj) which is quasi-compact. □

18. Local rings

07BH Local rings are the bread and butter of algebraic geometry.

Definition 18.1.07BI A local ring is a ring with exactly one maximal ideal. If R is a
local ring, then the maximal ideal is often denoted mR and the field R/mR is called
the residue field of the local ring R. We often say “let (R,m) be a local ring” or
“let (R,m, κ) be a local ring” to indicate that R is local, m is its unique maximal
ideal and κ = R/m is its residue field. A local homomorphism of local rings is a ring
map φ : R→ S such that R and S are local rings and such that φ(mR) ⊂ mS . If it
is given that R and S are local rings, then the phrase “local ring map φ : R → S”
means that φ is a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of
local rings.
The localization Rp of a ring R at a prime p is a local ring with maximal ideal pRp.
Namely, by Lemma 17.5 every prime ideal of Rp is contained in the prime ideal pRp

(hence this is a maximal ideal and the only maximal ideal of Rp). The residue field
of Rp is denoted κ(p); we call it the residue field of p; by Proposition 9.14 we may
identify κ(p) with the field of fractions of the domain R/p. Via the composition

Spec(κ(p))→ Spec(Rp)→ Spec(R)
the unique point of the source maps to the point p of the target.

https://stacks.math.columbia.edu/tag/00E8
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Let φ : R → S be a ring map. Let q ⊂ S be a prime and consider the prime
p = φ−1(q) of R. Since φ(p) ⊂ q the induced ring map

Rp → Sq, r/g 7→ φ(r)/φ(g)

is a local ring map and we obtain an induced map of residue fields κ(p)→ κ(q).

Example 18.2.0H70 If R is a local ring and p ⊂ R is a non-maximal prime ideal, then
R→ Rp is not a local homomorphism.

Lemma 18.3.00E9 Let R be a ring. The following are equivalent:
(1) R is a local ring,
(2) Spec(R) has exactly one closed point,
(3) R has a maximal ideal m and every element of R \m is a unit, and
(4) R is not the zero ring and for every x ∈ R either x or 1 − x is invertible

or both.

Proof. Let R be a ring, and m a maximal ideal. If x ∈ R \m, and x is not a unit
then there is a maximal ideal m′ containing x. Hence R has at least two maximal
ideals. Conversely, if m′ is another maximal ideal, then choose x ∈ m′, x ̸∈ m.
Clearly x is not a unit. This proves the equivalence of (1) and (3). The equivalence
(1) and (2) is tautological. If R is local then (4) holds since x is either in m or not.
If (4) holds, and m, m′ are distinct maximal ideals then we may choose x ∈ R such
that x mod m′ = 0 and x mod m = 1 by the Chinese remainder theorem (Lemma
15.4). This element x is not invertible and neither is 1−x which is a contradiction.
Thus (4) and (1) are equivalent. □

Lemma 18.4.07BJ Let φ : R → S be a ring map. Assume R and S are local rings.
The following are equivalent:

(1) φ is a local ring map,
(2) φ(mR) ⊂ mS, and
(3) φ−1(mS) = mR.
(4) For any x ∈ R, if φ(x) is invertible in S, then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2)
holds. Conversely, if (2) holds, then φ−1(mS) is a prime ideal containing the max-
imal ideal mR, hence φ−1(mS) = mR. Finally, (4) is the contrapositive of (2) by
Lemma 18.3. □

Remark 18.5.00E6 A fundamental commutative diagram associated to a ring map
φ : R→ S and a prime p ⊂ R is the following

κ(p)⊗R S = Sp/pSp Sp
oo S //oo S/pS // (R \ p)−1S/pS

κ(p) = Rp/pRp

OO

Rp

OO

oo R

OO

//oo R/p

OO

// κ(p)

OO

In this diagram the outer left and outer right columns are identical. On spectra the
horizontal maps induce homeomorphisms onto their images and the squares induce
fibre squares of topological spaces (see Lemmas 17.5 and 17.7). This shows that p
is in the image of the map on Spec if and only if S ⊗R κ(p) is not the zero ring.

https://stacks.math.columbia.edu/tag/0H70
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If there does exist a prime q ⊂ S lying over p, i.e., with p = φ−1(q) then we can
extend the diagram to the following diagram

κ(q) = Sq/qSq Sq
oo S //oo S/q // κ(q)

κ(p)⊗R S = Sp/pSp

OO

Sp

OO

oo S

OO

//oo S/pS

OO

// (R \ p)−1S/pS

OO

κ(p) = Rp/pRp

OO

Rp

OO

oo R

OO

//oo R/p

OO

// κ(p)

OO

In this diagram it is still the case that the outer left and outer right columns are
identical and that on spectra the horizontal maps induce homeomorphisms onto
their image.

Lemma 18.6.00E7 Let φ : R→ S be a ring map. Let p be a prime of R. The following
are equivalent

(1) p is in the image of Spec(S)→ Spec(R),
(2) S ⊗R κ(p) ̸= 0,
(3) Sp/pSp ̸= 0,
(4) (S/pS)p ̸= 0, and
(5) p = φ−1(pS).

Proof. We have already seen the equivalence of the first two in Remark 18.5. The
others are just reformulations of this. □

19. The Jacobson radical of a ring

0AMD We recall that the Jacobson radical rad(R) of a ring R is the intersection of all
maximal ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 19.1.0AME Let R be a ring with Jacobson radical rad(R). Let I ⊂ R be an
ideal. The following are equivalent

(1) I ⊂ rad(R), and
(2) every element of 1 + I is a unit in R.

In this case every element of R which maps to a unit of R/I is a unit.

Proof. If f ∈ rad(R), then f ∈ m for all maximal ideals m of R. Hence 1 + f ̸∈ m
for all maximal ideals m of R. Thus the closed subset V (1+f) of Spec(R) is empty.
This implies that 1 + f is a unit, see Lemma 17.2.

Conversely, assume that 1 + f is a unit for all f ∈ I. If m is a maximal ideal and
I ̸⊂ m, then I + m = R. Hence 1 = f + g for some g ∈ m and f ∈ I. Then
g = 1 + (−f) is not a unit, contradiction.

For the final statement let f ∈ R map to a unit in R/I. Then we can find g ∈ R
mapping to the multiplicative inverse of f mod I. Then fg = 1 mod I. Hence fg
is a unit of R by (2) which implies that f is a unit. □

Lemma 19.2.0B7C Let φ : R→ S be a ring map such that the induced map Spec(S)→
Spec(R) is surjective. Then an element x ∈ R is a unit if and only if φ(x) ∈ S is
a unit.

https://stacks.math.columbia.edu/tag/00E7
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Proof. If x is a unit, then so is φ(x). Conversely, if φ(x) is a unit, then φ(x) ̸∈ q
for all q ∈ Spec(S). Hence x ̸∈ φ−1(q) = Spec(φ)(q) for all q ∈ Spec(S). Since
Spec(φ) is surjective we conclude that x is a unit by part (17) of Lemma 17.2. □

20. Nakayama’s lemma

07RC We quote from [Mat70]: “This simple but important lemma is due to T. Nakayama,
G. Azumaya and W. Krull. Priority is obscure, and although it is usually called
the Lemma of Nakayama, late Prof. Nakayama did not like the name.”

Lemma 20.1 (Nakayama’s lemma).00DV [Mat70, 1.M Lemma
(NAK) page 11]

Let R be a ring with Jacobson radical rad(R).
Let M be an R-module. Let I ⊂ R be an ideal.

(1)00DW If IM = M and M is finite, then there exists an f ∈ 1 + I such that
fM = 0.

(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂M , M = N+IN ′, and N ′ is finite, then there exists an f ∈ 1+I

such that fM ⊂ N and Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists an f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we
can write yi =

∑
zijyj with zij ∈ I (since M = IM). In other words

∑
j(δij −

zij)yj = 0. Let f be the determinant of the m ×m matrix A = (δij − zij). Note
that f ∈ 1 + I (since the matrix A is entrywise congruent to the m ×m identity
matrix modulo I). By Lemma 15.5 (1), there exists an m×m matrix B such that
BA = f1m×m. Writing out we see that

∑
i bhiaij = fδhj for all h and j; hence,∑

i,j bhiaijyj =
∑
j fδhjyj = fyh for every h. In other words, 0 = fyh for every h

(since each i satisfies
∑
j aijyj = 0). This implies that f annihilates M .

By Lemma 19.1 an element of 1 + rad(R) is invertible element of R. Hence we see
that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as N ′

is finite. We obtain (4) by applying (2) to M/N which is finite as N ′ is finite. We
obtain (5) by applying (3) to M and the submodules Im(N → M) and M . We
obtain (6) by applying (4) to M and the submodules Im(N → M) and M . We
obtain (7) by applying (5) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+anxn.
We obtain (8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+
anxn.

https://stacks.math.columbia.edu/tag/00DV


COMMUTATIVE ALGEBRA 41

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n≫ 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. □

Lemma 20.2.0GLX Let R be a ring, let S ⊂ R be a multiplicative subset, let I ⊂ R be
an ideal, and let M be a finite R-module. If x1, . . . , xr ∈M generate S−1(M/IM)
as an S−1(R/I)-module, then there exists an f ∈ S+I such that x1, . . . , xr generate
Mf as an Rf -module.1

Proof. Special case I = 0. Let y1, . . . , ys be generators for M over R. Since
S−1M is generated by x1, . . . , xr, for each i we can write yi =

∑
(aij/sij)xj for

some aij ∈ R and sij ∈ S. Let s ∈ S be the product of all of the sij . Then we
see that yi is contained in the Rs-submodule of Ms generated by x1, . . . , xr. Hence
x1, . . . , xr generates Ms.

General case. By the special case, we can find an s ∈ S such that x1, . . . , xr generate
(M/IM)s over (R/I)s. By Lemma 20.1 we can find a g ∈ 1 + Is ⊂ Rs such that
x1, . . . , xr generate (Ms)g over (Rs)g. Write g = 1 + i/s′. Then f = ss′ + is works;
details omitted. □

Lemma 20.3.0E8M Let A→ B be a local homomorphism of local rings. Assume
(1) B is finite as an A-module,
(2) mB is a finitely generated ideal,
(3) A→ B induces an isomorphism on residue fields, and
(4) mA/m

2
A → mB/m

2
B is surjective.

Then A→ B is surjective.

Proof. To show that A → B is surjective, we view it as a map of A-modules and
apply Lemma 20.1 (6). We conclude it suffices to show that A/mA → B/mAB is
surjective. As A/mA = B/mB it suffices to show that mAB → mB is surjective.
View mAB → mB as a map of B-modules and apply Lemma 20.1 (6). We conclude
it suffices to see that mAB/mAmB → mB/m

2
B is surjective. This follows from

assumption (4). □

21. Open and closed subsets of spectra

04PN It turns out that open and closed subsets of a spectrum correspond to idempotents
of the ring.

Lemma 21.1.00EC Let R be a ring. Let e ∈ R be an idempotent. In this case

Spec(R) = D(e)⨿D(1− e).

Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that

D(e) = {p ∈ Spec(R) | e ̸∈ p}
= {p ∈ Spec(R) | e ̸= 0 in κ(p)}
= {p ∈ Spec(R) | e = 1 in κ(p)}

1Special cases: (I) I = 0. The lemma says if x1, . . . , xr generate S−1M , then x1, . . . , xr

generate Mf for some f ∈ S. (II) I = p is a prime ideal and S = R \ p. The lemma says if
x1, . . . , xr generate M ⊗R κ(p) then x1, . . . , xr generate Mf for some f ∈ R, f ̸∈ p.
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Similarly we have

D(1− e) = {p ∈ Spec(R) | 1− e ̸∈ p}
= {p ∈ Spec(R) | e ̸= 1 in κ(p)}
= {p ∈ Spec(R) | e = 0 in κ(p)}

Since the image of e in any residue field is either 1 or 0 we deduce that D(e) and
D(1− e) cover all of Spec(R). □

Lemma 21.2.00ED Let R1 and R2 be rings. Let R = R1 × R2. The maps R → R1,
(x, y) 7→ x and R → R2, (x, y) 7→ y induce continuous maps Spec(R1) → Spec(R)
and Spec(R2)→ Spec(R). The induced map

Spec(R1)⨿ Spec(R2) −→ Spec(R)

is a homeomorphism. In other words, the spectrum of R = R1 ×R2 is the disjoint
union of the spectrum of R1 and the spectrum of R2.

Proof. Write 1 = e1 + e2 with e1 = (1, 0) and e2 = (0, 1). Note that e1 and
e2 = 1−e1 are idempotents. We leave it to the reader to show that R1 = Re1 is the
localization of R at e1. Similarly for e2. Thus the statement of the lemma follows
from Lemma 21.1 combined with Lemma 17.6. □

We reprove the following lemma later after introducing a glueing lemma for func-
tions. See Section 24.

Lemma 21.3.00EE Let R be a ring. For each U ⊂ Spec(R) which is open and closed
there exists a unique idempotent e ∈ R such that U = D(e). This induces a 1-
1 correspondence between open and closed subsets U ⊂ Spec(R) and idempotents
e ∈ R.

Proof. Let U ⊂ Spec(R) be open and closed. Since U is closed it is quasi-compact
by Lemma 17.8, and similarly for its complement. Write U =

⋃n
i=1 D(fi) as a finite

union of standard opens. Similarly, write Spec(R)\U =
⋃m
j=1 D(gj) as a finite union

of standard opens. Since ∅ = D(fi)∩D(gj) = D(figj) we see that figj is nilpotent
by Lemma 17.2. Let I = (f1, . . . , fn) ⊂ R and let J = (g1, . . . , gm) ⊂ R. Note that
V (J) equals U , that V (I) equals the complement of U , so Spec(R) = V (I)⨿V (J).
By the remark on nilpotency above, we see that (IJ)N = (0) for some sufficiently
large integer N . Since

⋃
D(fi) ∪

⋃
D(gj) = Spec(R) we see that I + J = R,

see Lemma 17.2. By raising this equation to the 2Nth power we conclude that
IN + JN = R. Write 1 = x+ y with x ∈ IN and y ∈ JN . Then 0 = xy = x(1− x)
as INJN = (0). Thus x = x2 is idempotent and contained in IN ⊂ I. The
idempotent y = 1 − x is contained in JN ⊂ J . This shows that the idempotent x
maps to 1 in every residue field κ(p) for p ∈ V (J) and that x maps to 0 in κ(p) for
every p ∈ V (I).

To see uniqueness suppose that e1, e2 are distinct idempotents in R. We have to
show there exists a prime p such that e1 ∈ p and e2 ̸∈ p, or conversely. Write
e′
i = 1− ei. If e1 ̸= e2, then 0 ̸= e1 − e2 = e1(e2 + e′

2)− (e1 + e′
1)e2 = e1e

′
2 − e′

1e2.
Hence either the idempotent e1e

′
2 ̸= 0 or e′

1e2 ̸= 0. An idempotent is not nilpotent,
and hence we find a prime p such that either e1e

′
2 ̸∈ p or e′

1e2 ̸∈ p, by Lemma 17.2.
It is easy to see this gives the desired prime. □
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Lemma 21.4.00EF Let R be a nonzero ring. Then Spec(R) is connected if and only if
R has no nontrivial idempotents.
Proof. Obvious from Lemma 21.3 and the definition of a connected topological
space. □

Lemma 21.5.00EH Let I ⊂ R be a finitely generated ideal of a ring R such that I = I2.
Then

(1) there exists an idempotent e ∈ R such that I = (e),
(2) R/I ∼= Re′ for the idempotent e′ = 1− e ∈ R, and
(3) V (I) is open and closed in Spec(R).

Proof. By Nakayama’s Lemma 20.1 there exists an element f = 1 + i, i ∈ I such
that fI = 0. Then f2 = f + fi = f is an idempotent. Consider the idempotent
e = 1− f = −i ∈ I. For j ∈ I we have ej = j − fj = j hence I = (e). This proves
(1).
Parts (2) and (3) follow from (1). Namely, we have V (I) = V (e) = Spec(R) \D(e)
which is open and closed by either Lemma 21.1 or Lemma 21.3. This proves (3). For
(2) observe that the map R → Re′ is surjective since x/(e′)n = x/e′ = xe′/(e′)2 =
xe′/e′ = x/1 in Re′ . The kernel of the map R → Re′ is the set of elements of
R annihilated by a positive power of e′. Since e′ is idempotent this is the ideal
of elements annihilated by e′ which is the ideal I = (e) as e + e′ = 1 is a pair of
orthogonal idempotents. This proves (2). □

22. Connected components of spectra

00EB Connected components of spectra are not as easy to understand as one may think
at first. This is because we are used to the topology of locally connected spaces,
but the spectrum of a ring is in general not locally connected.
Lemma 22.1.04PP Let R be a ring. Let T ⊂ Spec(R) be a subset of the spectrum. The
following are equivalent

(1) T is closed and is a union of connected components of Spec(R),
(2) T is an intersection of open and closed subsets of Spec(R), and
(3) T = V (I) where I ⊂ R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.
Proof. By Lemma 17.9 and Topology, Lemma 12.12 we see that (1) and (2) are
equivalent. Assume (2) and write T =

⋂
Uα with Uα ⊂ Spec(R) open and closed.

Then Uα = D(eα) for some idempotent eα ∈ R by Lemma 21.3. Then setting
I = (1 − eα) we see that T = V (I), i.e., (3) holds. Finally, assume (3). Write
T = V (I) and I = (eα) for some collection of idempotents eα. Then it is clear that
T =

⋂
V (eα) =

⋂
D(1− eα).

Suppose that I is an ideal generated by idempotents. Let e ∈ R be an idempotent
such that V (I) ⊂ V (e). Then by Lemma 17.2 we see that en ∈ I for some n ≥ 1.
As e is an idempotent this means that e ∈ I. Hence we see that I is generated
by exactly those idempotents e such that T ⊂ V (e). In other words, the ideal I is
completely determined by the closed subset T which proves uniqueness. □

Lemma 22.2.00EG Let R be a ring. A connected component of Spec(R) is of the form
V (I), where I is an ideal generated by idempotents such that every idempotent of
R either maps to 0 or 1 in R/I.
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Proof. Let p be a prime of R. By Lemma 17.9 we have see that the hypotheses
of Topology, Lemma 12.10 are satisfied for the topological space Spec(R). Hence
the connected component of p in Spec(R) is the intersection of open and closed
subsets of Spec(R) containing p. Hence it equals V (I) where I is generated by the
idempotents e ∈ R such that e maps to 0 in κ(p), see Lemma 21.3. Any idempotent
e which is not in this collection clearly maps to 1 in R/I. □

23. Glueing properties

00EN In this section we put a number of standard results of the form: if something is
true for all members of a standard open covering then it is true. In fact, it often
suffices to check things on the level of local rings as in the following lemma.
Lemma 23.1.00HN Let R be a ring.

(1) For an element x of an R-module M the following are equivalent
(a) x = 0,
(b) x maps to zero in Mp for all p ∈ Spec(R),
(c) x maps to zero in Mm for all maximal ideals m of R.

In other words, the map M →
∏

mMm is injective.
(2) Given an R-module M the following are equivalent

(a) M is zero,
(b) Mp is zero for all p ∈ Spec(R),
(c) Mm is zero for all maximal ideals m of R.

(3) Given a complex M1 →M2 →M3 of R-modules the following are equivalent
(a) M1 →M2 →M3 is exact,
(b) for every prime p of R the localization M1,p →M2,p →M3,p is exact,
(c) for every maximal ideal m of R the localization M1,m →M2,m →M3,m

is exact.
(4) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is injective,
(b) fp : Mp →M ′

p is injective for all primes p of R,
(c) fm : Mm →M ′

m is injective for all maximal ideals m of R.
(5) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is surjective,
(b) fp : Mp →M ′

p is surjective for all primes p of R,
(c) fm : Mm →M ′

m is surjective for all maximal ideals m of R.
(6) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is bijective,
(b) fp : Mp →M ′

p is bijective for all primes p of R,
(c) fm : Mm →M ′

m is bijective for all maximal ideals m of R.
Proof. Let x ∈ M as in (1). Let I = {f ∈ R | fx = 0}. It is easy to see that I
is an ideal (it is the annihilator of x). Condition (1)(c) means that for all maximal
ideals m there exists an f ∈ R \m such that fx = 0. In other words, V (I) does not
contain a closed point. By Lemma 17.2 we see I is the unit ideal. Hence x is zero,
i.e., (1)(a) holds. This proves (1).
Part (2) follows by applying (1) to all elements of M simultaneously.
Proof of (3). Let H be the homology of the sequence, i.e., H = Ker(M2 →
M3)/ Im(M1 → M2). By Proposition 9.12 we have that Hp is the homology of
the sequence M1,p →M2,p →M3,p. Hence (3) is a consequence of (2).

https://stacks.math.columbia.edu/tag/00HN
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Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining
(4) and (5). □

Lemma 23.2.00EO Let R be a ring. Let M be an R-module. Let S be an R-algebra.
Suppose that f1, . . . , fn is a finite list of elements of R such that

⋃
D(fi) = Spec(R),

in other words (f1, . . . , fn) = R.
(1) If each Mfi

= 0 then M = 0.
(2) If each Mfi

is a finite Rfi
-module, then M is a finite R-module.

(3) If each Mfi is a finitely presented Rfi-module, then M is a finitely presented
R-module.

(4) Let M → N be a map of R-modules. If Mfi
→ Nfi

is an isomorphism for
each i then M → N is an isomorphism.

(5) Let 0 → M ′′ → M → M ′ → 0 be a complex of R-modules. If 0 → M ′′
fi
→

Mfi → M ′
fi
→ 0 is exact for each i, then 0 → M ′′ → M → M ′ → 0 is

exact.
(6) If each Rfi

is Noetherian, then R is Noetherian.
(7) If each Sfi

is a finite type R-algebra, so is S.
(8) If each Sfi is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.
(1) By Proposition 9.10 this implies Mp = 0 for all p ∈ Spec(R), so we conclude

by Lemma 23.1.
(2) For each i take a finite generating set Xi of Mfi . Without loss of generality,

we may assume that the elements of Xi are in the image of the localization
map M →Mfi

, so we take a finite set Yi of preimages of the elements of Xi

in M . Let Y be the union of these sets. This is still a finite set. Consider
the obvious R-linear map RY → M sending the basis element ey to y.
By assumption this map is surjective after localizing at an arbitrary prime
ideal p of R, so it is surjective by Lemma 23.1 and M is finitely generated.

(3) By (2) we have a short exact sequence

0→ K → Rn →M → 0

Since localization is an exact functor and Mfi
is finitely presented we see

that Kfi is finitely generated for all 1 ≤ i ≤ n by Lemma 5.3. By (2) this
implies that K is a finite R-module and therefore M is finitely presented.

(4) By Proposition 9.10 the assumption implies that the induced morphism
on localizations at all prime ideals is an isomorphism, so we conclude by
Lemma 23.1.

(5) By Proposition 9.10 the assumption implies that the induced sequence of
localizations at all prime ideals is short exact, so we conclude by Lemma
23.1.

(6) We will show that every ideal of R has a finite generating set: For this, let
I ⊂ R be an arbitrary ideal. By Proposition 9.12 each Ifi

⊂ Rfi
is an ideal.

These are all finitely generated by assumption, so we conclude by (2).
(7) For each i take a finite generating set Xi of Sfi . Without loss of generality,

we may assume that the elements of Xi are in the image of the localization
map S → Sfi

, so we take a finite set Yi of preimages of the elements of Xi

in S. Let Y be the union of these sets. This is still a finite set. Consider
the algebra homomorphism R[Xy]y∈Y → S induced by Y . Since it is an
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algebra homomorphism, the image T is an R-submodule of the R-module
S, so we can consider the quotient module S/T . By assumption, this is zero
if we localize at the fi, so it is zero by (1) and therefore S is an R-algebra
of finite type.

(8) By the previous item, there exists a surjective R-algebra homomorphism
R[X1, . . . , Xn] → S. Let K be the kernel of this map. This is an ideal in
R[X1, . . . , Xn], finitely generated in each localization at fi. Since the fi gen-
erate the unit ideal in R, they also generate the unit ideal in R[X1, . . . , Xn],
so an application of (2) finishes the proof.

□

Lemma 23.3.00EP Let R → S be a ring map. Suppose that g1, . . . , gn is a finite list
of elements of S such that

⋃
D(gi) = Spec(S) in other words (g1, . . . , gn) = S.

(1) If each Sgi is of finite type over R, then S is of finite type over R.
(2) If each Sgi

is of finite presentation over R, then S is of finite presentation
over R.

Proof. Choose h1, . . . , hn ∈ S such that
∑
higi = 1.

Proof of (1). For each i choose a finite list of elements xi,j ∈ Sgi
, j = 1, . . . ,mi which

generate Sgi
as an R-algebra. Write xi,j = yi,j/g

ni,j

i for some yi,j ∈ S and some
ni,j ≥ 0. Consider the R-subalgebra S′ ⊂ S generated by g1, . . . , gn, h1, . . . , hn and
yi,j , i = 1, . . . , n, j = 1, . . . ,mi. Since localization is exact (Proposition 9.12), we
see that S′

gi
→ Sgi

is injective. On the other hand, it is surjective by our choice of
yi,j . The elements g1, . . . , gn generate the unit ideal in S′ as h1, . . . , hn ∈ S′. Thus
S′ → S viewed as an S′-module map is an isomorphism by Lemma 23.2.
Proof of (2). We already know that S is of finite type. Write S = R[x1, . . . , xm]/J
for some ideal J . For each i choose a lift g′

i ∈ R[x1, . . . , xm] of gi and we choose a
lift h′

i ∈ R[x1, . . . , xm] of hi. Then we see that
Sgi

= R[x1, . . . , xm, yi]/(Ji + (1− yig′
i))

where Ji is the ideal of R[x1, . . . , xm, yi] generated by J . Small detail omitted. By
Lemma 6.3 we may choose a finite list of elements fi,j ∈ J , j = 1, . . . ,mi such that
the images of fi,j in Ji and 1− yig′

i generate the ideal Ji + (1− yig′
i). Set

S′ = R[x1, . . . , xm]/
(∑

h′
ig

′
i − 1, fi,j ; i = 1, . . . , n, j = 1, . . . ,mi

)
There is a surjective R-algebra map S′ → S. The classes of the elements g′

1, . . . , g
′
n

in S′ generate the unit ideal and by construction the maps S′
g′

i
→ Sgi are injective.

Thus we conclude as in part (1). □

24. Glueing functions

00EI In this section we show that given an open covering

Spec(R) =
⋃n

i=1
D(fi)

by standard opens, and given an element hi ∈ Rfi for each i such that hi = hj as
elements of Rfifj

then there exists a unique h ∈ R such that the image of h in Rfi

is hi. This result can be interpreted in two ways:
(1) The rule D(f) 7→ Rf is a sheaf of rings on the standard opens, see Sheaves,

Section 30.
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(2) If we think of elements of Rf as the “algebraic” or “regular” functions on
D(f), then these glue as would continuous, resp. differentiable functions on
a topological, resp. differentiable manifold.

Lemma 24.1.00EK Let R be a ring. Let f1, . . . , fn be elements of R generating the
unit ideal. Let M be an R-module. The sequence

0→M
α−→
⊕n

i=1
Mfi

β−→
⊕n

i,j=1
Mfifj

is exact, where α(m) = (m/1, . . . ,m/1) and β(m1/f
e1
1 , . . . ,mn/f

en
n ) = (mi/f

ei
i −

mj/f
ej

j )(i,j).

Proof. It suffices to show that the localization of the sequence at any maximal
ideal m is exact, see Lemma 23.1. Since f1, . . . , fn generate the unit ideal, there
is an i such that fi ̸∈ m. After renumbering we may assume i = 1. Note that
(Mfi

)m = (Mm)fi
and (Mfifj

)m = (Mm)fifj
, see Proposition 9.11. In particular

(Mf1)m = Mm and (Mf1fi
)m = (Mm)fi

, because f1 is a unit. Note that the maps
in the sequence are the canonical ones coming from Lemma 9.7 and the identity
map on M . Having said all of this, after replacing R by Rm, M by Mm, and fi by
their image in Rm, and f1 by 1 ∈ Rm, we reduce to the case where f1 = 1.
Assume f1 = 1. Injectivity of α is now trivial. Let m = (mi) ∈

⊕n
i=1 Mfi

be in
the kernel of β. Then m1 ∈ Mf1 = M . Moreover, β(m) = 0 implies that m1 and
mi map to the same element of Mf1fi = Mfi . Thus α(m1) = m and the proof is
complete. □

Lemma 24.2.00EJ Let R be a ring, and let f1, f2, . . . fn ∈ R generate the unit ideal in
R. Then the following sequence is exact:

0 −→ R −→
⊕

i
Rfi
−→

⊕
i,j
Rfifj

where the maps α : R −→
⊕

iRfi and β :
⊕

iRfi −→
⊕

i,j Rfifj are defined as

α(x) =
(x

1 , . . . ,
x

1

)
and β

(
x1

fr1
1
, . . . ,

xn
frn
n

)
=
(
xi
fri
i

− xj

f
rj

j

in Rfifj

)
.

Proof. Special case of Lemma 24.1. □

The following we have already seen above, but we state it explicitly here for con-
venience.

Lemma 24.3.00EM Let R be a ring. If Spec(R) = U ⨿V with both U and V open then
R ∼= R1 ×R2 with U ∼= Spec(R1) and V ∼= Spec(R2) via the maps in Lemma 21.2.
Moreover, both R1 and R2 are localizations as well as quotients of the ring R.

Proof. By Lemma 21.3 we have U = D(e) and V = D(1− e) for some idempotent
e. By Lemma 24.2 we see that R ∼= Re × R1−e (since clearly Re(1−e) = 0 so the
glueing condition is trivial; of course it is trivial to prove the product decomposition
directly in this case). The lemma follows. □

Lemma 24.4.0565 Let R be a ring. Let f1, . . . , fn ∈ R. Let M be an R-module. Then
M →

⊕
Mfi

is injective if and only if

M −→
⊕

i=1,...,n
M, m 7−→ (f1m, . . . , fnm)

is injective.
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Proof. The map M →
⊕
Mfi

is injective if and only if for all m ∈ M and
e1, . . . , en ≥ 1 such that fei

i m = 0, i = 1, . . . , n we have m = 0. This clearly
implies the displayed map is injective. Conversely, suppose the displayed map is
injective and m ∈ M and e1, . . . , en ≥ 1 are such that fei

i m = 0, i = 1, . . . , n. If
ei = 1 for all i, then we immediately conclude that m = 0 from the injectivity of
the displayed map. Next, we prove this holds for any such data by induction on
e =

∑
ei. The base case is e = n, and we have just dealt with this. If some ei > 1,

then set m′ = fim. By induction we see that m′ = 0. Hence we see that fim = 0,
i.e., we may take ei = 1 which decreases e and we win. □

The following lemma is better stated and proved in the more general context of flat
descent. However, it makes sense to state it here since it fits well with the above.

Lemma 24.5.00EQ Let R be a ring. Let f1, . . . , fn ∈ R. Suppose we are given the
following data:

(1) For each i an Rfi-module Mi.
(2) For each pair i, j an Rfifj -module isomorphism ψij : (Mi)fj → (Mj)fi .

which satisfy the “cocycle condition” that all the diagrams

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commute (for all triples i, j, k). Given this data define

M = Ker
(⊕

1≤i≤n
Mi −→

⊕
1≤i,j≤n

(Mi)fj

)
where (m1, . . . ,mn) maps to the element whose (i, j)th entry is mi/1− ψji(mj/1).
Then the natural map M → Mi induces an isomorphism Mfi

→ Mi. Moreover
ψij(m/1) = m/1 for all m ∈M (with obvious notation).

Proof. To show that Mf1 → M1 is an isomorphism, it suffices to show that its
localization at every prime p′ of Rf1 is an isomorphism, see Lemma 23.1. Write
p′ = pRf1 for some prime p ⊂ R, f1 ̸∈ p, see Lemma 17.6. Since localization is
exact (Proposition 9.12), we see that

(Mf1)p′ = Mp

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

((Mi)fj )p
)

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

(Mi,p)fj

)
Here we also used Proposition 9.11. Since f1 is a unit in Rp, this reduces us to the
case where f1 = 1 by replacing R by Rp, fi by the image of fi in Rp, M by Mp,
and f1 by 1.

Assume f1 = 1. Then ψ1j : (M1)fj
→Mj is an isomorphism for j = 2, . . . , n. If we

use these isomorphisms to identify Mj = (M1)fj , then we see that ψij : (M1)fifj →
(M1)fifj is the canonical identification. Thus the complex

0→M1 →
⊕

1≤i≤n
(M1)fi −→

⊕
1≤i,j≤n

(M1)fifj
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is exact by Lemma 24.1. Thus the first map identifies M1 with M in this case and
everything is clear. □

25. Zerodivisors and total rings of fractions

02LV The local ring at a minimal prime has the following properties.

Lemma 25.1.00EU Let p be a minimal prime of a ring R. Every element of the
maximal ideal of Rp is nilpotent. If R is reduced then Rp is a field.

Proof. If some element x of pRp is not nilpotent, then D(x) ̸= ∅, see Lemma 17.2.
This contradicts the minimality of p. If R is reduced, then pRp = 0 and hence it is
a field. □

Lemma 25.2.00EW Let R be a reduced ring. Then
(1) R is a subring of a product of fields,
(2) R→

∏
p minimal Rp is an embedding into a product of fields,

(3)
⋃

p minimal p is the set of zerodivisors of R.

Proof. By Lemma 25.1 each of the rings Rp is a field. In particular, the kernel of
the ring map R→ Rp is p. By Lemma 17.2 we have

⋂
p p = (0). Hence (2) and (1)

are true. If xy = 0 and y ̸= 0, then y ̸∈ p for some minimal prime p. Hence x ∈ p.
Thus every zerodivisor of R is contained in

⋃
p minimal p. Conversely, suppose that

x ∈ p for some minimal prime p. Then x maps to zero in Rp, hence there exists
y ∈ R, y ̸∈ p such that xy = 0. In other words, x is a zerodivisor. This finishes the
proof of (3) and the lemma. □

The total ring of fractions Q(R) of a ring R was introduced in Example 9.8.

Lemma 25.3.02LW Let R be a ring. Let S ⊂ R be a multiplicative subset consisting of
nonzerodivisors. Then Q(R) ∼= Q(S−1R). In particular Q(R) ∼= Q(Q(R)).

Proof. If x ∈ S−1R is a nonzerodivisor, and x = r/f for some r ∈ R, f ∈ S, then
r is a nonzerodivisor in R. Whence the lemma. □

We can apply glueing results to prove something about total rings of fractions Q(R)
which we introduced in Example 9.8.

Lemma 25.4.02LX Let R be a ring. Assume that R has finitely many minimal primes
q1, . . . , qt, and that q1 ∪ . . . ∪ qt is the set of zerodivisors of R. Then the total ring
of fractions Q(R) is equal to Rq1 × . . .×Rqt

.

Proof. There are natural maps Q(R)→ Rqi
since any nonzerodivisor is contained

in R\qi. Hence a natural map Q(R)→ Rq1× . . .×Rqt . For any nonminimal prime
p ⊂ R we see that p ̸⊂ q1∪. . .∪qt by Lemma 15.2. Hence Spec(Q(R)) = {q1, . . . , qt}
(as subsets of Spec(R), see Lemma 17.5). Therefore Spec(Q(R)) is a finite discrete
set and it follows that Q(R) = A1 × . . . × At with Spec(Ai) = {qi}, see Lemma
24.3. Moreover Ai is a local ring, which is a localization of R. Hence Ai ∼= Rqi

. □

26. Irreducible components of spectra

00ER We show that irreducible components of the spectrum of a ring correspond to the
minimal primes in the ring.

Lemma 26.1.00ES Let R be a ring.
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(1) For a prime p ⊂ R the closure of {p} in the Zariski topology is V (p). In a
formula {p} = V (p).

(2) The irreducible closed subsets of Spec(R) are exactly the subsets V (p), with
p ⊂ R a prime.

(3) The irreducible components (see Topology, Definition 8.1) of Spec(R) are
exactly the subsets V (p), with p ⊂ R a minimal prime.

Proof. Note that if p ∈ V (I), then I ⊂ p. Hence, clearly {p} = V (p). In particular
V (p) is the closure of a singleton and hence irreducible. The second assertion implies
the third. To show the second, let V (I) ⊂ Spec(R) with I a radical ideal. If I is not
prime, then choose a, b ∈ R, a, b ̸∈ I with ab ∈ I. In this case V (I, a) ∪ V (I, b) =
V (I), but neither V (I, b) = V (I) nor V (I, a) = V (I), by Lemma 17.2. Hence V (I)
is not irreducible. □

In other words, this lemma shows that every irreducible closed subset of Spec(R) is
of the form V (p) for some prime p. Since V (p) = {p} we see that each irreducible
closed subset has a unique generic point, see Topology, Definition 8.6. In particular,
Spec(R) is a sober topological space. We record this fact in the following lemma.

Lemma 26.2.090M The spectrum of a ring is a spectral space, see Topology, Definition
23.1.

Proof. Formally this follows from Lemma 26.1 and Lemma 17.9. See also discus-
sion above. □

Lemma 26.3.00ET Let R be a ring. Let p ⊂ R be a prime.
(1) the set of irreducible closed subsets of Spec(R) passing through p is in one-

to-one correspondence with primes q ⊂ Rp.
(2) The set of irreducible components of Spec(R) passing through p is in one-

to-one correspondence with minimal primes q ⊂ Rp.

Proof. Follows from Lemma 26.1 and the description of Spec(Rp) in Lemma 17.5
which shows that Spec(Rp) corresponds to primes q in R with q ⊂ p. □

Lemma 26.4.00EV Let R be a ring. Let p be a minimal prime of R. Let W ⊂ Spec(R)
be a quasi-compact open not containing the point p. Then there exists an f ∈ R,
f ̸∈ p such that D(f) ∩W = ∅.

Proof. Since W is quasi-compact we may write it as a finite union of standard
affine opens D(gi), i = 1, . . . , n. Since p ̸∈ W we have gi ∈ p for all i. By Lemma
25.1 each gi is nilpotent in Rp. Hence we can find an f ∈ R, f ̸∈ p such that for all
i we have fgni

i = 0 for some ni > 0. Then D(f) works. □

Lemma 26.5.04MG Let R be a ring. Let X = Spec(R) as a topological space. The
following are equivalent

(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected.
(4) every quasi-compact open of X is closed,
(5) there are no nontrivial inclusions between its prime ideals,
(6) every prime ideal is a maximal ideal,
(7) every prime ideal is minimal,

https://stacks.math.columbia.edu/tag/090M
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(8) every standard open D(f) ⊂ X is closed, and
(9) add more here.

Proof. First proof. It is clear that (5), (6), and (7) are equivalent. It is clear that
(4) and (8) are equivalent as every quasi-compact open is a finite union of standard
opens. The implication (7)⇒ (4) follows from Lemma 26.4. Assume (4) holds. Let
p, p′ be distinct primes of R. Choose an f ∈ p′, f ̸∈ p (if needed switch p with p′).
Then p′ ̸∈ D(f) and p ∈ D(f). By (4) the open D(f) is also closed. Hence p and
p′ are in disjoint open neighbourhoods whose union is X. Thus X is Hausdorff and
totally disconnected. Thus (4) ⇒ (2) and (3). If (3) holds then there cannot be
any specializations between points of Spec(R) and we see that (5) holds. If X is
Hausdorff then every point is closed, so (2) implies (6). Thus (2), (3), (4), (5), (6),
(7) and (8) are equivalent. Any profinite space is Hausdorff, so (1) implies (2). If
X satisfies (2) and (3), then X (being quasi-compact by Lemma 17.8) is profinite
by Topology, Lemma 22.2.

Second proof. Besides the equivalence of (4) and (8) this follows from Lemma 26.2
and purely topological facts, see Topology, Lemma 23.8. □

27. Examples of spectra of rings

00EX In this section we put some examples of spectra.

Example 27.1.00EY In this example we describe X = Spec(Z[x]/(x2 − 4)). Let p be
an arbitrary prime in X. Let ϕ : Z→ Z[x]/(x2−4) be the natural ring map. Then,
ϕ−1(p) is a prime in Z. If ϕ−1(p) = (2), then since p contains 2, it corresponds to
a prime ideal in Z[x]/(x2 − 4, 2) ∼= (Z/2Z)[x]/(x2) via the map Z[x]/(x2 − 4) →
Z[x]/(x2− 4, 2). Any prime in (Z/2Z)[x]/(x2) corresponds to a prime in (Z/2Z)[x]
containing (x2). Such primes will then contain x. Since (Z/2Z) ∼= (Z/2Z)[x]/(x)
is a field, (x) is a maximal ideal. Since any prime contains (x) and (x) is maximal,
the ring contains only one prime (x). Thus, in this case, p = (2, x). Now, if
ϕ−1(p) = (q) for q > 2, then since p contains q, it corresponds to a prime ideal in
Z[x]/(x2−4, q) ∼= (Z/qZ)[x]/(x2−4) via the map Z[x]/(x2−4)→ Z[x]/(x2−4, q).
Any prime in (Z/qZ)[x]/(x2 − 4) corresponds to a prime in (Z/qZ)[x] containing
(x2 − 4) = (x− 2)(x+ 2). Hence, these primes must contain either x− 2 or x+ 2.
Since (Z/qZ)[x] is a PID, all nonzero primes are maximal, and so there are precisely
2 primes in (Z/qZ)[x] containing (x − 2)(x + 2), namely (x − 2) and (x + 2). In
conclusion, there exist two primes (q, x − 2) and (q, x + 2) since 2 ̸= −2 ∈ Z/(q).
Finally, we treat the case where ϕ−1(p) = (0). Notice that p corresponds to a
prime ideal in Z[x] that contains (x2 − 4) = (x − 2)(x + 2). Hence, p contains
either (x − 2) or (x + 2). Hence, p corresponds to a prime in Z[x]/(x − 2) or one
in Z[x]/(x+ 2) that intersects Z only at 0, by assumption. Since Z[x]/(x− 2) ∼= Z
and Z[x]/(x+2) ∼= Z, this means that p must correspond to 0 in one of these rings.
Thus, p = (x− 2) or p = (x+ 2) in the original ring.

Example 27.2.00EZ In this example we describe X = Spec(Z[x]). Fix p ∈ X. Let
ϕ : Z → Z[x] and notice that ϕ−1(p) ∈ Spec(Z). If ϕ−1(p) = (q) for q a prime
number q > 0, then p corresponds to a prime in (Z/(q))[x], which must be generated
by a polynomial that is irreducible in (Z/(q))[x]. If we choose a representative
of this polynomial with minimal degree, then it will also be irreducible in Z[x].
Hence, in this case p = (q, fq) where fq is an irreducible polynomial in Z[x] that
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is irreducible when viewed in (Z/(q)[x]). Now, assume that ϕ−1(p) = (0). In this
case, p must be generated by nonconstant polynomials which, since p is prime, may
be assumed to be irreducible in Z[x]. By Gauss’ lemma, these polynomials are also
irreducible in Q[x]. Since Q[x] is a Euclidean domain, if there are at least two
distinct irreducibles f, g generating p, then 1 = af + bg for a, b ∈ Q[x]. Multiplying
through by a common denominator, we see that m = āf + b̄g for ā, b̄ ∈ Z[x] and
nonzero m ∈ Z. This is a contradiction. Hence, p is generated by one irreducible
polynomial in Z[x].

Example 27.3.00F0 In this example we describe X = Spec(k[x, y]) when k is an arbi-
trary field. Clearly (0) is prime, and any principal ideal generated by an irreducible
polynomial will also be a prime since k[x, y] is a unique factorization domain. Now
assume p is an element of X that is not principal. Since k[x, y] is a Noetherian UFD,
the prime ideal p can be generated by a finite number of irreducible polynomials
(f1, . . . , fn). Now, I claim that if f, g are irreducible polynomials in k[x, y] that are
not associates, then (f, g) ∩ k[x] ̸= 0. To do this, it is enough to show that f and
g are relatively prime when viewed in k(x)[y]. In this case, k(x)[y] is a Euclidean
domain, so by applying the Euclidean algorithm and clearing denominators, we
obtain p = af + bg for p, a, b ∈ k[x]. Thus, assume this is not the case, that is,
that some nonunit h ∈ k(x)[y] divides both f and g. Then, by Gauss’s lemma, for
some a, b ∈ k(x) we have ah|f and bh|g for ah, bh ∈ k[x]. By irreducibility, ah = f
and bh = g (since h /∈ k(x)). So, back in k(x)[y], f, g are associates, as a

b g = f .
Since k(x) is the fraction field of k[x], we can write g = r

sf for elements r, s ∈ k[x]
sharing no common factors. This implies that sg = rf in k[x, y] and so s must
divide f since k[x, y] is a UFD. Hence, s = 1 or s = f . If s = f , then r = g,
implying f, g ∈ k[x] and thus must be units in k(x) and relatively prime in k(x)[y],
contradicting our hypothesis. If s = 1, then g = rf , another contradiction. Thus,
we must have f, g relatively prime in k(x)[y], a Euclidean domain. Thus, we have
reduced to the case p contains some irreducible polynomial p ∈ k[x] ⊂ k[x, y]. By
the above, p corresponds to a prime in the ring k[x, y]/(p) = k(α)[y], where α is an
element algebraic over k with minimum polynomial p. This is a PID, and so any
prime ideal corresponds to (0) or an irreducible polynomial in k(α)[y]. Thus, p is
of the form (p) or (p, f) where f is a polynomial in k[x, y] that is irreducible in the
quotient k[x, y]/(p).

Example 27.4.00F1 Consider the ring

R = {f ∈ Q[z] with f(0) = f(1)}.

Consider the map
φ : Q[A,B]→ R

defined by φ(A) = z2− z and φ(B) = z3− z2. It is easily checked that (A3−B2 +
AB) ⊂ Ker(φ) and that A3 −B2 +AB is irreducible. Assume that φ is surjective;
then since R is an integral domain (it is a subring of an integral domain), Ker(φ)
must be a prime ideal of Q[A,B]. The prime ideals which contain (A3−B2 +AB)
are (A3−B2 +AB) itself and any maximal ideal (f, g) with f, g ∈ Q[A,B] such that
f is irreducible mod g. But R is not a field, so the kernel must be (A3−B2 +AB);
hence φ gives an isomorphism R→ Q[A,B]/(A3 −B2 +AB).

To see that φ is surjective, we must express any f ∈ R as a Q-coefficient polynomial
in A(z) = z2 − z and B(z) = z3 − z2. Note the relation zA(z) = B(z). Let
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a = f(0) = f(1). Then z(z − 1) must divide f(z) − a, so we can write f(z) =
z(z − 1)g(z) + a = A(z)g(z) + a. If deg(g) < 2, then h(z) = c1z + c0 and f(z) =
A(z)(c1z + c0) + a = c1B(z) + c0A(z) + a, so we are done. If deg(g) ≥ 2, then
by the polynomial division algorithm, we can write g(z) = A(z)h(z) + b1z + b0
(deg(h) ≤ deg(g) − 2), so f(z) = A(z)2h(z) + b1B(z) + b0A(z). Applying division
to h(z) and iterating, we obtain an expression for f(z) as a polynomial in A(z) and
B(z); hence φ is surjective.
Now let a ∈ Q, a ̸= 0, 1

2 , 1 and consider

Ra = {f ∈ Q[z, 1
z − a

] with f(0) = f(1)}.

This is a finitely generated Q-algebra as well: it is easy to check that the functions
z2 − z, z3 − z, and a2−a

z−a + z generate Ra as an Q-algebra. We have the following
inclusions:

R ⊂ Ra ⊂ Q[z, 1
z − a

], R ⊂ Q[z] ⊂ Q[z, 1
z − a

].

Recall (Lemma 17.5) that for a ring T and a multiplicative subset S ⊂ T , the
ring map T → S−1T induces a map on spectra Spec(S−1T )→ Spec(T ) which is a
homeomorphism onto the subset

{p ∈ Spec(T ) | S ∩ p = ∅} ⊂ Spec(T ).
When S = {1, f, f2, . . .} for some f ∈ T , this is the open set D(f) ⊂ T . We now
verify a corresponding property for the ring map R → Ra: we will show that the
map θ : Spec(Ra) → Spec(R) induced by inclusion R ⊂ Ra is a homeomorphism
onto an open subset of Spec(R) by verifying that θ is an injective local homeomor-
phism. We do so with respect to an open cover of Spec(Ra) by two distinguished
opens, as we now describe. For any r ∈ Q, let evr : R→ Q be the homomorphism
given by evaluation at r. Note that for r = 0 and r = 1−a, this can be extended to
a homomorphism ev′

r : Ra → Q (the latter because 1
z−a is well-defined at z = 1−a,

since a ̸= 1
2 ). However, eva does not extend to Ra. Write mr = Ker(evr). We have

m0 = (z2 − z, z3 − z),
ma = ((z − 1 + a)(z − a), (z2 − 1 + a)(z − a)), and
m1−a = ((z − 1 + a)(z − a), (z − 1 + a)(z2 − a)).

To verify this, note that the right-hand sides are clearly contained in the left-hand
sides. Then check that the right-hand sides are maximal ideals by writing the
generators in terms of A and B, and viewing R as Q[A,B]/(A3 −B2 +AB). Note
that ma is not in the image of θ: we have

(z2 − z)2(z − a)
(
a2 − a
z − a

+ z

)
= (z2 − z)2(a2 − a) + (z2 − z)2(z − a)z

The left hand side is in maRa because (z2 − z)(z − a) is in ma and because (z2 −
z)(a

2−a
z−a + z) is in Ra. Similarly the element (z2 − z)2(z − a)z is in maRa because

(z2 − z) is in Ra and (z2 − z)(z − a) is in ma. As a ̸∈ {0, 1} we conclude that
(z2 − z)2 ∈ maRa. Hence no ideal I of Ra can satisfy I ∩ R = ma, as such an I
would have to contain (z2 − z)2, which is in R but not in ma. The distinguished
open set D((z − 1 + a)(z − a)) ⊂ Spec(R) is equal to the complement of the closed
set {ma,m1−a}. Then check that R(z−1+a)(z−a) = (Ra)(z−1+a)(z−a); calling this
localized ring R′, then, it follows that the map R → R′ factors as R → Ra → R′.
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By Lemma 17.5, then, these maps express Spec(R′) ⊂ Spec(Ra) and Spec(R′) ⊂
Spec(R) as open subsets; hence θ : Spec(Ra)→ Spec(R), when restricted to D((z−
1 + a)(z − a)), is a homeomorphism onto an open subset. Similarly, θ restricted to
D((z2 + z + 2a− 2)(z − a)) ⊂ Spec(Ra) is a homeomorphism onto the open subset
D((z2 + z + 2a − 2)(z − a)) ⊂ Spec(R). Depending on whether z2 + z + 2a − 2 is
irreducible or not over Q, this former distinguished open set has complement equal
to one or two closed points along with the closed point ma. Furthermore, the ideal
in Ra generated by the elements (z2 + z + 2a − a)(z − a) and (z − 1 + a)(z − a)
is all of Ra, so these two distinguished open sets cover Spec(Ra). Hence in order
to show that θ is a homeomorphism onto Spec(R)− {ma}, it suffices to show that
these one or two points can never equal m1−a. And this is indeed the case, since
1− a is a root of z2 + z+ 2a− 2 if and only if a = 0 or a = 1, both of which do not
occur.
Despite this homeomorphism which mimics the behavior of a localization at an
element of R, while Q[z, 1

z−a ] is the localization of Q[z] at the maximal ideal (z−a),
the ring Ra is not a localization of R: Any localization S−1R results in more units
than the original ring R. The units of R are Q×, the units of Q. In fact, it is easy
to see that the units of Ra are Q∗. Namely, the units of Q[z, 1

z−a ] are c(z− a)n for
c ∈ Q∗ and n ∈ Z and it is clear that these are in Ra only if n = 0. Hence Ra has
no more units than R does, and thus cannot be a localization of R.
We used the fact that a ̸= 0, 1 to ensure that 1

z−a makes sense at z = 0, 1. We
used the fact that a ̸= 1/2 in a few places: (1) In order to be able to talk about
the kernel of ev1−a on Ra, which ensures that m1−a is a point of Ra (i.e., that Ra
is missing just one point of R). (2) At the end in order to conclude that (z− a)k+ℓ

can only be in R for k = ℓ = 0; indeed, if a = 1/2, then this is in R as long as k+ ℓ
is even. Hence there would indeed be more units in Ra than in R, and Ra could
possibly be a localization of R.

28. A meta-observation about prime ideals

05K7 This section is taken from the CRing project. Let R be a ring and let S ⊂ R
be a multiplicative subset. A consequence of Lemma 17.5 is that an ideal I ⊂ R
maximal with respect to the property of not intersecting S is prime. The reason
is that I = R ∩ m for some maximal ideal m of the ring S−1R. It turns out that
for many properties of ideals, the maximal ones are prime. A general method of
seeing this was developed in [LR08]. In this section, we digress to explain this
phenomenon.
Let R be a ring. If I is an ideal of R and a ∈ R, we define

(I : a) = {x ∈ R | xa ∈ I} .
More generally, if J ⊂ R is an ideal, we define

(I : J) = {x ∈ R | xJ ⊂ I} .

Lemma 28.1.05K8 Let R be a ring. For a principal ideal J ⊂ R, and for any ideal
I ⊂ J we have I = J(I : J).

Proof. Say J = (a). Then (I : J) = (I : a). Since I ⊂ J we see that any y ∈ I
is of the form y = xa for some x ∈ (I : a). Hence I ⊂ J(I : J). Conversely, if
x ∈ (I : a), then xJ = (xa) ⊂ I, which proves the other inclusion. □

https://stacks.math.columbia.edu/tag/05K8
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Let F be a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements in the complement of F are prime.

Definition 28.2.05K9 Let R be a ring. Let F be a set of ideals of R. We say F is
an Oka family if R ∈ F and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F for
some a ∈ R, then I ∈ F .

Let us give some examples of Oka families. The first example is the basic example
discussed in the introduction to this section.

Example 28.3.05KA Let R be a ring and let S be a multiplicative subset of R. We
claim that F = {I ⊂ R | I ∩ S ̸= ∅} is an Oka family. Namely, suppose that
(I : a), (I, a) ∈ F for some a ∈ R. Then pick s ∈ (I, a) ∩ S and s′ ∈ (I : a) ∩ S.
Then ss′ ∈ I ∩ S and hence I ∈ F . Thus F is an Oka family.

Example 28.4.05KB Let R be a ring, I ⊂ R an ideal, and a ∈ R. If (I : a) is generated
by a1, . . . , an and (I, a) is generated by a, b1, . . . , bm with b1, . . . , bm ∈ I, then I is
generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I, then x ∈ (I, a)
is a linear combination of a, b1, . . . , bm, but the coefficient of a must lie in (I : a).
As a result, we deduce that the family of finitely generated ideals is an Oka family.

Example 28.5.05KC Let us show that the family of principal ideals of a ring R is an
Oka family. Indeed, suppose I ⊂ R is an ideal, a ∈ R, and (I, a) and (I : a) are
principal. Note that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is
principal and (I : J) is too. By Lemma 28.1 we have I = J(I : J). Thus we find in
our situation that since J = (I, a) and (I : J) are principal, I is principal.

Example 28.6.05KD Let R be a ring. Let κ be an infinite cardinal. The family of ideals
which can be generated by at most κ elements is an Oka family. The argument is
analogous to the argument in Example 28.4 and is omitted.

Example 28.7.0G1N Let A be a ring, I ⊂ A an ideal, and a ∈ A an element. There is
a short exact sequence 0→ A/(I : a)→ A/I → A/(I, a)→ 0 where the first arrow
is given by multiplication by a. Thus if P is a property of A-modules that is stable
under extensions and holds for 0, then the family of ideals I such that A/I has P
is an Oka family.

Proposition 28.8.05KE If F is an Oka family of ideals, then any maximal element of
the complement of F is prime.

Proof. Suppose I ̸∈ F is maximal with respect to not being in F but I is not prime.
Note that I ̸= R because R ∈ F . Since I is not prime we can find a, b ∈ R − I
with ab ∈ I. It follows that (I, a) ̸= I and (I : a) contains b ̸∈ I so also (I : a) ̸= I.
Thus (I : a), (I, a) both strictly contain I, so they must belong to F . By the Oka
condition, we have I ∈ F , a contradiction. □

At this point we are able to turn most of the examples above into a lemma about
prime ideals in a ring.

Lemma 28.9.05KF Let R be a ring. Let S be a multiplicative subset of R. An ideal
I ⊂ R which is maximal with respect to the property that I ∩ S = ∅ is prime.

Proof. This is the example discussed in the introduction to this section. For an
alternative proof, combine Example 28.3 with Proposition 28.8. □
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Lemma 28.10.05KG Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being finitely generated is prime.
(2) If every prime ideal of R is finitely generated, then every ideal of R is

finitely generated2.

Proof. The first assertion is an immediate consequence of Example 28.4 and Propo-
sition 28.8. For the second, suppose that there exists an ideal I ⊂ R which is not
finitely generated. The union of a totally ordered chain {Iα} of ideals that are not
finitely generated is not finitely generated; indeed, if I =

⋃
Iα were generated by

a1, . . . , an, then all the generators would belong to some Iα and would consequently
generate it. By Zorn’s lemma, there is an ideal maximal with respect to being not
finitely generated. By the first part this ideal is prime. □

Lemma 28.11.05KH Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being principal is prime.
(2) If every prime ideal of R is principal, then every ideal of R is principal.

Proof. The first part follows from Example 28.5 and Proposition 28.8. For the
second, suppose that there exists an ideal I ⊂ R which is not principal. The union
of a totally ordered chain {Iα} of ideals that not principal is not principal; indeed,
if I =

⋃
Iα were generated by a, then a would belong to some Iα and a would

generate it. By Zorn’s lemma, there is an ideal maximal with respect to not being
principal. This ideal is necessarily prime by the first part. □

Lemma 28.12.05KI Let R be a ring.
(1) An ideal maximal among the ideals which do not contain a nonzerodivisor

is prime.
(2) If R is nonzero and every nonzero prime ideal in R contains a nonzerodi-

visor, then R is a domain.

Proof. Consider the set S of nonzerodivisors. It is a multiplicative subset of R.
Hence any ideal maximal with respect to not intersecting S is prime, see Lemma
28.9. Thus, if every nonzero prime ideal contains a nonzerodivisor, then (0) is
prime, i.e., R is a domain. □

Remark 28.13.05KJ Let R be a ring. Let κ be an infinite cardinal. By applying
Example 28.6 and Proposition 28.8 we see that any ideal maximal with respect to
the property of not being generated by κ elements is prime. This result is not so
useful because there exists a ring for which every prime ideal of R can be generated
by ℵ0 elements, but some ideal cannot. Namely, let k be a field, let T be a set
whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot
be generated by countably many elements.

Example 28.14.0G2Z Comment by Lukas
Heger of November
12, 2020.

Let R be a ring and X = Spec(R). Since closed subsets of
X correspond to radical ideas of R (Lemma 17.2) we see that X is a Noetherian
topological space if and only if we have ACC for radical ideals. This holds if and

2Later we will say that R is Noetherian.
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only if every radical ideal is the radical of a finitely generated ideal (details omitted).
Let

F = {I ⊂ R |
√
I =

√
(f1, . . . , fn) for some n and f1, . . . , fn ∈ R}.

The reader can show that F is an Oka family by using the identity
√
I =

√
(I, a)(I : a)

which holds for any ideal I ⊂ R and any element a ∈ R. On the other hand, if we
have a totally ordered chain of ideals {Iα} none of which are in F , then the union I =⋃
Iα cannot be in F either. Otherwise

√
I =

√
(f1, . . . , fn), then fei ∈ I for some e,

then fei ∈ Iα for some α independent of i, then
√
Iα =

√
(f1, . . . , fn), contradiction.

Thus if the set of ideals not in F is nonempty, then it has maximal elements and
exactly as in Lemma 28.10 we conclude that X is a Noetherian topological space if
and only if every prime ideal of R is equal to

√
(f1, . . . , fn) for some f1, . . . , fn ∈ R.

If we ever need this result we will carefully state and prove this result here.

29. Images of ring maps of finite presentation

00F5 In this section we prove some results on the topology of maps Spec(S)→ Spec(R)
induced by ring maps R → S, mainly Chevalley’s Theorem. In order to do this
we will use the notions of constructible sets, quasi-compact sets, retrocompact sets,
and so on which are defined in Topology, Section 15.

Lemma 29.1.00F6 Let U ⊂ Spec(R) be open. The following are equivalent:
(1) U is retrocompact in Spec(R),
(2) U is quasi-compact,
(3) U is a finite union of standard opens, and
(4) there exists a finitely generated ideal I ⊂ R such that X \ V (I) = U .

Proof. We have (1)⇒ (2) because Spec(R) is quasi-compact, see Lemma 17.8. We
have (2)⇒ (3) because standard opens form a basis for the topology. Proof of (3)⇒
(1). Let U =

⋃
i=1...nD(fi). To show that U is retrocompact in Spec(R) it suffices

to show that U ∩ V is quasi-compact for any quasi-compact open V of Spec(R).
Write V =

⋃
j=1...mD(gj) which is possible by (2) ⇒ (3). Each standard open is

homeomorphic to the spectrum of a ring and hence quasi-compact, see Lemmas
17.6 and 17.8. Thus U ∩V = (

⋃
i=1...nD(fi))∩ (

⋃
j=1...mD(gj)) =

⋃
i,j D(figj) is a

finite union of quasi-compact opens hence quasi-compact. To finish the proof note
that (4) is equivalent to (3) by Lemma 17.2. □

Lemma 29.2.00F7 Let φ : R → S be a ring map. The induced continuous map
f : Spec(S) → Spec(R) is quasi-compact. For any constructible set E ⊂ Spec(R)
the inverse image f−1(E) is constructible in Spec(S).

Proof. We first show that the inverse image of any quasi-compact open U ⊂
Spec(R) is quasi-compact. By Lemma 29.1 we may write U as a finite open of
standard opens. Thus by Lemma 17.4 we see that f−1(U) is a finite union of stan-
dard opens. Hence f−1(U) is quasi-compact by Lemma 29.1 again. The second
assertion now follows from Topology, Lemma 15.3. □

Lemma 29.3.0G1P Let R be a ring. A subset of Spec(R) is constructible if and only if
it can be written as a finite union of subsets of the form D(f) ∩ V (g1, . . . , gm) for
f, g1, . . . , gm ∈ R.
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Proof. By Lemma 29.1 the subset D(f) and the complement of V (g1, . . . , gm) are
retro-compact open. Hence D(f) ∩ V (g1, . . . , gm) is a constructible subset and so
is any finite union of such. Conversely, let T ⊂ Spec(R) be constructible. By
Topology, Definition 15.1, we may assume that T = U ∩V c, where U, V ⊂ Spec(R)
are retrocompact open. By Lemma 29.1 we may write U =

⋃
i=1,...,nD(fi) and

V =
⋃
j=1,...,mD(gj). Then T =

⋃
i=1,...,n

(
D(fi) ∩ V (g1, . . . , gm)

)
. □

Lemma 29.4.00F8 Let R be a ring and let T ⊂ Spec(R) be constructible. Then there
exists a ring map R→ S of finite presentation such that T is the image of Spec(S)
in Spec(R).

Proof. The spectrum of a finite product of rings is the disjoint union of the spectra,
see Lemma 21.2. Hence if T = T1 ∪ T2 and the result holds for T1 and T2, then the
result holds for T . By Lemma 29.3 we may assume that T = D(f)∩V (g1, . . . , gm).
In this case T is the image of the map Spec((R/(g1, . . . , gm))f ) → Spec(R), see
Lemmas 17.6 and 17.7. □

Lemma 29.5.00F9 Let R be a ring. Let f be an element of R. Let S = Rf . Then the
image of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. We repeatedly use Lemma 29.1 without mention. Let U, V be quasi-
compact open in Spec(S). We will show that the image of U ∩ V c is constructible.
Under the identification Spec(S) = D(f) of Lemma 17.6 the sets U, V correspond
to quasi-compact opens U ′, V ′ of Spec(R). Hence it suffices to show that U ′∩ (V ′)c
is constructible in Spec(R) which is clear. □

Lemma 29.6.00FA Let R be a ring. Let I be a finitely generated ideal of R. Let
S = R/I. Then the image of a constructible subset of Spec(S) is constructible in
Spec(R).

Proof. If I = (f1, . . . , fm), then we see that V (I) is the complement of
⋃
D(fi), see

Lemma 17.2. Hence it is constructible, by Lemma 29.1. Denote the map R → S
by f 7→ f . We have to show that if U, V are retrocompact opens of Spec(S),
then the image of U ∩ V c in Spec(R) is constructible. By Lemma 29.1 we may
write U =

⋃
D(gi). Setting U =

⋃
D(gi) we see U has image U ∩ V (I) which

is constructible in Spec(R). Similarly the image of V equals V ∩ V (I) for some
retrocompact open V of Spec(R). Hence the image of U ∩V c equals U ∩V (I)∩V c
as desired. □

Lemma 29.7.00FB Let R be a ring. The map Spec(R[x])→ Spec(R) is open, and the
image of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard open D(f), f ∈ R[x] is
quasi-compact open. The image of D(f) is the image of Spec(R[x]f ) → Spec(R).
Let p ⊂ R be a prime ideal. Let f be the image of f in κ(p)[x]. Recall, see Lemma
18.6, that p is in the image if and only if R[x]f ⊗R κ(p) = κ(p)[x]f is not the zero
ring. This is exactly the condition that f does not map to zero in κ(p)[x], in other
words, that some coefficient of f is not in p. Hence we see: if f = adx

d + . . .+ a0,
then the image of D(f) is D(ad) ∪ . . . ∪D(a0). □

We prove a property of characteristic polynomials which will be used below.
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Lemma 29.8.00FC Let R→ A be a ring homomorphism. Assume A ∼= R⊕n as an R-
module. Let f ∈ A. The multiplication map mf : A→ A is R-linear and hence has
a characteristic polynomial P (T ) = Tn+rn−1T

n−1+. . .+r0 ∈ R[T ]. For any prime
p ∈ Spec(R), f acts nilpotently on A⊗R κ(p) if and only if p ∈ V (r0, . . . , rn−1).

Proof. This follows quite easily once we prove that the characteristic polynomial
P̄ (T ) ∈ κ(p)[T ] of the multiplication map mf̄ : A ⊗R κ(p) → A ⊗R κ(p) which
multiplies elements of A⊗Rκ(p) by f̄ , the image of f viewed in κ(p), is just the image
of P (T ) in κ(p)[T ]. Let (aij) be the matrix of the map mf with entries in R, using
a basis e1, . . . , en of A as an R-module. Then, A⊗R κ(p) ∼= (R⊗R κ(p))⊕n = κ(p)n,
which is an n-dimensional vector space over κ(p) with basis e1⊗ 1, . . . , en⊗ 1. The
image f̄ = f ⊗ 1, and so the multiplication map mf̄ has matrix (aij ⊗ 1). Thus,
the characteristic polynomial is precisely the image of P (T ).

From linear algebra, we know that a linear transformation acts nilpotently on an n-
dimensional vector space if and only if the characteristic polynomial is Tn (since the
characteristic polynomial divides some power of the minimal polynomial). Hence,
f acts nilpotently on A⊗R κ(p) if and only if P̄ (T ) = Tn. This occurs if and only
if ri ∈ p for all 0 ≤ i ≤ n− 1, that is when p ∈ V (r0, . . . , rn−1). □

Lemma 29.9.00FD Let R be a ring. Let f, g ∈ R[x] be polynomials. Assume the leading
coefficient of g is a unit of R. There exists elements ri ∈ R, i = 1 . . . , n such that
the image of D(f) ∩ V (g) in Spec(R) is

⋃
i=1,...,nD(ri).

Proof. Write g = uxd + ad−1x
d−1 + . . . + a0, where d is the degree of g, and

hence u ∈ R∗. Consider the ring A = R[x]/(g). It is, as an R-module, finite
free with basis the images of 1, x, . . . , xd−1. Consider multiplication by (the image
of) f on A. This is an R-module map. Hence we can let P (T ) ∈ R[T ] be the
characteristic polynomial of this map. Write P (T ) = T d + rd−1T

d−1 + . . .+ r0. We
claim that r0, . . . , rd−1 have the desired property. We will use below the property
of characteristic polynomials that

p ∈ V (r0, . . . , rd−1)⇔ multiplication by f is nilpotent on A⊗R κ(p).

This was proved in Lemma 29.8.

Suppose q ∈ D(f) ∩ V (g), and let p = q ∩ R. Then there is a nonzero map
A ⊗R κ(p) → κ(q) which is compatible with multiplication by f . And f acts as a
unit on κ(q). Thus we conclude p ̸∈ V (r0, . . . , rd−1).

On the other hand, suppose that ri ̸∈ p for some prime p of R and some 0 ≤ i ≤ d−1.
Then multiplication by f is not nilpotent on the algebra A ⊗R κ(p). Hence there
exists a prime ideal q ⊂ A ⊗R κ(p) not containing the image of f . The inverse
image of q in R[x] is an element of D(f) ∩ V (g) mapping to p. □

Theorem 29.10 (Chevalley’s Theorem).00FE Suppose that R→ S is of finite presen-
tation. The image of a constructible subset of Spec(S) in Spec(R) is constructible.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). We may factor R → S as R →
R[x1] → R[x1, x2] → . . . → R[x1, . . . , xn−1] → S. Hence we may assume that
S = R[x]/(f1, . . . , fm). In this case we factor the map as R → R[x] → S, and by
Lemma 29.6 we reduce to the case S = R[x]. By Lemma 29.1 suffices to show that
if T = (

⋃
i=1...nD(fi)) ∩ V (g1, . . . , gm) for fi, gj ∈ R[x] then the image in Spec(R)
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is constructible. Since finite unions of constructible sets are constructible, it suffices
to deal with the case n = 1, i.e., when T = D(f) ∩ V (g1, . . . , gm).

Note that if c ∈ R, then we have

Spec(R) = V (c)⨿D(c) = Spec(R/(c))⨿ Spec(Rc),

and correspondingly Spec(R[x]) = V (c)⨿D(c) = Spec(R/(c)[x])⨿Spec(Rc[x]). The
intersection of T = D(f) ∩ V (g1, . . . , gm) with each part still has the same shape,
with f , gi replaced by their images in R/(c)[x], respectively Rc[x]. Note that the
image of T in Spec(R) is the union of the image of T ∩ V (c) and T ∩D(c). Using
Lemmas 29.5 and 29.6 it suffices to prove the images of both parts are constructible
in Spec(R/(c)), respectively Spec(Rc).

Let us assume we have T = D(f) ∩ V (g1, . . . , gm) as above, with deg(g1) ≤
deg(g2) ≤ . . . ≤ deg(gm). We are going to use induction on m, and on the de-
grees of the gi. Let d1 = deg(g1), i.e., g1 = cxd1 + l.o.t with c ∈ R not zero.
Cutting R up into the pieces R/(c) and Rc we either lower the degree of g1 (and
this is covered by induction) or we reduce to the case where c is invertible. If
c is invertible, and m > 1, then write g2 = c′xd2 + l.o.t. In this case consider
g′

2 = g2 − (c′/c)xd2−d1g1. Since the ideals (g1, g2, . . . , gm) and (g1, g
′
2, g3, . . . , gm)

are equal we see that T = D(f)∩ V (g1, g
′
2, g3 . . . , gm). But here the degree of g′

2 is
strictly less than the degree of g2 and hence this case is covered by induction.

The bases case for the induction above are the cases (a) T = D(f) ∩ V (g) where
the leading coefficient of g is invertible, and (b) T = D(f). These two cases are
dealt with in Lemmas 29.9 and 29.7. □

30. More on images

00FF In this section we collect a few additional lemmas concerning the image on Spec
for ring maps. See also Section 41 for example.

Lemma 30.1.00FG Let R ⊂ S be an inclusion of domains. Assume that R → S is of
finite type. There exists a nonzero f ∈ R, and a nonzero g ∈ S such that Rf → Sfg
is of finite presentation.

Proof. By induction on the number of generators of S over R. During the proof
we may replace R by Rf and S by Sf for some nonzero f ∈ R.

Suppose that S is generated by a single element over R. Then S = R[x]/q for some
prime ideal q ⊂ R[x]. If q = (0) there is nothing to prove. If q ̸= (0), then let h ∈ q
be a nonzero element with minimal degree in x. Write h = fxd+ad−1x

d−1 +. . .+a0
with ai ∈ R and f ̸= 0. After inverting f in R and S we may assume that h is
monic. We obtain a surjective R-algebra map R[x]/(h)→ S. We have R[x]/(h) =
R⊕Rx⊕ . . .⊕Rxd−1 as an R-module and by minimality of d we see that R[x]/(h)
maps injectively into S. Thus R[x]/(h) ∼= S is finitely presented over R.

Suppose that S is generated by n > 1 elements over R. Say x1, . . . , xn ∈ S generate
S. Denote S′ ⊂ S the subring generated by x1, . . . , xn−1. By induction hypothesis
we see that there exist f ∈ R and g ∈ S′ nonzero such that Rf → S′

fg is of finite
presentation. Next we apply the induction hypothesis to S′

fg → Sfg to see that
there exist f ′ ∈ S′

fg and g′ ∈ Sfg such that S′
fgf ′ → Sfgf ′g′ is of finite presentation.

We leave it to the reader to conclude. □
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Lemma 30.2.00FH Let R → S be a finite type ring map. Denote X = Spec(R) and
Y = Spec(S). Write f : Y → X the induced map of spectra. Let E ⊂ Y = Spec(S)
be a constructible set. If a point ξ ∈ X is in f(E), then {ξ} ∩ f(E) contains an
open dense subset of {ξ}.

Proof. Let ξ ∈ X be a point of f(E). Choose a point η ∈ E mapping to ξ. Let
p ⊂ R be the prime corresponding to ξ and let q ⊂ S be the prime corresponding
to η. Consider the diagram

η //
_

��

E ∩ Y ′ //

��

Y ′ = Spec(S/q) //

��

Y

��
ξ // f(E) ∩X ′ // X ′ = Spec(R/p) // X

By Lemma 29.2 the set E∩Y ′ is constructible in Y ′. It follows that we may replace
X by X ′ and Y by Y ′. Hence we may assume that R ⊂ S is an inclusion of
domains, ξ is the generic point of X, and η is the generic point of Y . By Lemma
30.1 combined with Chevalley’s theorem (Theorem 29.10) we see that there exist
dense opens U ⊂ X, V ⊂ Y such that f(V ) ⊂ U and such that f : V → U maps
constructible sets to constructible sets. Note that E ∩ V is constructible in V , see
Topology, Lemma 15.4. Hence f(E ∩ V ) is constructible in U and contains ξ. By
Topology, Lemma 15.15 we see that f(E ∩ V ) contains a dense open U ′ ⊂ U . □

At the end of this section we present a few more results on images of maps on
Spectra that have nothing to do with constructible sets.

Lemma 30.3.00FI Let φ : R→ S be a ring map. The following are equivalent:
(1) The map Spec(S)→ Spec(R) is surjective.
(2) For any ideal I ⊂ R the inverse image of

√
IS in R is equal to

√
I.

(3) For any radical ideal I ⊂ R the inverse image of IS in R is equal to I.
(4) For every prime p of R the inverse image of pS in R is p.

In this case the same is true after any base change: Given a ring map R→ R′ the
ring map R′ → R′ ⊗R S has the equivalent properties (1), (2), (3) as well.

Proof. If J ⊂ S is an ideal, then
√
φ−1(J) = φ−1(

√
J). This shows that (2) and

(3) are equivalent. The implication (3) ⇒ (4) is immediate. If I ⊂ R is a radical
ideal, then Lemma 17.2 guarantees that I =

⋂
I⊂p p. Hence (4) ⇒ (2). By Lemma

18.6 we have p = φ−1(pS) if and only if p is in the image. Hence (1) ⇔ (4). Thus
(1), (2), (3), and (4) are equivalent.
Assume (1) holds. Let R → R′ be a ring map. Let p′ ⊂ R′ be a prime ideal lying
over the prime p of R. To see that p′ is in the image of Spec(R′ ⊗R S)→ Spec(R′)
we have to show that (R′⊗R S)⊗R′ κ(p′) is not zero, see Lemma 18.6. But we have

(R′ ⊗R S)⊗R′ κ(p′) = S ⊗R κ(p)⊗κ(p) κ(p′)
which is not zero as S ⊗R κ(p) is not zero by assumption and κ(p) → κ(p′) is an
extension of fields. □

Lemma 30.4.00FJ Let R be a domain. Let φ : R → S be a ring map. The following
are equivalent:

(1) The ring map R→ S is injective.
(2) The image Spec(S)→ Spec(R) contains a dense set of points.
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(3) There exists a prime ideal q ⊂ S whose inverse image in R is (0).

Proof. Let K be the field of fractions of the domain R. Assume that R → S is
injective. Since localization is exact we see that K → S ⊗R K is injective. Hence
there is a prime mapping to (0) by Lemma 18.6.
Note that (0) is dense in Spec(R), so that the last condition implies the second.
Suppose the second condition holds. Let f ∈ R, f ̸= 0. As R is a domain we see
that V (f) is a proper closed subset of R. By assumption there exists a prime q of
S such that φ(f) ̸∈ q. Hence φ(f) ̸= 0. Hence R→ S is injective. □

Lemma 30.5.00FK Let R ⊂ S be an injective ring map. Then Spec(S) → Spec(R)
hits all the minimal primes.

Proof. Let p ⊂ R be a minimal prime. In this case Rp has a unique prime ideal.
Hence it suffices to show that Sp is not zero. And this follows from the fact that
localization is exact, see Proposition 9.12. □

Lemma 30.6.00FL Let R→ S be a ring map. The following are equivalent:
(1) The kernel of R→ S consists of nilpotent elements.
(2) The minimal primes of R are in the image of Spec(S)→ Spec(R).
(3) The image of Spec(S)→ Spec(R) is dense in Spec(R).

Proof. Let I = Ker(R → S). Note that
√

(0) =
⋂

q⊂S q, see Lemma 17.2. Hence√
I =

⋂
q⊂S R ∩ q. Thus V (I) = V (

√
I) is the closure of the image of Spec(S) →

Spec(R). This shows that (1) is equivalent to (3). It is clear that (2) implies (3).
Finally, assume (1). We may replace R by R/I and S by S/IS without affecting
the topology of the spectra and the map. Hence the implication (1) ⇒ (2) follows
from Lemma 30.5. □

Lemma 30.7.0CAN Let R → S be a ring map. If a minimal prime p ⊂ R is in the
image of Spec(S)→ Spec(R), then it is the image of a minimal prime.

Proof. Say p = q∩R. Then choose a minimal prime r ⊂ S with r ⊂ q, see Lemma
17.2. By minimality of p we see that p = r ∩R. □

31. Noetherian rings

00FM A ring R is Noetherian if any ideal of R is finitely generated. This is clearly
equivalent to the ascending chain condition for ideals of R. By Lemma 28.10 it
suffices to check that every prime ideal of R is finitely generated.

Lemma 31.1.00FN Any finitely generated ring over a Noetherian ring is Noetherian.
Any localization of a Noetherian ring is Noetherian.

Proof. The statement on localizations follows from the fact that any ideal J ⊂
S−1R is of the form I ·S−1R. Any quotient R/I of a Noetherian ring R is Noetherian
because any ideal J ⊂ R/I is of the form J/I for some ideal I ⊂ J ⊂ R. Thus
it suffices to show that if R is Noetherian so is R[X]. Suppose J1 ⊂ J2 ⊂ . . . is
an ascending chain of ideals in R[X]. Consider the ideals Ii,d defined as the ideal
of elements of R which occur as leading coefficients of degree d polynomials in Ji.
Clearly Ii,d ⊂ Ii′,d′ whenever i ≤ i′ and d ≤ d′. By the ascending chain condition in
R there are at most finitely many distinct ideals among all of the Ii,d. (Hint: Any
infinite set of elements of N×N contains an increasing infinite sequence.) Take i0
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so large that Ii,d = Ii0,d for all i ≥ i0 and all d. Suppose f ∈ Ji for some i ≥ i0.
By induction on the degree d = deg(f) we show that f ∈ Ji0 . Namely, there exists
a g ∈ Ji0 whose degree is d and which has the same leading coefficient as f . By
induction f − g ∈ Ji0 and we win. □

Lemma 31.2.0306 If R is a Noetherian ring, then so is the formal power series ring
R[[x1, . . . , xn]].
Proof. Since R[[x1, . . . , xn+1]] ∼= R[[x1, . . . , xn]][[xn+1]] it suffices to prove the
statement that R[[x]] is Noetherian if R is Noetherian. Let I ⊂ R[[x]] be a ideal.
We have to show that I is a finitely generated ideal. For each integer d denote
Id = {a ∈ R | axd + h.o.t. ∈ I}. Then we see that I0 ⊂ I1 ⊂ . . . stabilizes as R
is Noetherian. Choose d0 such that Id0 = Id0+1 = . . .. For each d ≤ d0 choose
elements fd,j ∈ I ∩ (xd), j = 1, . . . , nd such that if we write fd,j = ad,jx

d + h.o.t
then Id = (ad,j). Denote I ′ = ({fd,j}d=0,...,d0,j=1,...,nd

). Then it is clear that I ′ ⊂ I.
Pick f ∈ I. First we may choose cd,i ∈ R such that

f −
∑

cd,ifd,i ∈ (xd0+1) ∩ I.

Next, we can choose ci,1 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i ∈ (xd0+2) ∩ I.

Next, we can choose ci,2 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i −
∑

ci,2x
2fd0,i ∈ (xd0+3) ∩ I.

And so on. In the end we see that
f =

∑
cd,ifd,i +

∑
i
(
∑

e
ci,ex

e)fd0,i

is contained in I ′ as desired. □

The following lemma, although easy, is useful because finite type Z-algebras come
up quite often in a technique called “absolute Noetherian reduction”.
Lemma 31.3.00FO Any finite type algebra over a field is Noetherian. Any finite type
algebra over Z is Noetherian.
Proof. This is immediate from Lemma 31.1 and the fact that fields are Noetherian
rings and that Z is Noetherian ring (because it is a principal ideal domain). □

Lemma 31.4.00FP Let R be a Noetherian ring.
(1) Any finite R-module is of finite presentation.
(2) Any submodule of a finite R-module is finite.
(3) Any finite type R-algebra is of finite presentation over R.

Proof. Let M be a finite R-module. By Lemma 5.4 we can find a finite filtration
of M whose successive quotients are of the form R/I. Since any ideal is finitely
generated, each of the quotients R/I is finitely presented. Hence M is finitely
presented by Lemma 5.3. This proves (1).
Let N ⊂ M be a submodule. As M is finite, the quotient M/N is finite. Thus
M/N is of finite presentation by part (1). Thus we see that N is finite by Lemma
5.3 part (5). This proves part (2).
To see (3) note that any ideal of R[x1, . . . , xn] is finitely generated by Lemma
31.1. □
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Lemma 31.5.00FQ If R is a Noetherian ring then Spec(R) is a Noetherian topological
space, see Topology, Definition 9.1.

Proof. This is because any closed subset of Spec(R) is uniquely of the form V (I)
with I a radical ideal, see Lemma 17.2. And this correspondence is inclusion re-
versing. Thus the result follows from the definitions. □

Lemma 31.6.00FR If R is a Noetherian ring then Spec(R) has finitely many irreducible
components. In other words R has finitely many minimal primes.

Proof. By Lemma 31.5 and Topology, Lemma 9.2 we see there are finitely many
irreducible components. By Lemma 26.1 these correspond to minimal primes of
R. □

Lemma 31.7.0CY6 Let R → S be a ring map. Let R → R′ be of finite type. If S is
Noetherian, then the base change S′ = R′ ⊗R S is Noetherian.

Proof. By Lemma 14.2 finite type is stable under base change. Thus S → S′ is of
finite type. Since S is Noetherian we can apply Lemma 31.1. □

Lemma 31.8.045I Let k be a field and let R be a Noetherian k-algebra. If K/k is a
finitely generated field extension then K ⊗k R is Noetherian.

Proof. Since K/k is a finitely generated field extension, there exists a finitely
generated k-algebra B ⊂ K such that K is the fraction field of B. In other words,
K = S−1B with S = B \ {0}. Then K ⊗k R = S−1(B ⊗k R). Then B ⊗k R is
Noetherian by Lemma 31.7. Finally, K ⊗k R = S−1(B ⊗k R) is Noetherian by
Lemma 31.1. □

Here are some fun lemmas that are sometimes useful.

Lemma 31.9.0BX1 Let R be a ring and p ⊂ R be a prime. There exists an f ∈ R,
f ̸∈ p such that Rf → Rp is injective in each of the following cases

(1) R is a domain,
(2) R is Noetherian, or
(3) R is reduced and has finitely many minimal primes.

Proof. If R is a domain, then R ⊂ Rp, hence f = 1 works. If R is Noetherian,
then the kernel I of R → Rp is a finitely generated ideal and we can find f ∈ R,
f ̸∈ p such that IRf = 0. For this f the map Rf → Rp is injective and f works.
If R is reduced with finitely many minimal primes p1, . . . , pn, then we can choose
f ∈

⋂
pi ̸⊂p pi, f ̸∈ p. Indeed, if pi ̸⊂ p then there exist fi ∈ pi, fi ̸∈ p and f =

∏
fi

works. For this f we have Rf ⊂ Rp because the minimal primes of Rf correspond
to minimal primes of Rp and we can apply Lemma 25.2 (some details omitted). □

Lemma 31.10.06RN Any surjective endomorphism of a Noetherian ring is an isomor-
phism.

Proof. If f : R→ R were such an endomorphism but not injective, then

Ker(f) ⊂ Ker(f ◦ f) ⊂ Ker(f ◦ f ◦ f) ⊂ . . .

would be a strictly increasing chain of ideals. □
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32. Locally nilpotent ideals

0AMF Here is the definition.

Definition 32.1.00IL Let R be a ring. Let I ⊂ R be an ideal. We say I is locally
nilpotent if for every x ∈ I there exists an n ∈ N such that xn = 0. We say I is
nilpotent if there exists an n ∈ N such that In = 0.

Example 32.2.0EGG Let R = k[xn|n ∈ N] be the polynomial ring in infinitely many
variables over a field k. Let I be the ideal generated by the elements xnn for n ∈ N
and S = R/I. Then the ideal J ⊂ S generated by the images of xn, n ∈ N is locally
nilpotent, but not nilpotent. Indeed, since S-linear combinations of nilpotents are
nilpotent, to prove that J is locally nilpotent it is enough to observe that all its
generators are nilpotent (which they obviously are). On the other hand, for each
n ∈ N it holds that xnn+1 ̸∈ I, so that Jn ̸= 0. It follows that J is not nilpotent.

Lemma 32.3.0544 Let R → R′ be a ring map and let I ⊂ R be a locally nilpotent
ideal. Then IR′ is a locally nilpotent ideal of R′.

Proof. This follows from the fact that if x, y ∈ R′ are nilpotent, then x + y is
nilpotent too. Namely, if xn = 0 and ym = 0, then (x+ y)n+m−1 = 0. □

Lemma 32.4.0AMG Let R be a ring and let I ⊂ R be a locally nilpotent ideal. An
element x of R is a unit if and only if the image of x in R/I is a unit.

Proof. If x is a unit in R, then its image is clearly a unit in R/I. It remains to
prove the converse. Assume the image of y ∈ R in R/I is the inverse of the image
of x. Then xy = 1− z for some z ∈ I. This means that 1 ≡ z modulo xR. Since z
lies in the locally nilpotent ideal I, we have zN = 0 for some sufficiently large N .
It follows that 1 = 1N ≡ zN = 0 modulo xR. In other words, x divides 1 and is
hence a unit. □

Lemma 32.5.00IM Let R be a Noetherian ring. Let I, J be ideals of R. Suppose
J ⊂
√
I. Then Jn ⊂ I for some n. In particular, in a Noetherian ring the notions

of “locally nilpotent ideal” and “nilpotent ideal” coincide.

Proof. Say J = (f1, . . . , fs). By assumption fdi
i ∈ I. Take n = d1 + d2 + . . . +

ds + 1. □

Lemma 32.6.00J9 Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Then
R→ R/I induces a bijection on idempotents.

First proof of Lemma 32.6. As I is locally nilpotent it is contained in every
prime ideal. Hence Spec(R/I) = V (I) = Spec(R). Hence the lemma follows from
Lemma 21.3. □

Second proof of Lemma 32.6. Suppose e ∈ R/I is an idempotent. We have to
lift e to an idempotent of R.
First, choose any lift f ∈ R of e, and set x = f2− f . Then, x ∈ I, so x is nilpotent
(since I is locally nilpotent). Let now J be the ideal of R generated by x. Then, J
is nilpotent (not just locally nilpotent), since it is generated by the nilpotent x.
Now, assume that we have found a lift e ∈ R of e such that e2 − e ∈ Jk for some
k ≥ 1. Let e′ = e − (2e − 1)(e2 − e) = 3e2 − 2e3, which is another lift of e (since
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https://stacks.math.columbia.edu/tag/0EGG
https://stacks.math.columbia.edu/tag/0544
https://stacks.math.columbia.edu/tag/0AMG
https://stacks.math.columbia.edu/tag/00IM
https://stacks.math.columbia.edu/tag/00J9


COMMUTATIVE ALGEBRA 66

the idempotency of e yields e2 − e ∈ I). Then

(e′)2 − e′ = (4e2 − 4e− 3)(e2 − e)2 ∈ J2k

by a simple computation.

We thus have started with a lift e of e such that e2 − e ∈ Jk, and obtained a
lift e′ of e such that (e′)2 − e′ ∈ J2k. This way we can successively improve the
approximation (starting with e = f , which fits the bill for k = 1). Eventually,
we reach a stage where Jk = 0, and at that stage we have a lift e of e such that
e2 − e ∈ Jk = 0, that is, this e is idempotent.

We thus have seen that if e ∈ R/I is any idempotent, then there exists a lift of e
which is an idempotent of R. It remains to prove that this lift is unique. Indeed,
let e1 and e2 be two such lifts. We need to show that e1 = e2.

By definition of e1 and e2, we have e1 ≡ e2 mod I, and both e1 and e2 are idempo-
tent. From e1 ≡ e2 mod I, we see that e1−e2 ∈ I, so that e1−e2 is nilpotent (since
I is locally nilpotent). A straightforward computation (using the idempotency of
e1 and e2) reveals that (e1 − e2)3 = e1 − e2. Using this and induction, we obtain
(e1 − e2)k = e1 − e2 for any positive odd integer k. Since all high enough k satisfy
(e1 − e2)k = 0 (since e1 − e2 is nilpotent), this shows e1 − e2 = 0, so that e1 = e2,
which completes our proof. □

Lemma 32.7.05BU Let A be a possibly noncommutative algebra. Let e ∈ A be an
element such that x = e2 − e is nilpotent. Then there exists an idempotent of the
form e′ = e+ x(

∑
ai,je

ixj) ∈ A with ai,j ∈ Z.

Proof. Consider the ring Rn = Z[e]/((e2−e)n). It is clear that if we can prove the
result for each Rn then the lemma follows. In Rn consider the ideal I = (e2 − e)
and apply Lemma 32.6. □

Lemma 32.8.0CAP Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let n ≥ 1
be an integer which is invertible in R/I. Then

(1) the nth power map 1 + I → 1 + I, 1 + x 7→ (1 + x)n is a bijection,
(2) a unit of R is a nth power if and only if its image in R/I is an nth power.

Proof. Let a ∈ R be a unit whose image in R/I is the same as the image of bn
with b ∈ R. Then b is a unit (Lemma 32.4) and ab−n = 1 + x for some x ∈ I.
Hence ab−n = cn by part (1). Thus (2) follows from (1).

Proof of (1). This is true because there is an inverse to the map 1 + x 7→ (1 + x)n.
Namely, we can consider the map which sends 1 + x to

(1 + x)1/n = 1 +
(

1/n
1

)
x+

(
1/n
2

)
x2 +

(
1/n
3

)
x3 + . . .

= 1 + 1
n
x+ 1− n

2n2 x2 + (1− n)(1− 2n)
6n3 x3 + . . .

as in elementary calculus. This makes sense because the series is finite as xk = 0
for all k ≫ 0 and each coefficient

(1/n
k

)
∈ Z[1/n] (details omitted; observe that n is

invertible in R by Lemma 32.4). □
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33. Curiosity

02JG Lemma 24.3 explains what happens if V (I) is open for some ideal I ⊂ R. But what
if Spec(S−1R) is closed in Spec(R)? The next two lemmas give a partial answer.
For more information see Section 108.

Lemma 33.1.02JH Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume the
image of the map Spec(S−1R) → Spec(R) is closed. Then S−1R ∼= R/I for some
ideal I ⊂ R.

Proof. Let I = Ker(R → S−1R) so that V (I) contains the image. Say the image
is the closed subset V (I ′) ⊂ Spec(R) for some ideal I ′ ⊂ R. So V (I ′) ⊂ V (I). For
f ∈ I ′ we see that f/1 ∈ S−1R is contained in every prime ideal. Hence fn maps
to zero in S−1R for some n ≥ 1 (Lemma 17.2). Hence V (I ′) = V (I). Then this
implies every g ∈ S is invertible mod I. Hence we get ring maps R/I → S−1R and
S−1R → R/I. The first map is injective by choice of I. The second is the map
S−1R → S−1(R/I) = R/I which has kernel S−1I because localization is exact.
Since S−1I = 0 we see also the second map is injective. Hence S−1R ∼= R/I. □

Lemma 33.2.02JI Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume
the image of the map Spec(S−1R) → Spec(R) is closed. If R is Noetherian, or
Spec(R) is a Noetherian topological space, or S is finitely generated as a monoid,
then R ∼= S−1R×R′ for some ring R′.

Proof. By Lemma 33.1 we have S−1R ∼= R/I for some ideal I ⊂ R. By Lemma
24.3 it suffices to show that V (I) is open. If R is Noetherian then Spec(R) is a
Noetherian topological space, see Lemma 31.5. If Spec(R) is a Noetherian topo-
logical space, then the complement Spec(R) \ V (I) is quasi-compact, see Topol-
ogy, Lemma 12.13. Hence there exist finitely many f1, . . . , fn ∈ I such that
V (I) = V (f1, . . . , fn). Since each fi maps to zero in S−1R there exists a g ∈ S such
that gfi = 0 for i = 1, . . . , n. Hence D(g) = V (I) as desired. In case S is finitely
generated as a monoid, say S is generated by g1, . . . , gm, then S−1R ∼= Rg1...gm

and
we conclude that V (I) = D(g1 . . . gm). □

34. Hilbert Nullstellensatz

00FS
Theorem 34.1 (Hilbert Nullstellensatz).00FV Let k be a field.

(1)00FW For any maximal ideal m ⊂ k[x1, . . . , xn] the field extension κ(m)/k is finite.
(2)00FX Any radical ideal I ⊂ k[x1, . . . , xn] is the intersection of maximal ideals

containing it.
The same is true in any finite type k-algebra.

Proof. It is enough to prove part (1) of the theorem for the case of a polynomial
algebra k[x1, . . . , xn], because any finitely generated k-algebra is a quotient of such
a polynomial algebra. We prove this by induction on n. The case n = 0 is clear.
Suppose that m is a maximal ideal in k[x1, . . . , xn]. Let p ⊂ k[xn] be the intersection
of m with k[xn].

If p ̸= (0), then p is maximal and generated by an irreducible monic polynomial P
(because of the Euclidean algorithm in k[xn]). Then k′ = k[xn]/p is a finite field
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extension of k and contained in κ(m). In this case we get a surjection
k′[x1, . . . , xn−1]→ k′[x1, . . . , xn] = k′ ⊗k k[x1, . . . , xn] −→ κ(m)

and hence we see that κ(m) is a finite extension of k′ by induction hypothesis. Thus
κ(m) is finite over k as well.
If p = (0) we consider the ring extension k[xn] ⊂ k[x1, . . . , xn]/m. This is a finitely
generated ring extension, hence of finite presentation by Lemmas 31.3 and 31.4.
Thus the image of Spec(k[x1, . . . , xn]/m) in Spec(k[xn]) is constructible by Theo-
rem 29.10. Since the image contains (0) we conclude that it contains a standard
open D(f) for some f ∈ k[xn] nonzero. Since clearly D(f) is infinite we get a
contradiction with the assumption that k[x1, . . . , xn]/m is a field (and hence has a
spectrum consisting of one point).
Proof of (2). Let I ⊂ R be a radical ideal, with R of finite type over k. Let f ∈ R,
f ̸∈ I. We have to find a maximal ideal m ⊂ R with I ⊂ m and f ̸∈ m. The ring
(R/I)f is nonzero, since 1 = 0 in this ring would mean fn ∈ I and since I is radical
this would mean f ∈ I contrary to our assumption on f . Thus we may choose a
maximal ideal m′ in (R/I)f , see Lemma 17.2. Let m ⊂ R be the inverse image of
m′ in R. We see that I ⊂ m and f ̸∈ m. If we show that m is a maximal ideal of R,
then we are done. We clearly have

k ⊂ R/m ⊂ κ(m′).
By part (1) the field extension κ(m′)/k is finite. Hence R/m is a field by Fields,
Lemma 8.10. Thus m is maximal and the proof is complete. □

Lemma 34.2.00FY Let R be a ring. Let K be a field. If R ⊂ K and K is of finite type
over R, then there exists an f ∈ R such that Rf is a field, and K/Rf is a finite
field extension.

Proof. By Lemma 30.2 there exist a nonempty open U ⊂ Spec(R) contained in
the image {(0)} of Spec(K)→ Spec(R). Choose f ∈ R, f ̸= 0 such that D(f) ⊂ U ,
i.e., D(f) = {(0)}. Then Rf is a domain whose spectrum has exactly one point and
Rf is a field. Then K is a finitely generated algebra over the field Rf and hence a
finite field extension of Rf by the Hilbert Nullstellensatz (Theorem 34.1). □

35. Jacobson rings

00FZ Let R be a ring. The closed points of Spec(R) are the maximal ideals of R. Often
rings which occur naturally in algebraic geometry have lots of maximal ideals. For
example finite type algebras over a field or over Z. We will show that these are
examples of Jacobson rings.

Definition 35.1.00G0 Let R be a ring. We say that R is a Jacobson ring if every
radical ideal I is the intersection of the maximal ideals containing it.

Lemma 35.2.00G1 Any algebra of finite type over a field is Jacobson.

Proof. This follows from Theorem 34.1 and Definition 35.1. □

Lemma 35.3.00G2 Let R be a ring. If every prime ideal of R is the intersection of the
maximal ideals containing it, then R is Jacobson.

Proof. This is immediately clear from the fact that every radical ideal I ⊂ R is
the intersection of the primes containing it. See Lemma 17.2. □
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Lemma 35.4.00G3 A ring R is Jacobson if and only if Spec(R) is Jacobson, see
Topology, Definition 18.1.

Proof. Suppose R is Jacobson. Let Z ⊂ Spec(R) be a closed subset. We have
to show that the set of closed points in Z is dense in Z. Let U ⊂ Spec(R) be an
open such that U ∩Z is nonempty. We have to show Z ∩U contains a closed point
of Spec(R). We may assume U = D(f) as standard opens form a basis for the
topology on Spec(R). According to Lemma 17.2 we may assume that Z = V (I),
where I is a radical ideal. We see also that f ̸∈ I. By assumption, there exists a
maximal ideal m ⊂ R such that I ⊂ m but f ̸∈ m. Hence m ∈ D(f)∩V (I) = U ∩Z
as desired.
Conversely, suppose that Spec(R) is Jacobson. Let I ⊂ R be a radical ideal. Let
J = ∩I⊂mm be the intersection of the maximal ideals containing I. Clearly J
is a radical ideal, V (J) ⊂ V (I), and V (J) is the smallest closed subset of V (I)
containing all the closed points of V (I). By assumption we see that V (J) = V (I).
But Lemma 17.2 shows there is a bijection between Zariski closed sets and radical
ideals, hence I = J as desired. □

Lemma 35.5.034J Let R be a ring. If R is not Jacobson there exist a prime p ⊂ R,
an element f ∈ R such that the following hold

(1) p is not a maximal ideal,
(2) f ̸∈ p,
(3) V (p) ∩D(f) = {p}, and
(4) (R/p)f is a field.

On the other hand, if R is Jacobson, then for any pair (p, f) such that (1) and (2)
hold the set V (p) ∩D(f) is infinite.

Proof. Assume R is not Jacobson. By Lemma 35.4 this means there exists an
closed subset T ⊂ Spec(R) whose set T0 ⊂ T of closed points is not dense in T .
Choose an f ∈ R such that T0 ⊂ V (f) but T ̸⊂ V (f). Note that T ∩ D(f) is
homeomorphic to Spec((R/I)f ) if T = V (I), see Lemmas 17.7 and 17.6. As any
ring has a maximal ideal (Lemma 17.2) we can choose a closed point t of space
T ∩ D(f). Then t corresponds to a prime ideal p ⊂ R which is not maximal (as
t ̸∈ T0). Thus (1) holds. By construction f ̸∈ p, hence (2). As t is a closed point of
T ∩D(f) we see that V (p) ∩D(f) = {p}, i.e., (3) holds. Hence we conclude that
(R/p)f is a domain whose spectrum has one point, hence (4) holds (for example
combine Lemmas 18.3 and 25.1).
Conversely, suppose that R is Jacobson and (p, f) satisfy (1) and (2). If V (p) ∩
D(f) = {p, q1, . . . , qt} then p ̸= qi implies there exists an element g ∈ R such that
g ̸∈ p but g ∈ qi for all i. Hence V (p)∩D(fg) = {p} which is impossible since each
locally closed subset of Spec(R) contains at least one closed point as Spec(R) is a
Jacobson topological space. □

Lemma 35.6.00G4 The ring Z is a Jacobson ring. More generally, let R be a ring
such that

(1) R is a domain,
(2) R is Noetherian,
(3) any nonzero prime ideal is a maximal ideal, and
(4) R has infinitely many maximal ideals.
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Then R is a Jacobson ring.

Proof. Let R satisfy (1), (2), (3) and (4). The statement means that (0) =⋂
m⊂Rm. Since R has infinitely many maximal ideals it suffices to show that any

nonzero x ∈ R is contained in at most finitely many maximal ideals, in other
words that V (x) is finite. By Lemma 17.7 we see that V (x) is homeomorphic to
Spec(R/xR). By assumption (3) every prime of R/xR is minimal and hence cor-
responds to an irreducible component of Spec(R/xR) (Lemma 26.1). As R/xR is
Noetherian, the topological space Spec(R/xR) is Noetherian (Lemma 31.5) and has
finitely many irreducible components (Topology, Lemma 9.2). Thus V (x) is finite
as desired. □

Example 35.7.02CC Let A be an infinite set. For each α ∈ A, let kα be a field. We
claim that R =

∏
α∈A kα is Jacobson. First, note that any element f ∈ R has the

form f = ue, with u ∈ R a unit and e ∈ R an idempotent (left to the reader). Hence
D(f) = D(e), and Rf = Re = R/(1− e) is a quotient of R. Actually, any ring with
this property is Jacobson. Namely, say p ⊂ R is a prime ideal and f ∈ R, f ̸∈ p.
We have to find a maximal ideal m of R such that p ⊂ m and f ̸∈ m. Because Rf
is a quotient of R we see that any maximal ideal of Rf corresponds to a maximal
ideal of R not containing f . Hence the result follows by choosing a maximal ideal
of Rf containing pRf .

Example 35.8.00G5 A domain R with finitely many maximal ideals mi, i = 1, . . . , n
is not a Jacobson ring, except when it is a field. Namely, in this case (0) is not the
intersection of the maximal ideals (0) ̸= m1 ∩m2 ∩ . . .∩mn ⊃ m1 ·m2 · . . . ·mn ̸= 0.
In particular a discrete valuation ring, or any local ring with at least two prime
ideals is not a Jacobson ring.

Lemma 35.9.00GA Let R→ S be a ring map. Let m ⊂ R be a maximal ideal. Let q ⊂ S
be a prime ideal lying over m such that κ(q)/κ(m) is an algebraic field extension.
Then q is a maximal ideal of S.

Proof. Consider the diagram

S // S/q // κ(q)

R //

OO

R/m

OO

We see that κ(m) ⊂ S/q ⊂ κ(q). Because the field extension κ(m) ⊂ κ(q) is
algebraic, any ring between κ(m) and κ(q) is a field (Fields, Lemma 8.10). Thus
S/q is a field, and a posteriori equal to κ(q). □

Lemma 35.10.00FT Suppose that k is a field and suppose that V is a nonzero vector
space over k. Assume the dimension of V (which is a cardinal number) is smaller
than the cardinality of k. Then for any linear operator T : V → V there exists
some monic polynomial P (t) ∈ k[t] such that P (T ) is not invertible.

Proof. If not then V inherits the structure of a vector space over the field k(t).
But the dimension of k(t) over k is at least the cardinality of k for example due to
the fact that the elements 1

t−λ are k-linearly independent. □

Here is another version of Hilbert’s Nullstellensatz.
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Theorem 35.11.00FU Let k be a field. Let S be a k-algebra generated over k by the
elements {xi}i∈I . Assume the cardinality of I is smaller than the cardinality of k.
Then

(1) for all maximal ideals m ⊂ S the field extension κ(m)/k is algebraic, and
(2) S is a Jacobson ring.

Proof. If I is finite then the result follows from the Hilbert Nullstellensatz, The-
orem 34.1. In the rest of the proof we assume I is infinite. It suffices to prove the
result for m ⊂ k[{xi}i∈I ] maximal in the polynomial ring on variables xi, since S
is a quotient of this. As I is infinite the set of monomials xe1

i1
. . . xer

ir
, i1, . . . , ir ∈ I

and e1, . . . , er ≥ 0 has cardinality at most equal to the cardinality of I. Because the
cardinality of I × . . .× I is the cardinality of I, and also the cardinality of

⋃
n≥0 I

n

has the same cardinality. (If I is finite, then this is not true and in that case this
proof only works if k is uncountable.)

To arrive at a contradiction pick T ∈ κ(m) transcendental over k. Note that the
k-linear map T : κ(m)→ κ(m) given by multiplication by T has the property that
P (T ) is invertible for all monic polynomials P (t) ∈ k[t]. Also, κ(m) has dimension
at most the cardinality of I over k since it is a quotient of the vector space k[{xi}i∈I ]
over k (whose dimension is #I as we saw above). This is impossible by Lemma
35.10.

To show that S is Jacobson we argue as follows. If not then there exists a prime
q ⊂ S and an element f ∈ S, f ̸∈ q such that q is not maximal and (S/q)f is a field,
see Lemma 35.5. But note that (S/q)f is generated by at most #I + 1 elements.
Hence the field extension (S/q)f/k is algebraic (by the first part of the proof). This
implies that κ(q) is an algebraic extension of k hence q is maximal by Lemma 35.9.
This contradiction finishes the proof. □

Lemma 35.12.046V Let k be a field. Let S be a k-algebra. For any field extension
K/k whose cardinality is larger than the cardinality of S we have

(1) for every maximal ideal m of SK the field κ(m) is algebraic over K, and
(2) SK is a Jacobson ring.

Proof. Choose k ⊂ K such that the cardinality of K is greater than the cardinality
of S. Since the elements of S generate the K-algebra SK we see that Theorem 35.11
applies. □

Example 35.13.02CB The trick in the proof of Theorem 35.11 really does not work
if k is a countable field and I is countable too. Let k be a countable field. Let
x be a variable, and let k(x) be the field of rational functions in x. Consider the
polynomial algebra R = k[x, {xf}f∈k[x]−{0}]. Let I = ({fxf − 1}f∈k[x]−{0}). Note
that I is a proper ideal in R. Choose a maximal ideal I ⊂ m. Then k ⊂ R/m is
isomorphic to k(x), and is not algebraic over k.

Lemma 35.14.00G6 Let R be a Jacobson ring. Let f ∈ R. The ring Rf is Jacobson
and maximal ideals of Rf correspond to maximal ideals of R not containing f .

Proof. By Topology, Lemma 18.5 we see that D(f) = Spec(Rf ) is Jacobson and
that closed points of D(f) correspond to closed points in Spec(R) which happen to
lie in D(f). Thus Rf is Jacobson by Lemma 35.4. □
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Example 35.15.00G7 Here is a simple example that shows Lemma 35.14 to be false
if R is not Jacobson. Consider the ring R = Z(2), i.e., the localization of Z at the
prime (2). The localization of R at the element 2 is isomorphic to Q, in a formula:
R2 ∼= Q. Clearly the map R→ R2 maps the closed point of Spec(Q) to the generic
point of Spec(R).

Example 35.16.00G8 Here is a simple example that shows Lemma 35.14 is false if R
is Jacobson but we localize at infinitely many elements. Namely, let R = Z and
consider the localization (R \ {0})−1R ∼= Q of R at the set of all nonzero elements.
Clearly the map Z → Q maps the closed point of Spec(Q) to the generic point of
Spec(Z).

Lemma 35.17.00G9 Let R be a Jacobson ring. Let I ⊂ R be an ideal. The ring R/I is
Jacobson and maximal ideals of R/I correspond to maximal ideals of R containing
I.

Proof. The proof is the same as the proof of Lemma 35.14. □

Lemma 35.18.0CY7 Let R be a Jacobson ring. Let K be a field. Let R ⊂ K and K is
of finite type over R. Then R is a field and K/R is a finite field extension.

Proof. First note that R is a domain. By Lemma 34.2 we see that Rf is a field and
K/Rf is a finite field extension for some nonzero f ∈ R. Hence (0) is a maximal
ideal of Rf and by Lemma 35.14 we conclude (0) is a maximal ideal of R. □

Proposition 35.19.00GB Let R be a Jacobson ring. Let R→ S be a ring map of finite
type. Then

(1) The ring S is Jacobson.
(2) The map Spec(S)→ Spec(R) transforms closed points to closed points.
(3) For m′ ⊂ S maximal lying over m ⊂ R the field extension κ(m′)/κ(m) is

finite.

Proof. Let m′ ⊂ S be a maximal ideal and R ∩ m′ = m. Then R/m → S/m′

satisfies the conditions of Lemma 35.18 by Lemma 35.17. Hence R/m is a field and
m a maximal ideal and the induced residue field extension is finite. This proves (2)
and (3).
If S is not Jacobson, then by Lemma 35.5 there exists a non-maximal prime ideal
q of S and an g ∈ S, g ̸∈ q such that (S/q)g is a field. To arrive at a contradiction
we show that q is a maximal ideal. Let p = q ∩ R. Then R/p → (S/q)g satisfies
the conditions of Lemma 35.18 by Lemma 35.17. Hence R/p is a field and the field
extension κ(p)→ (S/q)g = κ(q) is finite, thus algebraic. Then q is a maximal ideal
of S by Lemma 35.9. Contradiction. □

Lemma 35.20.00GC Any finite type algebra over Z is Jacobson.

Proof. Combine Lemma 35.6 and Proposition 35.19. □

Lemma 35.21.00GD Let R → S be a finite type ring map of Jacobson rings. Denote
X = Spec(R) and Y = Spec(S). Write f : Y → X the induced map of spectra. Let
E ⊂ Y = Spec(S) be a constructible set. Denote with a subscript 0 the set of closed
points of a topological space.

(1) We have f(E)0 = f(E0) = X0 ∩ f(E).
(2) A point ξ ∈ X is in f(E) if and only if {ξ} ∩ f(E0) is dense in {ξ}.
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Proof. We have a commutative diagram of continuous maps

E //

��

Y

��
f(E) // X

Suppose x ∈ f(E) is closed in f(E). Then f−1({x}) ∩ E is nonempty and closed
in E. Applying Topology, Lemma 18.5 to both inclusions

f−1({x}) ∩ E ⊂ E ⊂ Y
we find there exists a point y ∈ f−1({x})∩E which is closed in Y . In other words,
there exists y ∈ Y0 and y ∈ E0 mapping to x. Hence x ∈ f(E0). This proves that
f(E)0 ⊂ f(E0). Proposition 35.19 implies that f(E0) ⊂ X0 ∩ f(E). The inclusion
X0 ∩ f(E) ⊂ f(E)0 is trivial. This proves the first assertion.

Suppose that ξ ∈ f(E). According to Lemma 30.2 the set f(E) ∩ {ξ} contains a
dense open subset of {ξ}. Since X is Jacobson we conclude that f(E)∩{ξ} contains
a dense set of closed points, see Topology, Lemma 18.5. We conclude by part (1)
of the lemma.
On the other hand, suppose that {ξ} ∩ f(E0) is dense in {ξ}. By Lemma 29.4
there exists a ring map S → S′ of finite presentation such that E is the image of
Y ′ := Spec(S′) → Y . Then E0 is the image of Y ′

0 by the first part of the lemma
applied to the ring map S → S′. Thus we may assume that E = Y by replacing S
by S′. Suppose ξ corresponds to p ⊂ R. Consider the diagram

S // S/pS

R //

OO

R/p

OO

This diagram and the density of f(Y0) ∩ V (p) in V (p) shows that the morphism
R/p→ S/pS satisfies condition (2) of Lemma 30.4. Hence we conclude there exists
a prime q ⊂ S/pS mapping to (0). In other words the inverse image q of q in S
maps to p as desired. □

The conclusion of the lemma above is that we can read off the image of f from the
set of closed points of the image. This is a little nicer in case the map is of finite
presentation because then we know that images of a constructible is constructible.
Before we state it we introduce some notation. Denote Constr(X) the set of con-
structible sets. Let R→ S be a ring map. Denote X = Spec(R) and Y = Spec(S).
Write f : Y → X the induced map of spectra. Denote with a subscript 0 the set of
closed points of a topological space.

Lemma 35.22.00GE With notation as above. Assume that R is a Noetherian Jacobson
ring. Further assume R→ S is of finite type. There is a commutative diagram

Constr(Y ) E 7→E0 //

E 7→f(E)
��

Constr(Y0)

E 7→f(E)
��

Constr(X) E 7→E0// Constr(X0)

https://stacks.math.columbia.edu/tag/00GE
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where the horizontal arrows are the bijections from Topology, Lemma 18.8.

Proof. Since R → S is of finite type, it is of finite presentation, see Lemma 31.4.
Thus the image of a constructible set in X is constructible in Y by Chevalley’s
theorem (Theorem 29.10). Combined with Lemma 35.21 the lemma follows. □

To illustrate the use of Jacobson rings, we give the following two examples.

Example 35.23.00GF Let k be a field. The space Spec(k[x, y]/(xy)) has two irreducible
components: namely the x-axis and the y-axis. As a generalization, let

R = k[x11, x12, x21, x22, y11, y12, y21, y22]/a,

where a is the ideal in k[x11, x12, x21, x22, y11, y12, y21, y22] generated by the entries
of the 2× 2 product matrix (

x11 x12
x21 x22

)(
y11 y12
y21 y22

)
.

In this example we will describe Spec(R).

To prove the statement about Spec(k[x, y]/(xy)) we argue as follows. If p ⊂ k[x, y]
is any ideal containing xy, then either x or y would be contained in p. Hence the
minimal such prime ideals are just (x) and (y). In case k is algebraically closed,
the max-Spec of these components can then be visualized as the point sets of y-
and x-axis.

For the generalization, note that we may identify the closed points of the spectrum
of k[x11, x12, x21, x22, y11, y12, y21, y22]) with the space of matrices{

(X,Y ) ∈ Mat(2, k)×Mat(2, k) | X =
(
x11 x12
x21 x22

)
, Y =

(
y11 y12
y21 y22

)}
at least if k is algebraically closed. Now define a group action of GL(2, k) ×
GL(2, k)×GL(2, k) on the space of matrices {(X,Y )} by

(g1, g2, g3)× (X,Y ) 7→ ((g1Xg
−1
2 , g2Y g

−1
3 )).

Here, also observe that the algebraic set

GL(2, k)×GL(2, k)×GL(2, k) ⊂ Mat(2, k)×Mat(2, k)×Mat(2, k)

is irreducible since it is the max spectrum of the domain

k[x11, x12, . . . , z21, z22, (x11x22−x12x21)−1, (y11y22−y12y21)−1, (z11z22−z12z21)−1].

Since the image of irreducible an algebraic set is still irreducible, it suffices to
classify the orbits of the set {(X,Y ) ∈ Mat(2, k) ×Mat(2, k)|XY = 0} and take
their closures. From standard linear algebra, we are reduced to the following three
cases:

(1) ∃(g1, g2) such that g1Xg
−1
2 = I2×2. Then Y is necessarily 0, which as an

algebraic set is invariant under the group action. It follows that this or-
bit is contained in the irreducible algebraic set defined by the prime ideal
(y11, y12, y21, y22). Taking the closure, we see that (y11, y12, y21, y22) is ac-
tually a component.

https://stacks.math.columbia.edu/tag/00GF
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(2) ∃(g1, g2) such that

g1Xg
−1
2 =

(
1 0
0 0

)
.

This case occurs if and only if X is a rank 1 matrix, and furthermore, Y is
killed by such an X if and only if

x11y11 + x12y21 = 0; x11y12 + x12y22 = 0;

x21y11 + x22y21 = 0; x21y12 + x22y22 = 0.
Fix a rank 1 X, such non zero Y ’s satisfying the above equations form an
irreducible algebraic set for the following reason(Y = 0 is contained the
previous case): 0 = g1Xg

−1
2 g2Y implies that

g2Y =
(

0 0
y′

21 y′
22

)
.

With a further GL(2, k)-action on the right by g3, g2Y can be brought into

g2Y g
−1
3 =

(
0 0
0 1

)
,

and thus such Y ’s form an irreducible algebraic set isomorphic to the im-
age of GL(2, k) under this action. Finally, notice that the “rank 1" con-
dition for X’s forms an open dense subset of the irreducible algebraic set
detX = x11x22 − x12x21 = 0. It now follows that all the five equations
define an irreducible component (x11y11 + x12y21, x11y12 + x12y22, x21y11 +
x22y21, x21y12 + x22y22, x11x22 − x12x21) in the open subset of the space
of pairs of nonzero matrices. It can be shown that the pair of equations
detX = 0, detY = 0 cuts Spec(R) in an irreducible component with the
above locus an open dense subset.

(3) ∃(g1, g2) such that g1Xg
−1
2 = 0, or equivalently, X = 0. Then Y can be

arbitrary and this component is thus defined by (x11, x12, x21, x22).

Example 35.24.00GG For another example, consider R = k[{tij}ni,j=1]/a, where a is
the ideal generated by the entries of the product matrix T 2 − T , T = (tij). From
linear algebra, we know that under the GL(n, k)-action defined by g, T 7→ gTg−1, T
is classified by the its rank and each T is conjugate to some diag(1, . . . , 1, 0, . . . , 0),
which has r 1’s and n−r 0’s. Thus each orbit of such a diag(1, . . . , 1, 0, . . . , 0) under
the group action forms an irreducible component and every idempotent matrix
is contained in one such orbit. Next we will show that any two different orbits
are necessarily disjoint. For this purpose we only need to cook up polynomial
functions that take different values on different orbits. In characteristic 0 cases,
such a function can be taken to be f(tij) = trace(T ) =

∑n
i=1 tii. In positive

characteristic cases, things are slightly more tricky since we might have trace(T ) = 0
even if T ̸= 0. For instance, char = 3

trace

1
1

1

 = 3 = 0

Anyway, these components can be separated using other functions. For instance, in
the characteristic 3 case, tr(∧3T ) takes value 1 on the components corresponding
to diag(1, 1, 1) and 0 on other components.

https://stacks.math.columbia.edu/tag/00GG
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36. Finite and integral ring extensions

00GH Trivial lemmas concerning finite and integral ring maps. We recall the definition.

Definition 36.1.00GI Let φ : R→ S be a ring map.
(1) An element s ∈ S is integral over R if there exists a monic polynomial

P (x) ∈ R[x] such that Pφ(s) = 0, where Pφ(x) ∈ S[x] is the image of P
under φ : R[x]→ S[x].

(2) The ring map φ is integral if every s ∈ S is integral over R.

Lemma 36.2.052I Let φ : R → S be a ring map. Let y ∈ S. If there exists a finite
R-submodule M of S such that 1 ∈M and yM ⊂M , then y is integral over R.

Proof. Consider the map φ : M → M , x 7→ y · x. By Lemma 16.2 there exists a
monic polynomial P ∈ R[T ] with P (φ) = 0. In the ring S we get P (y) = P (y) · 1 =
P (φ)(1) = 0. □

Lemma 36.3.00GK A finite ring map is integral.

Proof. Let R→ S be finite. Let y ∈ S. Apply Lemma 36.2 to M = S to see that
y is integral over R. □

Lemma 36.4.00GM Let φ : R → S be a ring map. Let s1, . . . , sn be a finite set of
elements of S. In this case si is integral over R for all i = 1, . . . , n if and only if
there exists an R-subalgebra S′ ⊂ S finite over R containing all of the si.

Proof. If each si is integral, then the subalgebra generated by φ(R) and the si
is finite over R. Namely, if si satisfies a monic equation of degree di over R,
then this subalgebra is generated as an R-module by the elements se1

1 . . . sen
n with

0 ≤ ei ≤ di − 1. Conversely, suppose given a finite R-subalgebra S′ containing all
the si. Then all of the si are integral by Lemma 36.3. □

Lemma 36.5.02JJ Let R→ S be a ring map. The following are equivalent
(1) R→ S is finite,
(2) R→ S is integral and of finite type, and
(3) there exist x1, . . . , xn ∈ S which generate S as an algebra over R such that

each xi is integral over R.

Proof. Clear from Lemma 36.4. □

Lemma 36.6.00GN Suppose that R → S and S → T are integral ring maps. Then
R→ T is integral.

Proof. Let t ∈ T . Let P (x) ∈ S[x] be a monic polynomial such that P (t) = 0.
Apply Lemma 36.4 to the finite set of coefficients of P . Hence t is integral over some
subalgebra S′ ⊂ S finite over R. Apply Lemma 36.4 again to find a subalgebra
T ′ ⊂ T finite over S′ and containing t. Lemma 7.3 applied to R → S′ → T ′

shows that T ′ is finite over R. The integrality of t over R now follows from Lemma
36.3. □

Lemma 36.7.00GO Let R→ S be a ring homomorphism. The set
S′ = {s ∈ S | s is integral over R}

is an R-subalgebra of S.

Proof. This is clear from Lemmas 36.4 and 36.3. □
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Lemma 36.8.0CY8 Let Ri → Si be ring maps i = 1, . . . , n. Let R and S denote the
product of the Ri and Si respectively. Then an element s = (s1, . . . , sn) ∈ S is
integral over R if and only if each si is integral over Ri.

Proof. Omitted. □

Definition 36.9.00GP Let R→ S be a ring map. The ring S′ ⊂ S of elements integral
over R, see Lemma 36.7, is called the integral closure of R in S. If R ⊂ S we say
that R is integrally closed in S if R = S′.

In particular, we see that R→ S is integral if and only if the integral closure of R
in S is all of S.

Lemma 36.10.0CY9 Let Ri → Si be ring maps i = 1, . . . , n. Denote the integral
closure of Ri in Si by S′

i. Further let R and S denote the product of the Ri and
Si respectively. Then the integral closure of R in S is the product of the S′

i. In
particular R→ S is integrally closed if and only if each Ri → Si is integrally closed.

Proof. This follows immediately from Lemma 36.8. □

Lemma 36.11.0307 Integral closure commutes with localization: If A → B is a ring
map, and S ⊂ A is a multiplicative subset, then the integral closure of S−1A in
S−1B is S−1B′, where B′ ⊂ B is the integral closure of A in B.

Proof. Since localization is exact we see that S−1B′ ⊂ S−1B. Suppose x ∈ B′

and f ∈ S. Then xd +
∑
i=1,...,d aix

d−i = 0 in B for some ai ∈ A. Hence also

(x/f)d +
∑

i=1,...,d
ai/f

i(x/f)d−i = 0

in S−1B. In this way we see that S−1B′ is contained in the integral closure of
S−1A in S−1B. Conversely, suppose that x/f ∈ S−1B is integral over S−1A. Then
we have

(x/f)d +
∑

i=1,...,d
(ai/fi)(x/f)d−i = 0

in S−1B for some ai ∈ A and fi ∈ S. This means that

(f ′f1 . . . fdx)d +
∑

i=1,...,d
f i(f ′)if i1 . . . f i−1

i . . . f idai(f ′f1 . . . fdx)d−i = 0

for a suitable f ′ ∈ S. Hence f ′f1 . . . fdx ∈ B′ and thus x/f ∈ S−1B′ as desired. □

Lemma 36.12.034K Let φ : R → S be a ring map. Let x ∈ S. The following are
equivalent:

(1) x is integral over R, and
(2) for every prime ideal p ⊂ R the element x ∈ Sp is integral over Rp.

Proof. It is clear that (1) implies (2). Assume (2). Consider the R-algebra S′ ⊂ S
generated by φ(R) and x. Let p be a prime ideal of R. Then we know that
xd +

∑
i=1,...,d φ(ai)xd−i = 0 in Sp for some ai ∈ Rp. Hence we see, by looking

at which denominators occur, that for some f ∈ R, f ̸∈ p we have ai ∈ Rf and
xd +

∑
i=1,...,d φ(ai)xd−i = 0 in Sf . This implies that S′

f is finite over Rf . Since
p was arbitrary and Spec(R) is quasi-compact (Lemma 17.8) we can find finitely
many elements f1, . . . , fn ∈ R which generate the unit ideal of R such that S′

fi
is

finite over Rfi . Hence we conclude from Lemma 23.2 that S′ is finite over R. Hence
x is integral over R by Lemma 36.4. □
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Lemma 36.13.02JK Let R→ S and R→ R′ be ring maps. Set S′ = R′ ⊗R S.
(1) If R→ S is integral so is R′ → S′.
(2) If R→ S is finite so is R′ → S′.

Proof. We prove (1). Let si ∈ S be generators for S over R. Each of these satisfies
a monic polynomial equation Pi over R. Hence the elements 1⊗si ∈ S′ generate S′

over R′ and satisfy the corresponding polynomial P ′
i over R′. Since these elements

generate S′ over R′ we see that S′ is integral over R′. Proof of (2) omitted. □

Lemma 36.14.02JL Let R → S be a ring map. Let f1, . . . , fn ∈ R generate the unit
ideal.

(1) If each Rfi
→ Sfi

is integral, so is R→ S.
(2) If each Rfi

→ Sfi
is finite, so is R→ S.

Proof. Proof of (1). Let s ∈ S. Consider the ideal I ⊂ R[x] of polynomials P such
that P (s) = 0. Let J ⊂ R denote the ideal (!) of leading coefficients of elements
of I. By assumption and clearing denominators we see that fni

i ∈ J for all i and
certain ni ≥ 0. Hence J contains 1 and we see s is integral over R. Proof of (2)
omitted. □

Lemma 36.15.02JM Let A→ B → C be ring maps.
(1) If A→ C is integral so is B → C.
(2) If A→ C is finite so is B → C.

Proof. Omitted. □

Lemma 36.16.0308 Let A → B → C be ring maps. Let B′ be the integral closure of
A in B, let C ′ be the integral closure of B′ in C. Then C ′ is the integral closure of
A in C.

Proof. Omitted. □

Lemma 36.17.00GQ Suppose that R → S is an integral ring extension with R ⊂ S.
Then φ : Spec(S)→ Spec(R) is surjective.

Proof. Let p ⊂ R be a prime ideal. We have to show pSp ̸= Sp, see Lemma
18.6. The localization Rp → Sp is injective (as localization is exact) and integral
by Lemma 36.11 or 36.13. Hence we may replace R, S by Rp, Sp and we may
assume R is local with maximal ideal m and it suffices to show that mS ̸= S.
Suppose 1 =

∑
fisi with fi ∈ m and si ∈ S in order to get a contradiction. Let

R ⊂ S′ ⊂ S be such that R → S′ is finite and si ∈ S′, see Lemma 36.4. The
equation 1 =

∑
fisi implies that the finite R-module S′ satisfies S′ = mS′. Hence

by Nakayama’s Lemma 20.1 we see S′ = 0. Contradiction. □

Lemma 36.18.00GR Let R be a ring. Let K be a field. If R ⊂ K and K is integral
over R, then R is a field and K is an algebraic extension. If R ⊂ K and K is finite
over R, then R is a field and K is a finite algebraic extension.

Proof. Assume that R ⊂ K is integral. By Lemma 36.17 we see that Spec(R) has
1 point. Since clearly R is a domain we see that R = R(0) is a field (Lemma 25.1).
The other assertions are immediate from this. □

Lemma 36.19.00GS Let k be a field. Let S be a k-algebra over k.
(1) If S is a domain and finite dimensional over k, then S is a field.
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(2) If S is integral over k and a domain, then S is a field.
(3) If S is integral over k then every prime of S is a maximal ideal (see Lemma

26.5 for more consequences).

Proof. The statement on primes follows from the statement “integral + domain
⇒ field”. Let S integral over k and assume S is a domain, Take s ∈ S. By Lemma
36.4 we may find a finite dimensional k-subalgebra k ⊂ S′ ⊂ S containing s. Hence
S is a field if we can prove the first statement. Assume S finite dimensional over k
and a domain. Pick s ∈ S. Since S is a domain the multiplication map s : S → S
is surjective by dimension reasons. Hence there exists an element s1 ∈ S such that
ss1 = 1. So S is a field. □

Lemma 36.20.00GT Suppose R→ S is integral. Let q, q′ ∈ Spec(S) be distinct primes
having the same image in Spec(R). Then neither q ⊂ q′ nor q′ ⊂ q.

Proof. Let p ⊂ R be the image. By Remark 18.5 the primes q, q′ correspond to
ideals in S ⊗R κ(p). Thus the lemma follows from Lemma 36.19. □

Lemma 36.21.05DR Suppose R → S is finite. Then the fibres of Spec(S)→ Spec(R)
are finite.

Proof. By the discussion in Remark 18.5 the fibres are the spectra of the rings
S⊗Rκ(p). As R→ S is finite, these fibre rings are finite over κ(p) hence Noetherian
by Lemma 31.1. By Lemma 36.20 every prime of S ⊗R κ(p) is a minimal prime.
Hence by Lemma 31.6 there are at most finitely many. □

Lemma 36.22.00GU Let R → S be a ring map such that S is integral over R. Let
p ⊂ p′ ⊂ R be primes. Let q be a prime of S mapping to p. Then there exists a
prime q′ with q ⊂ q′ mapping to p′.

Proof. We may replace R by R/p and S by S/q. This reduces us to the situation
of having an integral extension of domains R ⊂ S and a prime p′ ⊂ R. By Lemma
36.17 we win. □

The property expressed in the lemma above is called the “going up property” for
the ring map R→ S, see Definition 41.1.

Lemma 36.23.0564 Let R → S be a finite and finitely presented ring map. Let M
be an S-module. Then M is finitely presented as an R-module if and only if M is
finitely presented as an S-module.

Proof. One of the implications follows from Lemma 6.4. To see the other assume
that M is finitely presented as an S-module. Pick a presentation

S⊕m −→ S⊕n −→M −→ 0

As S is finite as an R-module, the kernel of S⊕n → M is a finite R-module. Thus
from Lemma 5.3 we see that it suffices to prove that S is finitely presented as an
R-module.

Pick y1, . . . , yn ∈ S such that y1, . . . , yn generate S as an R-module. By Lemma
36.2 each yi is integral over R. Choose monic polynomials Pi(x) ∈ R[x] with
Pi(yi) = 0. Consider the ring

S′ = R[x1, . . . , xn]/(P1(x1), . . . , Pn(xn))
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Then we see that S is of finite presentation as an S′-algebra by Lemma 6.2. Since
S′ → S is surjective, the kernel J = Ker(S′ → S) is finitely generated as an ideal by
Lemma 6.3. Hence J is a finite S′-module (immediate from the definitions). Thus
S = Coker(J → S′) is of finite presentation as an S′-module by Lemma 5.3. Hence,
arguing as in the first paragraph, it suffices to show that S′ is of finite presentation
as an R-module. Actually, S′ is free as an R-module with basis the monomials
xe1

1 . . . xen
n for 0 ≤ ei < deg(Pi). Namely, write R→ S′ as the composition

R→ R[x1]/(P1(x1))→ R[x1, x2]/(P1(x1), P2(x2))→ . . .→ S′

This shows that the ith ring in this sequence is free as a module over the (i− 1)st
one with basis 1, xi, . . . , xdeg(Pi)−1

i . The result follows easily from this by induction.
Some details omitted. □

Lemma 36.24.052J Let R be a ring. Let x, y ∈ R be nonzerodivisors. Let R[x/y] ⊂
Rxy be the R-subalgebra generated by x/y, and similarly for the subalgebras R[y/x]
and R[x/y, y/x]. If R is integrally closed in Rx or Ry, then the sequence

0→ R
(−1,1)−−−−→ R[x/y]⊕R[y/x] (1,1)−−−→ R[x/y, y/x]→ 0

is a short exact sequence of R-modules.

Proof. Since x/y · y/x = 1 it is clear that the map R[x/y]⊕R[y/x]→ R[x/y, y/x]
is surjective. Let α ∈ R[x/y] ∩ R[y/x]. To show exactness in the middle we have
to prove that α ∈ R. By assumption we may write

α = a0 + a1x/y + . . .+ an(x/y)n = b0 + b1y/x+ . . .+ bm(y/x)m

for some n,m ≥ 0 and ai, bj ∈ R. Pick some N > max(n,m). Consider the finite
R-submodule M of Rxy generated by the elements

(x/y)N , (x/y)N−1, . . . , x/y, 1, y/x, . . . , (y/x)N−1, (y/x)N

We claim that αM ⊂ M . Namely, it is clear that (x/y)i(b0 + b1y/x + . . . +
bm(y/x)m) ∈M for 0 ≤ i ≤ N and that (y/x)i(a0 + a1x/y + . . .+ an(x/y)n) ∈M
for 0 ≤ i ≤ N . Hence α is integral over R by Lemma 36.2. Note that α ∈ Rx, so if
R is integrally closed in Rx then α ∈ R as desired. □

37. Normal rings

037B We first introduce the notion of a normal domain, and then we introduce the (very
general) notion of a normal ring.

Definition 37.1.0309 A domain R is called normal if it is integrally closed in its field
of fractions.

Lemma 37.2.034L Let R → S be a ring map. If S is a normal domain, then the
integral closure of R in S is a normal domain.

Proof. Omitted. □

The following notion is occasionally useful when studying normality.

Definition 37.3.00GW Let R be a domain.
(1) An element g of the fraction field of R is called almost integral over R if

there exists an element r ∈ R, r ̸= 0 such that rgn ∈ R for all n ≥ 0.
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(2) The domain R is called completely normal if every almost integral element
of the fraction field of R is contained in R.

The following lemma shows that a Noetherian domain is normal if and only if it is
completely normal.

Lemma 37.4.00GX Let R be a domain with fraction field K. If u, v ∈ K are almost
integral over R, then so are u+v and uv. Any element g ∈ K which is integral over
R is almost integral over R. If R is Noetherian then the converse holds as well.

Proof. If run ∈ R for all n ≥ 0 and vnr′ ∈ R for all n ≥ 0, then (uv)nrr′ and
(u + v)nrr′ are in R for all n ≥ 0. Hence the first assertion. Suppose g ∈ K
is integral over R. In this case there exists an d > 0 such that the ring R[g] is
generated by 1, g, . . . , gd as an R-module. Let r ∈ R be a common denominator
of the elements 1, g, . . . , gd ∈ K. It follows that rR[g] ⊂ R, and hence g is almost
integral over R.
Suppose R is Noetherian and g ∈ K is almost integral over R. Let r ∈ R, r ̸= 0 be
as in the definition. Then R[g] ⊂ 1

rR as an R-module. Since R is Noetherian this
implies that R[g] is finite over R. Hence g is integral over R, see Lemma 36.3. □

Lemma 37.5.00GY Any localization of a normal domain is normal.

Proof. Let R be a normal domain, and let S ⊂ R be a multiplicative subset.
Suppose g is an element of the fraction field of R which is integral over S−1R.
Let P = xd +

∑
j<d ajx

j be a polynomial with ai ∈ S−1R such that P (g) = 0.
Choose s ∈ S such that sai ∈ R for all i. Then sg satisfies the monic polynomial
xd +

∑
j<d s

d−jajx
j which has coefficients sd−jaj in R. Hence sg ∈ R because R

is normal. Hence g ∈ S−1R. □

Lemma 37.6.00GZ A principal ideal domain is normal.

Proof. Let R be a principal ideal domain. Let g = a/b be an element of the
fraction field of R integral over R. Because R is a principal ideal domain we may
divide out a common factor of a and b and assume (a, b) = R. In this case, any
equation (a/b)n + rn−1(a/b)n−1 + . . . + r0 = 0 with ri ∈ R would imply an ∈ (b).
This contradicts (a, b) = R unless b is a unit in R. □

Lemma 37.7.00H0 Let R be a domain with fraction field K. Suppose f =
∑
αix

i is
an element of K[x].

(1) If f is integral over R[x] then all αi are integral over R, and
(2) If f is almost integral over R[x] then all αi are almost integral over R.

Proof. We first prove the second statement. Write f = α0 +α1x+ . . .+αrx
r with

αr ̸= 0. By assumption there exists h = b0 + b1x + . . . + bsx
s ∈ R[x], bs ̸= 0 such

that fnh ∈ R[x] for all n ≥ 0. This implies that bsαnr ∈ R for all n ≥ 0. Hence αr
is almost integral over R. Since the set of almost integral elements form a subring
(Lemma 37.4) we deduce that f − αrxr = α0 + α1x + . . . + αr−1x

r−1 is almost
integral over R[x]. By induction on r we win.
In order to prove the first statement we will use absolute Noetherian reduction.
Namely, write αi = ai/bi and let P (t) = td +

∑
j<d fjt

j be a polynomial with
coefficients fj ∈ R[x] such that P (f) = 0. Let fj =

∑
fjix

i. Consider the subring
R0 ⊂ R generated by the finite list of elements ai, bi, fji of R. It is a domain; let
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K0 be its field of fractions. Since R0 is a finite type Z-algebra it is Noetherian, see
Lemma 31.3. It is still the case that f ∈ K0[x] is integral over R0[x], because all
the identities in R among the elements ai, bi, fji also hold in R0. By Lemma 37.4
the element f is almost integral over R0[x]. By the second statement of the lemma,
the elements αi are almost integral over R0. And since R0 is Noetherian, they are
integral over R0, see Lemma 37.4. Of course, then they are integral over R. □

Lemma 37.8.030A Let R be a normal domain. Then R[x] is a normal domain.

Proof. The result is true if R is a field K because K[x] is a euclidean domain
and hence a principal ideal domain and hence normal by Lemma 37.6. Let g be
an element of the fraction field of R[x] which is integral over R[x]. Because g is
integral over K[x] where K is the fraction field of R we may write g = αdx

d +
αd−1x

d−1 + . . .+α0 with αi ∈ K. By Lemma 37.7 the elements αi are integral over
R and hence are in R. □

Lemma 37.9.0BI0 Let R be a Noetherian normal domain. Then R[[x]] is a Noetherian
normal domain.

Proof. The power series ring is Noetherian by Lemma 31.2. Let f, g ∈ R[[x]] be
nonzero elements such that w = f/g is integral over R[[x]]. Let K be the fraction
field of R. Since the ring of Laurent series K((x)) = K[[x]][1/x] is a field, we can
write w = anx

n + an+1x
n+1 + . . . for some n ∈ Z, ai ∈ K, and an ̸= 0. By Lemma

37.4 we see there exists a nonzero element h = bmx
m + bm+1x

m+1 + . . . in R[[x]]
with bm ̸= 0 such that weh ∈ R[[x]] for all e ≥ 1. We conclude that n ≥ 0 and that
bma

e
n ∈ R for all e ≥ 1. Since R is Noetherian this implies that an ∈ R by the same

lemma. Now, if an, an+1, . . . , aN−1 ∈ R, then we can apply the same argument to
w − anxn − . . .− aN−1x

N−1 = aNx
N + . . .. In this way we see that all ai ∈ R and

the lemma is proved. □

Lemma 37.10.030B Let R be a domain. The following are equivalent:
(1) The domain R is a normal domain,
(2) for every prime p ⊂ R the local ring Rp is a normal domain, and
(3) for every maximal ideal m the ring Rm is a normal domain.

Proof. We deduce (1) ⇒ (2) from Lemma 37.5. The implication (2) ⇒ (3) is
immediate. The implication (3) ⇒ (1) follows from the fact that for any domain R
we have

R =
⋂

m
Rm

inside the fraction field of R. Namely, if g is an element of the right hand side then
the ideal I = {x ∈ R | xg ∈ R} is not contained in any maximal ideal m, whence
I = R. □

Lemma 37.10 shows that the following definition is compatible with Definition 37.1.
(It is the definition from EGA – see [DG67, IV, 5.13.5 and 0, 4.1.4].)

Definition 37.11.00GV A ring R is called normal if for every prime p ⊂ R the local-
ization Rp is a normal domain (see Definition 37.1).

Note that a normal ring is a reduced ring, as R is a subring of the product of its
localizations at all primes (see for example Lemma 23.1).

Lemma 37.12.034M A normal ring is integrally closed in its total ring of fractions.
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Proof. Let R be a normal ring. Let x ∈ Q(R) be an element of the total ring of
fractions of R integral over R. Set I = {f ∈ R, fx ∈ R}. Let p ⊂ R be a prime.
As R → Rp is flat we see that Rp ⊂ Q(R) ⊗R Rp. As Rp is a normal domain we
see that x ⊗ 1 is an element of Rp. Hence we can find a, f ∈ R, f ̸∈ p such that
x ⊗ 1 = a ⊗ 1/f . This means that fx − a maps to zero in Q(R) ⊗R Rp = Q(R)p,
which in turn means that there exists an f ′ ∈ R, f ′ ̸∈ p such that f ′fx = f ′a in
R. In other words, ff ′ ∈ I. Thus I is an ideal which isn’t contained in any of the
prime ideals of R, i.e., I = R and x ∈ R. □

Lemma 37.13.037C A localization of a normal ring is a normal ring.

Proof. Omitted. □

Lemma 37.14.00H1 Let R be a normal ring. Then R[x] is a normal ring.

Proof. Let q be a prime of R[x]. Set p = R∩q. Then we see that Rp[x] is a normal
domain by Lemma 37.8. Hence (R[x])q is a normal domain by Lemma 37.5. □

Lemma 37.15.0CYA A finite product of normal rings is normal.

Proof. It suffices to show that the product of two normal rings, say R and S,
is normal. By Lemma 21.3 the prime ideals of R × S are of the form p × S and
R × q, where p and q are primes of R and S respectively. Localization yields
(R× S)p×S = Rp which is a normal domain by assumption. Similarly for S. □

Lemma 37.16.030C Let R be a ring. Assume R is reduced and has finitely many
minimal primes. Then the following are equivalent:

(1) R is a normal ring,
(2) R is integrally closed in its total ring of fractions, and
(3) R is a finite product of normal domains.

Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) hold in general, see Lemmas
37.12 and 37.15.

Let p1, . . . , pn be the minimal primes of R. By Lemmas 25.2 and 25.4 we have
Q(R) = Rp1 × . . . × Rpn , and by Lemma 25.1 each factor is a field. Denote ei =
(0, . . . , 0, 1, 0, . . . , 0) the ith idempotent of Q(R).

If R is integrally closed in Q(R), then it contains in particular the idempotents
ei, and we see that R is a product of n domains (see Sections 22 and 24). Each
factor is of the form R/pi with field of fractions Rpi

. By Lemma 36.10 each map
R/pi → Rpi

is integrally closed. Hence R is a finite product of normal domains. □

Lemma 37.17.037D Let (Ri, φii′) be a directed system (Categories, Definition 8.1) of
rings. If each Ri is a normal ring so is R = colimiRi.

Proof. Let p ⊂ R be a prime ideal. Set pi = Ri ∩ p (usual abuse of notation).
Then we see that Rp = colimi(Ri)pi

. Since each (Ri)pi
is a normal domain we

reduce to proving the statement of the lemma for normal domains. If a, b ∈ R
and a/b satisfies a monic polynomial P (T ) ∈ R[T ], then we can find a (sufficiently
large) i ∈ I such that a, b come from objects ai, bi over Ri, P comes from a monic
polynomial Pi ∈ Ri[T ] and Pi(ai/bi) = 0. Since Ri is normal we see ai/bi ∈ Ri and
hence also a/b ∈ R. □
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38. Going down for integral over normal

037E We first play around a little bit with the notion of elements integral over an ideal,
and then we prove the theorem referred to in the section title.

Definition 38.1.00H2 Let φ : R → S be a ring map. Let I ⊂ R be an ideal.
We say an element g ∈ S is integral over I if there exists a monic polynomial
P = xd +

∑
j<d ajx

j with coefficients aj ∈ Id−j such that Pφ(g) = 0 in S.

This is mostly used when φ = idR : R → R. In this case the set I ′ of elements
integral over I is called the integral closure of I. We will see that I ′ is an ideal of
R (and of course I ⊂ I ′).

Lemma 38.2.00H3 Let φ : R → S be a ring map. Let I ⊂ R be an ideal. Let
A =

∑
Intn ⊂ R[t] be the subring of the polynomial ring generated by R⊕It ⊂ R[t].

An element s ∈ S is integral over I if and only if the element st ∈ S[t] is integral
over A.

Proof. Suppose st is integral over A. Let P = xd +
∑
j<d ajx

j be a monic poly-
nomial with coefficients in A such that Pφ(st) = 0. Let a′

j ∈ A be the degree d− j
part of aj , in other words a′

j = a′′
j t
d−j with a′′

j ∈ Id−j . For degree reasons we still
have (st)d +

∑
j<d φ(a′′

j )td−j(st)j = 0. Hence sd +
∑
j<d φ(a′′

j )sj = 0 and we see
that s is integral over I.
Suppose that s is integral over I. Say P = xd +

∑
j<d ajx

j with aj ∈ Id−j . Then
we immediately find a polynomial Q = xd +

∑
j<d(ajtd−j)xj with coefficients in A

which proves that st is integral over A. □

Lemma 38.3.00H4 Let φ : R → S be a ring map. Let I ⊂ R be an ideal. The set of
elements of S which are integral over I form a R-submodule of S. Furthermore, if
s ∈ S is integral over R, and s′ is integral over I, then ss′ is integral over I.

Proof. Closure under addition is clear from the characterization of Lemma 38.2.
Any element s ∈ S which is integral over R corresponds to the degree 0 element s
of S[x] which is integral over A (because R ⊂ A). Hence we see that multiplication
by s on S[x] preserves the property of being integral over A, by Lemma 36.7. □

Lemma 38.4.00H5 Suppose φ : R → S is integral. Suppose I ⊂ R is an ideal. Then
every element of IS is integral over I.

Proof. Immediate from Lemma 38.3. □

Lemma 38.5.00H6 Let K be a field. Let n,m ∈ N and a0, . . . , an−1, b0, . . . , bm−1 ∈ K.
If the polynomial xn+an−1x

n−1 + . . .+a0 divides the polynomial xm+bm−1x
m−1 +

. . .+ b0 in K[x] then
(1) a0, . . . , an−1 are integral over any subring R0 of K containing the elements

b0, . . . , bm−1, and
(2) each ai lies in

√
(b0, . . . , bm−1)R for any subring R ⊂ K containing the

elements a0, . . . , an−1, b0, . . . , bm−1.

Proof. Let L/K be a field extension such that we can write xm + bm−1x
m−1 +

. . . + b0 =
∏m
i=1(x − βi) with βi ∈ L. See Fields, Section 16. Each βi is integral

over R0. Since each ai is a homogeneous polynomial in β1, . . . , βm we deduce the
same for the ai (use Lemma 36.7).
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Choose c0, . . . , cm−n−1 ∈ K such that

xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).

By part (1) the elements ci are integral over R. Consider the integral extension

R ⊂ R′ = R[c0, . . . , cm−n−1] ⊂ K

By Lemmas 36.17 and 30.3 we see that R∩
√

(b0, . . . , bm−1)R′ =
√

(b0, . . . , bm−1)R.
Thus we may replace R by R′ and assume ci ∈ R. Dividing out the radical√

(b0, . . . , bm−1) we get a reduced ring R. We have to show that the images ai ∈ R
are zero. And in R[x] we have the relation

xm = xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).

It is easy to see that this implies ai = 0 for all i. Indeed by Lemma 25.1 the
localization of R at a minimal prime p is a field and Rp[x] a UFD. Thus f =
xn +

∑
aix

i is associated to xn and since f is monic f = xn in Rp[x]. Then there
exists an s ∈ R, s ̸∈ p such that s(f − xn) = 0. Therefore all ai lie in p and we
conclude by Lemma 25.2. □

Lemma 38.6.00H7 Let R ⊂ S be an inclusion of domains. Assume R is normal. Let
g ∈ S be integral over R. Then the minimal polynomial of g has coefficients in R.

Proof. Let P = xm + bm−1x
m−1 + . . .+ b0 be a polynomial with coefficients in R

such that P (g) = 0. Let Q = xn + an−1x
n−1 + . . .+ a0 be the minimal polynomial

for g over the fraction field K of R. Then Q divides P in K[x]. By Lemma 38.5 we
see the ai are integral over R. Since R is normal this means they are in R. □

Proposition 38.7.00H8 Let R ⊂ S be an inclusion of domains. Assume R is normal
and S integral over R. Let p ⊂ p′ ⊂ R be primes. Let q′ be a prime of S with
p′ = R ∩ q′. Then there exists a prime q with q ⊂ q′ such that p = R ∩ q. In other
words: the going down property holds for R→ S, see Definition 41.1.

Proof. Let p, p′ and q′ be as in the statement. We have to show there is a prime
q, with q ⊂ q′ and R∩q = p. This is the same as finding a prime of Sq′ mapping to
p. According to Lemma 18.6 we have to show that pSq′ ∩R = p. Pick z ∈ pSq′ ∩R.
We may write z = y/g with y ∈ pS and g ∈ S, g ̸∈ q′. Written differently we have
zg = y.

By Lemma 38.4 there exists a monic polynomial P = xm + bm−1x
m−1 + . . . + b0

with bi ∈ p such that P (y) = 0.

By Lemma 38.6 the minimal polynomial of g over K has coefficients in R. Write
it as Q = xn + an−1x

n−1 + . . .+ a0. Note that not all ai, i = n− 1, . . . , 0 are in p
since that would imply gn =

∑
j<n ajg

j ∈ pS ⊂ p′S ⊂ q′ which is a contradiction.

Since y = zg we see immediately from the above that Q′ = xn + zan−1x
n−1 +

. . . + zna0 is the minimal polynomial for y. Hence Q′ divides P and by Lemma
38.5 we see that zjan−j ∈

√
(b0, . . . , bm−1) ⊂ p, j = 1, . . . , n. Because not all ai,

i = n− 1, . . . , 0 are in p we conclude z ∈ p as desired. □
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39. Flat modules and flat ring maps

00H9 One often used result is that if M = colimi∈I Mi is a colimit of R-modules and if
N is an R-module then

M ⊗N = colimi∈I Mi ⊗R N,
see Lemma 12.9. This property is usually expressed by saying that ⊗ commutes
with colimits. Another often used result is that if 0 → N1 → N2 → N3 → 0 is an
exact sequence and if M is any R-module, then

M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0
is still exact, see Lemma 12.10. Both of these properties tell us that the functor
N 7→M ⊗R N is right exact. See Categories, Section 23 and Homology, Section 7.
An R-module M is flat if N 7→ N ⊗RM is also left exact, i.e., if it is exact. Here
is the precise definition.

Definition 39.1.00HB Let R be a ring.
(1) An R-module M is called flat if whenever N1 → N2 → N3 is an exact

sequence of R-modules the sequence M ⊗RN1 →M ⊗RN2 →M ⊗RN3 is
exact as well.

(2) An R-module M is called faithfully flat if the complex of R-modules N1 →
N2 → N3 is exact if and only if the sequence M ⊗R N1 → M ⊗R N2 →
M ⊗R N3 is exact.

(3) A ring map R→ S is called flat if S is flat as an R-module.
(4) A ring map R → S is called faithfully flat if S is faithfully flat as an R-

module.

Here is an example of how you can use the flatness condition.

Lemma 39.2.0BBY Let R be a ring. Let I, J ⊂ R be ideals. Let M be a flat R-module.
Then IM ∩ JM = (I ∩ J)M .

Proof. Consider the exact sequence 0→ I∩J → R→ R/I⊕R/J . Tensoring with
the flat module M we obtain an exact sequence

0→ (I ∩ J)⊗RM →M →M/IM ⊕M/JM

Since the kernel of M →M/IM ⊕M/JM is equal to IM ∩ JM we conclude. □

Lemma 39.3.05UT Let R be a ring. Let {Mi, φii′} be a directed system of flat R-
modules. Then colimiMi is a flat R-module.

Proof. This follows as ⊗ commutes with colimits and because directed colimits
are exact, see Lemma 8.8. □

Lemma 39.4.00HC A composition of (faithfully) flat ring maps is (faithfully) flat. If
R → R′ is (faithfully) flat, and M ′ is a (faithfully) flat R′-module, then M ′ is a
(faithfully) flat R-module.

Proof. The first statement of the lemma is a particular case of the second, so it is
clearly enough to prove the latter. Let R→ R′ be a flat ring map, and M ′ a flat R′-
module. We need to prove that M ′ is a flat R-module. Let N1 → N2 → N3 be an
exact complex of R-modules. Then, the complex R′⊗RN1 → R′⊗RN2 → R′⊗RN3
is exact (since R′ is flat as an R-module), and so the complex M ′⊗R′ (R′ ⊗R N1)→
M ′ ⊗R′ (R′ ⊗R N2)→ M ′ ⊗R′ (R′ ⊗R N3) is exact (since M ′ is a flat R′-module).
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Since M ′ ⊗R′ (R′ ⊗R N) ∼= (M ′ ⊗R′ R′) ⊗R N ∼= M ′ ⊗R N for any R-module N
functorially (by Lemmas 12.7 and 12.3), this complex is isomorphic to the complex
M ′ ⊗R N1 → M ′ ⊗R N2 → M ′ ⊗R N3, which is therefore also exact. This shows
that M ′ is a flat R-module. Tracing this argument backwards, we can show that if
R → R′ is faithfully flat, and if M ′ is faithfully flat as an R′-module, then M ′ is
faithfully flat as an R-module. □

Lemma 39.5.00HD Let M be an R-module. The following are equivalent:
(1)00HE M is flat over R.
(2)00HF for every injection of R-modules N ⊂ N ′ the map N ⊗RM → N ′ ⊗RM is

injective.
(3)00HG for every ideal I ⊂ R the map I ⊗RM → R⊗RM = M is injective.
(4)00HH for every finitely generated ideal I ⊂ R the map I ⊗RM → R ⊗RM = M

is injective.

Proof. The implications (1) implies (2) implies (3) implies (4) are all trivial. Thus
we prove (4) implies (1). Suppose that N1 → N2 → N3 is exact. Let K =
Ker(N2 → N3) and Q = Im(N2 → N3). Then we get maps

N1 ⊗RM → K ⊗RM → N2 ⊗RM → Q⊗RM → N3 ⊗RM

Observe that the first and third arrows are surjective. Thus if we show that the
second and fourth arrows are injective, then we are done3. Hence it suffices to show
that −⊗RM transforms injective R-module maps into injective R-module maps.

AssumeK → N is an injectiveR-module map and let x ∈ Ker(K⊗RM → N⊗RM).
We have to show that x is zero. The R-module K is the union of its finite R-
submodules; hence, K⊗RM is the colimit of R-modules of the form Ki⊗RM where
Ki runs over all finite R-submodules of K (because tensor product commutes with
colimits). Thus, for some i our x comes from an element xi ∈ Ki ⊗RM . Thus we
may assume that K is a finite R-module. Assume this. We regard the injection
K → N as an inclusion, so that K ⊂ N .

The R-module N is the union of its finite R-submodules that contain K. Hence,
N ⊗RM is the colimit of R-modules of the form Ni ⊗RM where Ni runs over all
finite R-submodules of N that contain K (again since tensor product commutes
with colimits). Notice that this is a colimit over a directed system (since the sum
of two finite submodules of N is again finite). Hence, (by Lemma 8.4) the element
x ∈ K ⊗R M maps to zero in at least one of these R-modules Ni ⊗R M (since x
maps to zero in N ⊗RM). Thus we may assume N is a finite R-module.

Assume N is a finite R-module. Write N = R⊕n/L and K = L′/L for some
L ⊂ L′ ⊂ R⊕n. For any R-submodule G ⊂ R⊕n, we have a canonical map G ⊗R
M → M⊕n obtained by composing G ⊗R M → Rn ⊗R M = M⊕n. It suffices to

3Here is the argument in more detail: Assume that we know that the second and fourth arrows
are injective. Lemma 12.10 (applied to the exact sequence K → N2 → Q → 0) yields that the
sequence K ⊗R M → N2 ⊗R M → Q ⊗R M → 0 is exact. Hence, Ker (N2 ⊗R M → Q ⊗R M) =
Im (K ⊗R M → N2 ⊗R M). Since Im (K ⊗R M → N2 ⊗R M) = Im (N1 ⊗R M → N2 ⊗R M)
(due to the surjectivity of N1 ⊗R M → K ⊗R M) and Ker (N2 ⊗R M → Q ⊗R M) =
Ker (N2 ⊗R M → N3 ⊗R M) (due to the injectivity of Q ⊗R M → N3 ⊗R M), this be-
comes Ker (N2 ⊗R M → N3 ⊗R M) = Im (N1 ⊗R M → N2 ⊗R M), which shows that the functor
− ⊗R M is exact, whence M is flat.

https://stacks.math.columbia.edu/tag/00HD
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prove that L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective. Namely, if so,
then we see that K ⊗RM = L′ ⊗RM/L⊗RM →M⊕n/L⊗RM is injective too4.
Thus it suffices to show that L ⊗R M → M⊕n is injective when L ⊂ R⊕n is an
R-submodule. We do this by induction on n. The base case n = 1 we handle below.
For the induction step assume n > 1 and set L′ = L∩R⊕ 0⊕n−1. Then L′′ = L/L′

is a submodule of R⊕n−1. We obtain a diagram

L′ ⊗RM //

��

L⊗RM //

��

L′′ ⊗RM //

��

0

0 // M // M⊕n // M⊕n−1 // 0
By induction hypothesis and the base case the left and right vertical arrows are
injective. The rows are exact. It follows that the middle vertical arrow is injective
too.
The base case of the induction above is when L ⊂ R is an ideal. In other words,
we have to show that I ⊗R M → M is injective for any ideal I of R. We know
this is true when I is finitely generated. However, I =

⋃
Iα is the union of the

finitely generated ideals Iα contained in it. In other words, I = colim Iα. Since
⊗ commutes with colimits we see that I ⊗R M = colim Iα ⊗R M and since all
the morphisms Iα ⊗R M → M are injective by assumption, the same is true for
I ⊗RM →M . □

Lemma 39.6.05UU Let {Ri, φii′} be a system of rings over the directed set I. Let
R = colimiRi.

(1) If M is an R-module such that M is flat as an Ri-module for all i, then M
is flat as an R-module.

(2) For i ∈ I let Mi be a flat Ri-module and for i′ ≥ i let fii′ : Mi → Mi′ be
a φii′-linear map such that fi′i′′ ◦ fii′ = fii′′ . Then M = colimi∈IMi is a
flat R-module.

Proof. Part (1) is a special case of part (2) with Mi = M for all i and fii′ = idM .
Proof of (2). Let a ⊂ R be a finitely generated ideal. By Lemma 39.5 it suffices to
show that a⊗RM →M is injective. We can find an i ∈ I and a finitely generated
ideal a′ ⊂ Ri such that a = a′R. Then a = colimi′≥i a

′Ri′ . Since ⊗ commutes with
colimits the map a⊗RM →M is the colimit of the maps

a′Ri′ ⊗Ri′ Mi′ −→Mi′

These maps are all injective by assumption. Since colimits over I are exact by
Lemma 8.8 we win. □

Lemma 39.7.00HI Suppose that M is (faithfully) flat over R, and that R → R′ is a
ring map. Then M ⊗R R′ is (faithfully) flat over R′.

Proof. For any R′-module N we have a canonical isomorphism N⊗R′ (R′⊗RM) =
N ⊗RM . Hence the desired exactness properties of the functor −⊗R′ (R′ ⊗RM)
follow from the corresponding exactness properties of the functor −⊗RM . □

4This becomes obvious if we identify L′ ⊗R M and L ⊗R M with submodules of M⊕n (which
is legitimate since the maps L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective and commute
with the obvious map L′ ⊗R M → L ⊗R M).
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Lemma 39.8.00HJ Let R→ R′ be a faithfully flat ring map. Let M be a module over
R, and set M ′ = R′ ⊗R M . Then M is flat over R if and only if M ′ is flat over
R′.

Proof. By Lemma 39.7 we see that if M is flat then M ′ is flat. For the converse,
suppose that M ′ is flat. Let N1 → N2 → N3 be an exact sequence of R-modules.
We want to show that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We know that
N1⊗RR′ → N2⊗RR′ → N3⊗RR′ is exact, because R→ R′ is flat. Flatness of M ′

implies that N1⊗RR′⊗R′ M ′ → N2⊗RR′⊗R′ M ′ → N3⊗RR′⊗R′ M ′ is exact. We
may write this as N1 ⊗RM ⊗R R′ → N2 ⊗RM ⊗R R′ → N3 ⊗RM ⊗R R′. Finally,
faithful flatness implies that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. □

Lemma 39.9.0584 Let R be a ring. Let S → S′ be a flat map of R-algebras. Let M
be a module over S, and set M ′ = S′ ⊗S M .

(1) If M is flat over R, then M ′ is flat over R.
(2) If S → S′ is faithfully flat, then M is flat over R if and only if M ′ is flat

over R.

Proof. Let N → N ′ be an injection of R-modules. By the flatness of S → S′ we
have

Ker(N ⊗RM → N ′ ⊗RM)⊗S S′ = Ker(N ⊗RM ′ → N ′ ⊗RM ′)

If M is flat over R, then the left hand side is zero and we find that M ′ is flat over R
by the second characterization of flatness in Lemma 39.5. If M ′ is flat over R then
we have the vanishing of the right hand side and if in addition S → S′ is faithfully
flat, this implies that Ker(N ⊗RM → N ′ ⊗RM) is zero which in turn shows that
M is flat over R. □

Lemma 39.10.039V Let R → S be a ring map. Let M be an S-module. If M is flat
as an R-module and faithfully flat as an S-module, then R→ S is flat.

Proof. Let N1 → N2 → N3 be an exact sequence of R-modules. By assumption
N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We may write this as

N1 ⊗R S ⊗S M → N2 ⊗R S ⊗S M → N3 ⊗R S ⊗S M.

By faithful flatness of M over S we conclude that N1⊗R S → N2⊗R S → N3⊗R S
is exact. Hence R→ S is flat. □

Let R be a ring. Let M be an R-module. Let
∑
fixi = 0 be a relation in M . We

say the relation
∑
fixi is trivial if there exist an integer m ≥ 0, elements yj ∈ M ,

j = 1, . . . ,m, and elements aij ∈ R, i = 1, . . . , n, j = 1, . . . ,m such that

xi =
∑

j
aijyj ,∀i, and 0 =

∑
i
fiaij ,∀j.

Lemma 39.11 (Equational criterion of flatness).00HK A module M over R is flat if
and only if every relation in M is trivial.

Proof. Assume M is flat and let
∑
fixi = 0 be a relation in M . Let I =

(f1, . . . , fn), and let K = Ker(Rn → I, (a1, . . . , an) 7→
∑
i aifi). So we have the

short exact sequence 0 → K → Rn → I → 0. Then
∑
fi ⊗ xi is an element of

I ⊗R M which maps to zero in R ⊗R M = M . By flatness
∑
fi ⊗ xi is zero in

I⊗RM . Thus there exists an element of K⊗RM mapping to
∑
ei⊗xi ∈ Rn⊗RM

https://stacks.math.columbia.edu/tag/00HJ
https://stacks.math.columbia.edu/tag/0584
https://stacks.math.columbia.edu/tag/039V
https://stacks.math.columbia.edu/tag/00HK


COMMUTATIVE ALGEBRA 90

where ei is the ith basis element of Rn. Write this element as
∑
kj ⊗ yj and then

write the image of kj in Rn as
∑
aijei to get the result.

Assume every relation is trivial, let I be a finitely generated ideal, and let x =∑
fi ⊗ xi be an element of I ⊗R M mapping to zero in R ⊗R M = M . This just

means exactly that
∑
fixi is a relation in M . And the fact that it is trivial implies

easily that x is zero, because

x =
∑

fi ⊗ xi =
∑

fi ⊗
(∑

aijyj

)
=
∑(∑

fiaij

)
⊗ yj = 0

□

Lemma 39.12.00HL Suppose that R is a ring, 0→M ′′ →M ′ →M → 0 a short exact
sequence, and N an R-module. If M is flat then N⊗RM ′′ → N⊗RM ′ is injective,
i.e., the sequence

0→ N ⊗RM ′′ → N ⊗RM ′ → N ⊗RM → 0
is a short exact sequence.

Proof. Let R(I) → N be a surjection from a free module onto N with kernel K.
The result follows from the snake lemma applied to the following diagram

0 0 0
↑ ↑ ↑

M ′′ ⊗R N → M ′ ⊗R N → M ⊗R N → 0
↑ ↑ ↑

0 → (M ′′)(I) → (M ′)(I) → M (I) → 0
↑ ↑ ↑

M ′′ ⊗R K → M ′ ⊗R K → M ⊗R K → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the
free module R(I) is exact. □

Lemma 39.13.00HM Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence
of R-modules. If M ′ and M ′′ are flat so is M . If M and M ′′ are flat so is M ′.

Proof. We will use the criterion that a module N is flat if for every ideal I ⊂ R the
map N ⊗R I → N is injective, see Lemma 39.5. Consider an ideal I ⊂ R. Consider
the diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

M ′ ⊗R I → M ⊗R I → M ′′ ⊗R I → 0
with exact rows. This immediately proves the first assertion. The second follows
because if M ′′ is flat then the lower left horizontal arrow is injective by Lemma
39.12. □

Lemma 39.14.00HO Let R be a ring. Let M be an R-module. The following are
equivalent

(1) M is faithfully flat, and
(2) M is flat and for all R-module homomorphisms α : N → N ′ we have α = 0

if and only if α⊗ idM = 0.
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Proof. If M is faithfully flat, then 0 → Ker(α) → N → N ′ is exact if and only
if the same holds after tensoring with M . This proves (1) implies (2). For the
other, assume (2). Let N1 → N2 → N3 be a complex, and assume the complex
N1⊗RM → N2⊗RM → N3⊗RM is exact. Take x ∈ Ker(N2 → N3), and consider
the map α : R→ N2/ Im(N1), r 7→ rx+ Im(N1). By the exactness of the complex
−⊗RM we see that α⊗ idM is zero. By assumption we get that α is zero. Hence
x is in the image of N1 → N2. □

Lemma 39.15.00HP Let M be a flat R-module. The following are equivalent:
(1) M is faithfully flat,
(2) for every nonzero R-module N , then tensor product M ⊗R N is nonzero,
(3) for all p ∈ Spec(R) the tensor product M ⊗R κ(p) is nonzero, and
(4) for all maximal ideals m of R the tensor product M ⊗R κ(m) = M/mM is

nonzero.

Proof. Assume M faithfully flat and N ̸= 0. By Lemma 39.14 the nonzero map
1 : N → N induces a nonzero map M ⊗R N → M ⊗R N , so M ⊗R N ̸= 0. Thus
(1) implies (2). The implications (2) ⇒ (3) ⇒ (4) are immediate.
Assume (4). Suppose that N1 → N2 → N3 is a complex and suppose that N1 ⊗R
M → N2 ⊗R M → N3 ⊗R M is exact. Let H be the cohomology of the complex,
so H = Ker(N2 → N3)/ Im(N1 → N2). To finish the proof we will show H = 0.
By flatness we see that H ⊗R M = 0. Take x ∈ H and let I = {f ∈ R | fx = 0}
be its annihilator. Since R/I ⊂ H we get M/IM ⊂ H ⊗R M = 0 by flatness of
M . If I ̸= R we may choose a maximal ideal I ⊂ m ⊂ R. This immediately gives
a contradiction. □

Lemma 39.16.00HQ Let R→ S be a flat ring map. The following are equivalent:
(1) R→ S is faithfully flat,
(2) the induced map on Spec is surjective, and
(3) any closed point x ∈ Spec(R) is in the image of the map Spec(S) →

Spec(R).

Proof. This follows quickly from Lemma 39.15, because we saw in Remark 18.5
that p is in the image if and only if the ring S ⊗R κ(p) is nonzero. □

Lemma 39.17.00HR A flat local ring homomorphism of local rings is faithfully flat.

Proof. Immediate from Lemma 39.16. □

Flatness meshes well with localization.

Lemma 39.18.00HT Let R be a ring. Let S ⊂ R be a multiplicative subset.
(1) The localization S−1R is a flat R-algebra.
(2) If M is an S−1R-module, then M is a flat R-module if and only if M is a

flat S−1R-module.
(3) Suppose M is an R-module. Then M is a flat R-module if and only if Mp

is a flat Rp-module for all primes p of R.
(4) Suppose M is an R-module. Then M is a flat R-module if and only if Mm

is a flat Rm-module for all maximal ideals m of R.
(5) Suppose R→ A is a ring map, M is an A-module, and g1, . . . , gm ∈ A are

elements generating the unit ideal of A. Then M is flat over R if and only
if each localization Mgi

is flat over R.
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(6) Suppose R → A is a ring map, and M is an A-module. Then M is a flat
R-module if and only if the localization Mq is a flat Rp-module (with p the
prime of R lying under q) for all primes q of A.

(7) Suppose R → A is a ring map, and M is an A-module. Then M is a
flat R-module if and only if the localization Mm is a flat Rp-module (with
p = R ∩m) for all maximal ideals m of A.

Proof. Let us prove the last statement of the lemma. In the proof we will use
repeatedly that localization is exact and commutes with tensor product, see Sections
9 and 12.
Suppose R → A is a ring map, and M is an A-module. Assume that Mm is a flat
Rp-module for all maximal ideals m of A (with p = R∩m). Let I ⊂ R be an ideal.
We have to show the map I ⊗R M → M is injective. We can think of this as a
map of A-modules. By assumption the localization (I ⊗RM)m → Mm is injective
because (I ⊗R M)m = Ip ⊗Rp

Mm. Hence the kernel of I ⊗R M → M is zero by
Lemma 23.1. Hence M is flat over R.
Conversely, assume M is flat over R. Pick a prime q of A lying over the prime p
of R. Suppose that I ⊂ Rp is an ideal. We have to show that I ⊗Rp

Mq → Mq is
injective. We can write I = Jp for some ideal J ⊂ R. Then the map I⊗Rp

Mq →Mq

is just the localization (at q) of the map J ⊗R M → M which is injective. Since
localization is exact we see that Mq is a flat Rp-module.
This proves (7) and (6). The other statements follow in a straightforward way from
the last statement (proofs omitted). □

Lemma 39.19.00HS Let R → S be flat. Let p ⊂ p′ be primes of R. Let q′ ⊂ S be a
prime of S mapping to p′. Then there exists a prime q ⊂ q′ mapping to p.

Proof. By Lemma 39.18 the local ring map Rp′ → Sq′ is flat. By Lemma 39.17
this local ring map is faithfully flat. By Lemma 39.16 there is a prime mapping to
pRp′ . The inverse image of this prime in S does the job. □

The property of R→ S described in the lemma is called the “going down property”.
See Definition 41.1.

Lemma 39.20.090N Let R be a ring. Let {Si, φii′} be a directed system of faithfully
flat R-algebras. Then S = colimi Si is a faithfully flat R-algebra.

Proof. By Lemma 39.3 we see that S is flat. Let m ⊂ R be a maximal ideal.
By Lemma 39.16 none of the rings Si/mSi is zero. Hence S/mS = colimSi/mSi
is nonzero as well because 1 is not equal to zero. Thus the image of Spec(S) →
Spec(R) contains m and we see that R→ S is faithfully flat by Lemma 39.16. □

40. Supports and annihilators

080S Some very basic definitions and lemmas.

Definition 40.1.00L1 Let R be a ring and let M be an R-module. The support of M
is the set

Supp(M) = {p ∈ Spec(R) |Mp ̸= 0}

Lemma 40.2.0585 Let R be a ring. Let M be an R-module. Then
M = (0)⇔ Supp(M) = ∅.
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Proof. Actually, Lemma 23.1 even shows that Supp(M) always contains a maximal
ideal if M is not zero. □

Definition 40.3.07T7 Let R be a ring. Let M be an R-module.
(1) Given an element m ∈M the annihilator of m is the ideal

AnnR(m) = Ann(m) = {f ∈ R | fm = 0}.
(2) The annihilator of M is the ideal

AnnR(M) = Ann(M) = {f ∈ R | fm = 0 ∀m ∈M}.

Lemma 40.4.07T8 Let R → S be a flat ring map. Let M be an R-module and
m ∈ M . Then AnnR(m)S = AnnS(m ⊗ 1). If M is a finite R-module, then
AnnR(M)S = AnnS(M ⊗R S).

Proof. Set I = AnnR(m). By definition there is an exact sequence 0 → I →
R → M where the map R → M sends f to fm. Using flatness we obtain an
exact sequence 0 → I ⊗R S → S → M ⊗R S which proves the first assertion. If
m1, . . . ,mn is a set of generators of M then AnnR(M) =

⋂
AnnR(mi). Similarly

AnnS(M ⊗R S) =
⋂

AnnS(mi ⊗ 1). Set Ii = AnnR(mi). Then it suffices to show
that

⋂
i=1,...,n(IiS) = (

⋂
i=1,...,n Ii)S. This is Lemma 39.2. □

Lemma 40.5.00L2 Let R be a ring and let M be an R-module. If M is finite, then
Supp(M) is closed. More precisely, if I = Ann(M) is the annihilator of M , then
V (I) = Supp(M).

Proof. We will show that V (I) = Supp(M).
Suppose p ∈ Supp(M). Then Mp ̸= 0. Choose an element m ∈ M whose image in
Mp is nonzero. Then the annihilator of m is contained in p by construction of the
localization Mp. Hence a fortiori I = Ann(M) must be contained in p.
Conversely, suppose that p ̸∈ Supp(M). Then Mp = 0. Let x1, . . . , xr ∈ M be
generators. By Lemma 9.9 there exists an f ∈ R, f ̸∈ p such that xi/1 = 0 in Mf .
Hence fnixi = 0 for some ni ≥ 1. Hence fnM = 0 for n = max{ni} as desired. □

Lemma 40.6.0BUR Let R → R′ be a ring map and let M be a finite R-module. Then
Supp(M ⊗R R′) is the inverse image of Supp(M).

Proof. Let p ∈ Supp(M). By Nakayama’s lemma (Lemma 20.1) we see that
M ⊗R κ(p) = Mp/pMp

is a nonzero κ(p) vector space. Hence for every prime p′ ⊂ R′ lying over p we see
that

(M ⊗R R′)p′/p′(M ⊗R R′)p′ = (M ⊗R R′)⊗R′ κ(p′) = M ⊗R κ(p)⊗κ(p) κ(p′)

is nonzero. This implies p′ ∈ Supp(M ⊗R R′). For the converse, if p′ ⊂ R′ is a
prime lying over an arbitrary prime p ⊂ R, then

(M ⊗R R′)p′ = Mp ⊗Rp
R′

p′ .

Hence if p′ ∈ Supp(M ⊗R R′) lies over the prime p ⊂ R, then p ∈ Supp(M). □

Lemma 40.7.07Z5 Let R be a ring, let M be an R-module, and let m ∈ M . Then
p ∈ V (Ann(m)) if and only if m does not map to zero in Mp.
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Proof. We may replace M by Rm ⊂M . Then (1) Ann(m) = Ann(M) and (2) m
does not map to zero in Mp if and only if p ∈ Supp(M). The result now follows
from Lemma 40.5. □

Lemma 40.8.051B Let R be a ring and let M be an R-module. If M is a finitely
presented R-module, then Supp(M) is a closed subset of Spec(R) whose complement
is quasi-compact.

Proof. Choose a presentation
R⊕m −→ R⊕n −→M → 0

Let A ∈ Mat(n × m,R) be the matrix of the first map. By Nakayama’s Lemma
20.1 we see that

Mp ̸= 0⇔M ⊗ κ(p) ̸= 0⇔ rank(A mod p) < n.

Hence, if I is the ideal of R generated by the n× n minors of A, then Supp(M) =
V (I). Since I is finitely generated, say I = (f1, . . . , ft), we see that Spec(R) \V (I)
is a finite union of the standard opens D(fi), hence quasi-compact. □

Lemma 40.9.00L3 Let R be a ring and let M be an R-module.
(1) If M is finite then the support of M/IM is Supp(M) ∩ V (I).
(2) If N ⊂M , then Supp(N) ⊂ Supp(M).
(3) If Q is a quotient module of M then Supp(Q) ⊂ Supp(M).
(4) If 0 → N → M → Q → 0 is a short exact sequence then Supp(M) =

Supp(Q) ∪ Supp(N).

Proof. The functors M 7→Mp are exact. This immediately implies all but the first
assertion. For the first assertion we need to show that Mp ̸= 0 and I ⊂ p implies
(M/IM)p = Mp/IMp ̸= 0. This follows from Nakayama’s Lemma 20.1. □

41. Going up and going down

00HU Suppose p, p′ are primes of the ring R. Let X = Spec(R) with the Zariski topology.
Denote x ∈ X the point corresponding to p and x′ ∈ X the point corresponding to
p′. Then we have:

x′ ⇝ x⇔ p′ ⊂ p.

In words: x is a specialization of x′ if and only if p′ ⊂ p. See Topology, Section 19
for terminology and notation.

Definition 41.1.00HV Let φ : R→ S be a ring map.
(1) We say a φ : R → S satisfies going up if given primes p ⊂ p′ in R and a

prime q in S lying over p there exists a prime q′ of S such that (a) q ⊂ q′,
and (b) q′ lies over p′.

(2) We say a φ : R→ S satisfies going down if given primes p ⊂ p′ in R and a
prime q′ in S lying over p′ there exists a prime q of S such that (a) q ⊂ q′,
and (b) q lies over p.

So far we have see the following cases of this:
(1) An integral ring map satisfies going up, see Lemma 36.22.
(2) As a special case finite ring maps satisfy going up.
(3) As a special case quotient maps R→ R/I satisfy going up.
(4) A flat ring map satisfies going down, see Lemma 39.19
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(5) As a special case any localization satisfies going down.
(6) An extension R ⊂ S of domains, with R normal and S integral over R

satisfies going down, see Proposition 38.7.
Here is another case where going down holds.

Lemma 41.2.0407 Let R → S be a ring map. If the induced map φ : Spec(S) →
Spec(R) is open, then R→ S satisfies going down.

Proof. Suppose that p ⊂ p′ ⊂ R and q′ ⊂ S lies over p′. As φ is open, for every
g ∈ S, g ̸∈ q′ we see that p is in the image of D(g) ⊂ Spec(S). In other words
Sg ⊗R κ(p) is not zero. Since Sq′ is the directed colimit of these Sg this implies
that Sq′ ⊗R κ(p) is not zero, see Lemmas 9.9 and 12.9. Hence p is in the image of
Spec(Sq′)→ Spec(R) as desired. □

Lemma 41.3.00HW Let R→ S be a ring map.
(1) R→ S satisfies going down if and only if generalizations lift along the map

Spec(S)→ Spec(R), see Topology, Definition 19.4.
(2) R → S satisfies going up if and only if specializations lift along the map

Spec(S)→ Spec(R), see Topology, Definition 19.4.

Proof. Omitted. □

Lemma 41.4.00HX Suppose R → S and S → T are ring maps satisfying going down.
Then so does R→ T . Similarly for going up.

Proof. According to Lemma 41.3 this follows from Topology, Lemma 19.5 □

Lemma 41.5.00HY Let R → S be a ring map. Let T ⊂ Spec(R) be the image of
Spec(S). If T is stable under specialization, then T is closed.

Proof. We give two proofs.
First proof. Let p ⊂ R be a prime ideal such that the corresponding point of
Spec(R) is in the closure of T . This means that for every f ∈ R, f ̸∈ p we have
D(f) ∩ T ̸= ∅. Note that D(f) ∩ T is the image of Spec(Sf ) in Spec(R). Hence we
conclude that Sf ̸= 0. In other words, 1 ̸= 0 in the ring Sf . Since Sp is the directed
colimit of the rings Sf we conclude that 1 ̸= 0 in Sp. In other words, Sp ̸= 0 and
considering the image of Spec(Sp) → Spec(S) → Spec(R) we see there exists a
p′ ∈ T with p′ ⊂ p. As we assumed T closed under specialization we conclude p is
a point of T as desired.
Second proof. Let I = Ker(R → S). We may replace R by R/I. In this case the
ring map R → S is injective. By Lemma 30.5 all the minimal primes of R are
contained in the image T . Hence if T is stable under specialization then it contains
all primes. □

Lemma 41.6.00HZ Let R→ S be a ring map. The following are equivalent:
(1) Going up holds for R→ S, and
(2) the map Spec(S)→ Spec(R) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological
spaces, see Topology, Lemma 19.7. Hence the second condition implies the first.
Assume that going up holds for R → S. Let V (I) ⊂ Spec(S) be a closed set.
We want to show that the image of V (I) in Spec(R) is closed. The ring map
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S → S/I obviously satisfies going up. Hence R → S → S/I satisfies going up, by
Lemma 41.4. Replacing S by S/I it suffices to show the image T of Spec(S) in
Spec(R) is closed. By Topology, Lemmas 19.2 and 19.6 this image is stable under
specialization. Thus the result follows from Lemma 41.5. □

Lemma 41.7.00I0 Let R be a ring. Let E ⊂ Spec(R) be a constructible subset.
(1) If E is stable under specialization, then E is closed.
(2) If E is stable under generalization, then E is open.

Proof. First proof. The first assertion follows from Lemma 41.5 combined with
Lemma 29.4. The second follows because the complement of a constructible set is
constructible (see Topology, Lemma 15.2), the first part of the lemma and Topology,
Lemma 19.2.

Second proof. Since Spec(R) is a spectral space by Lemma 26.2 this is a special
case of Topology, Lemma 23.6. □

Proposition 41.8.00I1 Let R→ S be flat and of finite presentation. Then Spec(S)→
Spec(R) is open. More generally this holds for any ring map R → S of finite
presentation which satisfies going down.

Proof. If R → S is flat, then R → S satisfies going down by Lemma 39.19. Thus
to prove the lemma we may assume that R→ S has finite presentation and satisfies
going down.

Since the standard opens D(g) ⊂ Spec(S), g ∈ S form a basis for the topology, it
suffices to prove that the image of D(g) is open. Recall that Spec(Sg) → Spec(S)
is a homeomorphism of Spec(Sg) onto D(g) (Lemma 17.6). Since S → Sg satisfies
going down (see above), we see that R → Sg satisfies going down by Lemma 41.4.
Thus after replacing S by Sg we see it suffices to prove the image is open. By
Chevalley’s theorem (Theorem 29.10) the image is a constructible set E. And E
is stable under generalization because R → S satisfies going down, see Topology,
Lemmas 19.2 and 19.6. Hence E is open by Lemma 41.7. □

Lemma 41.9.037F Let k be a field, and let R, S be k-algebras. Let S′ ⊂ S be a sub
k-algebra, and let f ∈ S′ ⊗k R. In the commutative diagram

Spec((S ⊗k R)f )

''

// Spec((S′ ⊗k R)f )

ww
Spec(R)

the images of the diagonal arrows are the same.

Proof. Let p ⊂ R be in the image of the south-west arrow. This means (Lemma
18.6) that

(S′ ⊗k R)f ⊗R κ(p) = (S′ ⊗k κ(p))f
is not the zero ring, i.e., S′ ⊗k κ(p) is not the zero ring and the image of f in it
is not nilpotent. The ring map S′ ⊗k κ(p) → S ⊗k κ(p) is injective. Hence also
S ⊗k κ(p) is not the zero ring and the image of f in it is not nilpotent. Hence
(S ⊗k R)f ⊗R κ(p) is not the zero ring. Thus (Lemma 18.6) we see that p is in the
image of the south-east arrow as desired. □
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Lemma 41.10.037G Let k be a field. Let R and S be k-algebras. The map Spec(S ⊗k
R)→ Spec(R) is open.

Proof. Let f ∈ S ⊗k R. It suffices to prove that the image of the standard open
D(f) is open. Let S′ ⊂ S be a finite type k-subalgebra such that f ∈ S′ ⊗k R.
The map R → S′ ⊗k R is flat and of finite presentation, hence the image U of
Spec((S′ ⊗k R)f ) → Spec(R) is open by Proposition 41.8. By Lemma 41.9 this is
also the image of D(f) and we win. □

Here is a tricky lemma that is sometimes useful.

Lemma 41.11.00EA Let R→ S be a ring map. Let p ⊂ R be a prime. Assume that
(1) there exists a unique prime q ⊂ S lying over p, and
(2) either

(a) going up holds for R→ S, or
(b) going down holds for R→ S and there is at most one prime of S above

every prime of R.
Then Sp = Sq.

Proof. Consider any prime q′ ⊂ S which corresponds to a point of Spec(Sp). This
means that p′ = R ∩ q′ is contained in p. Here is a picture

q′ ? S

p′ p R

Assume (1) and (2)(a). By going up there exists a prime q′′ ⊂ S with q′ ⊂ q′′ and
q′′ lying over p. By the uniqueness of q we conclude that q′′ = q. In other words q′

defines a point of Spec(Sq).
Assume (1) and (2)(b). By going down there exists a prime q′′ ⊂ q lying over p′.
By the uniqueness of primes lying over p′ we see that q′ = q′′. In other words q′

defines a point of Spec(Sq).
In both cases we conclude that the map Spec(Sq)→ Spec(Sp) is bijective. Clearly
this means all the elements of S − q are all invertible in Sp, in other words Sp =
Sq. □

The following lemma is a generalization of going down for flat ring maps.

Lemma 41.12.080T Let R → S be a ring map. Let N be a finite S-module flat over
R. Endow Supp(N) ⊂ Spec(S) with the induced topology. Then generalizations lift
along Supp(N)→ Spec(R).

Proof. The meaning of the statement is as follows. Let p ⊂ p′ ⊂ R be primes. Let
q′ ⊂ S be a prime q′ ∈ Supp(N) Then there exists a prime q ⊂ q′, q ∈ Supp(N)
lying over p. As N is flat over R we see that Nq′ is flat over Rp′ , see Lemma 39.18.
As Nq′ is finite over Sq′ and not zero since q′ ∈ Supp(N) we see that Nq′ ⊗Sq′ κ(q′)
is nonzero by Nakayama’s Lemma 20.1. Thus Nq′ ⊗Rp′ κ(p′) is also not zero. We
conclude from Lemma 39.15 that Nq′ ⊗Rp′ κ(p) is nonzero. Let J ⊂ Sq′ ⊗Rp′ κ(p)
be the annihilator of the finite nonzero module Nq′ ⊗Rp′ κ(p). Since J is a proper
ideal we can choose a prime q ⊂ S which corresponds to a prime of Sq′⊗Rp′ κ(p)/J .
This prime is in the support of N , lies over p, and is contained in q′ as desired. □
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42. Separable extensions

030I In this section we talk about separability for nonalgebraic field extensions. This
is closely related to the concept of geometrically reduced algebras, see Definition
43.1.

Definition 42.1.030O Let K/k be a field extension.
(1) We say K is separably generated over k if there exists a transcendence basis
{xi; i ∈ I} of K/k such that the extension K/k(xi; i ∈ I) is a separable
algebraic extension.

(2) We say K is separable over k if for every subextension k ⊂ K ′ ⊂ K with
K ′ finitely generated over k, the extension K ′/k is separably generated.

With this awkward definition it is not clear that a separably generated field exten-
sion is itself separable. It will turn out that this is the case, see Lemma 44.3.

Lemma 42.2.030P Let K/k be a separable field extension. For any subextension
K/K ′/k the field extension K ′/k is separable.

Proof. This is direct from the definition. □

Lemma 42.3.030Q Let K/k be a separably generated, and finitely generated field ex-
tension. Set r = trdegk(K). Then there exist elements x1, . . . , xr+1 of K such
that

(1) x1, . . . , xr is a transcendence basis of K over k,
(2) K = k(x1, . . . , xr+1), and
(3) xr+1 is separable over k(x1, . . . , xr).

Proof. Combine the definition with Fields, Lemma 19.1. □

Lemma 42.4.04KM Let K/k be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is
a separably generated field extension.

Proof. This lemma is only interesting when the characteristic of k is p > 0. Choose
x1, . . . , xr a transcendence basis of K over k. As K is finitely generated over k the
extension k(x1, . . . , xr) ⊂ K is finite. Let K/Ksep/k(x1, . . . , xr) be the subexten-
sion found in Fields, Lemma 14.6. If K = Ksep then we are done. We will use
induction on d = [K : Ksep].

Assume that d > 1. Choose a β ∈ K with α = βp ∈ Ksep and β ̸∈ Ksep. Let
P = Tn+a1T

n−1 + . . .+an be the minimal polynomial of α over k(x1, . . . , xr). Let
k′/k be a finite purely inseparable extension obtained by adjoining pth roots such
that each ai is a pth power in k′(x1/p

1 , . . . , x
1/p
r ). Such an extension exists; details
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omitted. Let L be a field fitting into the diagram

K // L

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

We may and do assume L is the compositum of K and k′(x1/p
1 , . . . , x

1/p
r ). Let

L/Lsep/k
′(x1/p

1 , . . . , x
1/p
r ) be the subextension found in Fields, Lemma 14.6. Then

Lsep is the compositum of Ksep and k′(x1/p
1 , . . . , x

1/p
r ). The element α ∈ Lsep is a

zero of the polynomial P all of whose coefficients are pth powers in k′(x1/p
1 , . . . , x

1/p
r )

and whose roots are pairwise distinct. By Fields, Lemma 28.2 we see that α = (α′)p
for some α′ ∈ Lsep. Clearly, this means that β maps to α′ ∈ Lsep. In other words,
we get the tower of fields

K // L

Ksep(β) //

OO

Lsep

OO

Ksep
//

OO

Lsep

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

k //

OO

k′

OO

Thus this construction leads to a new situation with [L : Lsep] < [K : Ksep]. By
induction we can find k′ ⊂ k′′ and L ⊂ L′ as in the lemma for the extension L/k′.
Then the extensions k′′/k and L′/K work for the extension K/k. This proves the
lemma. □

43. Geometrically reduced algebras

05DS The main result on geometrically reduced algebras is Lemma 44.4. We suggest the
reader skip to the lemma after reading the definition.

Definition 43.1.030S Let k be a field. Let S be a k-algebra. We say S is geometrically
reduced over k if for every field extension K/k the K-algebra K ⊗k S is reduced.

Let k be a field and let S be a reduced k-algebra. To check that S is geometrically
reduced it will suffice to check that k⊗kS is reduced (where k denotes the algebraic
closure of k). In fact it is enough to check this for finite purely inseparable field
extensions k′/k. See Lemma 44.4.

Lemma 43.2.030T Elementary properties of geometrically reduced algebras. Let k be
a field. Let S be a k-algebra.

(1) If S is geometrically reduced over k so is every k-subalgebra.

https://stacks.math.columbia.edu/tag/030S
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(2) If all finitely generated k-subalgebras of S are geometrically reduced, then
S is geometrically reduced.

(3) A directed colimit of geometrically reduced k-algebras is geometrically re-
duced.

(4) If S is geometrically reduced over k, then any localization of S is geometri-
cally reduced over k.

Proof. Omitted. The second and third property follow from the fact that tensor
product commutes with colimits. □

Lemma 43.3.04KN Let k be a field. If R is geometrically reduced over k, and S ⊂ R

is a multiplicative subset, then the localization S−1R is geometrically reduced over
k. If R is geometrically reduced over k, then R[x] is geometrically reduced over k.

Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localiza-
tion commutes with tensor products. □

In the proofs of the following lemmas we will repeatedly use the following observa-
tion: Suppose that R′ ⊂ R and S′ ⊂ S are inclusions of k-algebras. Then the map
R′ ⊗k S′ → R⊗k S is injective.

Lemma 43.4.00I3 Let k be a field. Let R, S be k-algebras.
(1) If R⊗k S is nonreduced, then there exist finitely generated subalgebras R′ ⊂

R, S′ ⊂ S such that R′ ⊗k S′ is not reduced.
(2) If R ⊗k S contains a nonzero zerodivisor, then there exist finitely gener-

ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nonzero
zerodivisor.

(3) If R⊗k S contains a nontrivial idempotent, then there exist finitely gener-
ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nontrivial
idempotent.

Proof. Suppose z ∈ R ⊗k S is nilpotent. We may write z =
∑
i=1,...,n xi ⊗ yi.

Thus we may take R′ the k-subalgebra generated by the xi and S′ the k-subalgebra
generated by the yi. The second and third statements are proved in the same
way. □

Lemma 43.5.034N Let k be a field. Let S be a geometrically reduced k-algebra. Let R
be any reduced k-algebra. Then R⊗k S is reduced.

Proof. By Lemma 43.4 we may assume that R is of finite type over k. Then R,
as a reduced Noetherian ring, embeds into a finite product of fields (see Lemmas
25.4, 31.6, and 25.1). Hence we may assume R is a finite product of fields. In this
case it follows from Definition 43.1 that R⊗k S is reduced. □

Lemma 43.6.030U Let k be a field. Let S be a reduced k-algebra. Let K/k be either a
separable field extension, or a separably generated field extension. Then K ⊗k S is
reduced.

Proof. Assume k ⊂ K is separable. By Lemma 43.4 we may assume that S is of
finite type over k and K is finitely generated over k. Then S embeds into a finite
product of fields, namely its total ring of fractions (see Lemmas 25.1 and 25.4).
Hence we may actually assume that S is a domain. We choose x1, . . . , xr+1 ∈ K
as in Lemma 42.3. Let P ∈ k(x1, . . . , xr)[T ] be the minimal polynomial of xr+1. It
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is a separable polynomial. It is easy to see that k[x1, . . . , xr] ⊗k S = S[x1, . . . , xr]
is a domain. This implies k(x1, . . . , xr) ⊗k S is a domain as it is a localization of
S[x1, . . . , xr]. The ring extension k(x1, . . . , xr) ⊗k S ⊂ K ⊗k S is generated by a
single element xr+1 with a single equation, namely P . Hence K ⊗k S embeds into
F [T ]/(P ) where F is the fraction field of k(x1, . . . , xr) ⊗k S. Since P is separable
this is a finite product of fields and we win.
At this point we do not yet know that a separably generated field extension is
separable, so we have to prove the lemma in this case also. To do this suppose
that {xi}i∈I is a separating transcendence basis for K over k. For any finite set
of elements λj ∈ K there exists a finite subset T ⊂ I such that k({xi}i∈T ) ⊂
k({xi}i∈T ∪ {λj}) is finite separable. Hence we see that K is a directed colimit of
finitely generated and separably generated extensions of k. Thus the argument of
the preceding paragraph applies to this case as well. □

Lemma 43.7.07K2 Let k be a field and let S be a k-algebra. Assume that S is reduced
and that Sp is geometrically reduced for every minimal prime p of S. Then S is
geometrically reduced.

Proof. Since S is reduced the map S →
∏

p minimal Sp is injective, see Lemma 25.2.
If K/k is a field extension, then the maps

S ⊗k K → (
∏

Sp)⊗k K →
∏

Sp ⊗k K

are injective: the first as k → K is flat and the second by inspection because K is
a free k-module. As Sp is geometrically reduced the ring on the right is reduced.
Thus we see that S ⊗k K is reduced as a subring of a reduced ring. □

Lemma 43.8.0C2X Let k′/k be a separable algebraic extension. Then there exists a
multiplicative subset S ⊂ k′ ⊗k k′ such that the multiplication map k′ ⊗k k′ → k′ is
identified with k′ ⊗k k′ → S−1(k′ ⊗k k′).

Proof. First assume k′/k is finite separable. Then k′ = k(α), see Fields, Lemma
19.1. Let P ∈ k[x] be the minimal polynomial of α over k. Then P is an irreducible,
separable, monic polynomial, see Fields, Section 12. Then k′[x]/(P ) → k′ ⊗k k′,∑
αix

i 7→ αi⊗αi is an isomorphism. We can factor P = (x−α)Q in k′[x] and since
P is separable we see that Q(α) ̸= 0. Then it is clear that the multiplicative set S′

generated by Q in k′[x]/(P ) works, i.e., that k′ = (S′)−1(k′[x]/(P )). By transport
of structure the image S of S′ in k′ ⊗k k′ works.
In the general case we write k′ =

⋃
ki as the union of its finite subfield extensions

over k. For each i there is a multiplicative subset Si ⊂ ki ⊗k ki such that ki =
S−1
i (ki ⊗k ki). Then S =

⋃
Si ⊂ k′ ⊗k k′ works. □

Lemma 43.9.0C2Y Let k′/k be a separable algebraic field extension. Let A be an algebra
over k′. Then A is geometrically reduced over k if and only if it is geometrically
reduced over k′.

Proof. Assume A is geometrically reduced over k′. Let K/k be a field extension.
Then K⊗k k′ is a reduced ring by Lemma 43.6. Hence by Lemma 43.5 we find that
K ⊗k A = (K ⊗k k′)⊗k′ A is reduced.
Assume A is geometrically reduced over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′
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Since k′ ⊗k k′ → k′ is a localization by Lemma 43.8, we see that K ⊗k′ A is a
localization of a reduced algebra, hence reduced. □

44. Separable extensions, continued

05DT In this section we continue the discussion started in Section 42.

Lemma 44.1.0H71 Let k be a field of characteristic p > 1. Let K/k be a field extension
generated by x1, . . . , xn+1 ∈ K such that

(1) {x1, . . . , xn} is a transcendence base of K/k,
(2) for every k-linearly independent subset {a1, . . . , am} of K the set {ap1, . . . , apm}

is k-linearly independent.
Then there is 1 ≤ j ≤ n + 1 such that {x1, . . . , x̂j , . . . , xn+1} is a separating tran-
scendence base for K/k.

Proof. By assumption xn+1 is algebraic over k(x1, . . . , xn) so there exists a non-
zero polynomial F ∈ k[X1, . . . , Xn+1] such that F (x1, . . . , xn+1) = 0. Choose F of
minimal total degree. Then F is irreducible, because at least one irreducible factor
must also have the same property.

We claim that, for some i, not all powers of Xi appearing in F are multiples of p.
Suppose for a contradiction that all the exponents appearing in F were multiples
of p, then the set

{xα1
1 . . . x

αn+1
n+1 | λα ̸= 0} ⊂ K

is k-linearly dependent where λα are the coefficients of F . By assumption (2) we
conclude the set

{xα1/p
1 . . . x

αn+1/p
n+1 | λα ̸= 0}

is also k-linearly dependent, contradicting minimality of deg(F ).

Choose i for which a non-pth power of Xi appears in F . Then we see that xi
is algebraic over L = k(x1, . . . , xi−1, xi+1, . . . , xn+1). By Fields, Lemma 26.3 we
see that x1, . . . , xi−1, xi+1, . . . , xn+1 is a transcendence base of K/k. Thus L is
the fraction field of the polynomial ring over k in x1, . . . , xi−1, xi+1, . . . , xn+1. By
Gauss’ Lemma we conclude that

P (T ) = F (x1, . . . , xi−1, T, xi+1, . . . , xn+1) ∈ L[T ]

is irreducible. By construction P (T ) is not contained in L[T p]. Hence K/L is
separable as required. □

Let p be a prime number and let k be a field of characteristic p. In this case we
write k1/p for the extension of k gotten by adjoining pth roots of all the elements
of k to k. (In other words it is the subfield of an algebraic closure of k generated
by the pth roots of elements of k.)

Lemma 44.2.030W Let k be a field of characteristic p > 0. Let K/k be a field extension.
The following are equivalent:

(1) K is separable over k,
(2) for every k-linearly independent subset {a1, . . . , am} of K the set {ap1, . . . , apm}

is k-linearly independent,
(3) the ring K ⊗k k1/p is reduced, and
(4) K is geometrically reduced over k.

https://stacks.math.columbia.edu/tag/0H71
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Proof. The implication (1) ⇒ (4) follows from Lemma 43.6. The implication (4)
⇒ (3) is immediate.
Assume (3). Consider the ring homomorphism m : K ⊗k k1/p → K given by

λ⊗ µ→ λpµp

Note that xp = m(x)⊗1 for all x ∈ K⊗kk1/p. Since K⊗kk1/p is reduced we see m is
injective. If {a1, . . . , am} ⊂ K is k-linearly independent, then {a1⊗1, . . . , am⊗1} is
k1/p-linearly independent. By injectivity of m we deduce that no nontrivial k-linear
combination of ap1, . . . , apm is is zero. Hence (3) implies (2).
Assume (2). To prove (1) we may assume that K is finitely generated over k and
we have to prove that K is separably generated over k. Let {x1, . . . , xd} be a
transcendence base of K/k. By Fields, Lemma 8.6 we have [K : K ′] < ∞ where
K ′ = k(x1, . . . , xd). Choose the transcendence base such that the degree of insepa-
rability [K : K ′]i is minimal. If K/K ′ is separable then we win. Assume this is not
the case to get a contradiction. Then there exists xd+1 ∈ K which is not separa-
ble over K ′, and in particular [K ′(xd+1) : K ′]i > 1. Then by Lemma 44.1 there is
1 ≤ j ≤ n+1 such that K ′′ = k(x1, . . . , x̂j , . . . , xd+1) satisfies [K ′(xd+1) : K ′′]i = 1.
By multiplicativity [K : K ′′]i < [K : K ′]i and we obtain the contradiction. □

Lemma 44.3.030X A separably generated field extension is separable.

Proof. Combine Lemma 43.6 with Lemma 44.2. □

In the following lemma we will use the notion of the perfect closure which is defined
in Definition 45.5.

Lemma 44.4.030V Let k be a field. Let S be a k-algebra. The following are equivalent:
(1) k′ ⊗k S is reduced for every finite purely inseparable extension k′ of k,
(2) k1/p ⊗k S is reduced,
(3) kperf ⊗k S is reduced, where kperf is the perfect closure of k,
(4) k ⊗k S is reduced, where k is the algebraic closure of k, and
(5) S is geometrically reduced over k.

Proof. Note that any finite purely inseparable extension k′/k embeds in kperf .
Moreover, k1/p embeds into kperf which embeds into k. Thus it is clear that (5) ⇒
(4) ⇒ (3) ⇒ (2) and that (3) ⇒ (1).
We prove that (1) ⇒ (5). Assume k′ ⊗k S is reduced for every finite purely insep-
arable extension k′ of k. Let K/k be an extension of fields. We have to show that
K ⊗k S is reduced. By Lemma 43.4 we reduce to the case where K/k is a finitely
generated field extension. Choose a diagram

K // K ′

k

OO

// k′

OO

as in Lemma 42.4. By assumption k′ ⊗k S is reduced. By Lemma 43.6 it follows
that K ′ ⊗k S is reduced. Hence we conclude that K ⊗k S is reduced as desired.
Finally we prove that (2) ⇒ (5). Assume k1/p⊗k S is reduced. Then S is reduced.
Moreover, for each localization Sp at a minimal prime p, the ring k1/p ⊗k Sp is a
localization of k1/p ⊗k S hence is reduced. But Sp is a field by Lemma 25.1, hence

https://stacks.math.columbia.edu/tag/030X
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Sp is geometrically reduced by Lemma 44.2. It follows from Lemma 43.7 that S is
geometrically reduced. □

45. Perfect fields

05DU Here is the definition.

Definition 45.1.030Y Let k be a field. We say k is perfect if every field extension of
k is separable over k.

Lemma 45.2.030Z A field k is perfect if and only if it is a field of characteristic 0 or
a field of characteristic p > 0 such that every element has a pth root.

Proof. The characteristic zero case is clear. Assume the characteristic of k is p > 0.
If k is perfect, then all the field extensions where we adjoin a pth root of an element
of k have to be trivial, hence every element of k has a pth root. Conversely if every
element has a pth root, then k = k1/p and every field extension of k is separable by
Lemma 44.2. □

Lemma 45.3.030R Let K/k be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is
a separable field extension. In this situation we can assume that K ′ = k′K is the
compositum, and also that K ′ = (k′ ⊗k K)red.

Proof. By Lemma 42.4 we can find such a diagram withK ′/k′ separably generated.
By Lemma 44.3 this implies that K ′ is separable over k′. The compositum k′K
is a subextension of K ′/k′ and hence k′ ⊂ k′K is separable by Lemma 42.2. The
ring (k′ ⊗k K)red is a domain as for some n≫ 0 the map x 7→ xp

n maps it into K.
Hence it is a field by Lemma 36.19. Thus (k′⊗kK)red → K ′ maps it isomorphically
onto k′K. □

Lemma 45.4.046W For every field k there exists a purely inseparable extension k′/k
such that k′ is perfect. The field extension k′/k is unique up to unique isomorphism.

Proof. If the characteristic of k is zero, then k′ = k is the unique choice. Assume
the characteristic of k is p > 0. For every n > 0 there exists a unique algebraic
extension k ⊂ k1/pn such that (a) every element λ ∈ k has a pnth root in k1/pn

and (b) for every element µ ∈ k1/pn we have µpn ∈ k. Namely, consider the ring
map k → k1/pn = k, x 7→ xp

n . This is injective and satisfies (a) and (b). It is clear
that k1/pn ⊂ k1/pn+1 as extensions of k via the map y 7→ yp. Then we can take
k′ =

⋃
k1/pn . Some details omitted. □

Definition 45.5.046X Let k be a field. The field extension k′/k of Lemma 45.4 is
called the perfect closure of k. Notation kperf/k.

Note that if k′/k is any algebraic purely inseparable extension, then k′ is a subex-
tension of kperf , i.e., kperf/k′/k. Namely, (k′)perf is isomorphic to kperf by the
uniqueness of Lemma 45.4.

https://stacks.math.columbia.edu/tag/030Y
https://stacks.math.columbia.edu/tag/030Z
https://stacks.math.columbia.edu/tag/030R
https://stacks.math.columbia.edu/tag/046W
https://stacks.math.columbia.edu/tag/046X


COMMUTATIVE ALGEBRA 105

Lemma 45.6.00I4 Let k be a perfect field. Any reduced k algebra is geometrically
reduced over k. Let R, S be k-algebras. Assume both R and S are reduced. Then
the k-algebra R⊗k S is reduced.

Proof. The first statement follows from Lemma 44.4. For the second statement
use the first statement and Lemma 43.5. □

46. Universal homeomorphisms

0BR5 Let k′/k be an algebraic purely inseparable field extension. Then for any k-algebra
R the ring map R→ k′⊗k R induces a homeomorphism of spectra. The reason for
this is the slightly more general Lemma 46.7 below.

Lemma 46.1.0BR6 Let φ : R → S be a surjective map with locally nilpotent kernel.
Then φ induces a homeomorphism of spectra and isomorphisms on residue fields.
For any ring map R → R′ the ring map R′ → R′ ⊗R S is surjective with locally
nilpotent kernel.

Proof. By Lemma 17.7 the map Spec(S) → Spec(R) is a homeomorphism onto
the closed subset V (Ker(φ)). Of course V (Ker(φ)) = Spec(R) because every prime
ideal of R contains every nilpotent element of R. This also implies the statement
on residue fields. By right exactness of tensor product we see that Ker(φ)R′ is the
kernel of the surjective map R′ → R′ ⊗R S. Hence the final statement by Lemma
32.3. □

Lemma 46.2.0BR7 [Alp14, Lemma
3.1.6]

Let k′/k be a field extension. The following are equivalent
(1) for each x ∈ k′ there exists an n > 0 such that xn ∈ k, and
(2) k′ = k or k and k′ have characteristic p > 0 and either k′/k is a purely

inseparable extension or k and k′ are algebraic extensions of Fp.

Proof. Observe that each of the possibilities listed in (2) satisfies (1). Thus we
assume k′/k satisfies (1) and we prove that we are in one of the cases of (2).
Discarding the case k = k′ we may assume k′ ̸= k. It is clear that k′/k is algebraic.
Hence we may assume that k′/k is a nontrivial finite extension. Let k′/k′

sep/k be
the separable subextension found in Fields, Lemma 14.6. We have to show that
k = k′

sep or that k is an algebraic over Fp. Thus we may assume that k′/k is a
nontrivial finite separable extension and we have to show k is algebraic over Fp.

Pick x ∈ k′, x ̸∈ k. Pick n,m > 0 such that xn ∈ k and (x+ 1)m ∈ k. Let k be an
algebraic closure of k. We can choose embeddings σ, τ : k′ → k with σ(x) ̸= τ(x).
This follows from the discussion in Fields, Section 12 (more precisely, after replacing
k′ by the k-extension generated by x it follows from Fields, Lemma 12.8). Then
we see that σ(x) = ζτ(x) for some nth root of unity ζ in k. Similarly, we see that
σ(x+ 1) = ζ ′τ(x+ 1) for some mth root of unity ζ ′ ∈ k. Since σ(x+ 1) ̸= τ(x+ 1)
we see ζ ′ ̸= 1. Then

ζ ′(τ(x) + 1) = ζ ′τ(x+ 1) = σ(x+ 1) = σ(x) + 1 = ζτ(x) + 1

implies that
τ(x)(ζ ′ − ζ) = 1− ζ ′

hence ζ ′ ̸= ζ and
τ(x) = (1− ζ ′)/(ζ ′ − ζ)

https://stacks.math.columbia.edu/tag/00I4
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Hence every element of k′ which is not in k is algebraic over the prime subfield.
Since k′ is generated over the prime subfield by the elements of k′ which are not in
k, we conclude that k′ (and hence k) is algebraic over the prime subfield.

Finally, if the characteristic of k is 0, the above leads to a contradiction as follows
(we encourage the reader to find their own proof). For every rational number y we
similarly get a root of unity ζy such that σ(x+ y) = ζyτ(x+ y). Then we find

ζτ(x) + y = ζy(τ(x) + y)

and by our formula for τ(x) above we conclude ζy ∈ Q(ζ, ζ ′). Since the number
field Q(ζ, ζ ′) contains only a finite number of roots of unity we find two distinct
rational numbers y, y′ with ζy = ζy′ . Then we conclude that

y − y′ = σ(x+ y)− σ(x+ y′) = ζy(τ(x+ y))− ζy′τ(x+ y′) = ζy(y − y′)

which implies ζy = 1 a contradiction. □

Lemma 46.3.0BR8 Let φ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of φ, and
(2) Ker(φ) is locally nilpotent,

then φ induces a homeomorphism on spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma 46.2.

Proof. Assume (1) and (2). Let q, q′ be primes of S lying over the same prime
ideal p of R. Suppose x ∈ S with x ∈ q, x ̸∈ q′. Then xn ∈ q and xn ̸∈ q′ for all
n > 0. If xn = φ(y) with y ∈ R for some n > 0 then

xn ∈ q⇒ y ∈ p⇒ xn ∈ q′

which is a contradiction. Hence there does not exist an x as above and we conclude
that q = q′, i.e., the map on spectra is injective. By assumption (2) the kernel
I = Ker(φ) is contained in every prime, hence Spec(R) = Spec(R/I) as topological
spaces. As the induced map R/I → S is integral by assumption (1) Lemma 36.17
shows that Spec(S) → Spec(R/I) is surjective. Combining the above we see that
Spec(S)→ Spec(R) is bijective. If x ∈ S is arbitrary, and we pick y ∈ R such that
φ(y) = xn for some n > 0, then we see that the open D(x) ⊂ Spec(S) corresponds
to the open D(y) ⊂ Spec(R) via the bijection above. Hence we see that the map
Spec(S)→ Spec(R) is a homeomorphism.

To see the statement on residue fields, let q ⊂ S be a prime lying over a prime
ideal p ⊂ R. Let x ∈ κ(q). If we think of κ(q) as the residue field of the local ring
Sq, then we see that x is the image of some y/z ∈ Sq with y ∈ S, z ∈ S, z ̸∈ q.
Choose n,m > 0 such that yn, zm are in the image of φ. Then xnm is the residue
of (y/z)nm = (yn)m/(zm)n which is in the image of Rp → Sq. Hence xnm is in the
image of κ(p)→ κ(q). □

Lemma 46.4.0EUH Let φ : R→ S be a ring map. Assume
(a) S is generated as an R-algebra by elements x such that x2, x3 ∈ φ(R), and
(b) Ker(φ) is locally nilpotent,

Then φ induces isomorphisms on residue fields and a homeomorphism of spectra.
For any ring map R→ R′ the ring map R′ → R′ ⊗R S also satisfies (a) and (b).

https://stacks.math.columbia.edu/tag/0BR8
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Proof. Assume (a) and (b). The map on spectra is closed as S is integral over R,
see Lemmas 41.6 and 36.22. The image is dense by Lemma 30.6. Thus Spec(S)→
Spec(R) is surjective. If q ⊂ S is a prime lying over p ⊂ R then the field extension
κ(q)/κ(p) is generated by elements α ∈ κ(q) whose square and cube are in κ(p).
Thus clearly α ∈ κ(p) and we find that κ(q) = κ(p). If q, q′ were two distinct
primes lying over p, then at least one of the generators x of S as in (a) would have
distinct images in κ(q) = κ(p) and κ(q′) = κ(p). This would contradict the fact
that both x2 and x3 do have the same image. This proves that Spec(S)→ Spec(R)
is injective hence a homeomorphism (by what was already shown).
Since φ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma 30.3.
Therefore for any R → R′ the kernel of the ring map R′ → R′ ⊗R S consists of
nilpotent elements, see Lemma 30.6, in other words (b) holds for R′ → R′⊗R S. It
is clear that (a) is preserved under base change. □

Lemma 46.5.0545 Let p be a prime number. Let n,m > 0 be two integers. There
exists an integer a such that (x+ y)pa

, pa(x+ y) ∈ Z[xpn

, pnx, yp
m

, pmy].

Proof. This is clear for pa(x + y) as soon as a ≥ n,m. In fact, pick a ≫ n,m.
Write

(x+ y)p
a

=
∑

i,j≥0,i+j=pa

(
pa

i, j

)
xiyj

For every i, j ≥ 0 with i+ j = pa write i = qpn+ r with r ∈ {0, . . . , pn−1} and j =
q′pm+r′ with r′ ∈ {0, . . . , pm−1}. The condition (x+y)pa ∈ Z[xpn

, pnx, yp
m

, pmy]
holds if

pnr+mr′
divides

(
pa

i, j

)
If r = r′ = 0 then the divisibility holds. If r ̸= 0, then we write(

pa

i, j

)
= pa

i

(
pa − 1
i− 1, j

)
Since r ̸= 0 the rational number pa/i has p-adic valuation at least a−(n−1) (because
i is not divisible by pn). Thus

(
pa

i,j

)
is divisible by pa−n+1 in this case. Similarly, we

see that if r′ ̸= 0, then
(
pa

i,j

)
is divisible by pa−m+1. Picking a = npn+mpm+n+m

will work. □

Lemma 46.6.0BR9 Let k′/k be a field extension. Let p be a prime number. The
following are equivalent

(1) k′ is generated as a field extension of k by elements x such that there exists
an n > 0 with xpn ∈ k and pnx ∈ k, and

(2) k = k′ or the characteristic of k and k′ is p and k′/k is purely inseparable.

Proof. Let x ∈ k′. If there exists an n > 0 with xp
n ∈ k and pnx ∈ k and if the

characteristic is not p, then x ∈ k. If the characteristic is p, then we find xp
n ∈ k

and hence x is purely inseparable over k. □

Lemma 46.7.0BRA Let φ : R→ S be a ring map. Let p be a prime number. Assume
(a) S is generated as an R-algebra by elements x such that there exists an n > 0

with xpn ∈ φ(R) and pnx ∈ φ(R), and
(b) Ker(φ) is locally nilpotent,

https://stacks.math.columbia.edu/tag/0545
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Then φ induces a homeomorphism of spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma 46.6. For any ring map R→ R′ the
ring map R′ → R′ ⊗R S also satisfies (a) and (b).

Proof. Assume (a) and (b). Note that (b) is equivalent to condition (2) of Lemma
46.3. Let T ⊂ S be the set of elements x ∈ S such that there exists an integer n > 0
such that xpn

, pnx ∈ φ(R). We claim that T = S. This will prove that condition
(1) of Lemma 46.3 holds and hence φ induces a homeomorphism on spectra. By
assumption (a) it suffices to show that T ⊂ S is an R-sub algebra. If x ∈ T and
y ∈ R, then it is clear that yx ∈ T . Suppose x, y ∈ T and n,m > 0 such that
xp

n

, yp
m

, pnx, pmy ∈ φ(R). Then (xy)pn+m

, pn+mxy ∈ φ(R) hence xy ∈ T . We
have x+ y ∈ T by Lemma 46.5 and the claim is proved.
Since φ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma 30.3.
Therefore for any R → R′ the kernel of the ring map R′ → R′ ⊗R S consists of
nilpotent elements, see Lemma 30.6, in other words (b) holds for R′ → R′⊗R S. It
is clear that (a) is preserved under base change. Finally, the condition on residue
fields follows from (a) as generators for S as an R-algebra map to generators for
the residue field extensions. □

Lemma 46.8.0BRB Let φ : R→ S be a ring map. Assume
(1) φ induces an injective map of spectra,
(2) φ induces purely inseparable residue field extensions.

Then for any ring map R→ R′ properties (1) and (2) are true for R′ → R′ ⊗R S.

Proof. Set S′ = R′ ⊗R S so that we have a commutative diagram of continuous
maps of spectra of rings

Spec(S′) //

��

Spec(S)

��
Spec(R′) // Spec(R)

Let p′ ⊂ R′ be a prime ideal lying over p ⊂ R. If there is no prime ideal of S
lying over p, then there is no prime ideal of S′ lying over p′. Otherwise, by Remark
18.5 there is a unique prime ideal r of F = S ⊗R κ(p) whose residue field is purely
inseparable over κ(p). Consider the ring maps

κ(p)→ F → κ(r)
By Lemma 25.1 the ideal r ⊂ F is locally nilpotent, hence we may apply Lemma
46.1 to the ring map F → κ(r). We may apply Lemma 46.7 to the ring map
κ(p)→ κ(r). Hence the composition and the second arrow in the maps

κ(p′)→ κ(p′)⊗κ(p) F → κ(p′)⊗κ(p) κ(r)
induces bijections on spectra and purely inseparable residue field extensions. This
implies the same thing for the first map. Since

κ(p′)⊗κ(p) F = κ(p′)⊗κ(p) κ(p)⊗R S = κ(p′)⊗R S = κ(p′)⊗R′ R′ ⊗R S
we conclude by the discussion in Remark 18.5. □

Lemma 46.9.0BRC Let φ : R→ S be a ring map. Assume

https://stacks.math.columbia.edu/tag/0BRB
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(1) φ is integral,
(2) φ induces an injective map of spectra,
(3) φ induces purely inseparable residue field extensions.

Then φ induces a homeomorphism from Spec(S) onto a closed subset of Spec(R)
and for any ring map R→ R′ properties (1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. The map on spectra is closed by Lemmas 41.6 and 36.22. The properties
are preserved under base change by Lemmas 46.8 and 36.13. □

Lemma 46.10.0BRD Let φ : R→ S be a ring map. Assume
(1) φ is integral,
(2) φ induces an bijective map of spectra,
(3) φ induces purely inseparable residue field extensions.

Then φ induces a homeomorphism on spectra and for any ring map R→ R′ prop-
erties (1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. Follows from Lemmas 46.9 and 30.3. □

Lemma 46.11.09EF Let φ : R→ S be a ring map such that
(1) the kernel of φ is locally nilpotent, and
(2) S is generated as an R-algebra by elements x such that there exist n > 0

and a polynomial P (T ) ∈ R[T ] whose image in S[T ] is (T − x)n.
Then Spec(S)→ Spec(R) is a homeomorphism and R → S induces purely insepa-
rable extensions of residue fields. Moreover, conditions (1) and (2) remain true on
arbitrary base change.

Proof. We may replace R by R/Ker(φ), see Lemma 46.1. Assumption (2) implies
S is generated over R by elements which are integral over R. Hence R ⊂ S is
integral (Lemma 36.7). In particular Spec(S) → Spec(R) is surjective and closed
(Lemmas 36.17, 41.6, and 36.22).
Let x ∈ S be one of the generators in (2), i.e., there exists an n > 0 be such that
(T − x)n ∈ R[T ]. Let p ⊂ R be a prime. The κ(p) ⊗R S ring is nonzero by the
above and Lemma 18.6. If the characteristic of κ(p) is zero then we see that nx ∈ R
implies 1⊗ x is in the image of κ(p) → κ(p)⊗R S. Hence κ(p) → κ(p)⊗R S is an
isomorphism. If the characteristic of κ(p) is p > 0, then write n = pkm with m
prime to p. In κ(p)⊗R S[T ] we have

(T − 1⊗ x)n = ((T − 1⊗ x)p
k

)m = (T p
k

− 1⊗ xp
k

)m

and we see that mxpk ∈ R. This implies that 1 ⊗ xpk is in the image of κ(p) →
κ(p)⊗R S. Hence Lemma 46.7 applies to κ(p)→ κ(p)⊗R S. In both cases we con-
clude that κ(p)⊗R S has a unique prime ideal with residue field purely inseparable
over κ(p). By Remark 18.5 we conclude that φ is bijective on spectra.
The statement on base change is immediate. □

47. Geometrically irreducible algebras

00I2 An algebra S over a field k is geometrically irreducible if the algebra S ⊗k k′ has a
unique minimal prime for every field extension k′/k. In this section we develop a
bit of theory relevant to this notion.

Lemma 47.1.00I6 Let R→ S be a ring map. Assume
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(a) Spec(R) is irreducible,
(b) R→ S is flat,
(c) R→ S is of finite presentation,
(d) the fibre rings S ⊗R κ(p) have irreducible spectra for a dense collection of

primes p of R.
Then Spec(S) is irreducible. This is true more generally with (b) + (c) replaced by
“the map Spec(S)→ Spec(R) is open”.

Proof. The assumptions (b) and (c) imply that the map on spectra is open, see
Proposition 41.8. Hence the lemma follows from Topology, Lemma 8.14. □

Lemma 47.2.00I7 Let k be a separably closed field. Let R, S be k-algebras. If R, S
have a unique minimal prime, so does R⊗k S.

Proof. Let k ⊂ k be a perfect closure, see Definition 45.5. By assumption k is
algebraically closed. The ring maps R → R ⊗k k and S → S ⊗k k and R ⊗k S →
(R⊗kS)⊗k k = (R⊗k k)⊗k (S⊗k k) satisfy the assumptions of Lemma 46.7. Hence
we may assume k is algebraically closed.

We may replace R and S by their reductions. Hence we may assume that R and S
are domains. By Lemma 45.6 we see that R⊗k S is reduced. Hence its spectrum is
reducible if and only if it contains a nonzero zerodivisor. By Lemma 43.4 we reduce
to the case where R and S are domains of finite type over k algebraically closed.

Note that the ring map R → R ⊗k S is of finite presentation and flat. Moreover,
for every maximal ideal m of R we have (R ⊗k S) ⊗R R/m ∼= S because k ∼= R/m
by the Hilbert Nullstellensatz Theorem 34.1. Moreover, the set of maximal ideals
is dense in the spectrum of R since Spec(R) is Jacobson, see Lemma 35.2. Hence
we see that Lemma 47.1 applies to the ring map R→ R⊗k S and we conclude that
the spectrum of R⊗k S is irreducible as desired. □

Lemma 47.3.037K Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is irreducible,
(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is

irreducible,
(3) the spectrum of R ⊗k k is irreducible where k is the separable algebraic

closure of k, and
(4) the spectrum of R⊗k k is irreducible where k is the algebraic closure of k.

Proof. It is clear that (1) implies (2).

Assume (2) and let k is the separable algebraic closure of k. Suppose qi ⊂ R⊗k k,
i = 1, 2 are two minimal prime ideals. For every finite subextension k/k′/k the
extension k′/k is separable and the ring map R ⊗k k′ → R ⊗k k is flat. Hence
pi = (R ⊗k k′) ∩ qi are minimal prime ideals (as we have going down for flat ring
maps by Lemma 39.19). Thus we see that p1 = p2 by assumption (2). Since
k =

⋃
k′ we conclude q1 = q2. Hence Spec(R⊗k k) is irreducible.

Assume (3) and let k be the algebraic closure of k. Let k/k′
/k be the correspond-

ing separable algebraic closure of k. Then k/k
′ is purely inseparable (in positive

characteristic) or trivial. Hence R ⊗k k
′ → R ⊗k k induces a homeomorphism on

spectra, for example by Lemma 46.7. Thus we have (4).

https://stacks.math.columbia.edu/tag/00I7
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Assume (4). Let k′/k be an arbitrary field extension and let k be the algebraic
closure of k. We may choose a field F such that both k′ and k are isomorphic to
subfields of F . Then

R⊗k F = (R⊗k k)⊗k F
and hence we see from Lemma 47.2 that R ⊗k F has a unique minimal prime.
Finally, the ring map R⊗k k′ → R⊗k F is flat and injective and hence any minimal
prime of R ⊗k k′ is the image of a minimal prime of R ⊗k F (by Lemma 30.5 and
going down). We conclude that there is only one such minimal prime and the proof
is complete. □

Definition 47.4.037L Let k be a field. Let S be a k-algebra. We say S is geometri-
cally irreducible over k if for every field extension k′/k the spectrum of S ⊗k k′ is
irreducible5.

By Lemma 47.3 it suffices to check this for finite separable field extensions k′/k or
for k′ equal to the separable algebraic closure of k.

Lemma 47.5.037M Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically irreducible over k if and only if the spectrum of R is
irreducible.

Proof. Immediate from the remark following Definition 47.4. □

Lemma 47.6.037N Let k be a field. Let S be a k-algebra.
(1) If S is geometrically irreducible over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically irreducible, then

S is geometrically irreducible.
(3) A directed colimit of geometrically irreducible k-algebras is geometrically

irreducible.

Proof. Let S′ ⊂ S be a subalgebra. Then for any extension k′/k the ring map
S′ ⊗k k′ → S ⊗k k′ is injective also. Hence (1) follows from Lemma 30.5 (and the
fact that the image of an irreducible space under a continuous map is irreducible).
The second and third property follow from the fact that tensor product commutes
with colimits. □

Lemma 47.7.037O Let k be a field. Let S be a geometrically irreducible k-algebra. Let
R be any k-algebra. The map

Spec(R⊗k S) −→ Spec(R)
induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma
26.1). As R→ R⊗kS is flat we see by going down (Lemma 39.19) that any minimal
prime of R⊗k S lies over a minimal prime of R. Conversely, if p ⊂ R is a (minimal)
prime then

R⊗k S/p(R⊗k S) = (R/p)⊗k S ⊂ κ(p)⊗k S
by flatness of R → R ⊗k S. The ring κ(p) ⊗k S has irreducible spectrum by
assumption. It follows that R⊗k S/p(R⊗k S) has a single minimal prime (Lemma
30.5). In other words, the inverse image of the irreducible set V (p) is irreducible.
Hence the lemma follows. □

5An irreducible space is nonempty.
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Let us make some remarks on the notion of geometrically irreducible field exten-
sions.

Lemma 47.8.037P Let K/k be a field extension. If k is algebraically closed in K, then
K is geometrically irreducible over k.

Proof. Assume k is algebraically closed in K. By Definition 47.4 and Lemma
47.3 it suffices to show that the spectrum of K ⊗k k′ is irreducible for every finite
separable extension k′/k. Say k′ is generated by α ∈ k′ over k, see Fields, Lemma
19.1. Let P = T d+a1T

d−1 + . . .+ad ∈ k[T ] be the minimal polynomial of α. Then
K ⊗k k′ ∼= K[T ]/(P ). The only way the spectrum of K[T ]/(P ) can be reducible is
if P is reducible in K[T ]. Assume P = P1P2 is a nontrivial factorization in K[T ]
to get a contradiction. By Lemma 38.5 we see that the coefficients of P1 and P2
are algebraic over k. Our assumption implies the coefficients of P1 and P2 are in k
which contradicts the fact that P is irreducible over k. □

Lemma 47.9.0G30 Let K/k be a geometrically irreducible field extension. Let S be a
geometrically irreducible K-algebra. Then S is geometrically irreducible over k.

Proof. By Definition 47.4 and Lemma 47.3 it suffices to show that the spectrum
of S ⊗k k′ is irreducible for every finite separable extension k′/k. Since K is geo-
metrically irreducible over k we see that K ′ = K ⊗k k′ is a finite, separable field
extension of K. Hence the spectrum of S ⊗k k′ = S ⊗K K ′ is irreducible as S is
assumed geometrically irreducible over K. □

Lemma 47.10.0G31 Let K/k be a field extension. The following are equivalent
(1) K is geometrically irreducible over k, and
(2) the induced extension K(t)/k(t) of purely transcendental extensions is geo-

metrically irreducible.

Proof. Assume (1). Denote Ω an algebraic closure of k(t). By Definition 47.4 we
find that the spectrum of

K ⊗k Ω = K ⊗k k(t)⊗k(t) Ω
is irreducible. Since K(t) is a localization of K ⊗k k(T ) we conclude that the
spectrum of K(t)⊗k(t) Ω is irreducible. Thus by Lemma 47.3 we find that K(t)/k(t)
is geometrically irreducible.
Assume (2). Let k′/k be a field extension. We have to show that K ⊗k k′ has a
unique minimal prime. We know that the spectrum of

K(t)⊗k(t) k
′(t)

is irreducible, i.e., has a unique minimal prime. Since there is an injective map
K ⊗k k′ → K(t) ⊗k(t) k

′(t) (details omitted) we conclude by Lemmas 30.5 and
30.7. □

Lemma 47.11.0G32 Let K/L/M be a tower of fields with L/M geometrically irre-
ducible. Let x ∈ K be transcendental over L. Then L(x)/M(x) is geometrically
irreducible.

Proof. This follows from Lemma 47.10 because the fields L(x) and M(x) are purely
transcendental extensions of L and M . □

Lemma 47.12.0G33 Let K/k be a field extension. The following are equivalent
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(1) K/k is geometrically irreducible, and
(2) every element α ∈ K separably algebraic over k is in k.

Proof. Assume (1) and let α ∈ K be separably algebraic over k. Then k′ = k(α)
is a finite separable extension of k contained in K. By Lemma 47.6 the extension
k′/k is geometrically irreducible. In particular, we see that the spectrum of k′⊗k k
is irreducible (and hence if it is a product of fields, then there is exactly one factor).
By Fields, Lemma 13.4 it follows that Homk(k′, k) has one element which in turn
implies that k′ = k by Fields, Lemma 12.11. Thus (2) holds.
Assume (2). Let k′ ⊂ K be the subfield consisting of elements algebraic over k. By
Lemma 47.8 the extension K/k′ is geometrically irreducible. By assumption k′/k is
a purely inseparable extension. By Lemma 46.7 the extension k′/k is geometrically
irreducible. Hence by Lemma 47.9 we see that K/k is geometrically irreducible. □

Lemma 47.13.037Q Let K/k be a field extension. Consider the subextension K/k′/k
consisting of elements separably algebraic over k. Then K is geometrically irre-
ducible over k′. If K/k is a finitely generated field extension, then [k′ : k] <∞.

Proof. The first statement is immediate from Lemma 47.12 and the fact that ele-
ments separably algebraic over k′ are in k′ by the transitivity of separable algebraic
extensions, see Fields, Lemma 12.12. If K/k is finitely generated, then k′ is finite
over k by Fields, Lemma 26.11. □

Lemma 47.14.04KP Let K/k be an extension of fields. Let k/k be a separable algebraic
closure. Then Gal(k/k) acts transitively on the primes of k ⊗k K.

Proof. Let K/k′/k be the subextension found in Lemma 47.13. Note that as k ⊂ k
is integral all the prime ideals of k⊗kK and k⊗k k′ are maximal, see Lemma 36.20.
By Lemma 47.7 the map

Spec(k ⊗k K)→ Spec(k ⊗k k′)

is bijective because (1) all primes are minimal primes, (2) k⊗kK = (k⊗k k′)⊗k′ K,
and (3) K is geometrically irreducible over k′. Hence it suffices to prove the lemma
for the action of Gal(k/k) on the primes of k ⊗k k′.

As every prime of k⊗k k′ is maximal, the residue fields are isomorphic to k. Hence
the prime ideals of k ⊗k k′ correspond one to one to elements of Homk(k′, k) with
σ ∈ Homk(k′, k) corresponding to the kernel pσ of 1⊗σ : k⊗k k′ → k. In particular
Gal(k/k) acts transitively on this set as desired. □

48. Geometrically connected algebras

05DV
Lemma 48.1.037R Let k be a separably algebraically closed field. Let R, S be k-
algebras. If Spec(R), and Spec(S) are connected, then so is Spec(R⊗k S).

Proof. Recall that Spec(R) is connected if and only if R has no nontrivial idempo-
tents, see Lemma 21.4. Hence, by Lemma 43.4 we may assume R and S are of finite
type over k. In this case R and S are Noetherian, and have finitely many minimal
primes, see Lemma 31.6. Thus we may argue by induction on n+m where n, resp.
m is the number of irreducible components of Spec(R), resp. Spec(S). Of course the
case where either n or m is zero is trivial. If n = m = 1, i.e., Spec(R) and Spec(S)
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both have one irreducible component, then the result holds by Lemma 47.2. Sup-
pose that n > 1. Let p ⊂ R be a minimal prime corresponding to the irreducible
closed subset T ⊂ Spec(R). Let T ′ ⊂ Spec(R) be the union of the other n − 1
irreducible components. Choose an ideal I ⊂ R such that T ′ = V (I) = Spec(R/I)
(Lemma 17.7). By choosing our minimal prime carefully we may in addition ar-
range it so that T ′ is connected, see Topology, Lemma 8.17. Then T ∪T ′ = Spec(R)
and T ∩T ′ = V (p+ I) = Spec(R/(p+ I)) is not empty as Spec(R) is assumed con-
nected. The inverse image of T in Spec(R⊗k S) is Spec(R/p⊗k S), and the inverse
of T ′ in Spec(R ⊗k S) is Spec(R/I ⊗k S). By induction these are both connected.
The inverse image of T ∩ T ′ is Spec(R/(p + I) ⊗k S) which is nonempty. Hence
Spec(R⊗k S) is connected. □

Lemma 48.2.037S Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is connected, and
(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is

connected.

Proof. For any extension of fields k′/k the connectivity of the spectrum of R⊗k k′

is equivalent to R⊗k k′ having no nontrivial idempotents, see Lemma 21.4. Assume
(2). Let k ⊂ k be a separable algebraic closure of k. Using Lemma 43.4 we see that
(2) is equivalent to R⊗kk having no nontrivial idempotents. For any field extension
k′/k, there exists a field extension k

′
/k with k′ ⊂ k

′. By Lemma 48.1 we see that
R⊗k k

′ has no nontrivial idempotents. If R⊗k k′ has a nontrivial idempotent, then
also R⊗k k

′, contradiction. □

Definition 48.3.037T Let k be a field. Let S be a k-algebra. We say S is geometrically
connected over k if for every field extension k′/k the spectrum of S⊗kk′ is connected.

By Lemma 48.2 it suffices to check this for finite separable field extensions k′/k.

Lemma 48.4.037U Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically connected over k if and only if the spectrum of R is
connected.

Proof. Immediate from the remark following Definition 48.3. □

Lemma 48.5.037V Let k be a field. Let S be a k-algebra.
(1) If S is geometrically connected over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically connected, then

S is geometrically connected.
(3) A directed colimit of geometrically connected k-algebras is geometrically

connected.

Proof. This follows from the characterization of connectedness in terms of the
nonexistence of nontrivial idempotents. The second and third property follow from
the fact that tensor product commutes with colimits. □

The following lemma will be superseded by the more general Varieties, Lemma 7.4.

Lemma 48.6.037W Let k be a field. Let S be a geometrically connected k-algebra. Let
R be any k-algebra. The map

R −→ R⊗k S
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induces a bijection on idempotents, and the map
Spec(R⊗k S) −→ Spec(R)

induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma 22.2. By
Lemmas 48.5 and 43.4 we may assume that R and S are of finite type over k. Then
we see that also R⊗kS is of finite type over k. Note that in this case all the rings are
Noetherian and hence their spectra have finitely many connected components (since
they have finitely many irreducible components, see Lemma 31.6). In particular,
all connected components in question are open! Hence via Lemma 24.3 we see that
the first statement of the lemma in this case is equivalent to the second. Let’s
prove this. As the algebra S is geometrically connected and nonzero we see that all
fibres of X = Spec(R ⊗k S) → Spec(R) = Y are connected and nonempty. Also,
as R → R ⊗k S is flat of finite presentation the map X → Y is open (Proposition
41.8). Topology, Lemma 7.6 shows that X → Y induces bijection on connected
components. □

49. Geometrically integral algebras

05DW Here is the definition.

Definition 49.1.05DX Let k be a field. Let S be a k-algebra. We say S is geometrically
integral over k if for every field extension k′/k the ring of S ⊗k k′ is a domain.

Any question about geometrically integral algebras can be translated in a question
about geometrically reduced and irreducible algebras.

Lemma 49.2.05DY Let k be a field. Let S be a k-algebra. In this case S is geometrically
integral over k if and only if S is geometrically irreducible as well as geometrically
reduced over k.

Proof. Omitted. □

Lemma 49.3.0FWF Let k be a field. Let S be a k-algebra. The following are equivalent
(1) S is geometrically integral over k,
(2) for every finite extension k′/k of fields the ring S ⊗k k′ is a domain,
(3) S ⊗k k is a domain where k is the algebraic closure of k.

Proof. Follows from Lemmas 49.2, 44.4, and 47.3. □

Lemma 49.4.09P9 Let k be a field. Let S be a geometrically integral k-algebra. Let R
be a k-algebra and an integral domain. Then R⊗k S is an integral domain.

Proof. By Lemma 43.5 the ring R ⊗k S is reduced and by Lemma 47.7 the ring
R⊗k S is irreducible (the spectrum has just one irreducible component), so R⊗k S
is an integral domain. □

50. Valuation rings

00I8 Here are some definitions.

Definition 50.1.00I9 Valuation rings.
(1) Let K be a field. Let A, B be local rings contained in K. We say that B

dominates A if A ⊂ B and mA = A ∩mB .
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(2) Let A be a ring. We say A is a valuation ring if A is a local domain and if
A is maximal for the relation of domination among local rings contained in
the fraction field of A.

(3) Let A be a valuation ring with fraction field K. If R ⊂ K is a subring of
K, then we say A is centered on R if R ⊂ A.

With this definition a field is a valuation ring.

Lemma 50.2.00IA Let K be a field. Let A ⊂ K be a local subring. Then there exists
a valuation ring with fraction field K dominating A.

Proof. We consider the collection of local subrings of K as a partially ordered
set using the relation of domination. Suppose that {Ai}i∈I is a totally ordered
collection of local subrings of K. Then B =

⋃
Ai is a local subring which dominates

all of the Ai. Hence by Zorn’s Lemma, it suffices to show that if A ⊂ K is a local
ring whose fraction field is not K, then there exists a local ring B ⊂ K, B ̸= A
dominating A.
Pick t ∈ K which is not in the fraction field of A. If t is transcendental over A,
then A[t] ⊂ K and hence A[t](t,m) ⊂ K is a local ring distinct from A dominating
A. Suppose t is algebraic over A. Then for some nonzero a ∈ A the element at is
integral over A. In this case the subring A′ ⊂ K generated by A and ta is finite
over A. By Lemma 36.17 there exists a prime ideal m′ ⊂ A′ lying over m. Then
A′

m′ dominates A. If A = A′
m′ , then t is in the fraction field of A which we assumed

not to be the case. Thus A ̸= A′
m′ as desired. □

Lemma 50.3.00IC Let A be a valuation ring. Then A is a normal domain.

Proof. Suppose x is in the field of fractions of A and integral over A. Let A′ denote
the subring of K generated by A and x. Since A ⊂ A′ is an integral extension, we
see by Lemma 36.17 that there is a prime ideal m′ ⊂ A′ lying over m. Then A′

m′

dominates A. Since A is a valuation ring we conclude that A = A′
m′ and therefore

that x ∈ A. □

Lemma 50.4.00IB Let A be a valuation ring with maximal ideal m and fraction field
K. Let x ∈ K. Then either x ∈ A or x−1 ∈ A or both.

Proof. Assume that x is not in A. Let A′ denote the subring of K generated
by A and x. Since A is a valuation ring we see that there is no prime of A′

lying over m. Since m is maximal we see that V (mA′) = ∅. Then mA′ = A′ by
Lemma 17.2. Hence we can write 1 =

∑d
i=0 tix

i with ti ∈ m. This implies that
(1 − t0)(x−1)d −

∑
ti(x−1)d−i = 0. In particular we see that x−1 is integral over

A, and hence x−1 ∈ A by Lemma 50.3. □

Lemma 50.5.052K Let A ⊂ K be a subring of a field K such that for all x ∈ K either
x ∈ A or x−1 ∈ A or both. Then A is a valuation ring with fraction field K.

Proof. If A is not K, then A is not a field and there is a nonzero maximal ideal m.
If m′ is a second maximal ideal, then choose x, y ∈ A with x ∈ m, y ̸∈ m, x ̸∈ m′,
and y ∈ m′. Then neither x/y ∈ A nor y/x ∈ A contradicting the assumption of
the lemma. Thus we see that A is a local ring. Suppose that A′ is a local ring
contained in K which dominates A. Let x ∈ A′. We have to show that x ∈ A. If
not, then x−1 ∈ A, and of course x−1 ∈ mA. But then x−1 ∈ mA′ which contradicts
x ∈ A′. □
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Lemma 50.6.0AS4 Let I be a directed set. Let (Ai, φij) be a system of valuation rings
over I. Then A = colimAi is a valuation ring.

Proof. It is clear that A is a domain. Let a, b ∈ A. Lemma 50.5 tells us we have
to show that either a|b or b|a in A. Choose i so large that there exist ai, bi ∈ Ai
mapping to a, b. Then Lemma 50.4 applied to ai, bi in Ai implies the result for a, b
in A. □

Lemma 50.7.052L Let L/K be an extension of fields. If B ⊂ L is a valuation ring,
then A = K ∩B is a valuation ring.

Proof. We can replace L by the fraction field F of B and K by K ∩ F . Then the
lemma follows from a combination of Lemmas 50.4 and 50.5. □

Lemma 50.8.0AAV Let L/K be an algebraic extension of fields. If B ⊂ L is a valuation
ring with fraction field L and not a field, then A = K ∩ B is a valuation ring and
not a field.

Proof. By Lemma 50.7 the ring A is a valuation ring. If A is a field, then A = K.
Then A = K ⊂ B is an integral extension, hence there are no proper inclusions
among the primes of B (Lemma 36.20). This contradicts the assumption that B is
a local domain and not a field. □

Lemma 50.9.088Y Let A be a valuation ring. For any prime ideal p ⊂ A the quotient
A/p is a valuation ring. The same is true for the localization Ap and in fact any
localization of A.

Proof. Use the characterization of valuation rings given in Lemma 50.5. □

Lemma 50.10.088Z Let A′ be a valuation ring with residue field K. Let A be a
valuation ring with fraction field K. Then C = {λ ∈ A′ | λ mod mA′ ∈ A} is a
valuation ring.

Proof. Note that mA′ ⊂ C and C/mA′ = A. In particular, the fraction field of
C is equal to the fraction field of A′. We will use the criterion of Lemma 50.5 to
prove the lemma. Let x be an element of the fraction field of C. By the lemma we
may assume x ∈ A′. If x ∈ mA′ , then we see x ∈ C. If not, then x is a unit of A′

and we also have x−1 ∈ A′. Hence either x or x−1 maps to an element of A by the
lemma again. □

Lemma 50.11.090P Let A be a normal domain with fraction field K.
(1) For every x ∈ K, x ̸∈ A there exists a valuation ring A ⊂ V ⊂ K with

fraction field K such that x ̸∈ V .
(2) If A is local, we can moreover choose V which dominates A.

In other words, A is the intersection of all valuation rings in K containing A and
if A is local, then A is the intersection of all valuation rings in K dominating A.

Proof. Suppose x ∈ K, x ̸∈ A. Consider B = A[x−1]. Then x ̸∈ B. Namely, if
x = a0 + a1x

−1 + . . .+ adx
−d then xd+1− a0x

d− . . .− ad = 0 and x is integral over
A in contradiction with the fact that A is normal. Thus x−1 is not a unit in B.
Thus V (x−1) ⊂ Spec(B) is not empty (Lemma 17.2), and we can choose a prime
p ⊂ B with x−1 ∈ p. Choose a valuation ring V ⊂ K dominating Bp (Lemma
50.2). Then x ̸∈ V as x−1 ∈ mV .
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If A is local, then we claim that x−1B + mAB ̸= B. Namely, if 1 = (a0 + a1x
−1 +

. . .+ adx
−d)x−1 + a′

0 + . . .+ a′
dx

−d with ai ∈ A and a′
i ∈ mA, then we’d get

(1− a′
0)xd+1 − (a0 + a′

1)xd − . . .− ad = 0
Since a′

0 ∈ mA we see that 1 − a′
0 is a unit in A and we conclude that x would be

integral over A, a contradiction as before. Then choose the prime p ⊃ x−1B+mAB
we find V dominating A. □

An totally ordered abelian group is a pair (Γ,≥) consisting of an abelian group Γ
endowed with a total ordering ≥ such that γ ≥ γ′ ⇒ γ + γ′′ ≥ γ′ + γ′′ for all
γ, γ′, γ′′ ∈ Γ.

Lemma 50.12.00ID Let A be a valuation ring with field of fractions K. Set Γ = K∗/A∗

(with group law written additively). For γ, γ′ ∈ Γ define γ ≥ γ′ if and only if γ−γ′

is in the image of A− {0} → Γ. Then (Γ,≥) is a totally ordered abelian group.

Proof. Omitted, but follows easily from Lemma 50.4. Note that in case A = K
we obtain the zero group Γ = {0} endowed with its unique total ordering. □

Definition 50.13.00IE Let A be a valuation ring.
(1) The totally ordered abelian group (Γ,≥) of Lemma 50.12 is called the value

group of the valuation ring A.
(2) The map v : A − {0} → Γ and also v : K∗ → Γ is called the valuation

associated to A.
(3) The valuation ring A is called a discrete valuation ring if Γ ∼= Z.

Note that if Γ ∼= Z then there is a unique such isomorphism such that 1 ≥ 0. If the
isomorphism is chosen in this way, then the ordering becomes the usual ordering of
the integers.

Lemma 50.14.00IF Let A be a valuation ring. The valuation v : A− {0} → Γ≥0 has
the following properties:

(1) v(a) = 0⇔ a ∈ A∗,
(2) v(ab) = v(a) + v(b),
(3) v(a+ b) ≥ min(v(a), v(b)) provided a+ b ̸= 0.

Proof. Omitted. □

Lemma 50.15.090Q Let A be a ring. The following are equivalent
(1) A is a valuation ring,
(2) A is a local domain and every finitely generated ideal of A is principal.

Proof. Assume A is a valuation ring and let f1, . . . , fn ∈ A. Choose i such that
v(fi) is minimal among v(fj). Then (fi) = (f1, . . . , fn). Conversely, assume A is a
local domain and every finitely generated ideal of A is principal. Pick f, g ∈ A and
write (f, g) = (h). Then f = ah and g = bh and h = cf + dg for some a, b, c, d ∈ A.
Thus ac + bd = 1 and we see that either a or b is a unit, i.e., either g/f or f/g is
an element of A. This shows A is a valuation ring by Lemma 50.5. □

Lemma 50.16.00IG Let (Γ,≥) be a totally ordered abelian group. Let K be a field.
Let v : K∗ → Γ be a homomorphism of abelian groups such that v(a + b) ≥
min(v(a), v(b)) for a, b ∈ K with a, b, a+ b not zero. Then

A = {x ∈ K | x = 0 or v(x) ≥ 0}
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is a valuation ring with value group Im(v) ⊂ Γ, with maximal ideal

m = {x ∈ K | x = 0 or v(x) > 0}

and with group of units
A∗ = {x ∈ K∗ | v(x) = 0}.

Proof. Omitted. □

Let (Γ,≥) be a totally ordered abelian group. An ideal of Γ is a subset I ⊂ Γ such
that all elements of I are ≥ 0 and γ ∈ I, γ′ ≥ γ implies γ′ ∈ I. We say that such
an ideal is prime if 0 ̸∈ I and if γ + γ′ ∈ I, γ, γ′ ≥ 0⇒ γ ∈ I or γ′ ∈ I.

Lemma 50.17.00IH Let A be a valuation ring. Ideals in A correspond 1−1 with ideals
of Γ. This bijection is inclusion preserving, and maps prime ideals to prime ideals.

Proof. Omitted. □

Lemma 50.18.00II A valuation ring is Noetherian if and only if it is a discrete
valuation ring or a field.

Proof. Suppose A is a discrete valuation ring with valuation v : A \ {0} → Z
normalized so that Im(v) = Z≥0. By Lemma 50.17 the ideals of A are the subsets
In = {0} ∪ v−1(Z≥n). It is clear that any element x ∈ A with v(x) = n generates
In. Hence A is a PID so certainly Noetherian.

Suppose A is a Noetherian valuation ring with value group Γ. By Lemma 50.17 we
see the ascending chain condition holds for ideals in Γ. We may assume A is not a
field, i.e., there is a γ ∈ Γ with γ > 0. Applying the ascending chain condition to
the subsets γ + Γ≥0 with γ > 0 we see there exists a smallest element γ0 which is
bigger than 0. Let γ ∈ Γ be an element γ > 0. Consider the sequence of elements
γ, γ − γ0, γ − 2γ0, etc. By the ascending chain condition these cannot all be > 0.
Let γ − nγ0 be the last one ≥ 0. By minimality of γ0 we see that 0 = γ − nγ0.
Hence Γ is a cyclic group as desired. □

51. More Noetherian rings

00IJ
Lemma 51.1.00IK Let R be a Noetherian ring. Any finite R-module is of finite
presentation. Any submodule of a finite R-module is finite. The ascending chain
condition holds for R-submodules of a finite R-module.

Proof. We first show that any submodule N of a finite R-module M is finite. We
do this by induction on the number of generators of M . If this number is 1, then
N = J/I ⊂M = R/I for some ideals I ⊂ J ⊂ R. Thus the definition of Noetherian
implies the result. If the number of generators of M is greater than 1, then we can
find a short exact sequence 0 → M ′ → M → M ′′ → 0 where M ′ and M ′′ have
fewer generators. Note that setting N ′ = M ′ ∩ N and N ′′ = Im(N → M ′′) gives
a similar short exact sequence for N . Hence the result follows from the induction
hypothesis since the number of generators of N is at most the number of generators
of N ′ plus the number of generators of N ′′.

To show that M is finitely presented just apply the previous result to the kernel of
a presentation Rn →M .
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It is well known and easy to prove that the ascending chain condition for R-
submodules of M is equivalent to the condition that every submodule of M is
a finite R-module. We omit the proof. □

Lemma 51.2 (Artin-Rees).00IN Suppose that R is Noetherian, I ⊂ R an ideal. Let
N ⊂ M be finite R-modules. There exists a constant c > 0 such that InM ∩N =
In−c(IcM ∩N) for all n ≥ c.

Proof. Consider the ring S = R ⊕ I ⊕ I2 ⊕ . . . =
⊕

n≥0 I
n. Convention: I0 =

R. Multiplication maps In × Im into In+m by multiplication in R. Note that if
I = (f1, . . . , ft) then S is a quotient of the Noetherian ring R[X1, . . . , Xt]. The
map just sends the monomial Xe1

1 . . . Xet
t to fe1

1 . . . fet
t . Thus S is Noetherian.

Similarly, consider the module M ⊕ IM ⊕ I2M ⊕ . . . =
⊕

n≥0 I
nM . This is a

finitely generated S-module. Namely, if x1, . . . , xr generate M over R, then they
also generate

⊕
n≥0 I

nM over S. Next, consider the submodule
⊕

n≥0 I
nM ∩ N .

This is an S-submodule, as is easily verified. By Lemma 51.1 it is finitely generated
as an S-module, say by ξj ∈

⊕
n≥0 I

nM ∩ N , j = 1, . . . , s. We may assume by
decomposing each ξj into its homogeneous pieces that each ξj ∈ IdjM ∩N for some
dj . Set c = max{dj}. Then for all n ≥ c every element in InM ∩ N is of the
form

∑
hjξj with hj ∈ In−dj . The lemma now follows from this and the trivial

observation that In−dj (IdjM ∩N) ⊂ In−c(IcM ∩N). □

Lemma 51.3.00IO Suppose that 0 → K → M
f−→ N is an exact sequence of finitely

generated modules over a Noetherian ring R. Let I ⊂ R be an ideal. Then there
exists a c such that

f−1(InN) = K + In−cf−1(IcN) and f(M) ∩ InN ⊂ f(In−cM)

for all n ≥ c.

Proof. Apply Lemma 51.2 to Im(f) ⊂ N and note that f : In−cM → In−cf(M)
is surjective. □

Lemma 51.4 (Krull’s intersection theorem).00IP Let R be a Noetherian local ring.
Let I ⊂ R be a proper ideal. Let M be a finite R-module. Then

⋂
n≥0 I

nM = 0.

Proof. Let N =
⋂
n≥0 I

nM . Then N = InM ∩ N for all n ≥ 0. By the Artin-
Rees Lemma 51.2 we see that N = InM ∩N ⊂ IN for some suitably large n. By
Nakayama’s Lemma 20.1 we see that N = 0. □

Lemma 51.5.00IQ Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Let N =

⋂
n I

nM .
(1) For every prime p, I ⊂ p there exists a f ∈ R, f ̸∈ p such that Nf = 0.
(2) If I is contained in the Jacobson radical of R, then N = 0.

Proof. Proof of (1). Let x1, . . . , xn be generators for the module N , see Lemma
51.1. For every prime p, I ⊂ p we see that the image of N in the localization Mp is
zero, by Lemma 51.4. Hence we can find gi ∈ R, gi ̸∈ p such that xi maps to zero
in Ngi . Thus Ng1g2...gn = 0.

Part (2) follows from (1) and Lemma 23.1. □
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Remark 51.6.00IR Lemma 51.4 in particular implies that
⋂
n I

n = (0) when I ⊂ R is
a non-unit ideal in a Noetherian local ring R. More generally, let R be a Noetherian
ring and I ⊂ R an ideal. Suppose that f ∈

⋂
n∈N In. Then Lemma 51.5 says that

for every prime ideal I ⊂ p there exists a g ∈ R, g ̸∈ p such that f maps to zero
in Rg. In algebraic geometry we express this by saying that “f is zero in an open
neighbourhood of the closed set V (I) of Spec(R)”.

Lemma 51.7 (Artin-Tate).00IS Let R be a Noetherian ring. Let S be a finitely
generated R-algebra. If T ⊂ S is an R-subalgebra such that S is finitely generated
as a T -module, then T is of finite type over R.

Proof. Choose elements x1, . . . , xn ∈ S which generate S as an R-algebra. Choose
y1, . . . , ym in S which generate S as a T -module. Thus there exist aij ∈ T such that
xi =

∑
aijyj . There also exist bijk ∈ T such that yiyj =

∑
bijkyk. Let T ′ ⊂ T be

the sub R-algebra generated by aij and bijk. This is a finitely generated R-algebra,
hence Noetherian. Consider the algebra

S′ = T ′[Y1, . . . , Ym]/(YiYj −
∑

bijkYk).

Note that S′ is finite over T ′, namely as a T ′-module it is generated by the classes
of 1, Y1, . . . , Ym. Consider the T ′-algebra homomorphism S′ → S which maps Yi
to yi. Because aij ∈ T ′ we see that xj is in the image of this map. Thus S′ → S
is surjective. Therefore S is finite over T ′ as well. Since T ′ is Noetherian and we
conclude that T ⊂ S is finite over T ′ and we win. □

52. Length

00IU
Definition 52.1.02LY Let R be a ring. For any R-module M we define the length of
M over R by the formula

lengthR(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi ̸= Mi+1}.

In other words it is the supremum of the lengths of chains of submodules. There
is an obvious notion of when a chain of submodules is a refinement of another.
This gives a partial ordering on the collection of all chains of submodules, with the
smallest chain having the shape 0 = M0 ⊂M1 = M if M is not zero. We note the
obvious fact that if the length of M is finite, then every chain can be refined to
a maximal chain. But it is not as obvious that all maximal chains have the same
length (as we will see later).

Lemma 52.2.02LZ Let R be a ring. Let M be an R-module. If lengthR(M) <∞ then
M is a finite R-module.

Proof. Omitted. □

Lemma 52.3.00IV If 0→ M ′ → M → M ′′ → 0 is a short exact sequence of modules
over R then the length of M is the sum of the lengths of M ′ and M ′′.

Proof. Given filtrations of M ′ and M ′′ of lengths n′, n′′ it is easy to make a
corresponding filtration of M of length n′ + n′′. Thus we see that lengthRM ≥
lengthRM ′ + lengthRM ′′. Conversely, given a filtration M0 ⊂ M1 ⊂ . . . ⊂ Mn

of M consider the induced filtrations M ′
i = Mi ∩M ′ and M ′′

i = Im(Mi → M ′′).
Let n′ (resp. n′′) be the number of steps in the filtration {M ′

i} (resp. {M ′′
i }). If
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M ′
i = M ′

i+1 and M ′′
i = M ′′

i+1 then Mi = Mi+1. Hence we conclude that n′+n′′ ≥ n.
Combined with the earlier result we win. □

Lemma 52.4.00IW Let R be a local ring with maximal ideal m. If M is an R-module
and mnM ̸= 0 for all n ≥ 0, then lengthR(M) =∞. In other words, if M has finite
length then mnM = 0 for some n.

Proof. Assume mnM ̸= 0 for all n ≥ 0. Choose x ∈ M and f1, . . . , fn ∈ m such
that f1f2 . . . fnx ̸= 0. The first n steps in the filtration

0 ⊂ Rf1 . . . fnx ⊂ Rf1 . . . fn−1x ⊂ . . . ⊂ Rx ⊂M

are distinct. For example, if Rf1x = Rf1f2x , then f1x = gf1f2x for some g, hence
(1 − gf2)f1x = 0 hence f1x = 0 as 1 − gf2 is a unit which is a contradiction with
the choice of x and f1, . . . , fn. Hence the length is infinite. □

Lemma 52.5.00IX Let R → S be a ring map. Let M be an S-module. We always
have lengthR(M) ≥ lengthS(M). If R→ S is surjective then equality holds.

Proof. A filtration of M by S-submodules gives rise a filtration of M by R-
submodules. This proves the inequality. And if R → S is surjective, then any R-
submodule of M is automatically an S-submodule. Hence equality in this case. □

Lemma 52.6.00IY Let R be a ring with maximal ideal m. Suppose that M is an
R-module with mM = 0. Then the length of M as an R-module agrees with the
dimension of M as a R/m vector space. The length is finite if and only if M is a
finite R-module.

Proof. The first part is a special case of Lemma 52.5. Thus the length is finite if
and only if M has a finite basis as a R/m-vector space if and only if M has a finite
set of generators as an R-module. □

Lemma 52.7.00IZ Let R be a ring. Let M be an R-module. Let S ⊂ R be a multi-
plicative subset. Then lengthR(M) ≥ lengthS−1R(S−1M).

Proof. Any submodule N ′ ⊂ S−1M is of the form S−1N for some R-submodule
N ⊂M , by Lemma 9.15. The lemma follows. □

Lemma 52.8.00J0 Let R be a ring with finitely generated maximal ideal m. (For
example R Noetherian.) Suppose that M is a finite R-module with mnM = 0 for
some n. Then lengthR(M) <∞.

Proof. Consider the filtration 0 = mnM ⊂ mn−1M ⊂ . . . ⊂ mM ⊂ M . All of the
subquotients are finitely generated R-modules to which Lemma 52.6 applies. We
conclude by additivity, see Lemma 52.3. □

Definition 52.9.00J1 Let R be a ring. Let M be an R-module. We say M is simple
if M ̸= 0 and every submodule of M is either equal to M or to 0.

Lemma 52.10.00J2 Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) M is simple,
(2) lengthR(M) = 1, and
(3) M ∼= R/m for some maximal ideal m ⊂ R.
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Proof. Let m be a maximal ideal of R. By Lemma 52.6 the module R/m has length
1. The equivalence of the first two assertions is tautological. Suppose that M is
simple. Choose x ∈M , x ̸= 0. As M is simple we have M = R ·x. Let I ⊂ R be the
annihilator of x, i.e., I = {f ∈ R | fx = 0}. The map R/I →M , f mod I 7→ fx is
an isomorphism, hence R/I is a simple R-module. Since R/I ̸= 0 we see I ̸= R. Let
I ⊂ m be a maximal ideal containing I. If I ̸= m, then m/I ⊂ R/I is a nontrivial
submodule contradicting the simplicity of R/I. Hence we see I = m as desired. □

Lemma 52.11.00J3 Let R be a ring. Let M be a finite length R-module. Choose any
maximal chain of submodules

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

with Mi ̸= Mi−1, i = 1, . . . , n. Then
(1) n = lengthR(M),
(2) each Mi/Mi−1 is simple,
(3) each Mi/Mi−1 is of the form R/mi for some maximal ideal mi,
(4) given a maximal ideal m ⊂ R we have

#{i | mi = m} = lengthRm
(Mm).

Proof. If Mi/Mi−1 is not simple then we can refine the filtration and the filtration
is not maximal. Thus we see that Mi/Mi−1 is simple. By Lemma 52.10 the modules
Mi/Mi−1 have length 1 and are of the form R/mi for some maximal ideals mi. By
additivity of length, Lemma 52.3, we see n = lengthR(M). Since localization is
exact, we see that

0 = (M0)m ⊂ (M1)m ⊂ (M2)m ⊂ . . . ⊂ (Mn)m = Mm

is a filtration of Mm with successive quotients (Mi/Mi−1)m. Thus the last statement
follows directly from the fact that given maximal ideals m, m′ of R we have

(R/m′)m ∼=
{

0 if m ̸= m′,
Rm/mRm if m = m′

This we leave to the reader. □

Lemma 52.12.02M0 Let A be a local ring with maximal ideal m. Let B be a semi-local
ring with maximal ideals mi, i = 1, . . . , n. Suppose that A→ B is a homomorphism
such that each mi lies over m and such that

[κ(mi) : κ(m)] <∞.

Let M be a B-module of finite length. Then

lengthA(M) =
∑

i=1,...,n
[κ(mi) : κ(m)]lengthBmi

(Mmi),

in particular lengthA(M) <∞.

Proof. Choose a maximal chain

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mm = M

by B-submodules as in Lemma 52.11. Then each quotient Mj/Mj−1 is isomorphic
to κ(mi(j)) for some i(j) ∈ {1, . . . , n}. Moreover lengthA(κ(mi)) = [κ(mi) : κ(m)]
by Lemma 52.6. The lemma follows by additivity of lengths (Lemma 52.3). □
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Lemma 52.13.02M1 Let A→ B be a flat local homomorphism of local rings. Then for
any A-module M we have

lengthA(M)lengthB(B/mAB) = lengthB(M ⊗A B).

In particular, if lengthB(B/mAB) < ∞ then M has finite length if and only if
M ⊗A B has finite length.

Proof. The ring map A→ B is faithfully flat by Lemma 39.17. Hence if 0 = M0 ⊂
M1 ⊂ . . . ⊂ Mn = M is a chain of length n in M , then the corresponding chain
0 = M0⊗AB ⊂M1⊗AB ⊂ . . . ⊂Mn⊗AB = M⊗AB has length n also. This proves
lengthA(M) = ∞ ⇒ lengthB(M ⊗A B) = ∞. Next, assume lengthA(M) < ∞. In
this case we see that M has a filtration of length ℓ = lengthA(M) whose quotients
are A/mA. Arguing as above we see that M ⊗AB has a filtration of length ℓ whose
quotients are isomorphic to B ⊗A A/mA = B/mAB. Thus the lemma follows. □

Lemma 52.14.02M2 Let A→ B → C be flat local homomorphisms of local rings. Then

lengthB(B/mAB)lengthC(C/mBC) = lengthC(C/mAC)

Proof. Follows from Lemma 52.13 applied to the ring map B → C and the B-
module M = B/mAB □

53. Artinian rings

00J4 Artinian rings, and especially local Artinian rings, play an important role in alge-
braic geometry, for example in deformation theory.

Definition 53.1.00J5 A ring R is Artinian if it satisfies the descending chain condition
for ideals.

Lemma 53.2.00J6 Suppose R is a finite dimensional algebra over a field. Then R is
Artinian.

Proof. The descending chain condition for ideals obviously holds. □

Lemma 53.3.00J7 If R is Artinian then R has only finitely many maximal ideals.

Proof. Suppose that mi, i = 1, 2, 3, . . . are pairwise distinct maximal ideals. Then
m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩m3 ⊃ . . . is an infinite descending sequence (because by
the Chinese remainder theorem all the maps R→ ⊕ni=1R/mi are surjective). □

Lemma 53.4.00J8 Let R be Artinian. The Jacobson radical of R is a nilpotent ideal.

Proof. Let I ⊂ R be the Jacobson radical. Note that I ⊃ I2 ⊃ I3 ⊃ . . . is a
descending sequence. Thus In = In+1 for some n. Set J = {x ∈ R | xIn = 0}. We
have to show J = R. If not, choose an ideal J ′ ̸= J , J ⊂ J ′ minimal (possible by
the Artinian property). Then J ′ = J +Rx for some x ∈ R. By minimality we have
J + IJ ′ = J or J + IJ ′ = J ′. In the latter case we get J ′ = J + Ix and by Lemma
20.1 we obtain J = J ′ a contradiction. Hence xIn+1 ⊂ xI · In ⊂ J · In = 0. Since
In+1 = In we conclude x ∈ J . Contradiction. □

Lemma 53.5.00JA Any ring with finitely many maximal ideals and locally nilpotent
Jacobson radical is the product of its localizations at its maximal ideals. Also, all
primes are maximal.

https://stacks.math.columbia.edu/tag/02M1
https://stacks.math.columbia.edu/tag/02M2
https://stacks.math.columbia.edu/tag/00J5
https://stacks.math.columbia.edu/tag/00J6
https://stacks.math.columbia.edu/tag/00J7
https://stacks.math.columbia.edu/tag/00J8
https://stacks.math.columbia.edu/tag/00JA


COMMUTATIVE ALGEBRA 125

Proof. Let R be a ring with finitely many maximal ideals m1, . . . ,mn. Let I =⋂n
i=1 mi be the Jacobson radical of R. Assume I is locally nilpotent. Let p be a

prime ideal of R. Since every prime contains every nilpotent element of R we see
p ⊃ m1∩. . .∩mn. Since m1∩. . .∩mn ⊃ m1 . . .mn we conclude p ⊃ m1 . . .mn. Hence
p ⊃ mi for some i, and so p = mi. By the Chinese remainder theorem (Lemma
15.4) we have R/I ∼=

⊕
R/mi which is a product of fields. Hence by Lemma 32.6

there are idempotents ei, i = 1, . . . , n with ei mod mj = δij . Hence R =
∏
Rei,

and each Rei is a ring with exactly one maximal ideal. □

Lemma 53.6.00JB A ring R is Artinian if and only if it has finite length as a module
over itself. Any such ring R is both Artinian and Noetherian, any prime ideal of R
is a maximal ideal, and R is equal to the (finite) product of its localizations at its
maximal ideals.

Proof. If R has finite length over itself then it satisfies both the ascending chain
condition and the descending chain condition for ideals. Hence it is both Noetherian
and Artinian. Any Artinian ring is equal to product of its localizations at maximal
ideals by Lemmas 53.3, 53.4, and 53.5.
Suppose that R is Artinian. We will show R has finite length over itself. It suffices
to exhibit a chain of submodules whose successive quotients have finite length.
By what we said above we may assume that R is local, with maximal ideal m.
By Lemma 53.4 we have mn = 0 for some n. Consider the sequence 0 = mn ⊂
mn−1 ⊂ . . . ⊂ m ⊂ R. By Lemma 52.6 the length of each subquotient mj/mj+1

is the dimension of this as a vector space over κ(m). This has to be finite since
otherwise we would have an infinite descending chain of sub vector spaces which
would correspond to an infinite descending chain of ideals in R. □

54. Homomorphisms essentially of finite type

07DR Some simple remarks on localizations of finite type ring maps.

Definition 54.1.00QM Let R→ S be a ring map.
(1) We say that R→ S is essentially of finite type if S is the localization of an

R-algebra of finite type.
(2) We say that R→ S is essentially of finite presentation if S is the localization

of an R-algebra of finite presentation.

Lemma 54.2.07DS The class of ring maps which are essentially of finite type is pre-
served under composition. Similarly for essentially of finite presentation.

Proof. Omitted. □

Lemma 54.3.0AUF The class of ring maps which are essentially of finite type is pre-
served by base change. Similarly for essentially of finite presentation.

Proof. Omitted. □

Lemma 54.4.07DT Let R→ S be a ring map. Assume S is an Artinian local ring with
maximal ideal m. Then

(1) R→ S is finite if and only if R→ S/m is finite,
(2) R→ S is of finite type if and only if R→ S/m is of finite type.
(3) R→ S is essentially of finite type if and only if the composition R→ S/m

is essentially of finite type.

https://stacks.math.columbia.edu/tag/00JB
https://stacks.math.columbia.edu/tag/00QM
https://stacks.math.columbia.edu/tag/07DS
https://stacks.math.columbia.edu/tag/0AUF
https://stacks.math.columbia.edu/tag/07DT
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Proof. If R → S is finite, then R → S/m is finite by Lemma 7.3. Conversely,
assume R → S/m is finite. As S has finite length over itself (Lemma 53.6) we can
choose a filtration

0 ⊂ I1 ⊂ . . . ⊂ In = S

by ideals such that Ii/Ii−1 ∼= S/m as S-modules. Thus S has a filtration by R-
submodules Ii such that each successive quotient is a finite R-module. Thus S is a
finite R-module by Lemma 5.3.

If R→ S is of finite type, then R→ S/m is of finite type by Lemma 6.2. Conversely,
assume that R → S/m is of finite type. Choose f1, . . . , fn ∈ S which map to
generators of S/m. Then A = R[x1, . . . , xn] → S, xi 7→ fi is a ring map such that
A→ S/m is surjective (in particular finite). Hence A→ S is finite by part (1) and
we see that R→ S is of finite type by Lemma 6.2.

If R → S is essentially of finite type, then R → S/m is essentially of finite type
by Lemma 54.2. Conversely, assume that R → S/m is essentially of finite type.
Suppose S/m is the localization of R[x1, . . . , xn]/I. Choose f1, . . . , fn ∈ S whose
congruence classes modulo m correspond to the congruence classes of x1, . . . , xn
modulo I. Consider the map R[x1, . . . , xn] → S, xi 7→ fi with kernel J . Set
A = R[x1, . . . , xn]/J ⊂ S and p = A ∩ m. Note that A/p ⊂ S/m is equal to the
image of R[x1, . . . , xn]/I in S/m. Hence κ(p) = S/m. Thus Ap → S is finite by
part (1). We conclude that S is essentially of finite type by Lemma 54.2. □

The following lemma can be proven using properness of projective space instead of
the algebraic argument we give here.

Lemma 54.5.0AUG Let φ : R → S be essentially of finite type with R and S lo-
cal (but not necessarily φ local). Then there exists an n and a maximal ideal
m ⊂ R[x1, . . . , xn] lying over mR such that S is a localization of a quotient of
R[x1, . . . , xn]m.

Proof. We can write S as a localization of a quotient of R[x1, . . . , xn]. Hence
it suffices to prove the lemma in case S = R[x1, . . . , xn]q for some prime q ⊂
R[x1, . . . , xn]. If q + mRR[x1, . . . , xn] ̸= R[x1, . . . , xn] then we can find a maximal
ideal m as in the statement of the lemma with q ⊂ m and the result is clear.

Choose a valuation ring A ⊂ κ(q) which dominates the image of R→ κ(q) (Lemma
50.2). If the image λi ∈ κ(q) of xi is contained in A, then q is contained in
the inverse image of mA via R[x1, . . . , xn] → A which means we are back in the
preceding case. Hence there exists an i such that λ−1

i ∈ A and such that λj/λi ∈ A
for all j = 1, . . . , n (because the value group of A is totally ordered, see Lemma
50.12). Then we consider the map

R[y0, y1, . . . , ŷi, . . . , yn]→ R[x1, . . . , xn]q, y0 7→ 1/xi, yj 7→ xj/xi

Let q′ ⊂ R[y0, . . . , ŷi, . . . , yn] be the inverse image of q. Since y0 ̸∈ q′ it is easy to
see that the displayed arrow defines an isomorphism on localizations. On the other
hand, the result of the first paragraph applies to R[y0, . . . , ŷi, . . . , yn] because yj
maps to an element of A. This finishes the proof. □

https://stacks.math.columbia.edu/tag/0AUG
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55. K-groups

00JC Let R be a ring. We will introduce two abelian groups associated to R. The first
of the two is denoted K ′

0(R) and has the following properties6:
(1) For every finite R-module M there is given an element [M ] in K ′

0(R),
(2) for every short exact sequence 0 → M ′ → M → M ′′ → 0 of finite R-

modules we have the relation [M ] = [M ′] + [M ′′],
(3) the group K ′

0(R) is generated by the elements [M ], and
(4) all relations in K ′

0(R) among the generators [M ] are Z-linear combinations
of the relations coming from exact sequences as above.

The actual construction is a bit more annoying since one has to take care that
the collection of all finitely generated R-modules is a proper class. However, this
problem can be overcome by taking as set of generators of the group K ′

0(R) the
elements [Rn/K] where n ranges over all integers and K ranges over all submodules
K ⊂ Rn. The generators for the subgroup of relations imposed on these elements
will be the relations coming from short exact sequences whose terms are of the form
Rn/K. The element [M ] is defined by choosing n and K such that M ∼= Rn/K
and putting [M ] = [Rn/K]. Details left to the reader.

Lemma 55.1.00JD If R is an Artinian local ring then the length function defines a
natural abelian group homomorphism lengthR : K ′

0(R)→ Z.

Proof. The length of any finite R-module is finite, because it is the quotient of Rn
which has finite length by Lemma 53.6. And the length function is additive, see
Lemma 52.3. □

The second of the two is denoted K0(R) and has the following properties:
(1) For every finite projective R-module M there is given an element [M ] in

K0(R),
(2) for every short exact sequence 0→M ′ →M →M ′′ → 0 of finite projective

R-modules we have the relation [M ] = [M ′] + [M ′′],
(3) the group K0(R) is generated by the elements [M ], and
(4) all relations in K0(R) are Z-linear combinations of the relations coming

from exact sequences as above.
The construction of this group is done as above.
We note that there is an obvious map K0(R)→ K ′

0(R) which is not an isomorphism
in general.

Example 55.2.00JE Note that if R = k is a field then we clearly have K0(k) =
K ′

0(k) ∼= Z with the isomorphism given by the dimension function (which is also
the length function).

Example 55.3.0FJ8 Let R be a PID. We claim K0(R) = K ′
0(R) = Z. Namely, any

finite projective R-module is finite free. A finite free module has a well defined rank
by Lemma 15.8. Given a short exact sequence of finite free modules

0→M ′ →M →M ′′ → 0
we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this
case (for example we have a splitting by Lemma 5.2). We conclude K0(R) = Z.

6The definition makes sense for any ring but is rarely used unless R is Noetherian.

https://stacks.math.columbia.edu/tag/00JD
https://stacks.math.columbia.edu/tag/00JE
https://stacks.math.columbia.edu/tag/0FJ8


COMMUTATIVE ALGEBRA 128

The structure theorem for modules of a PID says that any finitely generated R-
module is of the form M = R⊕r ⊕R/(d1)⊕ . . .⊕R/(dk). Consider the short exact
sequence

0→ (di)→ R→ R/(di)→ 0
Since the ideal (di) is isomorphic to R as a module (it is free with generator di),
in K ′

0(R) we have [(di)] = [R]. Then [R/(di)] = [(di)] − [R] = 0. From this it
follows that a torsion module has zero class in K ′

0(R). Using the rank of the free
part gives an identification K ′

0(R) = Z and the canonical homomorphism from
K0(R)→ K ′

0(R) is an isomorphism.

Example 55.4.00JF Let k be a field. Then K0(k[x]) = K ′
0(k[x]) = Z. This follows

from Example 55.3 as R = k[x] is a PID.

Example 55.5.00JG Let k be a field. Let R = {f ∈ k[x] | f(0) = f(1)}, compare
Example 27.4. In this case K0(R) ∼= k∗ ⊕ Z, but K ′

0(R) = Z.

Lemma 55.6.00JH Let R = R1×R2. Then K0(R) = K0(R1)×K0(R2) and K ′
0(R) =

K ′
0(R1)×K ′

0(R2)

Proof. Omitted. □

Lemma 55.7.00JI Let R be an Artinian local ring. The map lengthR : K ′
0(R)→ Z of

Lemma 55.1 is an isomorphism.

Proof. Omitted. □

Lemma 55.8.00JJ Let (R,m) be a local ring. Every finite projective R-module is finite
free. The map rankR : K0(R)→ Z defined by [M ]→ rankR(M) is well defined and
an isomorphism.

Proof. Let P be a finite projective R-module. Choose elements x1, . . . , xn ∈ P
which map to a basis of P/mP . By Nakayama’s Lemma 20.1 these elements gener-
ate P . The corresponding surjection u : R⊕n → P has a splitting as P is projective.
Hence R⊕n = P ⊕Q with Q = Ker(u). It follows that Q/mQ = 0, hence Q is zero
by Nakayama’s lemma. In this way we see that every finite projective R-module is
finite free. A finite free module has a well defined rank by Lemma 15.8. Given a
short exact sequence of finite free R-modules

0→M ′ →M →M ′′ → 0
we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this
case (for example we have a splitting by Lemma 5.2). We conclude K0(R) = Z. □

Lemma 55.9.00JK Let R be a local Artinian ring. There is a commutative diagram

K0(R) //

rankR

��

K ′
0(R)

lengthR

��
Z

lengthR(R) // Z
where the vertical maps are isomorphisms by Lemmas 55.7 and 55.8.

Proof. Let P be a finite projective R-module. We have to show that lengthR(P ) =
rankR(P )lengthR(R). By Lemma 55.8 the module P is finite free. So P ∼= R⊕n for
some n ≥ 0. Then rankR(P ) = n and lengthR(R⊕n) = nlengthR(R) by additivity
of lengths (Lemma 52.3). Thus the result holds. □

https://stacks.math.columbia.edu/tag/00JF
https://stacks.math.columbia.edu/tag/00JG
https://stacks.math.columbia.edu/tag/00JH
https://stacks.math.columbia.edu/tag/00JI
https://stacks.math.columbia.edu/tag/00JJ
https://stacks.math.columbia.edu/tag/00JK
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56. Graded rings

00JL A graded ring will be for us a ring S endowed with a direct sum decomposition
S =

⊕
d≥0 Sd of the underlying abelian group such that Sd · Se ⊂ Sd+e. Note that

we do not allow nonzero elements in negative degrees. The irrelevant ideal is the
ideal S+ =

⊕
d>0 Sd. A graded module will be an S-module M endowed with a

direct sum decomposition M =
⊕

n∈Z Mn of the underlying abelian group such
that Sd · Me ⊂ Md+e. Note that for modules we do allow nonzero elements in
negative degrees. We think of S as a graded S-module by setting S−k = (0) for
k > 0. An element x (resp. f) of M (resp. S) is called homogeneous if x ∈ Md

(resp. f ∈ Sd) for some d. A map of graded S-modules is a map of S-modules
φ : M → M ′ such that φ(Md) ⊂ M ′

d. We do not allow maps to shift degrees. Let
us denote GrHom0(M,N) the S0-module of homomorphisms of graded modules
from M to N .

At this point there are the notions of graded ideal, graded quotient ring, graded
submodule, graded quotient module, graded tensor product, etc. We leave it to the
reader to find the relevant definitions, and lemmas. For example: A short exact
sequence of graded modules is short exact in every degree.

Given a graded ring S, a graded S-module M and n ∈ Z we denote M(n) the
graded S-module with M(n)d = Mn+d. This is called the twist of M by n. In
particular we get modules S(n), n ∈ Z which will play an important role in the
study of projective schemes. There are some obvious functorial isomorphisms such
as (M ⊕ N)(n) = M(n) ⊕ N(n), (M ⊗S N)(n) = M ⊗S N(n) = M(n) ⊗S N . In
addition we can define a graded S-module structure on the S0-module

GrHom(M,N) =
⊕

n∈Z
GrHomn(M,N), GrHomn(M,N) = GrHom0(M,N(n)).

We omit the definition of the multiplication.

Lemma 56.1.0EKB Let S be a graded ring. Let M be a graded S-module.
(1) If S+M = M and M is finite, then M = 0.
(2) If N,N ′ ⊂ M are graded submodules, M = N + S+N

′, and N ′ is finite,
then M = N .

(3) If N → M is a map of graded modules, N/S+N → M/S+M is surjective,
and M is finite, then N →M is surjective.

(4) If x1, . . . , xn ∈M are homogeneous and generate M/S+M and M is finite,
then x1, . . . , xn generate M .

Proof. Proof of (1). Choose generators y1, . . . , yr of M over S. We may assume
that yi is homogeneous of degree di. After renumbering we may assume dr =
min(di). Then the condition that S+M = M implies yr = 0. Hence M = 0 by
induction on r. Part (2) follows by applying (1) to M/N . Part (3) follows by
applying (2) to the submodules Im(N →M) and M . Part (4) follows by applying
(3) to the module map

⊕
S(−di)→M , (s1, . . . , sn) 7→

∑
sixi. □

Let S be a graded ring. Let d ≥ 1 be an integer. We set S(d) =
⊕

n≥0 Snd.
We think of S(d) as a graded ring with degree n summand (S(d))n = Snd. Given
a graded S-module M we can similarly consider M (d) =

⊕
n∈Z Mnd which is a

graded S(d)-module.

https://stacks.math.columbia.edu/tag/0EKB
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Lemma 56.2.0EGH Let S be a graded ring, which is finitely generated over S0. Then
for all sufficiently divisible d the algebra S(d) is generated in degree 1 over S0.

Proof. Say S is generated by f1, . . . , fr ∈ S over S0. After replacing fi by their
homogeneous parts, we may assume fi is homogeneous of degree di > 0. Then any
element of Sn is a linear combination with coefficients in S0 of monomials fe1

1 . . . fer
r

with
∑
eidi = n. Let m be a multiple of lcm(di). For any N ≥ r if∑

eidi = Nm

then for some i we have ei ≥ m/di by an elementary argument. Hence every
monomial of degree Nm is a product of a monomial of degree m, namely f

m/di

i ,
and a monomial of degree (N − 1)m. It follows that any monomial of degree nrm
with n ≥ 2 is a product of monomials of degree rm. Thus S(rm) is generated in
degree 1 over S0. □

Lemma 56.3.077G Let R→ S be a homomorphism of graded rings. Let S′ ⊂ S be the
integral closure of R in S. Then

S′ =
⊕

d≥0
S′ ∩ Sd,

i.e., S′ is a graded R-subalgebra of S.

Proof. We have to show the following: If s = sn + sn+1 + . . . + sm ∈ S′, then
each homogeneous part sj ∈ S′. We will prove this by induction on m− n over all
homomorphisms R → S of graded rings. First note that it is immediate that s0
is integral over R0 (hence over R) as there is a ring map S → S0 compatible with
the ring map R → R0. Thus, after replacing s by s − s0, we may assume n > 0.
Consider the extension of graded rings R[t, t−1] → S[t, t−1] where t has degree 0.
There is a commutative diagram

S[t, t−1]
s7→tdeg(s)s

// S[t, t−1]

R[t, t−1]

OO

r 7→tdeg(r)r // R[t, t−1]

OO

where the horizontal maps are ring automorphisms. Hence the integral closure C
of S[t, t−1] over R[t, t−1] maps into itself. Thus we see that

tm(sn + sn+1 + . . .+ sm)− (tnsn + tn+1sn+1 + . . .+ tmsm) ∈ C

which implies by induction hypothesis that each (tm−ti)si ∈ C for i = n, . . . ,m−1.
Note that for any ring A and m > i ≥ n > 0 we have A[t, t−1]/(tm − ti − 1) ∼=
A[t]/(tm − ti − 1) ⊃ A because t(tm−1 − ti−1) = 1 in A[t]/(tm − ti − 1). Since
tm − ti maps to 1 we see the image of si in the ring S[t]/(tm − ti − 1) is integral
over R[t]/(tm − ti − 1) for i = n, . . . ,m− 1. Since R → R[t]/(tm − ti − 1) is finite
we see that si is integral over R by transitivity, see Lemma 36.6. Finally, we also
conclude that sm = s−

∑
i=n,...,m−1 si is integral over R. □

57. Proj of a graded ring

00JM

https://stacks.math.columbia.edu/tag/0EGH
https://stacks.math.columbia.edu/tag/077G
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Let S be a graded ring. A homogeneous ideal is simply an ideal I ⊂ S which is also
a graded submodule of S. Equivalently, it is an ideal generated by homogeneous
elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous parts in S then fi ∈ I for each i. To
check that a homogeneous ideal p is prime it suffices to check that if ab ∈ p with
a, b homogeneous then either a ∈ p or b ∈ p.

Definition 57.1.00JN Let S be a graded ring. We define Proj(S) to be the set of
homogeneous prime ideals p of S such that S+ ̸⊂ p. The set Proj(S) is a subset of
Spec(S) and we endow it with the induced topology. The topological space Proj(S)
is called the homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map
Proj(S) −→ Spec(S0).

Let S = ⊕d≥0Sd be a graded ring. Let f ∈ Sd and assume that d ≥ 1. We
define S(f) to be the subring of Sf consisting of elements of the form r/fn with
r homogeneous and deg(r) = nd. If M is a graded S-module, then we define the
S(f)-module M(f) as the sub module of Mf consisting of elements of the form x/fn

with x homogeneous of degree nd.

Lemma 57.2.00JO Let S be a Z-graded ring containing a homogeneous invertible
element of positive degree. Then the set G ⊂ Spec(S) of Z-graded primes of S
(with induced topology) maps homeomorphically to Spec(S0).

Proof. First we show that the map is a bijection by constructing an inverse. Let
f ∈ Sd, d > 0 be invertible in S. If p0 is a prime of S0, then p0S is a Z-graded
ideal of S such that p0S ∩ S0 = p0. And if ab ∈ p0S with a, b homogeneous, then
adbd/fdeg(a)+deg(b) ∈ p0. Thus either ad/fdeg(a) ∈ p0 or bd/fdeg(b) ∈ p0, in other
words either ad ∈ p0S or bd ∈ p0S. It follows that

√
p0S is a Z-graded prime ideal

of S whose intersection with S0 is p0.
To show that the map is a homeomorphism we show that the image of G ∩ D(g)
is open. If g =

∑
gi with gi ∈ Si, then by the above G ∩D(g) maps onto the set⋃

D(gdi /f i) which is open. □

For f ∈ S homogeneous of degree > 0 we define
D+(f) = {p ∈ Proj(S) | f ̸∈ p}.

Finally, for a homogeneous ideal I ⊂ S we define
V+(I) = {p ∈ Proj(S) | I ⊂ p}.

We will use more generally the notation V+(E) for any set E of homogeneous
elements E ⊂ S.

Lemma 57.3 (Topology on Proj).00JP Let S = ⊕d≥0Sd be a graded ring.
(1) The sets D+(f) are open in Proj(S).
(2) We have D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . .+ gm be an element of S with gi ∈ Si. Then

D(g) ∩ Proj(S) = (D(g0) ∩ Proj(S)) ∪
⋃

i≥1
D+(gi).

https://stacks.math.columbia.edu/tag/00JN
https://stacks.math.columbia.edu/tag/00JO
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(4) Let g0 ∈ S0 be a homogeneous element of degree 0. Then

D(g0) ∩ Proj(S) =
⋃

f∈Sd, d≥1
D+(g0f).

(5) The open sets D+(f) form a basis for the topology of Proj(S).
(6) Let f ∈ S be homogeneous of positive degree. The ring Sf has a natural

Z-grading. The ring maps S → Sf ← S(f) induce homeomorphisms
D+(f)← {Z-graded primes of Sf} → Spec(S(f)).

(7) There exists an S such that Proj(S) is not quasi-compact.
(8) The sets V+(I) are closed.
(9) Any closed subset T ⊂ Proj(S) is of the form V+(I) for some homogeneous

ideal I ⊂ S.
(10) For any graded ideal I ⊂ S we have V+(I) = ∅ if and only if S+ ⊂

√
I.

Proof. Since D+(f) = Proj(S) ∩D(f), these sets are open. This proves (1). Also
(2) follows as D(ff ′) = D(f) ∩D(f ′). Similarly the sets V+(I) = Proj(S) ∩ V (I)
are closed. This proves (8).
Suppose that T ⊂ Proj(S) is closed. Then we can write T = Proj(S) ∩ V (J) for
some ideal J ⊂ S. By definition of a homogeneous ideal if g ∈ J , g = g0 + . . .+ gm
with gd ∈ Sd then gd ∈ p for all p ∈ T . Thus, letting I ⊂ S be the ideal generated
by the homogeneous parts of the elements of J we have T = V+(I). This proves
(9).
The formula for Proj(S) ∩ D(g), with g ∈ S is direct from the definitions. This
proves (3). Consider the formula for Proj(S) ∩ D(g0). The inclusion of the right
hand side in the left hand side is obvious. For the other inclusion, suppose g0 ̸∈ p
with p ∈ Proj(S). If all g0f ∈ p for all homogeneous f of positive degree, then
we see that S+ ⊂ p which is a contradiction. This gives the other inclusion. This
proves (4).
The collection of opens D(g) ∩ Proj(S) forms a basis for the topology since the
standard opens D(g) ⊂ Spec(S) form a basis for the topology on Spec(S). By the
formulas above we can express D(g) ∩ Proj(S) as a union of opens D+(f). Hence
the collection of opens D+(f) forms a basis for the topology also. This proves (5).
Proof of (6). First we note that D+(f) may be identified with a subset (with
induced topology) of D(f) = Spec(Sf ) via Lemma 17.6. Note that the ring Sf
has a Z-grading. The homogeneous elements are of the form r/fn with r ∈ S
homogeneous and have degree deg(r/fn) = deg(r) − ndeg(f). The subset D+(f)
corresponds exactly to those prime ideals p ⊂ Sf which are Z-graded ideals (i.e.,
generated by homogeneous elements). Hence we have to show that the set of Z-
graded prime ideals of Sf maps homeomorphically to Spec(S(f)). This follows from
Lemma 57.2.
Let S = Z[X1, X2, X3, . . .] with grading such that each Xi has degree 1. Then it is
easy to see that

Proj(S) =
⋃∞

i=1
D+(Xi)

does not have a finite refinement. This proves (7).

Let I ⊂ S be a graded ideal. If
√
I ⊃ S+ then V+(I) = ∅ since every prime

p ∈ Proj(S) does not contain S+ by definition. Conversely, suppose that S+ ̸⊂
√
I.
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Then we can find an element f ∈ S+ such that f is not nilpotent modulo I. Clearly
this means that one of the homogeneous parts of f is not nilpotent modulo I, in
other words we may (and do) assume that f is homogeneous. This implies that
ISf ̸= Sf , in other words that (S/I)f is not zero. Hence (S/I)(f) ̸= 0 since it is
a ring which maps into (S/I)f . Pick a prime q ⊂ (S/I)(f). This corresponds to a
graded prime of S/I, not containing the irrelevant ideal (S/I)+. And this in turn
corresponds to a graded prime ideal p of S, containing I but not containing S+ as
desired. This proves (10) and finishes the proof. □

Example 57.4.00JQ Let R be a ring. If S = R[X] with deg(X) = 1, then the natural
map Proj(S) → Spec(R) is a bijection and in fact a homeomorphism. Namely,
suppose p ∈ Proj(S). Since S+ ̸⊂ p we see that X ̸∈ p. Thus if aXn ∈ p with a ∈ R
and n > 0, then a ∈ p. It follows that p = p0S with p0 = p ∩R.

If p ∈ Proj(S), then we define S(p) to be the ring whose elements are fractions
r/f where r, f ∈ S are homogeneous elements of the same degree such that f ̸∈ p.
As usual we say r/f = r′/f ′ if and only if there exists some f ′′ ∈ S homogeneous,
f ′′ ̸∈ p such that f ′′(rf ′−r′f) = 0. Given a graded S-module M we let M(p) be the
S(p)-module whose elements are fractions x/f with x ∈M and f ∈ S homogeneous
of the same degree such that f ̸∈ p. We say x/f = x′/f ′ if and only if there exists
some f ′′ ∈ S homogeneous, f ′′ ̸∈ p such that f ′′(xf ′ − x′f) = 0.

Lemma 57.5.00JR Let S be a graded ring. Let M be a graded S-module. Let p be an
element of Proj(S). Let f ∈ S be a homogeneous element of positive degree such that
f ̸∈ p, i.e., p ∈ D+(f). Let p′ ⊂ S(f) be the element of Spec(S(f)) corresponding to
p as in Lemma 57.3. Then S(p) = (S(f))p′ and compatibly M(p) = (M(f))p′ .

Proof. We define a map ψ : M(p) → (M(f))p′ . Let x/g ∈M(p). We set

ψ(x/g) = (xgdeg(f)−1/fdeg(x))/(gdeg(f)/fdeg(g)).
This makes sense since deg(x) = deg(g) and since gdeg(f)/fdeg(g) ̸∈ p′. We omit the
verification that ψ is well defined, a module map and an isomorphism. Hint: the
inverse sends (x/fn)/(g/fm) to (xfm)/(gfn). □

Here is a graded variant of Lemma 15.2.

Lemma 57.6.00JS Suppose S is a graded ring, pi, i = 1, . . . , r homogeneous prime
ideals and I ⊂ S+ a graded ideal. Assume I ̸⊂ pi for all i. Then there exists a
homogeneous element x ∈ I of positive degree such that x ̸∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. The result is true
for r = 1. Suppose the result holds for r − 1. Pick x ∈ I homogeneous of positive
degree such that x ̸∈ pi for all i = 1, . . . , r − 1. If x ̸∈ pr we are done. So assume
x ∈ pr. If Ip1 . . . pr−1 ⊂ pr then I ⊂ pr a contradiction. Pick y ∈ Ip1 . . . pr−1
homogeneous and y ̸∈ pr. Then xdeg(y) + ydeg(x) works. □

Lemma 57.7.00JT Let S be a graded ring. Let p ⊂ S be a prime. Let q be the
homogeneous ideal of S generated by the homogeneous elements of p. Then q is a
prime ideal of S.

Proof. Suppose f, g ∈ S are such that fg ∈ q. Let fd (resp. ge) be the homogeneous
part of f (resp. g) of degree d (resp. e). Assume d, e are maxima such that fd ̸= 0
and ge ̸= 0. By assumption we can write fg =

∑
aifi with fi ∈ p homogeneous.
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Say deg(fi) = di. Then fdge =
∑
a′
ifi with a′

i to homogeneous par of degree
d + e − di of ai (or 0 if d + e − di < 0). Hence fd ∈ p or ge ∈ p. Hence fd ∈ q or
ge ∈ q. In the first case replace f by f − fd, in the second case replace g by g− ge.
Then still fg ∈ q but the discrete invariant d+ e has been decreased. Thus we may
continue in this fashion until either f or g is zero. This clearly shows that fg ∈ q
implies either f ∈ q or g ∈ q as desired. □

Lemma 57.8.00JU Let S be a graded ring.
(1) Any minimal prime of S is a homogeneous ideal of S.
(2) Given a homogeneous ideal I ⊂ S any minimal prime over I is homoge-

neous.

Proof. The first assertion holds because the prime q constructed in Lemma 57.7
satisfies q ⊂ p. The second because we may consider S/I and apply the first
part. □

Lemma 57.9.07Z2 Let R be a ring. Let S be a graded R-algebra. Let f ∈ S+ be
homogeneous. Assume that S is of finite type over R. Then

(1) the ring S(f) is of finite type over R, and
(2) for any finite graded S-module M the module M(f) is a finite S(f)-module.

Proof. Choose f1, . . . , fn ∈ S which generate S as an R-algebra. We may as-
sume that each fi is homogeneous (by decomposing each fi into its homogeneous
components). An element of S(f) is a sum of the form∑

e deg(f)=
∑

ei deg(fi)
λe1...en

fe1
1 . . . fen

n /fe

with λe1...en
∈ R. Thus S(f) is generated as an R-algebra by the fe1

1 . . . fen
n /fe with

the property that edeg(f) =
∑
ei deg(fi). If ei ≥ deg(f) then we can write this as

fe1
1 . . . fen

n /fe = f
deg(f)
i /fdeg(fi) · fe1

1 . . . f
ei−deg(f)
i . . . fen

n /fe−deg(fi)

Thus we only need the elements fdeg(f)
i /fdeg(fi) as well as the elements fe1

1 . . . fen
n /fe

with edeg(f) =
∑
ei deg(fi) and ei < deg(f). This is a finite list and we see that

(1) is true.

To see (2) suppose that M is generated by homogeneous elements x1, . . . , xm. Then
arguing as above we find that M(f) is generated as an S(f)-module by the finite
list of elements of the form fe1

1 . . . fen
n xj/f

e with edeg(f) =
∑
ei deg(fi) + deg(xj)

and ei < deg(f). □

Lemma 57.10.052N Let R be a ring. Let R′ be a finite type R-algebra, and let M be
a finite R′-module. There exists a graded R-algebra S, a graded S-module N and
an element f ∈ S homogeneous of degree 1 such that

(1) R′ ∼= S(f) and M ∼= N(f) (as modules),
(2) S0 = R and S is generated by finitely many elements of degree 1 over R,

and
(3) N is a finite S-module.

Proof. We may write R′ = R[x1, . . . , xn]/I for some ideal I. For an element
g ∈ R[x1, . . . , xn] denote g̃ ∈ R[X0, . . . , Xn] the element homogeneous of minimal
degree such that g = g̃(1, x1, . . . , xn). Let Ĩ ⊂ R[X0, . . . , Xn] generated by all

https://stacks.math.columbia.edu/tag/00JU
https://stacks.math.columbia.edu/tag/07Z2
https://stacks.math.columbia.edu/tag/052N


COMMUTATIVE ALGEBRA 135

elements g̃, g ∈ I. Set S = R[X0, . . . , Xn]/Ĩ and denote f the image of X0 in S.
By construction we have an isomorphism

S(f) −→ R′, Xi/X0 7−→ xi.

To do the same thing with the module M we choose a presentation

M = (R′)⊕r/
∑

j∈J
R′kj

with kj = (k1j , . . . , krj). Let dij = deg(k̃ij). Set dj = max{dij}. Set Kij =
X
dj−dij

0 k̃ij which is homogeneous of degree dj . With this notation we set

N = Coker
(⊕

j∈J
S(−dj)

(Kij)−−−→ S⊕r
)

which works. Some details omitted. □

58. Noetherian graded rings

00JV A bit of theory on Noetherian graded rings including some material on Hilbert
polynomials.
Lemma 58.1.07Z4 Let S be a graded ring. A set of homogeneous elements fi ∈ S+
generates S as an algebra over S0 if and only if they generate S+ as an ideal of S.
Proof. If the fi generate S as an algebra over S0 then every element in S+ is a
polynomial without constant term in the fi and hence S+ is generated by the fi as
an ideal. Conversely, suppose that S+ =

∑
Sfi. We will prove that any element

f of S can be written as a polynomial in the fi with coefficients in S0. It suffices
to do this for homogeneous elements. Say f has degree d. Then we may perform
induction on d. The case d = 0 is immediate. If d > 0 then f ∈ S+ hence we
can write f =

∑
gifi for some gi ∈ S. As S is graded we can replace gi by its

homogeneous component of degree d− deg(fi). By induction we see that each gi is
a polynomial in the fi and we win. □

Lemma 58.2.00JW A graded ring S is Noetherian if and only if S0 is Noetherian and
S+ is finitely generated as an ideal of S.
Proof. It is clear that if S is Noetherian then S0 = S/S+ is Noetherian and S+ is
finitely generated. Conversely, assume S0 is Noetherian and S+ finitely generated
as an ideal of S. Pick generators S+ = (f1, . . . , fn). By decomposing the fi into
homogeneous pieces we may assume each fi is homogeneous. By Lemma 58.1 we
see that S0[X1, . . . Xn] → S sending Xi to fi is surjective. Thus S is Noetherian
by Lemma 31.1. □

Definition 58.3.00JX Let A be an abelian group. We say that a function f : n 7→
f(n) ∈ A defined for all sufficient large integers n is a numerical polynomial if there
exists r ≥ 0, elements a0, . . . , ar ∈ A such that

f(n) =
∑r

i=0

(
n

i

)
ai

for all n≫ 0.
The reason for using the binomial coefficients is the elementary fact that any poly-
nomial P ∈ Q[T ] all of whose values at integer points are integers, is equal to a
sum P (T ) =

∑
ai
(
T
i

)
with ai ∈ Z. Note that in particular the expressions

(
T+1
i+1
)

are of this form.
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Lemma 58.4.00JY If A → A′ is a homomorphism of abelian groups and if f : n 7→
f(n) ∈ A is a numerical polynomial, then so is the composition.

Proof. This is immediate from the definitions. □

Lemma 58.5.00JZ Suppose that f : n 7→ f(n) ∈ A is defined for all n sufficiently
large and suppose that n 7→ f(n)− f(n− 1) is a numerical polynomial. Then f is
a numerical polynomial.

Proof. Let f(n) − f(n − 1) =
∑r
i=0
(
n
i

)
ai for all n ≫ 0. Set g(n) = f(n) −∑r

i=0
(
n+1
i+1
)
ai. Then g(n)− g(n− 1) = 0 for all n≫ 0. Hence g is eventually con-

stant, say equal to a−1. We leave it to the reader to show that a−1 +
∑r
i=0
(
n+1
i+1
)
ai

has the required shape (see remark above the lemma). □

Lemma 58.6.00K0 If M is a finitely generated graded S-module, and if S is finitely
generated over S0, then each Mn is a finite S0-module.

Proof. Suppose the generators of M are mi and the generators of S are fi. By
taking homogeneous components we may assume that the mi and the fi are ho-
mogeneous and we may assume fi ∈ S+. In this case it is clear that each Mn is
generated over S0 by the “monomials”

∏
fei
i mj whose degree is n. □

Proposition 58.7.00K1 Suppose that S is a Noetherian graded ring and M a finite
graded S-module. Consider the function

Z −→ K ′
0(S0), n 7−→ [Mn]

see Lemma 58.6. If S+ is generated by elements of degree 1, then this function is a
numerical polynomial.

Proof. We prove this by induction on the minimal number of generators of S1. If
this number is 0, then Mn = 0 for all n ≫ 0 and the result holds. To prove the
induction step, let x ∈ S1 be one of a minimal set of generators, such that the
induction hypothesis applies to the graded ring S/(x).

First we show the result holds if x is nilpotent on M . This we do by induction on
the minimal integer r such that xrM = 0. If r = 1, then M is a module over S/xS
and the result holds (by the other induction hypothesis). If r > 1, then we can find
a short exact sequence 0 → M ′ → M → M ′′ → 0 such that the integers r′, r′′ are
strictly smaller than r. Thus we know the result for M ′′ and M ′. Hence we get the
result for M because of the relation [Md] = [M ′

d] + [M ′′
d ] in K ′

0(S0).

If x is not nilpotent on M , let M ′ ⊂ M be the largest submodule on which x
is nilpotent. Consider the exact sequence 0 → M ′ → M → M/M ′ → 0 we see
again it suffices to prove the result for M/M ′. In other words we may assume that
multiplication by x is injective.

Let M = M/xM . Note that the map x : M →M is not a map of graded S-modules,
since it does not map Md into Md. Namely, for each d we have the following short
exact sequence

0→Md
x−→Md+1 →Md+1 → 0

This proves that [Md+1]− [Md] = [Md+1]. Hence we win by Lemma 58.5. □
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Remark 58.8.02CD If S is still Noetherian but S is not generated in degree 1, then
the function associated to a graded S-module is a periodic polynomial (i.e., it is a
numerical polynomial on the congruence classes of integers modulo n for some n).

Example 58.9.00K2 Suppose that S = k[X1, . . . , Xd]. By Example 55.2 we may
identify K0(k) = K ′

0(k) = Z. Hence any finitely generated graded k[X1, . . . , Xd]-
module gives rise to a numerical polynomial n 7→ dimk(Mn).

Lemma 58.10.00K3 Let k be a field. Suppose that I ⊂ k[X1, . . . , Xd] is a nonzero
graded ideal. Let M = k[X1, . . . , Xd]/I. Then the numerical polynomial n 7→
dimk(Mn) (see Example 58.9) has degree < d− 1 (or is zero if d = 1).

Proof. The numerical polynomial associated to the graded module k[X1, . . . , Xd]
is n 7→

(
n−1+d
d−1

)
. For any nonzero homogeneous f ∈ I of degree e and any degree

n >> e we have In ⊃ f ·k[X1, . . . , Xd]n−e and hence dimk(In) ≥
(
n−e−1+d
d−1

)
. Hence

dimk(Mn) ≤
(
n−1+d
d−1

)
−
(
n−e−1+d
d−1

)
. We win because the last expression has degree

< d− 1 (or is zero if d = 1). □

59. Noetherian local rings

00K4 In all of this section (R,m, κ) is a Noetherian local ring. We develop some theory
on Hilbert functions of modules in this section. Let M be a finite R-module. We
define the Hilbert function of M to be the function

φM : n 7−→ lengthR(mnM/mn+1M)

defined for all integers n ≥ 0. Another important invariant is the function

χM : n 7−→ lengthR(M/mn+1M)

defined for all integers n ≥ 0. Note that we have by Lemma 52.3 that

χM (n) =
∑n

i=0
φM (i).

There is a variant of this construction which uses an ideal of definition.

Definition 59.1.07DU Let (R,m) be a local Noetherian ring. An ideal I ⊂ R such that√
I = m is called an ideal of definition of R.

Let I ⊂ R be an ideal of definition. Because R is Noetherian this means that
mr ⊂ I for some r, see Lemma 32.5. Hence any finite R-module annihilated by a
power of I has a finite length, see Lemma 52.8. Thus it makes sense to define

φI,M (n) = lengthR(InM/In+1M) and χI,M (n) = lengthR(M/In+1M)

for all n ≥ 0. Again we have that

χI,M (n) =
∑n

i=0
φI,M (i).

Lemma 59.2.00K5 Suppose that M ′ ⊂ M are finite R-modules with finite length
quotient. Then there exists a constants c1, c2 such that for all n ≥ c2 we have

c1 + χI,M ′(n− c2) ≤ χI,M (n) ≤ c1 + χI,M ′(n)

https://stacks.math.columbia.edu/tag/02CD
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Proof. Since M/M ′ has finite length there is a c2 ≥ 0 such that Ic2M ⊂M ′. Let
c1 = lengthR(M/M ′). For n ≥ c2 we have

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≤ c1 + lengthR(M ′/In+1M ′)
= c1 + χI,M ′(n)

On the other hand, since Ic2M ⊂ M ′, we have InM ⊂ In−c2M ′ for n ≥ c2. Thus
for n ≥ c2 we get

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≥ c1 + lengthR(M ′/In+1−c2M ′)
= c1 + χI,M ′(n− c2)

which finishes the proof. □

Lemma 59.3.00K6 Suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence
of finite R-modules. Then there exists a submodule N ⊂ M ′ with finite colength l
and c ≥ 0 such that

χI,M (n) = χI,M ′′(n) + χI,N (n− c) + l

and
φI,M (n) = φI,M ′′(n) + φI,N (n− c)

for all n ≥ c.

Proof. Note that M/InM → M ′′/InM ′′ is surjective with kernel M ′/M ′ ∩ InM .
By the Artin-Rees Lemma 51.2 there exists a constant c such that M ′ ∩ InM =
In−c(M ′ ∩ IcM). Denote N = M ′ ∩ IcM . Note that IcM ′ ⊂ N ⊂ M ′. Hence
lengthR(M ′/M ′ ∩ InM) = lengthR(M ′/N) + lengthR(N/In−cN) for n ≥ c. From
the short exact sequence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0

and additivity of lengths (Lemma 52.3) we obtain the equality

χI,M (n− 1) = χI,M ′′(n− 1) + χI,N (n− c− 1) + lengthR(M ′/N)

for n ≥ c. We have φI,M (n) = χI,M (n)−χI,M (n−1) and similarly for the modules
M ′′ and N . Hence we get φI,M (n) = φI,M ′′(n) + φI,N (n− c) for n ≥ c. □

Lemma 59.4.00K7 Suppose that I, I ′ are two ideals of definition for the Noetherian
local ring R. Let M be a finite R-module. There exists a constant a such that
χI,M (n) ≤ χI′,M (an) for n ≥ 1.

Proof. There exists an integer c ≥ 1 such that (I ′)c ⊂ I. Hence we get a surjection
M/(I ′)c(n+1)M →M/In+1M . Whence the result with a = 2c− 1. □

Proposition 59.5.00K8 Let R be a Noetherian local ring. Let M be a finite R-module.
Let I ⊂ R be an ideal of definition. The Hilbert function φI,M and the function
χI,M are numerical polynomials.
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Proof. Consider the graded ring S = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . =
⊕

d≥0 I
d/Id+1.

Consider the graded S-module N = M/IM⊕IM/I2M⊕ . . . =
⊕

d≥0 I
dM/Id+1M .

This pair (S,N) satisfies the hypotheses of Proposition 58.7. Hence the result for
φI,M follows from that proposition and Lemma 55.1. The result for χI,M follows
from this and Lemma 58.5. □

Definition 59.6.09CA Let R be a Noetherian local ring. Let M be a finite R-module.
The Hilbert polynomial of M over R is the element P (t) ∈ Q[t] such that P (n) =
φM (n) for n≫ 0.

By Proposition 59.5 we see that the Hilbert polynomial exists.

Lemma 59.7.00K9 Let R be a Noetherian local ring. Let M be a finite R-module.
(1) The degree of the numerical polynomial φI,M is independent of the ideal of

definition I.
(2) The degree of the numerical polynomial χI,M is independent of the ideal of

definition I.

Proof. Part (2) follows immediately from Lemma 59.4. Part (1) follows from (2)
because φI,M (n) = χI,M (n)− χI,M (n− 1) for n ≥ 1. □

Definition 59.8.00KA Let R be a local Noetherian ring and M a finite R-module. We
denote d(M) the element of {−∞, 0, 1, 2, . . .} defined as follows:

(1) If M = 0 we set d(M) = −∞,
(2) if M ̸= 0 then d(M) is the degree of the numerical polynomial χM .

If mnM ̸= 0 for all n, then we see that d(M) is the degree +1 of the Hilbert
polynomial of M .

Lemma 59.9.00KB Let R be a Noetherian local ring. Let I ⊂ R be an ideal of definition.
Let M be a finite R-module which does not have finite length. If M ′ ⊂ M is
a submodule with finite colength, then χI,M − χI,M ′ is a polynomial of degree <
degree of either polynomial.

Proof. Follows from Lemma 59.2 by elementary calculus. □

Lemma 59.10.00KC Let R be a Noetherian local ring. Let I ⊂ R be an ideal of
definition. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finite
R-modules. Then

(1) if M ′ does not have finite length, then χI,M −χI,M ′′ −χI,M ′ is a numerical
polynomial of degree < the degree of χI,M ′ ,

(2) max{deg(χI,M ′),deg(χI,M ′′)} = deg(χI,M ), and
(3) max{d(M ′), d(M ′′)} = d(M),

Proof. We first prove (1). Let N ⊂M ′ be as in Lemma 59.3. By Lemma 59.9 the
numerical polynomial χI,M ′ − χI,N has degree < the common degree of χI,M ′ and
χI,N . By Lemma 59.3 the difference

χI,M (n)− χI,M ′′(n)− χI,N (n− c)

is constant for n≫ 0. By elementary calculus the difference χI,N (n)−χI,N (n− c)
has degree < the degree of χI,N which is bigger than zero (see above). Putting
everything together we obtain (1).
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Note that the leading coefficients of χI,M ′ and χI,M ′′ are nonnegative. Thus the
degree of χI,M ′ + χI,M ′′ is equal to the maximum of the degrees. Thus if M ′ does
not have finite length, then (2) follows from (1). If M ′ does have finite length, then
InM → InM ′′ is an isomorphism for all n≫ 0 by Artin-Rees (Lemma 51.2). Thus
M/InM → M ′′/InM ′′ is a surjection with kernel M ′ for n ≫ 0 and we see that
χI,M (n)− χI,M ′′(n) = length(M ′) for all n≫ 0. Thus (2) holds in this case also.

Proof of (3). This follows from (2) except if one of M , M ′, or M ′′ is zero. We omit
the proof in these special cases. □

60. Dimension

00KD Please compare with Topology, Section 10.

Definition 60.1.0GIE Let R be a ring. A chain of prime ideals is a sequence p0 ⊂
p1 ⊂ . . . ⊂ pn of prime ideals of R such that pi ̸= pi+1 for i = 0, . . . , n − 1. The
length of this chain of prime ideals is n.

Recall that we have an inclusion reversing bijection between prime ideals of a ring
R and irreducible closed subsets of Spec(R), see Lemma 26.1.

Definition 60.2.00KE The Krull dimension of the ring R is the Krull dimension of the
topological space Spec(R), see Topology, Definition 10.1. In other words it is the
supremum of the integers n ≥ 0 such that R has a chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn, pi ̸= pi+1.

of length n.

Definition 60.3.00KF The height of a prime ideal p of a ring R is the dimension of the
local ring Rp.

Lemma 60.4.00KG The Krull dimension of R is the supremum of the heights of its
(maximal) primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain
of prime ideals. □

Lemma 60.5.00KH A Noetherian ring of dimension 0 is Artinian. Conversely, any
Artinian ring is Noetherian of dimension zero.

Proof. Assume R is a Noetherian ring of dimension 0. By Lemma 31.5 the space
Spec(R) is Noetherian. By Topology, Lemma 9.2 we see that Spec(R) has finitely
many irreducible components, say Spec(R) = Z1 ∪ . . . ∪ Zr. According to Lemma
26.1 each Zi = V (pi) with pi a minimal ideal. Since the dimension is 0 these pi
are also maximal. Thus Spec(R) is the discrete topological space with elements pi.
All elements f of the Jacobson radical

⋂
pi are nilpotent since otherwise Rf would

not be the zero ring and we would have another prime. By Lemma 53.5 R is equal
to
∏
Rpi

. Since Rpi
is also Noetherian and dimension 0, the previous arguments

show that its radical piRpi is locally nilpotent. Lemma 32.5 gives pni Rpi = 0 for
some n ≥ 1. By Lemma 52.8 we conclude that Rpi has finite length over R. Hence
we conclude that R is Artinian by Lemma 53.6.

If R is an Artinian ring then by Lemma 53.6 it is Noetherian. All of its primes are
maximal by a combination of Lemmas 53.3, 53.4 and 53.5. □
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In the following we will use the invariant d(−) defined in Definition 59.8. Here is a
warm up lemma.

Lemma 60.6.00KI Let R be a Noetherian local ring. Then dim(R) = 0⇔ d(R) = 0.

Proof. This is because d(R) = 0 if and only if R has finite length as an R-module.
See Lemma 53.6. □

Proposition 60.7.00KJ Let R be a ring. The following are equivalent:
(1) R is Artinian,
(2) R is Noetherian and dim(R) = 0,
(3) R has finite length as a module over itself,
(4) R is a finite product of Artinian local rings,
(5) R is Noetherian and Spec(R) is a finite discrete topological space,
(6) R is a finite product of Noetherian local rings of dimension 0,
(7) R is a finite product of Noetherian local rings Ri with d(Ri) = 0,
(8) R is a finite product of Noetherian local rings Ri whose maximal ideals are

nilpotent,
(9) R is Noetherian, has finitely many maximal ideals and its Jacobson radical

ideal is nilpotent, and
(10) R is Noetherian and there are no strict inclusions among its primes.

Proof. This is a combination of Lemmas 53.5, 53.6, 60.5, and 60.6. □

Lemma 60.8.00KK Let R be a local Noetherian ring. The following are equivalent:
(1)00KL dim(R) = 1,
(2)00KM d(R) = 1,
(3)00KN there exists an x ∈ m, x not nilpotent such that V (x) = {m},
(4)00KO there exists an x ∈ m, x not nilpotent such that m =

√
(x), and

(5)00KP there exists an ideal of definition generated by 1 element, and no ideal of
definition is generated by 0 elements.

Proof. First, assume that dim(R) = 1. Let pi be the minimal primes of R. Because
the dimension is 1 the only other prime of R is m. According to Lemma 31.6 there
are finitely many. Hence we can find x ∈ m, x ̸∈ pi, see Lemma 15.2. Thus the only
prime containing x is m and hence (3).

If (3) then m =
√

(x) by Lemma 17.2, and hence (4). The converse is clear as well.
The equivalence of (4) and (5) follows from directly the definitions.

Assume (5). Let I = (x) be an ideal of definition. Note that In/In+1 is a quotient
of R/I via multiplication by xn and hence lengthR(In/In+1) is bounded. Thus
d(R) = 0 or d(R) = 1, but d(R) = 0 is excluded by the assumption that 0 is not an
ideal of definition.

Assume (2). To get a contradiction, assume there exist primes p ⊂ q ⊂ m, with
both inclusions strict. Pick some ideal of definition I ⊂ R. We will repeatedly use
Lemma 59.10. First of all it implies, via the exact sequence 0→ p→ R→ R/p→ 0,
that d(R/p) ≤ 1. But it clearly cannot be zero. Pick x ∈ q, x ̸∈ p. Consider the
short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
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This implies that χI,R/p−χI,R/p−χI,R/(xR+p) = −χI,R/(xR+p) has degree < 1. In
other words, d(R/(xR+ p)) = 0, and hence dim(R/(xR+ p)) = 0, by Lemma 60.6.
But R/(xR + p) has the distinct primes q/(xR + p) and m/(xR + p) which gives
the desired contradiction. □

Proposition 60.9.00KQ Let R be a local Noetherian ring. Let d ≥ 0 be an integer.
The following are equivalent:

(1)00KR dim(R) = d,
(2)00KS d(R) = d,
(3)00KT there exists an ideal of definition generated by d elements, and no ideal of

definition is generated by fewer than d elements.

Proof. This proof is really just the same as the proof of Lemma 60.8. We will
prove the proposition by induction on d. By Lemmas 60.6 and 60.8 we may assume
that d > 1. Denote the minimal number of generators for an ideal of definition of
R by d′(R). We will prove the inequalities dim(R) ≥ d′(R) ≥ d(R) ≥ dim(R), and
hence they are all equal.
First, assume that dim(R) = d. Let pi be the minimal primes of R. According
to Lemma 31.6 there are finitely many. Hence we can find x ∈ m, x ̸∈ pi, see
Lemma 15.2. Note that every maximal chain of primes starts with some pi, hence
the dimension of R/xR is at most d − 1. By induction there are x2, . . . , xd which
generate an ideal of definition in R/xR. Hence R has an ideal of definition generated
by (at most) d elements.
Assume d′(R) = d. Let I = (x1, . . . , xd) be an ideal of definition. Note that
In/In+1 is a quotient of a direct sum of

(
d+n−1
d−1

)
copies R/I via multiplication by

all degree n monomials in x1, . . . , xd. Hence lengthR(In/In+1) is bounded by a
polynomial of degree d− 1. Thus d(R) ≤ d.
Assume d(R) = d. Consider a chain of primes p ⊂ q ⊂ q2 ⊂ . . . ⊂ qe = m,
with all inclusions strict, and e ≥ 2. Pick some ideal of definition I ⊂ R. We
will repeatedly use Lemma 59.10. First of all it implies, via the exact sequence
0 → p → R → R/p → 0, that d(R/p) ≤ d. But it clearly cannot be zero. Pick
x ∈ q, x ̸∈ p. Consider the short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < d.
In other words, d(R/(xR + p)) ≤ d − 1, and hence dim(R/(xR + p)) ≤ d − 1, by
induction. Now R/(xR+p) has the chain of prime ideals q/(xR+p) ⊂ q2/(xR+p) ⊂
. . . ⊂ qe/(xR + p) which gives e − 1 ≤ d − 1. Since we started with an arbitrary
chain of primes this proves that dim(R) ≤ d(R).
Reading back the reader will see we proved the circular inequalities as desired. □

Let (R,m) be a Noetherian local ring. From the above it is clear that m cannot be
generated by fewer than dim(R) variables. By Nakayama’s Lemma 20.1 the minimal
number of generators of m equals dimκ(m) m/m

2. Hence we have the following
fundamental inequality

dim(R) ≤ dimκ(m) m/m
2.

It turns out that the rings where equality holds have a lot of good properties. They
are called regular local rings.
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Definition 60.10.00KU Let (R,m) be a Noetherian local ring of dimension d.
(1) A system of parameters of R is a sequence of elements x1, . . . , xd ∈ m which

generates an ideal of definition of R,
(2) if there exist x1, . . . , xd ∈ m such that m = (x1, . . . , xd) then we call R a

regular local ring and x1, . . . , xd a regular system of parameters.

The following lemmas are clear from the proofs of the lemmas and proposition
above, but we spell them out so we have convenient references.

Lemma 60.11.00KV Let R be a Noetherian ring. Let x ∈ R.
(1) If p is minimal over (x) then the height of p is 0 or 1.
(2) If p, q ∈ Spec(R) and q is minimal over (p, x), then there is no prime

strictly between p and q.

Proof. Proof of (1). If p is minimal over x, then the only prime ideal of Rp

containing x is the maximal ideal pRp. This is true because the primes of Rp

correspond 1-to-1 with the primes of R contained in p, see Lemma 17.5. Hence
Lemma 60.8 shows dim(Rp) = 1 if x is not nilpotent in Rp. Of course, if x is
nilpotent in Rp the argument gives that pRp is the only prime ideal and we see
that the height is 0.

Proof of (2). By part (1) we see that q/p is a prime of height 1 or 0 in R/p. This
immediately implies there cannot be a prime strictly between p and q. □

Lemma 60.12.0BBZ Let R be a Noetherian ring. Let f1, . . . , fr ∈ R.
(1) If p is minimal over (f1, . . . , fr) then the height of p is ≤ r.
(2) If p, q ∈ Spec(R) and q is minimal over (p, f1, . . . , fr), then every chain of

primes between p and q has length at most r.

Proof. Proof of (1). If p is minimal over f1, . . . , fr, then the only prime ideal of Rp

containing f1, . . . , fr is the maximal ideal pRp. This is true because the primes of
Rp correspond 1-to-1 with the primes of R contained in p, see Lemma 17.5. Hence
Proposition 60.9 shows dim(Rp) ≤ r.

Proof of (2). By part (1) we see that q/p is a prime of height ≤ r. This immediately
implies the statement about chains of primes between p and q. □

Lemma 60.13.00KW Suppose that R is a Noetherian local ring and x ∈ m an element
of its maximal ideal. Then dimR ≤ dimR/xR+ 1. If x is not contained in any of
the minimal primes of R then equality holds. (For example if x is a nonzerodivisor.)

Proof. If x1, . . . , xdimR/xR ∈ R map to elements of R/xR which generate an ideal
of definition for R/xR, then x, x1, . . . , xdimR/xR generate an ideal of definition for
R. Hence the inequality by Proposition 60.9. On the other hand, if x is not
contained in any minimal prime of R, then the chains of primes in R/xR all give
rise to chains in R which are at least one step away from being maximal. □

Lemma 60.14.02IE Let (R,m) be a Noetherian local ring. Suppose x1, . . . , xd ∈ m
generate an ideal of definition and d = dim(R). Then dim(R/(x1, . . . , xi)) = d− i
for all i = 1, . . . , d.

Proof. Follows either from the proof of Proposition 60.9, or by using induction on
d and Lemma 60.13. □
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61. Applications of dimension theory

02IF We can use the results on dimension to prove certain rings have infinite spectra and
to produce more Jacobson rings.

Lemma 61.1.02IG Let R be a Noetherian local domain of dimension ≥ 2. A nonempty
open subset U ⊂ Spec(R) is infinite.

Proof. To get a contradiction, assume that U ⊂ Spec(R) is finite. In this case
(0) ∈ U and {(0)} is an open subset of U (because the complement of {(0)} is
the union of the closures of the other points). Thus we may assume U = {(0)}.
Let m ⊂ R be the maximal ideal. We can find an x ∈ m, x ̸= 0 such that
V (x) ∪ U = Spec(R). In other words we see that D(x) = {(0)}. In particular we
see that dim(R/xR) = dim(R) − 1 ≥ 1, see Lemma 60.13. Let y2, . . . , ydim(R) ∈
R/xR generate an ideal of definition of R/xR, see Proposition 60.9. Choose lifts
y2, . . . , ydim(R) ∈ R, so that x, y2, . . . , ydim(R) generate an ideal of definition in R.
This implies that dim(R/(y2)) = dim(R) − 1 and dim(R/(y2, x)) = dim(R) − 2,
see Lemma 60.14. Hence there exists a prime p containing y2 but not x. This
contradicts the fact that D(x) = {(0)}. □

The rings k[[t]] where k is a field, or the ring of p-adic numbers are Noetherian
rings of dimension 1 with finitely many primes. This is the maximum dimension
for which this can happen.

Lemma 61.2.0ALV A Noetherian ring with finitely many primes has dimension ≤ 1.

Proof. Let R be a Noetherian ring with finitely many primes. If R is a local
domain, then the lemma follows from Lemma 61.1. If R is a domain, then Rm

has dimension ≤ 1 for all maximal ideals m by the local case. Hence dim(R) ≤ 1
by Lemma 60.4. If R is general, then dim(R/q) ≤ 1 for every minimal prime
q of R. Since every prime contains a minimal prime (Lemma 17.2), this implies
dim(R) ≤ 1. □

Lemma 61.3.0ALW Let S be a nonzero finite type algebra over a field k. The following
are equivalent

(1) dim(S) = 0,
(2) S has finitely many primes,
(3) S has finitely many maximal ideals,
(4) Spec(S) satisfies one of the equivalent conditions of Lemma 26.5, and
(5) add more here.

Proof. It is immediate from the definitions that (1) is equivalent to (4) by looking
at part (5) of Lemma 26.5. Recall that Spec(S) is sober, Noetherian, and Jacobson,
see Lemmas 26.2, 31.5, 35.2, and 35.4. If S has dimension 0, then every point
defines an irreducible component and there are only a finite number of irreducible
components (Topology, Lemma 9.2). Thus (1) implies (2). Trivially (2) implies
(3). If (3) holds, then Spec(S) is discrete by Topology, Lemma 18.6 and hence the
dimension of S is 0. □

Lemma 61.4.00KX Noetherian Jacobson rings.
(1) Any Noetherian domain R of dimension 1 with infinitely many primes is

Jacobson.
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(2) Any Noetherian ring such that every prime p is either maximal or contained
in infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma 35.6.
Let R be a Noetherian ring such that every non-maximal prime p is contained in in-
finitely many prime ideals. Assume Spec(R) is not Jacobson to get a contradiction.
By Lemmas 26.1 and 31.5 we see that Spec(R) is a sober, Noetherian topological
space. By Topology, Lemma 18.3 we see that there exists a non-maximal ideal
p ⊂ R such that {p} is a locally closed subset of Spec(R). In other words, p is not
maximal and {p} is an open subset of V (p). Consider a prime q ⊂ R with p ⊂ q.
Recall that the topology on the spectrum of (R/p)q = Rq/pRq is induced from that
of Spec(R), see Lemmas 17.5 and 17.7. Hence we see that {(0)} is a locally closed
subset of Spec((R/p)q). By Lemma 61.1 we conclude that dim((R/p)q) = 1. Since
this holds for every q ⊃ p we conclude that dim(R/p) = 1. At this point we use
the assumption that p is contained in infinitely many primes to see that Spec(R/p)
is infinite. Hence by part (1) of the lemma we see that V (p) ∼= Spec(R/p) is the
closure of its closed points. This is the desired contradiction since it means that
{p} ⊂ V (p) cannot be open. □

62. Support and dimension of modules

00KY Some basic results on the support and dimension of modules.

Lemma 62.1.00L0 Let R be a Noetherian ring, and let M be a finite R-module. There
exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R.

First proof. By Lemma 5.4 it suffices to do the case M = R/I for some ideal I.
Consider the set S of ideals J such that the lemma does not hold for the module
R/J , and order it by inclusion. To arrive at a contradiction, assume that S is
not empty. Because R is Noetherian, S has a maximal element J . By definition
of S, the ideal J cannot be prime. Pick a, b ∈ R such that ab ∈ J , but neither
a ∈ J nor b ∈ J . Consider the filtration 0 ⊂ aR/(J ∩ aR) ⊂ R/J . Note that both
the submodule aR/(J ∩ aR) and the quotient module (R/J)/(aR/(J ∩ aR)) are
cyclic modules; write them as R/J ′ and R/J ′′ so we have a short exact sequence
0 → R/J ′ → R/J → R/J ′′ → 0. The inclusion J ⊂ J ′ is strict as b ∈ J ′ and the
inclusion J ⊂ J ′′ is strict as a ∈ J ′′. Hence by maximality of J , both R/J ′ and
R/J ′′ have a filtration as above and hence so does R/J . Contradiction. □

Second proof. For an R-module M we say P (M) holds if there exists a filtration
as in the statement of the lemma. Observe that P is stable under extensions and
holds for 0. By Lemma 5.4 it suffices to prove P (R/I) holds for every ideal I. If not
then because R is Noetherian, there is a maximal counter example J . By Example
28.7 and Proposition 28.8 the ideal J is prime which is a contradiction. □

Lemma 62.2.00L4 Let R, M , Mi, pi as in Lemma 62.1. Then Supp(M) =
⋃
V (pi)

and in particular pi ∈ Supp(M).

Proof. This follows from Lemmas 40.5 and 40.9. □
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Lemma 62.3.00L5 Suppose that R is a Noetherian local ring with maximal ideal m.
Let M be a nonzero finite R-module. Then Supp(M) = {m} if and only if M has
finite length over R.

Proof. Assume that Supp(M) = {m}. It suffices to show that all the primes pi in
the filtration of Lemma 62.1 are the maximal ideal. This is clear by Lemma 62.2.
Suppose that M has finite length over R. Then mnM = 0 by Lemma 52.4. Since
some element of m maps to a unit in Rp for any prime p ̸= m in R we seeMp = 0. □

Lemma 62.4.00L6 Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Then InM = 0 for some n ≥ 0 if and only if Supp(M) ⊂ V (I).

Proof. Indeed, InM = 0 is equivalent to In ⊂ Ann(M). Since R is Noetherian,
this is equivalent to I ⊂

√
Ann(M), see Lemma 32.5. This in turn is equivalent

to V (I) ⊃ V (Ann(M)), see Lemma 17.2. By Lemma 40.5 this is equivalent to
V (I) ⊃ Supp(M). □

Lemma 62.5.00L7 Let R, M , Mi, pi as in Lemma 62.1. The minimal elements of the
set {pi} are the minimal elements of Supp(M). The number of times a minimal
prime p occurs is

#{i | pi = p} = lengthRp
Mp.

Proof. The first statement follows because Supp(M) =
⋃
V (pi), see Lemma 62.2.

Let p ∈ Supp(M) be minimal. The support of Mp is the set consisting of the
maximal ideal pRp. Hence by Lemma 62.3 the length of Mp is finite and > 0. Next
we note that Mp has a filtration with subquotients (R/pi)p = Rp/piRp. These are
zero if pi ̸⊂ p and equal to κ(p) if pi ⊂ p because by minimality of p we have pi = p
in this case. The result follows since κ(p) has length 1. □

Lemma 62.6.00L8 Let R be a Noetherian local ring. Let M be a finite R-module.
Then d(M) = dim(Supp(M)) where d(M) is as in Definition 59.8.

Proof. Let Mi, pi be as in Lemma 62.1. By Lemma 59.10 we obtain the equality
d(M) = max{d(R/pi)}. By Proposition 60.9 we have d(R/pi) = dim(R/pi). Triv-
ially dim(R/pi) = dimV (pi). Since all minimal primes of Supp(M) occur among
the pi (Lemma 62.5) we win. □

Lemma 62.7.0B51 Let R be a Noetherian ring. Let 0 → M ′ → M → M ′′ → 0 be a
short exact sequence of finite R-modules. Then max{dim(Supp(M ′)),dim(Supp(M ′′))} =
dim(Supp(M)).

Proof. If R is local, this follows immediately from Lemmas 62.6 and 59.10. A
more elementary argument, which works also if R is not local, is to use that
Supp(M ′), Supp(M ′′), and Supp(M) are closed (Lemma 40.5) and that Supp(M) =
Supp(M ′) ∪ Supp(M ′′) (Lemma 40.9). □

63. Associated primes

00L9 Here is the standard definition. For non-Noetherian rings and non-finite modules
it may be more appropriate to use the definition in Section 66.

Definition 63.1.00LA Let R be a ring. Let M be an R-module. A prime p of R is
associated to M if there exists an element m ∈ M whose annihilator is p. The set
of all such primes is denoted AssR(M) or Ass(M).
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Lemma 63.2.0586 Let R be a ring. Let M be an R-module. Then Ass(M) ⊂ Supp(M).

Proof. Ifm ∈M has annihilator p, then in particular no element ofR\p annihilates
m. Hence m is a nonzero element of Mp, i.e., p ∈ Supp(M). □

Lemma 63.3.02M3 Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of R-modules. Then Ass(M ′) ⊂ Ass(M) and Ass(M) ⊂ Ass(M ′) ∪
Ass(M ′′). Also Ass(M ′ ⊕M ′′) = Ass(M ′) ∪Ass(M ′′).

Proof. If m′ ∈ M ′, then the annihilator of m′ viewed as an element of M ′ is
the same as the annihilator of m′ viewed as an element of M . Hence the inclusion
Ass(M ′) ⊂ Ass(M). Let m ∈M be an element whose annihilator is a prime ideal p.
If there exists a g ∈ R, g ̸∈ p such that m′ = gm ∈M ′ then the annihilator of m′ is
p. If there does not exist a g ∈ R, g ̸∈ p such that gm ∈M ′, then the annilator of the
image m′′ ∈M ′′ of m is p. This proves the inclusion Ass(M) ⊂ Ass(M ′)∪Ass(M ′′).
We omit the proof of the final statement. □

Lemma 63.4.00LB Let R be a ring, and M an R-module. Suppose there exists a
filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Then Ass(M) ⊂ {p1, . . . , pn}.

Proof. By induction on the length n of the filtration {Mi}. Pick m ∈ M whose
annihilator is a prime p. If m ∈ Mn−1 we are done by induction. If not, then m
maps to a nonzero element of M/Mn−1 ∼= R/pn. Hence we have p ⊂ pn. If equality
does not hold, then we can find f ∈ pn, f ̸∈ p. In this case the annihilator of fm
is still p and fm ∈Mn−1. Thus we win by induction. □

Lemma 63.5.00LC Let R be a Noetherian ring. Let M be a finite R-module. Then
Ass(M) is finite.

Proof. Immediate from Lemma 63.4 and Lemma 62.1. □

Proposition 63.6.02CE Let R be a Noetherian ring. Let M be a finite R-module. The
following sets of primes are the same:

(1) The minimal primes in the support of M .
(2) The minimal primes in Ass(M).
(3) For any filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M with

Mi/Mi−1 ∼= R/pi the minimal primes of the set {pi}.

Proof. Choose a filtration as in (3). In Lemma 62.5 we have seen that the sets in
(1) and (3) are equal.
Let p be a minimal element of the set {pi}. Let i be minimal such that p = pi.
Pick m ∈Mi, m ̸∈Mi−1. The annihilator of m is contained in pi = p and contains
p1p2 . . . pi. By our choice of i and p we have pj ̸⊂ p for j < i and hence we have
p1p2 . . . pi−1 ̸⊂ pi. Pick f ∈ p1p2 . . . pi−1, f ̸∈ p. Then fm has annihilator p.
In this way we see that p is an associated prime of M . By Lemma 63.2 we have
Ass(M) ⊂ Supp(M) and hence p is minimal in Ass(M). Thus the set of primes in
(1) is contained in the set of primes of (2).
Let p be a minimal element of Ass(M). Since Ass(M) ⊂ Supp(M) there is a
minimal element q of Supp(M) with q ⊂ p. We have just shown that q ∈ Ass(M).
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Hence q = p by minimality of p. Thus the set of primes in (2) is contained in the
set of primes of (1). □

Lemma 63.7.0587 Let R be a Noetherian ring. Let M be an R-module. Then
M = (0)⇔ Ass(M) = ∅.

Proof. If M = (0), then Ass(M) = ∅ by definition. If M ̸= 0, pick any nonzero
finitely generated submodule M ′ ⊂ M , for example a submodule generated by
a single nonzero element. By Lemma 40.2 we see that Supp(M ′) is nonempty.
By Proposition 63.6 this implies that Ass(M ′) is nonempty. By Lemma 63.3 this
implies Ass(M) ̸= ∅. □

Lemma 63.8.05BV Let R be a Noetherian ring. Let M be an R-module. Any p ∈
Supp(M) which is minimal among the elements of Supp(M) is an element of
Ass(M).

Proof. If M is a finite R-module, then this is a consequence of Proposition 63.6.
In general write M =

⋃
Mλ as the union of its finite submodules, and use that

Supp(M) =
⋃

Supp(Mλ) and Ass(M) =
⋃

Ass(Mλ). □

Lemma 63.9.00LD Let R be a Noetherian ring. Let M be an R-module. The union⋃
q∈Ass(M) q is the set of elements of R which are zerodivisors on M .

Proof. Any element in any associated prime clearly is a zerodivisor on M . Con-
versely, suppose x ∈ R is a zerodivisor on M . Consider the submodule N = {m ∈
M | xm = 0}. Since N is not zero it has an associated prime q by Lemma 63.7.
Then x ∈ q and q is an associated prime of M by Lemma 63.3. □

Lemma 63.10.0B52 Let R is a Noetherian local ring, M a finite R-module, and f ∈ m
an element of the maximal ideal of R. Then

dim(Supp(M/fM)) ≤ dim(Supp(M)) ≤ dim(Supp(M/fM)) + 1
If f is not in any of the minimal primes of the support of M (for example if f is
a nonzerodivisor on M), then equality holds for the right inequality.

Proof. (The parenthetical statement follows from Lemma 63.9.) The first inequal-
ity follows from Supp(M/fM) ⊂ Supp(M), see Lemma 40.9. For the second in-
equality, note that Supp(M/fM) = Supp(M) ∩ V (f), see Lemma 40.9. It follows,
for example by Lemma 62.2 and elementary properties of dimension, that it suffices
to show dimV (p) ≤ dim(V (p)∩V (f)) + 1 for primes p of R. This is a consequence
of Lemma 60.13. Finally, if f is not contained in any minimal prime of the support
of M , then the chains of primes in Supp(M/fM) all give rise to chains in Supp(M)
which are at least one step away from being maximal. □

Lemma 63.11.05BW Let φ : R → S be a ring map. Let M be an S-module. Then
Spec(φ)(AssS(M)) ⊂ AssR(M).

Proof. If q ∈ AssS(M), then there exists an m in M such that the annihilator of
m in S is q. Then the annihilator of m in R is q ∩R. □

Remark 63.12.05BX Let φ : R → S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(φ)(AssS(M)) ⊃ AssR(M). For example, consider
the ring map R = k → S = k[x1, x2, x3, . . .]/(x2

i ) and M = S. Then AssR(M) is
not empty, but AssS(S) is empty.
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Lemma 63.13.05DZ Let φ : R → S be a ring map. Let M be an S-module. If S is
Noetherian, then Spec(φ)(AssS(M)) = AssR(M).

Proof. We have already seen in Lemma 63.11 that Spec(φ)(AssS(M)) ⊂ AssR(M).
For the converse, choose a prime p ∈ AssR(M). Let m ∈ M be an element such
that the annihilator of m in R is p. Let I = {g ∈ S | gm = 0} be the annihilator
of m in S. Then R/p ⊂ S/I is injective. Combining Lemmas 30.5 and 30.7 we see
that there is a prime q ⊂ S minimal over I mapping to p. By Proposition 63.6 we
see that q is an associated prime of S/I, hence q is an associated prime of M by
Lemma 63.3 and we win. □

Lemma 63.14.05BY Let R be a ring. Let I be an ideal. Let M be an R/I-module. Via
the canonical injection Spec(R/I)→ Spec(R) we have AssR/I(M) = AssR(M).

Proof. Omitted. □

Lemma 63.15.0310 Let R be a ring. Let M be an R-module. Let p ⊂ R be a prime.
(1) If p ∈ Ass(M) then pRp ∈ Ass(Mp).
(2) If p is finitely generated then the converse holds as well.

Proof. If p ∈ Ass(M) there exists an element m ∈ M whose annihilator is p. As
localization is exact (Proposition 9.12) we see that the annihilator of m/1 in Mp

is pRp hence (1) holds. Assume pRp ∈ Ass(Mp) and p = (f1, . . . , fn). Let m/g be
an element of Mp whose annihilator is pRp. This implies that the annihilator of m
is contained in p. As fim/g = 0 in Mp we see there exists a gi ∈ R, gi ̸∈ p such
that gifim = 0 in M . Combined we see the annihilator of g1 . . . gnm is p. Hence
p ∈ Ass(M). □

Lemma 63.16.05BZ Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have

(1) AssR(S−1M) = AssS−1R(S−1M),
(2) AssR(M) ∩ Spec(S−1R) ⊂ AssR(S−1M), and
(3) if R is Noetherian this inclusion is an equality.

Proof. For m ∈ S−1M , let I ⊂ R and J ⊂ S−1R be the annihilators of m. Then
I is the inverse image of J by the map R→ S−1R and J = S−1I. The equality in
(1) follows by the description of the map Spec(S−1R) → Spec(R) in Lemma 17.5.
For m ∈ M , let I ⊂ R be the annihilator of m in R and let J ⊂ S−1R be the
annihilator of m/1 ∈ S−1M . We have J = S−1I which implies (2). The equality
in the Noetherian case follows from Lemma 63.15 since for p ∈ R, S ∩ p = ∅ we
have Mp = (S−1M)S−1p. □

Lemma 63.17.05C0 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

AssR(M) = AssR(S−1M).

Proof. As M ⊂ S−1M by assumption we get the inclusion Ass(M) ⊂ Ass(S−1M)
from Lemma 63.3. Conversely, suppose that n/s ∈ S−1M is an element whose
annihilator is a prime ideal p. Then the annihilator of n ∈M is also p. □

Lemma 63.18.00LL Let R be a Noetherian local ring with maximal ideal m. Let I ⊂ m
be an ideal. Let M be a finite R-module. The following are equivalent:

(1) There exists an x ∈ I which is not a zerodivisor on M .
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(2) We have I ̸⊂ q for all q ∈ Ass(M).

Proof. If there exists a nonzerodivisor x in I, then x clearly cannot be in any
associated prime of M . Conversely, suppose I ̸⊂ q for all q ∈ Ass(M). In this
case we can choose x ∈ I, x ̸∈ q for all q ∈ Ass(M) by Lemmas 63.5 and 15.2. By
Lemma 63.9 the element x is not a zerodivisor on M . □

Lemma 63.19.0311 Let R be a ring. Let M be an R-module. If R is Noetherian the
map

M −→
∏

p∈Ass(M)
Mp

is injective.

Proof. Let x ∈ M be an element of the kernel of the map. Then if p is an
associated prime of Rx ⊂ M we see on the one hand that p ∈ Ass(M) (Lemma
63.3) and on the other hand that (Rx)p ⊂Mp is not zero. This contradiction shows
that Ass(Rx) = ∅. Hence Rx = 0 by Lemma 63.7. □

This lemma should probably be put somewhere else.

Lemma 63.20.0GEC Let k be a field. Let S be a finite type k algebra. If dim(S) > 0,
then there exists an element f ∈ S which is a nonzerodivisor and a nonunit.

Proof. By Lemma 63.5 the ring S has finitely many associated prime ideals. By
Lemma 61.3 the ring S has infinitely many maximal ideals. Hence we can choose
a maximal ideal m ⊂ S which is not an associated prime of S. By prime avoidance
(Lemma 15.2), we can choose a nonzero f ∈ m which is not contained in any of the
associated primes of S. By Lemma 63.9 the element f is a nonzerodivisor and as
f ∈ m we see that f is not a unit. □

64. Symbolic powers

05G9 Here is the definition.

Definition 64.1.0313 Let R be a ring. Let p be a prime ideal. For n ≥ 0 the nth
symbolic power of p is the ideal p(n) = Ker(R→ Rp/p

nRp).

Note that pn ⊂ p(n) but equality does not always hold.

Lemma 64.2.0314 Let R be a Noetherian ring. Let p be a prime ideal. Let n > 0.
Then Ass(R/p(n)) = {p}.

Proof. If q is an associated prime of R/p(n) then clearly p ⊂ q. On the other hand,
any element x ∈ R, x ̸∈ p is a nonzerodivisor on R/p(n). Namely, if y ∈ R and
xy ∈ p(n) = R∩pnRp then y ∈ pnRp, hence y ∈ p(n). Hence the lemma follows. □

Lemma 64.3.0BC0 Let R → S be flat ring map. Let p ⊂ R be a prime such that
q = pS is a prime of S. Then p(n)S = q(n).

Proof. Since p(n) = Ker(R → Rp/p
nRp) we see using flatness that p(n)S is the

kernel of the map S → Sp/p
nSp. On the other hand q(n) is the kernel of the map

S → Sq/q
nSq = Sq/p

nSq. Hence it suffices to show that
Sp/p

nSp −→ Sq/p
nSq

is injective. Observe that the right hand module is the localization of the left
hand module by elements f ∈ S, f ̸∈ q. Thus it suffices to show these elements are
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nonzerodivisors on Sp/p
nSp. By flatness, the module Sp/p

nSp has a finite filtration
whose subquotients are

piSp/p
i+1Sp

∼= piRp/p
i+1Rp ⊗Rp

Sp
∼= V ⊗κ(p) (S/q)p

where V is a κ(p) vector space. Thus f acts invertibly as desired. □

65. Relative assassin

05GA Discussion of relative assassins. Let R→ S be a ring map. Let N be an S-module.
In this situation we can introduce the following sets of primes q of S:

(1) A: with p = R ∩ q we have that q ∈ AssS(N ⊗R κ(p)),
(2) A′: with p = R∩ q we have that q is in the image of AssS⊗κ(p)(N ⊗R κ(p))

under the canonical map Spec(S ⊗R κ(p))→ Spec(S),
(3) Afin: with p = R ∩ q we have that q ∈ AssS(N/pN),
(4) A′

fin: for some prime p′ ⊂ R we have q ∈ AssS(N/p′N),
(5) B: for some R-module M we have q ∈ AssS(N ⊗RM), and
(6) Bfin: for some finite R-module M we have q ∈ AssS(N ⊗RM).

Let us determine some of the relations between these sets.

Lemma 65.1.05GB Let R → S be a ring map. Let N be an S-module. Let A, A′,
Afin, B, and Bfin be the subsets of Spec(S) introduced above.

(1) We always have A = A′.
(2) We always have Afin ⊂ A, Bfin ⊂ B, Afin ⊂ A′

fin ⊂ Bfin and A ⊂ B.
(3) If S is Noetherian, then A = Afin and B = Bfin.
(4) If N is flat over R, then A = Afin = A′

fin and B = Bfin.
(5) If R is Noetherian and N is flat over R, then all of the sets are equal, i.e.,

A = A′ = Afin = A′
fin = B = Bfin.

Proof. Some of the arguments in the proof will be repeated in the proofs of later
lemmas which are more precise than this one (because they deal with a given module
M or a given prime p and not with the collection of all of them).
Proof of (1). Let p be a prime of R. Then we have

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p))
the first equality by Lemma 63.14 and the second by Lemma 63.16 part (1). This
prove that A = A′. The inclusion Afin ⊂ A′

fin is clear.
Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
Afin ⊂ A which follows from Lemma 63.16 and the fact that we require p = R ∩ q
in the formulation of Afin.
Proof of (3). The equality A = Afin follows from Lemma 63.16 part (3) if S is
Noetherian. Let q = (g1, . . . , gm) be a finitely generated prime ideal of S. Say
z ∈ N ⊗RM is an element whose annihilator is q. We may pick a finite submodule
M ′ ⊂M such that z is the image of z′ ∈ N⊗RM ′. Then AnnS(z′) ⊂ q = AnnS(z).
Since N ⊗R − commutes with colimits and since M is the directed colimit of finite
R-modules we can find M ′ ⊂ M ′′ ⊂ M such that the image z′′ ∈ N ⊗R M ′′ is
annihilated by g1, . . . , gm. Hence AnnS(z′′) = q. This proves that B = Bfin if S is
Noetherian.
Proof of (4). If N is flat, then the functor N⊗R− is exact. In particular, if M ′ ⊂M ,
then N ⊗RM ′ ⊂ N ⊗RM . Hence if z ∈ N ⊗RM is an element whose annihilator

https://stacks.math.columbia.edu/tag/05GB


COMMUTATIVE ALGEBRA 152

q = AnnS(z) is a prime, then we can pick any finite R-submodule M ′ ⊂ M such
that z ∈ N ⊗RM ′ and we see that the annihilator of z as an element of N ⊗RM ′ is
equal to q. Hence B = Bfin. Let p′ be a prime of R and let q be a prime of S which
is an associated prime of N/p′N . This implies that p′S ⊂ q. As N is flat over R we
see that N/p′N is flat over the integral domain R/p′. Hence every nonzero element
of R/p′ is a nonzerodivisor on N/p′. Hence none of these elements can map to an
element of q and we conclude that p′ = R ∩ q. Hence Afin = A′

fin. Finally, by
Lemma 63.17 we see that AssS(N/p′N) = AssS(N ⊗R κ(p′)), i.e., A′

fin = A.

Proof of (5). We only need to prove A′
fin = Bfin as the other equalities have been

proved in (4). To see this let M be a finite R-module. By Lemma 62.1 there exists
a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Since N is flat we obtain a filtration by S-submodules

0 = N ⊗RM0 ⊂ N ⊗RM1 ⊂ . . . ⊂ N ⊗RMn = N ⊗RM

such that each subquotient is isomorphic to N/piN . By Lemma 63.3 we conclude
that AssS(N ⊗RM) ⊂

⋃
AssS(N/piN). Hence we see that Bfin ⊂ A′

fin. Since the
other inclusion is part of (2) we win. □

We define the relative assassin of N over S/R to be the set A = A′ above. As a
motivation we point out that it depends only on the fibre modules N ⊗R κ(p) over
the fibre rings. As in the case of the assassin of a module we warn the reader that
this notion makes most sense when the fibre rings S ⊗R κ(p) are Noetherian, for
example if R→ S is of finite type.

Definition 65.2.05GC Let R→ S be a ring map. Let N be an S-module. The relative
assassin of N over S/R is the set

AssS/R(N) = {q ⊂ S | q ∈ AssS(N ⊗R κ(p)) with p = R ∩ q}.

This is the set named A in Lemma 65.1.

The spirit of the next few results is that they are about the relative assassin, even
though this may not be apparent.

Lemma 65.3.0312 Let R → S be a ring map. Let M be an R-module, and let N be
an S-module. If N is flat as R-module, then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS(N/pN)

and if R is Noetherian then we have equality.

Proof. If p ∈ AssR(M) then there exists an injection R/p→M . As N is flat over
R we obtain an injection R/p ⊗R N → M ⊗R N . Since R/p ⊗R N = N/pN we
conclude that AssS(N/pN) ⊂ AssS(M ⊗R N), see Lemma 63.3. Hence the right
hand side is contained in the left hand side.
Write M =

⋃
Mλ as the union of its finitely generated R-submodules. Then also

N ⊗RM =
⋃
N ⊗RMλ (as N is R-flat). By definition of associated primes we see

that AssS(N ⊗RM) =
⋃

AssS(N ⊗RMλ) and AssR(M) =
⋃

Ass(Mλ). Hence we
may assume M is finitely generated.
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Let q ∈ AssS(M ⊗R N), and assume R is Noetherian and M is a finite R-module.
To finish the proof we have to show that q is an element of the right hand side.
First we observe that qSq ∈ AssSq

((M ⊗R N)q), see Lemma 63.15. Let p be the
corresponding prime of R. Note that

(M ⊗R N)q = M ⊗R Nq = Mp ⊗Rp
Nq

If pRp ̸∈ AssRp
(Mp) then there exists an element x ∈ pRp which is a nonzerodivisor

in Mp (see Lemma 63.18). Since Nq is flat over Rp we see that the image of x in
qSq is a nonzerodivisor on (M⊗RN)q. This is a contradiction with the assumption
that qSq ∈ AssS((M ⊗R N)q). Hence we conclude that p is one of the associated
primes of M .

Continuing the argument we choose a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R, see Lemma 62.1. (By Lemma 63.4 we have pi = p for at least one i.) This gives
a filtration

0 = M0 ⊗R N ⊂M1 ⊗R N ⊂ . . . ⊂Mn ⊗R N = M ⊗R N

with subquotients isomorphic toN/piN . If pi ̸= p then q cannot be associated to the
module N/piN by the result of the preceding paragraph (as AssR(R/pi) = {pi}).
Hence we conclude that q is associated to N/pN as desired. □

Lemma 65.4.05C1 Let R → S be a ring map. Let N be an S-module. Assume N is
flat as an R-module and R is a domain with fraction field K. Then

AssS(N) = AssS(N ⊗R K) = AssS⊗RK(N ⊗R K)

via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 63.17 combined with Lemma 63.16 part (1). □

Lemma 65.5.05C2 Let R → S be a ring map. Let M be an R-module, and let N be
an S-module. Assume N is flat as R-module. Then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

where we use Remark 18.5 to think of the spectra of fibre rings as subsets of Spec(S).
If R is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma 65.3 by Lemmas 63.14, 39.7, and 65.4. □

Remark 65.6.05E0 Let R → S be a ring map. Let N be an S-module. Let p be a
prime of R. Then

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p)).

The first equality by Lemma 63.14 and the second by Lemma 63.16 part (1).
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66. Weakly associated primes

0546 This is a variant on the notion of an associated prime that is useful for non-
Noetherian ring and non-finite modules.
Definition 66.1.0547 Let R be a ring. Let M be an R-module. A prime p of R is
weakly associated to M if there exists an element m ∈ M such that p is minimal
among the prime ideals containing the annihilator Ann(m) = {f ∈ R | fm = 0}.
The set of all such primes is denoted WeakAssR(M) or WeakAss(M).
Thus an associated prime is a weakly associated prime. Here is a characterization
in terms of the localization at the prime.
Lemma 66.2.0566 Let R be a ring. Let M be an R-module. Let p be a prime of R.
The following are equivalent:

(1) p is weakly associated to M ,
(2) pRp is weakly associated to Mp, and
(3) Mp contains an element whose annihilator has radical equal to pRp.

Proof. Assume (1). Then there exists an element m ∈ M such that p is minimal
among the primes containing the annihilator I = {x ∈ R | xm = 0} of m. As
localization is exact, the annihilator of m in Mp is Ip. Hence pRp is a minimal
prime of Rp containing the annihilator Ip of m in Mp. This implies (2) holds, and
also (3) as it implies that

√
Ip = pRp.

Applying the implication (1) ⇒ (3) to Mp over Rp we see that (2) ⇒ (3).
Finally, assume (3). This means there exists an element m/f ∈ Mp whose annihi-
lator has radical equal to pRp. Then the annihilator I = {x ∈ R | xm = 0} of m in
M is such that

√
Ip = pRp. Clearly this means that p contains I and is minimal

among the primes containing I, i.e., (1) holds. □

Lemma 66.3.0EMA For a reduced ring the weakly associated primes of the ring are the
minimal primes.
Proof. Let (R,m) be a reduced local ring. Suppose x ∈ R is an element whose
annihilator has radical m. If m ̸= 0, then x cannot be a unit, so x ∈ m. Then
in particular x1+n = 0 for some n ≥ 0. Hence x = 0. Which contradicts the
assumption that the annihilator of x is contained in m. Thus we see that m = 0,
i.e., R is a field. By Lemma 66.2 this implies the statement of the lemma. □

Lemma 66.4.0548 Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short exact
sequence of R-modules. Then WeakAss(M ′) ⊂ WeakAss(M) and WeakAss(M) ⊂
WeakAss(M ′) ∪WeakAss(M ′′).
Proof. We will use the characterization of weakly associated primes of Lemma
66.2. Let p be a prime of R. As localization is exact we obtain the short exact
sequence 0 → M ′

p → Mp → M ′′
p → 0. Suppose that m ∈ Mp is an element

whose annihilator has radical pRp. Then either the image m of m in M ′′
p is zero

and m ∈ M ′
p, or the radical of the annihilator of m is pRp. This proves that

WeakAss(M) ⊂ WeakAss(M ′) ∪WeakAss(M ′′). The inclusion WeakAss(M ′) ⊂
WeakAss(M) is immediate from the definitions. □

Lemma 66.5.0588 Let R be a ring. Let M be an R-module. Then
M = (0)⇔WeakAss(M) = ∅
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Proof. If M = (0) then WeakAss(M) = ∅ by definition. Conversely, suppose
that M ̸= 0. Pick a nonzero element m ∈ M . Write I = {x ∈ R | xm = 0}
the annihilator of m. Then R/I ⊂ M . Hence WeakAss(R/I) ⊂ WeakAss(M) by
Lemma 66.4. But as I ̸= R we have V (I) = Spec(R/I) contains a minimal prime,
see Lemmas 17.2 and 17.7, and we win. □

Lemma 66.6.0589 Let R be a ring. Let M be an R-module. Then

Ass(M) ⊂WeakAss(M) ⊂ Supp(M).

Proof. The first inclusion is immediate from the definitions. If p ∈WeakAss(M),
then by Lemma 66.2 we have Mp ̸= 0, hence p ∈ Supp(M). □

Lemma 66.7.05C3 Let R be a ring. Let M be an R-module. The union
⋃

q∈WeakAss(M) q

is the set of elements of R which are zerodivisors on M .

Proof. Suppose f ∈ q ∈ WeakAss(M). Then there exists an element m ∈ M
such that q is minimal over I = {x ∈ R | xm = 0}. Hence there exists a g ∈ R,
g ̸∈ q and n > 0 such that fngm = 0. Note that gm ̸= 0 as g ̸∈ I. If we take
n minimal as above, then f(fn−1gm) = 0 and fn−1gm ̸= 0, so f is a zerodivisor
on M . Conversely, suppose f ∈ R is a zerodivisor on M . Consider the submodule
N = {m ∈ M | fm = 0}. Since N is not zero it has a weakly associated prime q
by Lemma 66.5. Clearly f ∈ q and by Lemma 66.4 q is a weakly associated prime
of M . □

Lemma 66.8.05C4 Let R be a ring. Let M be an R-module. Any p ∈ Supp(M) which
is minimal among the elements of Supp(M) is an element of WeakAss(M).

Proof. Note that Supp(Mp) = {pRp} in Spec(Rp). In particular Mp is nonzero,
and hence WeakAss(Mp) ̸= ∅ by Lemma 66.5. Since WeakAss(Mp) ⊂ Supp(Mp) by
Lemma 66.6 we conclude that WeakAss(Mp) = {pRp}, whence p ∈ WeakAss(M)
by Lemma 66.2. □

Lemma 66.9.058A Let R be a ring. Let M be an R-module. Let p be a prime ideal of
R which is finitely generated. Then

p ∈ Ass(M)⇔ p ∈WeakAss(M).

In particular, if R is Noetherian, then Ass(M) = WeakAss(M).

Proof. Write p = (g1, . . . , gn) for some gi ∈ R. It is enough the prove the im-
plication “⇐” as the other implication holds in general, see Lemma 66.6. Assume
p ∈ WeakAss(M). By Lemma 66.2 there exists an element m ∈ Mp such that
I = {x ∈ Rp | xm = 0} has radical pRp. Hence for each i there exists a smallest
ei > 0 such that gei

i m = 0 in Mp. If ei > 1 for some i, then we can replace m
by gei−1

i m ̸= 0 and decrease
∑
ei. Hence we may assume that the annihilator of

m ∈Mp is (g1, . . . , gn)Rp = pRp. By Lemma 63.15 we see that p ∈ Ass(M). □

Remark 66.10.05C5 Let φ : R → S be a ring map. Let M be an S-module. Then
it is not always the case that Spec(φ)(WeakAssS(M)) ⊂ WeakAssR(M) contrary
to the case of associated primes (see Lemma 63.11). An example is to consider the
ring map

R = k[x1, x2, x3, . . .]→ S = k[x1, x2, x3, . . . , y1, y2, y3, . . .]/(x1y1, x2y2, x3y3, . . .)
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and M = S. In this case q =
∑
xiS is a minimal prime of S, hence a weakly

associated prime of M = S (see Lemma 66.8). But on the other hand, for any
nonzero element of S the annihilator in R is finitely generated, and hence does not
have radical equal to R ∩ q = (x1, x2, x3, . . .) (details omitted).

Lemma 66.11.05C6 Let φ : R → S be a ring map. Let M be an S-module. Then we
have Spec(φ)(WeakAssS(M)) ⊃WeakAssR(M).

Proof. Let p be an element of WeakAssR(M). Then there exists an m ∈Mp whose
annihilator I = {x ∈ Rp | xm = 0} has radical pRp. Consider the annihilator
J = {x ∈ Sp | xm = 0} of m in Sp. As ISp ⊂ J we see that any minimal prime
q ⊂ Sp over J lies over p. Moreover such a q corresponds to a weakly associated
prime of M for example by Lemma 66.2. □

Remark 66.12.05C7 Let φ : R → S be a ring map. Let M be an S-module. Denote
f : Spec(S)→ Spec(R) the associated map on spectra. Then we have

f(AssS(M)) ⊂ AssR(M) ⊂WeakAssR(M) ⊂ f(WeakAssS(M))

see Lemmas 63.11, 66.11, and 66.6. In general all of the inclusions may be strict, see
Remarks 63.12 and 66.10. If S is Noetherian, then all the inclusions are equalities
as the outer two are equal by Lemma 66.9.

Lemma 66.13.05E1 Let φ : R → S be a ring map. Let M be an S-module. Denote
f : Spec(S) → Spec(R) the associated map on spectra. If φ is a finite ring map,
then

WeakAssR(M) = f(WeakAssS(M)).

Proof. One of the inclusions has already been proved, see Remark 66.12. To prove
the other assume q ∈WeakAssS(M) and let p be the corresponding prime of R. Let
m ∈ M be an element such that q is a minimal prime over J = {g ∈ S | gm = 0}.
Thus the radical of JSq is qSq. As R → S is finite there are finitely many primes
q = q1, q2, . . . , ql over p, see Lemma 36.21. Pick x ∈ q with x ̸∈ qi for i > 1, see
Lemma 15.2. By the above there exists an element y ∈ S, y ̸∈ q and an integer
t > 0 such that yxtm = 0. Thus the element ym ∈ M is annihilated by xt, hence
ym maps to zero in Mqi

, i = 2, . . . , l. To be sure, ym does not map to zero in Sq.

The ring Sp is semi-local with maximal ideals qiSp by going up for finite ring maps,
see Lemma 36.22. If f ∈ pRp then some power of f ends up in JSq hence for some
t > 0 we see that f tym maps to zero in Mq. As ym vanishes at the other maximal
ideals of Sp we conclude that f tym is zero in Mp, see Lemma 23.1. In this way we
see that p is a minimal prime over the annihilator of ym in R and we win. □

Lemma 66.14.05C8 Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I) → Spec(R) we have WeakAssR/I(M) =
WeakAssR(M).

Proof. Special case of Lemma 66.13. □

Lemma 66.15.05C9 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R) → Spec(R) we have
WeakAssR(S−1M) = WeakAssS−1R(S−1M) and

WeakAss(M) ∩ Spec(S−1R) = WeakAss(S−1M).
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Proof. Suppose that m ∈ S−1M . Let I = {x ∈ R | xm = 0} and I ′ = {x′ ∈
S−1R | x′m = 0}. Then I ′ = S−1I and I ∩ S = ∅ unless I = R (verifications
omitted). Thus primes in S−1R minimal over I ′ correspond bijectively to primes in
R minimal over I and avoiding S. This proves the equality WeakAssR(S−1M) =
WeakAssS−1R(S−1M). The second equality follows from Lemma 66.2 since for
p ∈ R, S ∩ p = ∅ we have Mp = (S−1M)S−1p. □

Lemma 66.16.05CA Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

WeakAss(M) = WeakAss(S−1M).

Proof. AsM ⊂ S−1M by assumption we obtain WeakAss(M) ⊂WeakAss(S−1M)
from Lemma 66.4. Conversely, suppose that n/s ∈ S−1M is an element with
annihilator I and p a prime which is minimal over I. Then the annihilator of
n ∈M is I and p is a prime minimal over I. □

Lemma 66.17.05CB Let R be a ring. Let M be an R-module. The map

M −→
∏

p∈WeakAss(M)
Mp

is injective.

Proof. Let x ∈ M be an element of the kernel of the map. Set N = Rx ⊂ M . If
p is a weakly associated prime of N we see on the one hand that p ∈WeakAss(M)
(Lemma 66.4) and on the other hand that Np ⊂Mp is not zero. This contradiction
shows that WeakAss(N) = ∅. Hence N = 0, i.e., x = 0 by Lemma 66.5. □

Lemma 66.18.05CC Let R→ S be a ring map. Let N be an S-module. Assume N is
flat as an R-module and R is a domain with fraction field K. Then

WeakAssS(N) = WeakAssS⊗RK(N ⊗R K)
via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 66.16. □

Lemma 66.19.0CUB Let K/k be a field extension. Let R be a k-algebra. Let M be an
R-module. Let q ⊂ R ⊗k K be a prime lying over p ⊂ R. If q is weakly associated
to M ⊗k K, then p is weakly associated to M .

Proof. Let z ∈M ⊗kK be an element such that q is minimal over the annihilator
J ⊂ R ⊗k K of z. Choose a finitely generated subextension K/L/k such that
z ∈ M ⊗k L. Since R ⊗k L → R ⊗k K is flat we see that J = I(R ⊗k K) where
I ⊂ R⊗kL is the annihilator of z in the smaller ring (Lemma 40.4). Thus q∩(R⊗kL)
is minimal over I by going down (Lemma 39.19). In this way we reduce to the case
described in the next paragraph.
Assume K/k is a finitely generated field extension. Let x1, . . . , xr ∈ K be a tran-
scendence basis of K over k, see Fields, Section 26. Set L = k(x1, . . . , xr). Say
[K : L] = n. Then R ⊗k L → R ⊗k K is a finite ring map. Hence q ∩ (R ⊗k L)
is a weakly associated prime of M ⊗k K viewed as a R ⊗k L-module by Lemma
66.13. Since M ⊗kK ∼= (M ⊗k L)⊕n as a R⊗k L-module, we see that q∩ (R⊗k L)
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is a weakly associated prime of M ⊗k L (for example by using Lemma 66.4 and
induction). In this way we reduce to the case discussed in the next paragraph.
Assume K = k(x1, . . . , xr) is a purely transcendental field extension. We may
replace R by Rp, M by Mp and q by q(Rp ⊗k K). See Lemma 66.15. In this way
we reduce to the case discussed in the next paragraph.
Assume K = k(x1, . . . , xr) is a purely transcendental field extension and R is
local with maximal ideal p. We claim that any f ∈ R ⊗k K, f ̸∈ p(R ⊗k K) is a
nonzerodivisor on M⊗kK. Namely, let z ∈M⊗kK be an element. There is a finite
R-submodule M ′ ⊂M such that z ∈M ′⊗kK and such that M ′ is minimal with this
property: choose a basis {tα} of K as a k-vector space, write z =

∑
mα⊗tα and let

M ′ be the R-submodule generated by the mα. If z ∈ p(M ′⊗kK) = pM ′⊗kK, then
pM ′ = M ′ and M ′ = 0 by Lemma 20.1 a contradiction. Thus z has nonzero image
z in M ′/pM ′ ⊗k K But R/p⊗k K is a domain as a localization of κ(p)[x1, . . . , xn]
and M ′/pM ′ ⊗k K is a free module, hence fz ̸= 0. This proves the claim.
Finally, pick z ∈M ⊗k K such that q is minimal over the annihilator J ⊂ R⊗k K
of z. For f ∈ p there exists an n ≥ 1 and a g ∈ R⊗k K, g ̸∈ q such that gfnz ∈ J ,
i.e., gfnz = 0. (This holds because q lies over p and q is minimal over J .) Above
we have seen that g is a nonzerodivisor hence fnz = 0. This means that p is a
weakly associated prime of M ⊗k K viewed as an R-module. Since M ⊗k K is a
direct sum of copies of M we conclude that p is a weakly associated prime of M as
before. □

67. Embedded primes

02M4 Here is the definition.

Definition 67.1.02M5 Let R be a ring. Let M be an R-module.
(1) The associated primes of M which are not minimal among the associated

primes of M are called the embedded associated primes of M .
(2) The embedded primes of R are the embedded associated primes of R as an

R-module.

Here is a way to get rid of these.

Lemma 67.2.02M6 Let R be a Noetherian ring. Let M be a finite R-module. Consider
the set of R-submodules

{K ⊂M | Supp(K) nowhere dense in Supp(M)}.
This set has a maximal element K and the quotient M ′ = M/K has the following
properties

(1) Supp(M) = Supp(M ′),
(2) M ′ has no embedded associated primes,
(3) for any f ∈ R which is contained in all embedded associated primes of M

we have Mf
∼= M ′

f .

Proof. We will use Lemma 63.5 and Proposition 63.6 without further mention. Let
q1, . . . , qt denote the minimal primes in the support of M . Let p1, . . . , ps denote
the embedded associated primes of M . Then Ass(M) = {qj , pi}. Let

K = {m ∈M | Supp(Rm) ⊂
⋃
V (pi)}

https://stacks.math.columbia.edu/tag/02M5
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It is immediately seen to be a submodule. Since M is finite over a Noetherian
ring, we know K is finite too. Hence Supp(K) is nowhere dense in Supp(M). Let
K ′ ⊂ M be another submodule with support nowhere dense in Supp(M). This
means that Kqj

= 0. Hence if m ∈ K ′, then m maps to zero in Mqj
which in turn

implies (Rm)qj
= 0. On the other hand we have Ass(Rm) ⊂ Ass(M). Hence the

support of Rm is contained in
⋃
V (pi). Therefore m ∈ K and thus K ′ ⊂ K as m

was arbitrary in K ′.
Let M ′ = M/K. Since Kqj = 0 we know M ′

qj
= Mqj for all j. Hence M and M ′

have the same support.
Suppose q = Ann(m) ∈ Ass(M ′) where m ∈ M ′ is the image of m ∈ M . Then
m ̸∈ K and hence the support of Rm must contain one of the qj . Since Mqj

= M ′
qj

,
we know m does not map to zero in M ′

qj
. Hence q ⊂ qj (actually we have equality),

which means that all the associated primes of M ′ are not embedded.
Let f be an element contained in all pi. Then D(f)∩supp(K) = 0. Hence Mf = M ′

f

because Kf = 0. □

Lemma 67.3.02M7 Let R be a Noetherian ring. Let M be a finite R-module. For any
f ∈ R we have (M ′)f = (Mf )′ where M →M ′ and Mf → (Mf )′ are the quotients
constructed in Lemma 67.2.

Proof. Omitted. □

Lemma 67.4.02M8 Let R be a Noetherian ring. Let M be a finite R-module without
embedded associated primes. Let I = {x ∈ R | xM = 0}. Then the ring R/I has
no embedded primes.

Proof. We may replace R by R/I. Hence we may assume every nonzero element
of R acts nontrivially on M . By Lemma 40.5 this implies that Spec(R) equals
the support of M . Suppose that p is an embedded prime of R. Let x ∈ R be
an element whose annihilator is p. Consider the nonzero module N = xM ⊂ M .
It is annihilated by p. Hence any associated prime q of N contains p and is also
an associated prime of M . Then q would be an embedded associated prime of M
which contradicts the assumption of the lemma. □

68. Regular sequences

0AUH In this section we develop some basic properties of regular sequences.

Definition 68.1.00LF Let R be a ring. Let M be an R-module. A sequence of elements
f1, . . . , fr of R is called an M -regular sequence if the following conditions hold:

(1) fi is a nonzerodivisor on M/(f1, . . . , fi−1)M for each i = 1, . . . , r, and
(2) the module M/(f1, . . . , fr)M is not zero.

If I is an ideal of R and f1, . . . , fr ∈ I then we call f1, . . . , fr an M -regular sequence
in I. If M = R, we call f1, . . . , fr simply a regular sequence (in I).

Please pay attention to the fact that the definition depends on the order of the
elements f1, . . . , fr (see examples below). Some papers/books drop the requirement
that the module M/(f1, . . . , fr)M is nonzero. This has the advantage that being a
regular sequence is preserved under localization. However, we will use this definition
mainly to define the depth of a module in case R is local; in that case the fi are
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required to be in the maximal ideal – a condition which is not preserved under
going from R to a localization Rp.

Example 68.2.00LG Let k be a field. In the ring k[x, y, z] the sequence x, y(1−x), z(1−
x) is regular but the sequence y(1− x), z(1− x), x is not.

Example 68.3.00LH Let k be a field. Consider the ring k[x, y, w0, w1, w2, . . .]/I where
I is generated by ywi, i = 0, 1, 2, . . . and wi − xwi+1, i = 0, 1, 2, . . .. The sequence
x, y is regular, but y is a zerodivisor. Moreover you can localize at the maximal
ideal (x, y, wi) and still get an example.

Lemma 68.4.00LJ Let R be a local Noetherian ring. Let M be a finite R-module. Let
x1, . . . , xc be an M -regular sequence. Then any permutation of the xi is a regular
sequence as well.

Proof. First we do the case c = 2. ConsiderK ⊂M the kernel of x2 : M →M . For
any z ∈ K we know that z = x1z

′ for some z′ ∈M because x2 is a nonzerodivisor on
M/x1M . Because x1 is a nonzerodivisor on M we see that x2z

′ = 0 as well. Hence
x1 : K → K is surjective. Thus K = 0 by Nakayama’s Lemma 20.1. Next, consider
multiplication by x1 on M/x2M . If z ∈ M maps to an element z ∈ M/x2M in
the kernel of this map, then x1z = x2y for some y ∈ M . But then since x1, x2 is
a regular sequence we see that y = x1y

′ for some y′ ∈ M . Hence x1(z − x2y
′) = 0

and hence z = x2y
′ and hence z = 0 as desired.

For the general case, observe that any permutation is a composition of transposi-
tions of adjacent indices. Hence it suffices to prove that

x1, . . . , xi−2, xi, xi−1, xi+1, . . . , xc

is an M -regular sequence. This follows from the case we just did applied to the
module M/(x1, . . . , xi−2) and the length 2 regular sequence xi−1, xi. □

Lemma 68.5.00LM Let R,S be local rings. Let R → S be a flat local ring homomor-
phism. Let x1, . . . , xr be a sequence in R. Let M be an R-module. The following
are equivalent

(1) x1, . . . , xr is an M -regular sequence in R, and
(2) the images of x1, . . . , xr in S form a M ⊗R S-regular sequence.

Proof. This is so because R→ S is faithfully flat by Lemma 39.17. □

Lemma 68.6.061L Let R be a Noetherian ring. Let M be a finite R-module. Let p be
a prime. Let x1, . . . , xr be a sequence in R whose image in Rp forms an Mp-regular
sequence. Then there exists a g ∈ R, g ̸∈ p such that the image of x1, . . . , xr in Rg
forms an Mg-regular sequence.

Proof. Set
Ki = Ker (xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M) .

This is a finite R-module whose localization at p is zero by assumption. Hence there
exists a g ∈ R, g ̸∈ p such that (Ki)g = 0 for all i = 1, . . . , r. This g works. □

Lemma 68.7.065K Let A be a ring. Let I be an ideal generated by a regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form a
regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a regular sequence in A.

Proof. This follows immediately from the definitions. □
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Lemma 68.8.0F1T Let R be a ring. Let 0 → M1 → M2 → M3 → 0 be a short
exact sequence of R-modules. Let f1, . . . , fr ∈ R. If f1, . . . , fr is M1-regular and
M3-regular, then f1, . . . , fr is M2-regular.

Proof. By Lemma 4.1, if f1 : M1 → M1 and f1 : M3 → M3 are injective, then so
is f1 : M2 →M2 and we obtain a short exact sequence

0→M1/f1M1 →M2/f1M2 →M3/f1M3 → 0
The lemma follows from this and induction on r. Some details omitted. □

Lemma 68.9.07DV Let R be a ring. Let M be an R-module. Let f1, . . . , fr ∈ R and
e1, . . . , er > 0 integers. Then f1, . . . , fr is an M -regular sequence if and only if
fe1

1 , . . . , fer
r is an M -regular sequence.

Proof. We will prove this by induction on r. If r = 1 this follows from the following
two easy facts: (a) a power of a nonzerodivisor on M is a nonzerodivisor on M and
(b) a divisor of a nonzerodivisor on M is a nonzerodivisor on M . If r > 1, then by
induction applied to M/f1M we have that f1, f2, . . . , fr is an M -regular sequence
if and only if f1, f

e2
2 , . . . , fer

r is an M -regular sequence. Thus it suffices to show,
given e > 0, that fe1 , f2, . . . , fr is an M -regular sequence if and only if f1, . . . , fr is
an M -regular sequence. We will prove this by induction on e. The case e = 1 is
trivial. Since f1 is a nonzerodivisor under both assumptions (by the case r = 1) we
have a short exact sequence

0→M/f1M
fe−1

1−−−→M/fe1M →M/fe−1
1 M → 0

Suppose that f1, f2, . . . , fr is an M -regular sequence. Then by induction the ele-
ments f2, . . . , fr are M/f1M and M/fe−1

1 M -regular sequences. By Lemma 68.8
f2, . . . , fr is M/fe1M -regular. Hence fe1 , f2, . . . , fr is M -regular. Conversely, sup-
pose that fe1 , f2, . . . , fr is an M -regular sequence. Then f2 : M/fe1M → M/fe1M
is injective, hence f2 : M/f1M → M/f1M is injective, hence by induction(!)
f2 : M/fe−1

1 M →M/fe−1
1 M is injective, hence

0→M/(f1, f2)M
fe−1

1−−−→M/(fe1 , f2)M →M/(fe−1
1 , f2)M → 0

is a short exact sequence by Lemma 4.1. This proves the converse for r = 2.
If r > 2, then we have f3 : M/(fe1 , f2)M → M/(fe1 , f2)M is injective, hence
f3 : M/(f1, f2)M →M/(f1, f2)M is injective, and so on. Some details omitted. □

Lemma 68.10.07DW Let R be a ring. Let f1, . . . , fr ∈ R which do not generate the
unit ideal. The following are equivalent:

(1) any permutation of f1, . . . , fr is a regular sequence,
(2) any subsequence of f1, . . . , fr (in the given order) is a regular sequence, and
(3) f1x1, . . . , frxr is a regular sequence in the polynomial ring R[x1, . . . , xr].

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on r.
The case r = 1 is trivial. The case r = 2 says that if a, b ∈ R are a regular sequence
and b is a nonzerodivisor, then b, a is a regular sequence. This is clear because the
kernel of a : R/(b)→ R/(b) is isomorphic to the kernel of b : R/(a)→ R/(a) if both
a and b are nonzerodivisors. The case r > 2. Assume (2) holds and say we want
to prove fσ(1), . . . , fσ(r) is a regular sequence for some permutation σ. We already
know that fσ(1), . . . , fσ(r−1) is a regular sequence by induction. Hence it suffices to
show that fs where s = σ(r) is a nonzerodivisor modulo f1, . . . , f̂s, . . . , fr. If s = r
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we are done. If s < r, then note that fs and fr are both nonzerodivisors in the ring
R/(f1, . . . , f̂s, . . . , fr−1) (by induction hypothesis again). Since we know fs, fr is a
regular sequence in that ring we conclude by the case of sequence of length 2 that
fr, fs is too.

Note that R[x1, . . . , xr]/(f1x1, . . . , fixi) as an R-module is a direct sum of the
modules

R/IE · xe1
1 . . . xer

r

indexed by multi-indices E = (e1, . . . , er) where IE is the ideal generated by fj for
1 ≤ j ≤ i with ej > 0. Hence fi+1xi is a nonzerodivisor on this if and only if fi+1 is
a nonzerodivisor on R/IE for all E. Taking E with all positive entries, we see that
fi+1 is a nonzerodivisor on R/(f1, . . . , fi). Thus (3) implies (2). Conversely, if (2)
holds, then any subsequence of f1, . . . , fi, fi+1 is a regular sequence in particular
fi+1 is a nonzerodivisor on all R/IE . In this way we see that (2) implies (3). □

69. Quasi-regular sequences

061M We introduce the notion of quasi-regular sequence which is slightly weaker than
that of a regular sequence and easier to use. Let R be a ring and let f1, . . . , fc ∈ R.
Set J = (f1, . . . , fc). Let M be an R-module. Then there is a canonical map

(69.0.1)061N M/JM ⊗R/J R/J [X1, . . . , Xc] −→
⊕

n≥0
JnM/Jn+1M

of graded R/J [X1, . . . , Xc]-modules defined by the rule

m⊗Xe1
1 . . . Xec

c 7−→ fe1
1 . . . fec

c m mod Je1+...+ec+1M.

Note that (69.0.1) is always surjective.

Definition 69.1.061P Let R be a ring. Let M be an R-module. A sequence of elements
f1, . . . , fc of R is called M -quasi-regular if (69.0.1) is an isomorphism. If M = R,
we call f1, . . . , fc simply a quasi-regular sequence.

So if f1, . . . , fc is a quasi-regular sequence, then

R/J [X1, . . . , Xc] =
⊕

n≥0
Jn/Jn+1

where J = (f1, . . . , fc). It is clear that being a quasi-regular sequence is independent
of the order of f1, . . . , fc.

Lemma 69.2.00LN Let R be a ring.
(1) A regular sequence f1, . . . , fc of R is a quasi-regular sequence.
(2) Suppose that M is an R-module and that f1, . . . , fc is an M -regular se-

quence. Then f1, . . . , fc is an M -quasi-regular sequence.

Proof. Set J = (f1, . . . , fc). We prove the first assertion by induction on c. We
have to show that given any relation

∑
|I|=n aIf

I ∈ Jn+1 with aI ∈ R we actually
have aI ∈ J for all multi-indices I. Since any element of Jn+1 is of the form∑

|I|=n bIf
I with bI ∈ J we may assume, after replacing aI by aI − bI , the relation

reads
∑

|I|=n aIf
I = 0. We can rewrite this as∑n

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

https://stacks.math.columbia.edu/tag/061P
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Here and below the “primed” multi-indices I ′ are required to be of the form I ′ =
(i1, . . . , ic−1, 0). We will show by descending induction on l ∈ {0, . . . , n} that if we
have a relation ∑l

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

then aI′,e ∈ J for all I ′, e. Namely, set J ′ = (f1, . . . , fc−1). Observe that
∑

|I′|=n−l aI′,lf
I′

is mapped into (J ′)n−l+1 by f lc. By induction hypothesis (for the induction on c)
we see that f lcaI′,l ∈ J ′. Because fc is not a zerodivisor on R/J ′ (as f1, . . . , fc is a
regular sequence) we conclude that aI′,l ∈ J ′. This allows us to rewrite the term
(
∑

|I′|=n−l aI′,lf
I′)f lc in the form (

∑
|I′|=n−l+1 fcbI′,l−1f

I′)f l−1
c . This gives a new

relation of the form(∑
|I′|=n−l+1

(aI′,l−1 + fcbI′,l−1)f I
′
)
f l−1
c +

∑l−2

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Now by the induction hypothesis (on l this time) we see that all aI′,l−1 +fcbI′,l−1 ∈
J and all aI′,e ∈ J for e ≤ l − 2. This, combined with aI′,l ∈ J ′ ⊂ J seen above,
finishes the proof of the induction step.

The second assertion means that given any formal expression F =
∑

|I|=nmIX
I ,

mI ∈ M with
∑
mIf

I ∈ Jn+1M , then all the coefficients mI are in J . This is
proved in exactly the same way as we prove the corresponding result for the first
assertion above. □

Lemma 69.3.065L Let R → R′ be a flat ring map. Let M be an R-module. Sup-
pose that f1, . . . , fr ∈ R form an M -quasi-regular sequence. Then the images of
f1, . . . , fr in R′ form a M ⊗R R′-quasi-regular sequence.

Proof. Set J = (f1, . . . , fr), J ′ = JR′ and M ′ = M ⊗R R′. We have to show
the canonical map µ : R′/J ′[X1, . . . Xr]⊗R′/J′ M ′/J ′M ′ →

⊕
(J ′)nM ′/(J ′)n+1M ′

is an isomorphism. Because R → R′ is flat the sequences 0 → JnM → M and
0 → Jn+1M → JnM → JnM/Jn+1M → 0 remain exact on tensoring with R′.
This first implies that JnM ⊗RR′ = (J ′)nM ′ and then that (J ′)nM ′/(J ′)n+1M ′ =
JnM/Jn+1M ⊗R R′. Thus µ is the tensor product of (69.0.1), which is an isomor-
phism by assumption, with idR′ and we conclude. □

Lemma 69.4.061Q Let R be a Noetherian ring. Let M be a finite R-module. Let p be
a prime. Let x1, . . . , xc be a sequence in R whose image in Rp forms an Mp-quasi-
regular sequence. Then there exists a g ∈ R, g ̸∈ p such that the image of x1, . . . , xc
in Rg forms an Mg-quasi-regular sequence.

Proof. Consider the kernelK of the map (69.0.1). AsM/JM⊗R/JR/J [X1, . . . , Xc]
is a finite R/J [X1, . . . , Xc]-module and as R/J [X1, . . . , Xc] is Noetherian, we see
that K is also a finite R/J [X1, . . . , Xc]-module. Pick homogeneous generators
k1, . . . , kt ∈ K. By assumption for each i = 1, . . . , t there exists a gi ∈ R, gi ̸∈ p
such that giki = 0. Hence g = g1 . . . gt works. □

Lemma 69.5.061R Let R be a ring. Let M be an R-module. Let f1, . . . , fc ∈ R

be an M -quasi-regular sequence. For any i the sequence f i+1, . . . , f c of R =
R/(f1, . . . , fi) is an M = M/(f1, . . . , fi)M -quasi-regular sequence.

https://stacks.math.columbia.edu/tag/065L
https://stacks.math.columbia.edu/tag/061Q
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Proof. It suffices to prove this for i = 1. Set J = (f2, . . . , f c) ⊂ R. Then

J
n
M/J

n+1
M = (JnM + f1M)/(Jn+1M + f1M)

= JnM/(Jn+1M + JnM ∩ f1M).

Thus, in order to prove the lemma it suffices to show that Jn+1M +JnM ∩ f1M =
Jn+1M + f1J

n−1M because that will show that
⊕

n≥0 J
n
M/J

n+1
M is the quo-

tient of
⊕

n≥0 J
nM/Jn+1M ∼= M/JM [X1, . . . , Xc] by X1. Actually, we have

JnM ∩ f1M = f1J
n−1M . Namely, if m ̸∈ Jn−1M , then f1m ̸∈ JnM because⊕

JnM/Jn+1M is the polynomial algebra M/J [X1, . . . , Xc] by assumption. □

Lemma 69.6.061S Let (R,m) be a local Noetherian ring. Let M be a nonzero finite
R-module. Let f1, . . . , fc ∈ m be an M -quasi-regular sequence. Then f1, . . . , fc is
an M -regular sequence.

Proof. Set J = (f1, . . . , fc). Let us show that f1 is a nonzerodivisor onM . Suppose
x ∈ M is not zero. By Krull’s intersection theorem there exists an integer r such
that x ∈ JrM but x ̸∈ Jr+1M , see Lemma 51.4. Then f1x ∈ Jr+1M is an
element whose class in Jr+1M/Jr+2M is nonzero by the assumed structure of⊕
JnM/Jn+1M . Whence f1x ̸= 0.

Now we can finish the proof by induction on c using Lemma 69.5. □

Remark 69.7 (Other types of regular sequences).061T In the paper [Kab71] the author
discusses two more regularity conditions for sequences x1, . . . , xr of elements of a
ring R. Namely, we say the sequence is Koszul-regular if Hi(K•(R, x•)) = 0 for
i ≥ 1 where K•(R, x•) is the Koszul complex. The sequence is called H1-regular
if H1(K•(R, x•)) = 0. One has the implications regular ⇒ Koszul-regular ⇒ H1-
regular ⇒ quasi-regular. By examples the author shows that these implications
cannot be reversed in general even if R is a (non-Noetherian) local ring and the
sequence generates the maximal ideal of R. We introduce these notions in more
detail in More on Algebra, Section 30.

Remark 69.8.065M Let k be a field. Consider the ring

A = k[x, y, w, z0, z1, z2, . . .]/(y2z0 − wx, z0 − yz1, z1 − yz2, . . .)

In this ring x is a nonzerodivisor and the image of y in A/xA gives a quasi-regular
sequence. But it is not true that x, y is a quasi-regular sequence in A because
(x, y)/(x, y)2 isn’t free of rank two over A/(x, y) due to the fact that wx = 0 in
(x, y)/(x, y)2 but w isn’t zero in A/(x, y). Hence the analogue of Lemma 68.7 does
not hold for quasi-regular sequences.

Lemma 69.9.065N Let R be a ring. Let J = (f1, . . . , fr) be an ideal of R. Let M
be an R-module. Set R = R/

⋂
n≥0 J

n, M = M/
⋂
n≥0 J

nM , and denote f i the
image of fi in R. Then f1, . . . , fr is M -quasi-regular if and only if f1, . . . , fr is
M -quasi-regular.

Proof. This is true because JnM/Jn+1M ∼= J
n
M/J

n+1
M . □

https://stacks.math.columbia.edu/tag/061S
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70. Blow up algebras

052P In this section we make some elementary observations about blowing up.

Definition 70.1.052Q Let R be a ring. Let I ⊂ R be an ideal.
(1) The blowup algebra, or the Rees algebra, associated to the pair (R, I) is the

graded R-algebra

BlI(R) =
⊕

n≥0
In = R⊕ I ⊕ I2 ⊕ . . .

where the summand In is placed in degree n.
(2) Let a ∈ I be an element. Denote a(1) the element a seen as an element of

degree 1 in the Rees algebra. Then the affine blowup algebra R[ Ia ] is the
algebra (BlI(R))(a(1)) constructed in Section 57.

In other words, an element of R[ Ia ] is represented by an expression of the form x/an

with x ∈ In. Two representatives x/an and y/am define the same element if and
only if ak(amx− any) = 0 for some k ≥ 0.

Lemma 70.2.07Z3 Let R be a ring, I ⊂ R an ideal, and a ∈ I. Let R′ = R[ Ia ] be the
affine blowup algebra. Then

(1) the image of a in R′ is a nonzerodivisor,
(2) IR′ = aR′, and
(3) (R′)a = Ra.

Proof. Immediate from the description of R[ Ia ] above. □

Lemma 70.3.0BIP Let R → S be a ring map. Let I ⊂ R be an ideal and a ∈ I. Set
J = IS and let b ∈ J be the image of a. Then S[Jb ] is the quotient of S ⊗R R[ Ia ] by
the ideal of elements annihilated by some power of b.

Proof. Let S′ be the quotient of S ⊗R R[ Ia ] by its b-power torsion elements. The
ring map

S ⊗R R[ Ia ] −→ S[Jb ]
is surjective and annihilates a-power torsion as b is a nonzerodivisor in S[Jb ]. Hence
we obtain a surjective map S′ → S[Jb ]. To see that the kernel is trivial, we construct
an inverse map. Namely, let z = y/bn be an element of S[Jb ], i.e., y ∈ Jn. Write
y =

∑
xisi with xi ∈ In and si ∈ S. We map z to the class of

∑
si ⊗ xi/an in S′.

This is well defined because an element of the kernel of the map S ⊗R In → Jn is
annihilated by an, hence maps to zero in S′. □

Example 70.4.0G8Q Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial al-
gebra. Let I = (t1, . . . , tn) ⊂ P . With notation as in Definition 70.1 there is an
isomorphism

P [T1, . . . , Tn]/(tiTj − tjTi) −→ BlI(P )

sending Ti to t(1)
i . We leave it to the reader to show that this map is well defined.

Since I is generated by t1, . . . , tn we see that our map is surjective. To see that our
map is injective one has to show: for each e ≥ 1 the P -module Ie is generated by
the monomials tE = te1

1 . . . xen
n for multiindices E = (e1, . . . , en) of degree |E| = e

subject only to the relations titE = tjt
E′ when |E| = |E′| = e and ea + δai =

e′
a + δaj , a = 1, . . . , n (Kronecker delta). We omit the details.

https://stacks.math.columbia.edu/tag/052Q
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Example 70.5.0G8R Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial algebra.
Let I = (t1, . . . , tn) ⊂ P . Let a = t1. With notation as in Definition 70.1 there is
an isomorphism

P [x2, . . . , xn]/(t1x2 − t2, . . . , t1xn − tn) −→ P [ Ia ] = P [ It1 ]

sending xi to ti/t1. We leave it to the reader to show that this map is well defined.
Since I is generated by t1, . . . , tn we see that our map is surjective. To see that our
map is injective, the reader can argue that the source and target of our map are t1-
torsion free and that the map is an isomorphism after inverting t1, see Lemma 70.2.
Alternatively, the reader can use the description of the Rees algebra in Example
70.4. We omit the details.

Lemma 70.6.0G8S Let R be a ring. Let I = (a1, . . . , an) be an ideal of R. Let a = a1.
Then there is a surjection

R[x2, . . . , xn]/(ax2 − a2, . . . , axn − an) −→ R[ Ia ]

whose kernel is the a-power torsion in the source.

Proof. Consider the ring map P = Z[t1, . . . , tn] → R sending ti to ai. Set J =
(t1, . . . , tn). By Example 70.5 we have P [ Jt1 ] = P [x2, . . . , xn]/(t1x2− t2, . . . , t1xn−
tn). Apply Lemma 70.3 to the map P → A to conclude. □

Lemma 70.7.080U Let R be a ring, I ⊂ R an ideal, and a ∈ I. Set R′ = R[ Ia ].
If f ∈ R is such that V (f) = V (I), then f maps to a nonzerodivisor in R′ and
R′
f = R′

a = Ra.

Proof. We will use the results of Lemma 70.2 without further mention. The as-
sumption V (f) = V (I) implies V (fR′) = V (IR′) = V (aR′). Hence an = fb and
fm = ac for some b, c ∈ R′. The lemma follows. □

Lemma 70.8.0BBI Let R be a ring, I ⊂ R an ideal, a ∈ I, and f ∈ R. Set R′ = R[ Ia ]
and R′′ = R[ fIfa ]. Then there is a surjective R-algebra map R′ → R′′ whose kernel
is the set of f -power torsion elements of R′.

Proof. The map is given by sending x/an for x ∈ In to fnx/(fa)n. It is straight-
forward to check this map is well defined and surjective. Since af is a nonzero
divisor in R′′ (Lemma 70.2) we see that the set of f -power torsion elements are
mapped to zero. Conversely, if x ∈ R′ and fnx ̸= 0 for all n > 0, then (af)nx ̸= 0
for all n as a is a nonzero divisor in R′. It follows that the image of x in R′′ is not
zero by the description of R′′ following Definition 70.1. □

Lemma 70.9.052S If R is reduced then every (affine) blowup algebra of R is reduced.

Proof. Let I ⊂ R be an ideal and a ∈ I. Suppose x/an with x ∈ In is a nilpotent
element of R[ Ia ]. Then (x/an)m = 0. Hence aNxm = 0 in R for some N ≥ 0.
After increasing N if necessary we may assume N = me for some e ≥ 0. Then
(aex)m = 0 and since R is reduced we find aex = 0. This means that x/an = 0 in
R[ Ia ]. □

Lemma 70.10.052R Let R be a domain, I ⊂ R an ideal, and a ∈ I a nonzero element.
Then the affine blowup algebra R[ Ia ] is a domain.

https://stacks.math.columbia.edu/tag/0G8R
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Proof. Suppose x/an, y/am with x ∈ In, y ∈ Im are elements of R[ Ia ] whose
product is zero. Then aNxy = 0 in R. Since R is a domain we conclude that either
x = 0 or y = 0. □

Lemma 70.11.052T Let R be a ring. Let I ⊂ R be an ideal. Let a ∈ I. If a is
not contained in any minimal prime of R, then Spec(R[ Ia ]) → Spec(R) has dense
image.

Proof. If akx = 0 for x ∈ R, then x is contained in all the minimal primes of R
and hence nilpotent, see Lemma 17.2. Thus the kernel of R → R[ Ia ] consists of
nilpotent elements. Hence the result follows from Lemma 30.6. □

Lemma 70.12.052M Let (R,m) be a local domain with fraction field K. Let R ⊂ A ⊂ K
be a valuation ring which dominates R. Then

A = colimR[ Ia ]

is a directed colimit of affine blowups R→ R[ Ia ] with the following properties
(1) a ∈ I ⊂ m,
(2) I is finitely generated, and
(3) the fibre ring of R→ R[ Ia ] at m is not zero.

Proof. Any blowup algebra R[ Ia ] is a domain contained in K see Lemma 70.10.
The lemma simply says that A is the directed union of the ones where a ∈ I have
properties (1), (2), (3). If R[ Ia ] ⊂ A and R[Jb ] ⊂ A, then we have

R[ Ia ] ∪R[Jb ] ⊂ R[ IJab ] ⊂ A

The first inclusion because x/an = bnx/(ab)n and the second one because if z ∈
(IJ)n, then z =

∑
xiyi with xi ∈ In and yi ∈ Jn and hence z/(ab)n =

∑
(xi/an)(yi/bn)

is contained in A.

Consider a finite subset E ⊂ A. Say E = {e1, . . . , en}. Choose a nonzero a ∈ R
such that we can write ei = fi/a for all i = 1, . . . , n. Set I = (f1, . . . , fn, a).
We claim that R[ Ia ] ⊂ A. This is clear as an element of R[ Ia ] can be represented
as a polynomial in the elements ei. The lemma follows immediately from this
observation. □

71. Ext groups

00LO In this section we do a tiny bit of homological algebra, in order to establish some
fundamental properties of depth over Noetherian local rings.

Lemma 71.1.00LP Let R be a ring. Let M be an R-module.
(1) There exists an exact complex

. . .→ F2 → F1 → F0 →M → 0.

with Fi free R-modules.
(2) If R is Noetherian and M finite over R, then we can choose the complex

such that Fi is finite free. In other words, we can find an exact complex

. . .→ R⊕n2 → R⊕n1 → R⊕n0 →M → 0.

https://stacks.math.columbia.edu/tag/052T
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Proof. Let us explain only the Noetherian case. As a first step choose a surjection
Rn0 → M . Then having constructed an exact complex of length e we simply
choose a surjection Rne+1 → Ker(Rne → Rne−1) which is possible because R is
Noetherian. □

Definition 71.2.00LQ Let R be a ring. Let M be an R-module.
(1) A (left) resolution F• →M of M is an exact complex

. . .→ F2 → F1 → F0 →M → 0
of R-modules.

(2) A resolution of M by free R-modules is a resolution F• → M where each
Fi is a free R-module.

(3) A resolution of M by finite free R-modules is a resolution F• → M where
each Fi is a finite free R-module.

We often use the notation F• to denote a complex of R-modules
. . .→ Fi → Fi−1 → . . .

In this case we often use di or dF,i to denote the map Fi → Fi−1. In this section we
are always going to assume that F0 is the last nonzero term in the complex. The ith
homology group of the complex F• is the group Hi = Ker(dF,i)/ Im(dF,i+1). A map
of complexes α : F• → G• is given by maps αi : Fi → Gi such that αi−1 ◦ dF,i =
dG,i−1 ◦ αi. Such a map induces a map on homology Hi(α) : Hi(F•)→ Hi(G•). If
α, β : F• → G• are maps of complexes, then a homotopy between α and β is given
by a collection of maps hi : Fi → Gi+1 such that αi− βi = dG,i+1 ◦ hi + hi−1 ◦ dF,i.
Two maps α, β : F• → G• are said to be homotopic if a homotopy between α and
β exists.
We will use a very similar notation regarding complexes of the form F • which look
like

. . .→ F i
di

−→ F i+1 → . . .

There are maps of complexes, homotopies, etc. In this case we set Hi(F •) =
Ker(di)/ Im(di−1) and we call it the ith cohomology group.

Lemma 71.3.00LR Any two homotopic maps of complexes induce the same maps on
(co)homology groups.

Proof. Omitted. □

Lemma 71.4.00LS Let R be a ring. Let M → N be a map of R-modules. Let N• → N
be an arbitrary resolution. Let

. . .→ F2 → F1 → F0 →M

be a complex of R-modules where each Fi is a free R-module. Then
(1) there exists a map of complexes F• → N• such that

F0 //

��

M

��
N0 // N

is commutative, and
(2) any two maps α, β : F• → N• as in (1) are homotopic.

https://stacks.math.columbia.edu/tag/00LQ
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Proof. Proof of (1). Because F0 is free we can find a map F0 → N0 lifting the
map F0 → M → N . We obtain an induced map F1 → F0 → N0 which ends up in
the image of N1 → N0. Since F1 is free we may lift this to a map F1 → N1. This in
turn induces a map F2 → F1 → N1 which maps to zero into N0. Since N• is exact
we see that the image of this map is contained in the image of N2 → N1. Hence
we may lift to get a map F2 → N2. Repeat.
Proof of (2). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : F0 → N0 is contained
in the image of N1 → N0. Hence we may lift γ0 to a map h0 : F0 → N1. Consider
the map γ′

1 = γ1 − h0 ◦ dF,1. By our choice of h0 we see that the image of γ′
1 is

contained in the kernel of N1 → N0. Since N• is exact we may lift γ′
1 to a map

h1 : F1 → N2. At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. □

At this point we are ready to define the groups ExtiR(M,N). Namely, choose a res-
olution F• of M by free R-modules, see Lemma 71.1. Consider the (cohomological)
complex

HomR(F•, N) : HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ . . .

We define ExtiR(M,N) for i ≥ 0 to be the ith cohomology group of this complex7.
For i < 0 we set ExtiR(M,N) = 0. Before we continue we point out that

Ext0
R(M,N) = Ker(HomR(F0, N)→ HomR(F1, N)) = HomR(M,N)

because we can apply part (1) of Lemma 10.1 to the exact sequence F1 → F0 →
M → 0. The following lemma explains in what sense this is well defined.

Lemma 71.5.00LT Let R be a ring. Let M1,M2, N be R-modules. Suppose that F•
is a free resolution of the module M1, and G• is a free resolution of the module
M2. Let φ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes
inducing φ on M1 = Coker(dF,1)→M2 = Coker(dG,1), see Lemma 71.4. Then the
induced maps

Hi(α) : Hi(HomR(F•, N)) −→ Hi(HomR(G•, N))
are independent of the choice of α. If φ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and φ is the identity, so are all the maps Hi(α).

Proof. Another map β : F• → G• inducing φ is homotopic to α by Lemma 71.4.
Hence the maps HomR(F•, N) → HomR(G•, N) are homotopic. Hence the inde-
pendence result follows from Lemma 71.3.
Suppose that φ is an isomorphism. Let ψ : M2 → M1 be an inverse. Choose
β : G• → F• be a map inducing ψ : M2 = Coker(dG,1) → M1 = Coker(dF,1), see
Lemma 71.4. OK, and now consider the map Hi(α) ◦Hi(β) = Hi(α ◦ β). By the
above the map Hi(α ◦ β) is the same as the map Hi(idG•) = id. Similarly for the
composition Hi(β)◦Hi(α). Hence Hi(α) and Hi(β) are inverses of each other. □

Lemma 71.6.00LU Let R be a ring. Let M be an R-module. Let 0 → N ′ → N →
N ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)
→ Ext1

R(M,N ′)→ Ext1
R(M,N)→ Ext1

R(M,N ′′)→ . . .

7At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.
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Proof. Pick a free resolution F• → M . Since each of the Fi are free we see that
we get a short exact sequence of complexes

0→ HomR(F•, N
′)→ HomR(F•, N)→ HomR(F•, N

′′)→ 0

Thus we get the long exact sequence from the snake lemma applied to this. □

Lemma 71.7.065P Let R be a ring. Let N be an R-module. Let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)
→ Ext1

R(M ′′, N)→ Ext1
R(M,N)→ Ext1

R(M ′, N)→ . . .

Proof. Pick sets of generators {m′
i′}i′∈I′ and {m′′

i′′}i′′∈I′′ of M ′ and M ′′. For each
i′′ ∈ I ′′ choose a lift m̃′′

i′′ ∈ M of the element m′′
i′′ ∈ M ′′. Set F ′ =

⊕
i′∈I′ R,

F ′′ =
⊕

i′′∈I′′ R and F = F ′ ⊕ F ′′. Mapping the generators of these free modules
to the corresponding chosen generators gives surjective R-module maps F ′ → M ′,
F ′′ →M ′′, and F →M . We obtain a map of short exact sequences

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′ → F → F ′′ → 0

By the snake lemma we see that the sequence of kernels 0→ K ′ → K → K ′′ → 0 is
short exact sequence of R-modules. Hence we can continue this process indefinitely.
In other words we obtain a short exact sequence of resolutions fitting into the
diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′
• → F• → F ′′

• → 0

Because each of the sequences 0→ F ′
n → Fn → F ′′

n → 0 is split exact (by construc-
tion) we obtain a short exact sequence of complexes

0→ HomR(F ′′
• , N)→ HomR(F•, N)→ HomR(F ′

•, N)→ 0

by applying the HomR(−, N) functor. Thus we get the long exact sequence from
the snake lemma applied to this. □

Lemma 71.8.00LV Let R be a ring. Let M , N be R-modules. Any x ∈ R such that
either xN = 0, or xM = 0 annihilates each of the modules ExtiR(M,N).

Proof. Pick a free resolution F• ofM . Since ExtiR(M,N) is defined as the cohomol-
ogy of the complex HomR(F•, N) the lemma is clear when xN = 0. If xM = 0, then
we see that multiplication by x on F• lifts the zero map on M . Hence by Lemma
71.5 we see that it induces the same map on Ext groups as the zero map. □

Lemma 71.9.08YR Let R be a Noetherian ring. Let M , N be finite R-modules. Then
ExtiR(M,N) is a finite R-module for all i.

Proof. This holds because ExtiR(M,N) is computed as the cohomology groups of
a complex HomR(F•, N) with each Fn a finite free R-module, see Lemma 71.1. □

https://stacks.math.columbia.edu/tag/065P
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72. Depth

00LE Here is our definition.

Definition 72.1.00LI Let R be a ring, and I ⊂ R an ideal. Let M be a finite R-module.
The I-depth of M , denoted depthI(M), is defined as follows:

(1) if IM ̸= M , then depthI(M) is the supremum in {0, 1, 2, . . . ,∞} of the
lengths of M -regular sequences in I,

(2) if IM = M we set depthI(M) =∞.
If (R,m) is local we call depthm(M) simply the depth of M .

Explanation. By Definition 68.1 the empty sequence is not a regular sequence on
the zero module, but for practical purposes it turns out to be convenient to set the
depth of the 0 module equal to +∞. Note that if I = R, then depthI(M) =∞ for
all finite R-modules M . If I is contained in the Jacobson radical of R (e.g., if R is
local and I ⊂ mR), then M ̸= 0⇒ IM ̸= M by Nakayama’s lemma. A module M
has I-depth 0 if and only if M is nonzero and I does not contain a nonzerodivisor
on M .
Example 68.2 shows depth does not behave well even if the ring is Noetherian,
and Example 68.3 shows that it does not behave well if the ring is local but non-
Noetherian. We will see depth behaves well if the ring is local Noetherian.

Lemma 72.2.0AUI Let R be a ring, I ⊂ R an ideal, and M a finite R-module. Then
depthI(M) is equal to the supremum of the lengths of sequences f1, . . . , fr ∈ I such
that fi is a nonzerodivisor on M/(f1, . . . , fi−1)M .

Proof. Suppose that IM = M . Then Lemma 20.1 shows there exists an f ∈ I such
that f : M → M is idM . Hence f, 0, 0, 0, . . . is an infinite sequence of successive
nonzerodivisors and we see agreement holds in this case. If IM ̸= M , then we see
that a sequence as in the lemma is an M -regular sequence and we conclude that
agreement holds as well. □

Lemma 72.3.00LK Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Then dim(Supp(M)) ≥ depth(M).

Proof. The proof is by induction on dim(Supp(M)). If dim(Supp(M)) = 0, then
Supp(M) = {m}, whence Ass(M) = {m} (by Lemmas 63.2 and 63.7), and hence
the depth of M is zero for example by Lemma 63.18. For the induction step we
assume dim(Supp(M)) > 0. Let f1, . . . , fd be a sequence of elements of m such that
fi is a nonzerodivisor on M/(f1, . . . , fi−1)M . According to Lemma 72.2 it suffices
to prove dim(Supp(M)) ≥ d. We may assume d > 0 otherwise the lemma holds.
By Lemma 63.10 we have dim(Supp(M/f1M)) = dim(Supp(M))−1. By induction
we conclude dim(Supp(M/f1M)) ≥ d− 1 as desired. □

Lemma 72.4.0AUJ Let R be a Noetherian ring, I ⊂ R an ideal, and M a finite nonzero
R-module such that IM ̸= M . Then depthI(M) <∞.

Proof. Since M/IM is nonzero we can choose p ∈ Supp(M/IM) by Lemma 40.2.
Then (M/IM)p ̸= 0 which implies I ⊂ p and moreover implies Mp ̸= IMp

as localization is exact. Let f1, . . . , fr ∈ I be an M -regular sequence. Then
Mp/(f1, . . . , fr)Mp is nonzero as (f1, . . . , fr) ⊂ I. As localization is flat we see
that the images of f1, . . . , fr form a Mp-regular sequence in Ip. Since this works for

https://stacks.math.columbia.edu/tag/00LI
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every M -regular sequence in I we conclude that depthI(M) ≤ depthIp(Mp). The
latter is ≤ depth(Mp) which is <∞ by Lemma 72.3. □

Lemma 72.5.00LW Let R be a Noetherian local ring with maximal ideal m. Let M be
a nonzero finite R-module. Then depth(M) is equal to the smallest integer i such
that ExtiR(R/m,M) is nonzero.

Proof. Let δ(M) denote the depth of M and let i(M) denote the smallest integer
i such that ExtiR(R/m,M) is nonzero. We will see in a moment that i(M) < ∞.
By Lemma 63.18 we have δ(M) = 0 if and only if i(M) = 0, because m ∈ Ass(M)
exactly means that i(M) = 0. Hence if δ(M) or i(M) is > 0, then we may choose
x ∈ m such that (a) x is a nonzerodivisor on M , and (b) depth(M/xM) = δ(M)−
1. Consider the long exact sequence of Ext-groups associated to the short exact
sequence 0→M →M →M/xM → 0 by Lemma 71.6:

0→ HomR(κ,M)→ HomR(κ,M)→ HomR(κ,M/xM)
→ Ext1

R(κ,M)→ Ext1
R(κ,M)→ Ext1

R(κ,M/xM)→ . . .

Since x ∈ m all the maps ExtiR(κ,M) → ExtiR(κ,M) are zero, see Lemma 71.8.
Thus it is clear that i(M/xM) = i(M)−1. Induction on δ(M) finishes the proof. □

Lemma 72.6.00LX Let R be a local Noetherian ring. Let 0→ N ′ → N → N ′′ → 0 be
a short exact sequence of nonzero finite R-modules.

(1) depth(N) ≥ min{depth(N ′), depth(N ′′)}
(2) depth(N ′′) ≥ min{depth(N), depth(N ′)− 1}
(3) depth(N ′) ≥ min{depth(N), depth(N ′′) + 1}

Proof. Use the characterization of depth using the Ext groups Exti(κ,N), see
Lemma 72.5, and use the long exact cohomology sequence

0→ HomR(κ,N ′)→ HomR(κ,N)→ HomR(κ,N ′′)
→ Ext1

R(κ,N ′)→ Ext1
R(κ,N)→ Ext1

R(κ,N ′′)→ . . .

from Lemma 71.6. □

Lemma 72.7.090R Let R be a local Noetherian ring and M a nonzero finite R-module.
(1) If x ∈ m is a nonzerodivisor on M , then depth(M/xM) = depth(M)− 1.
(2) Any M -regular sequence x1, . . . , xr can be extended to an M -regular se-

quence of length depth(M).

Proof. Part (2) is a formal consequence of part (1). Let x ∈ R be as in (1). By
the short exact sequence 0→M →M →M/xM → 0 and Lemma 72.6 we see that
the depth drops by at most 1. On the other hand, if x1, . . . , xr ∈ m is a regular
sequence for M/xM , then x, x1, . . . , xr is a regular sequence for M . Hence we see
that the depth drops by at least 1. □

Lemma 72.8.0CN5 Let (R,m) be a local Noetherian ring and M a finite R-module.
Let x ∈ m, p ∈ Ass(M), and q minimal over p + (x). Then q ∈ Ass(M/xnM) for
some n ≥ 1.

Proof. Pick a submodule N ⊂ M with N ∼= R/p. By the Artin-Rees lemma
(Lemma 51.2) we can pick n > 0 such that N ∩ xnM ⊂ xN . Let N ⊂M/xnM be
the image of N →M →M/xnM . By Lemma 63.3 it suffices to show q ∈ Ass(N).
By our choice of n there is a surjection N → N/xN = R/p + (x) and hence q is
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in the support of N . Since N is annihilated by xn and p we see that q is minimal
among the primes in the support of N . Thus q is an associated prime of N by
Lemma 63.8. □

Lemma 72.9.0BK4 Let (R,m) be a local Noetherian ring and M a finite R-module.
For p ∈ Ass(M) we have dim(R/p) ≥ depth(M).

Proof. If m ∈ Ass(M) then there is a nonzero element x ∈M which is annihilated
by all elements of m. Thus depth(M) = 0. In particular the lemma holds in this
case.

If depth(M) = 1, then by the first paragraph we find that m ̸∈ Ass(M). Hence
dim(R/p) ≥ 1 for all p ∈ Ass(M) and the lemma is true in this case as well.

We will prove the lemma in general by induction on depth(M) which we may and do
assume to be > 1. Pick x ∈ m which is a nonzerodivisor on M . Note x ̸∈ p (Lemma
63.9). By Lemma 60.13 we have dim(R/p+(x)) = dim(R/p)−1. Thus there exists
a prime q minimal over p + (x) with dim(R/q) = dim(R/p) − 1 (small argument
omitted; hint: the dimension of a Noetherian local ring A is the maximum of the
dimensions of A/r taken over the minimal primes r of A). Pick n as in Lemma 72.8
so that q is an associated prime of M/xnM . We may apply induction hypothesis
to M/xnM and q because depth(M/xnM) = depth(M) − 1 by Lemma 72.7. We
find dim(R/q) ≥ depth(M/xnM) and we win. □

Lemma 72.10.0FCC Let R be a local Noetherian ring and M a finite R-module. For
a prime ideal p ⊂ R we have depth(Mp) + dim(R/p) ≥ depth(M).

Proof. If Mp = 0, then depth(Mp) = ∞ and the lemma holds. If depth(M) ≤
dim(R/p), then the lemma is true. If depth(M) > dim(R/p), then p is not contained
in any associated prime q of M by Lemma 72.9. Hence we can find an x ∈ p not
contained in any associated prime of M by Lemma 15.2 and Lemma 63.5. Then x
is a nonzerodivisor on M , see Lemma 63.9. Hence depth(M/xM) = depth(M)− 1
and depth(Mp/xMp) = depth(Mp) − 1 provided Mp is nonzero, see Lemma 72.7.
Thus we conclude by induction on depth(M). □

Lemma 72.11.0AUK Let (R,m) be a Noetherian local ring. Let R→ S be a finite ring
map. Let m1, . . . ,mn be the maximal ideals of S. Let N be a finite S-module. Then

mini=1,...,n depth(Nmi) = depthm(N)

Proof. By Lemmas 36.20, 36.22, and Lemma 36.21 the maximal ideals of S are
exactly the primes of S lying over m and there are finitely many of them. Hence
the statement of the lemma makes sense. We will prove the lemma by induction on
k = mini=1,...,n depth(Nmi

). If k = 0, then depth(Nmi
) = 0 for some i. By Lemma

72.5 this means miSmi
is an associated prime of Nmi

and hence mi is an associated
prime of N (Lemma 63.16). By Lemma 63.13 we see that m is an associated prime
of N as an R-module. Whence depthm(N) = 0. This proves the base case. If
k > 0, then we see that mi ̸∈ AssS(N). Hence m ̸∈ AssR(N), again by Lemma
63.13. Thus we can find f ∈ m which is not a zerodivisor on N , see Lemma 63.18.
By Lemma 72.7 all the depths drop exactly by 1 when passing from N to N/fN
and the induction hypothesis does the rest. □
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73. Functorialities for Ext

087M In this section we briefly discuss the functoriality of Ext with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given R → R′, an R-module M and an R′-module N ′ the R-module
ExtiR(M,N ′) has a natural R′-module structure. Moreover, there is a
canonical R′-linear map ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′).

(2) Given R → R′ and R-modules M , N there is a natural R-module map
ExtiR(M,N)→ ExtiR(M,N ⊗R R′).

Lemma 73.1.087N Given a flat ring map R→ R′, an R-module M , and an R′-module
N ′ the natural map

ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′)
is an isomorphism for i ≥ 0.

Proof. Choose a free resolution F• of M . Since R→ R′ is flat we see that F•⊗RR′

is a free resolution of M ⊗R R′ over R′. The statement is that the map
HomR′(F• ⊗R R′, N ′)→ HomR(F•, N

′)
induces an isomorphism on homology groups, which is true because it is an isomor-
phism of complexes by Lemma 14.3. □

74. An application of Ext groups

02HN Here it is.

Lemma 74.1.02HO Let R be a Noetherian ring. Let I ⊂ R be an ideal contained in
the Jacobson radical of R. Let N → M be a homomorphism of finite R-modules.
Suppose that there exists arbitrarily large n such that N/InN →M/InM is a split
injection. Then N →M is a split injection.

Proof. Assume φ : N →M satisfies the assumptions of the lemma. Note that this
implies that Ker(φ) ⊂ InN for arbitrarily large n. Hence by Lemma 51.5 we see
that φ is injection. Let Q = M/N so that we have a short exact sequence

0→ N →M → Q→ 0.
Let

F2
d2−→ F1

d1−→ F0 → Q→ 0
be a finite free resolution of Q. We can choose a map α : F0 → M lifting the map
F0 → Q. This induces a map β : F1 → N such that β ◦ d2 = 0. The extension
above is split if and only if there exists a map γ : F0 → N such that β = γ ◦ d1. In
other words, the class of β in Ext1

R(Q,N) is the obstruction to splitting the short
exact sequence above.
Suppose n is a large integer such that N/InN →M/InM is a split injection. This
implies

0→ N/InN →M/InM → Q/InQ→ 0.
is still short exact. Also, the sequence

F1/I
nF1

d1−→ F0/I
nF0 → Q/InQ→ 0

is still exact. Arguing as above we see that the map β : F1/I
nF1 → N/InN induced

by β is equal to γn ◦ d1 for some map γn : F0/I
nF0 → N/InN . Since F0 is free we
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can lift γn to a map γn : F0 → N and then we see that β − γn ◦ d1 is a map from
F1 into InN . In other words we conclude that

β ∈ Im
(

HomR(F0, N)→ HomR(F1, N)
)

+ In HomR(F1, N).

for this n.
Since we have this property for arbitrarily large n by assumption we conclude
that the image of β in the cokernel of HomR(F0, N) → HomR(F1, N) is zero by
Lemma 51.5. Hence β is in the image of the map HomR(F0, N) → HomR(F1, N)
as desired. □

75. Tor groups and flatness

00LY In this section we use some of the homological algebra developed in the previous
section to explain what Tor groups are. Namely, suppose that R is a ring and that
M , N are two R-modules. Choose a resolution F• of M by free R-modules. See
Lemma 71.1. Consider the homological complex

F• ⊗R N : . . .→ F2 ⊗R N → F1 ⊗R N → F0 ⊗R N
We define TorRi (M,N) to be the ith homology group of this complex. The following
lemma explains in what sense this is well defined.

Lemma 75.1.00LZ Let R be a ring. Let M1,M2, N be R-modules. Suppose that F• is
a free resolution of the module M1 and that G• is a free resolution of the module
M2. Let φ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes
inducing φ on M1 = Coker(dF,1)→M2 = Coker(dG,1), see Lemma 71.4. Then the
induced maps

Hi(α) : Hi(F• ⊗R N) −→ Hi(G• ⊗R N)
are independent of the choice of α. If φ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and φ is the identity, so are all the maps Hi(α).

Proof. The proof of this lemma is identical to the proof of Lemma 71.5. □

Not only does this lemma imply that the Tor modules are well defined, but it also
provides for the functoriality of the constructions (M,N) 7→ TorRi (M,N) in the
first variable. Of course the functoriality in the second variable is evident. We
leave it to the reader to see that each of the TorRi is in fact a functor

ModR ×ModR → ModR.
Here ModR denotes the category of R-modules, and for the definition of the product
category see Categories, Definition 2.20. Namely, given morphisms of R-modules
M1 →M2 and N1 → N2 we get a commutative diagram

TorRi (M1, N1) //

��

TorRi (M1, N2)

��
TorRi (M2, N1) // TorRi (M2, N2)

Lemma 75.2.00M0 Let R be a ring and let M be an R-module. Suppose that 0 →
N ′ → N → N ′′ → 0 is a short exact sequence of R-modules. There exists a long
exact sequence
TorR1 (M,N ′)→ TorR1 (M,N)→ TorR1 (M,N ′′)→M⊗RN ′ →M⊗RN →M⊗RN ′′ → 0

https://stacks.math.columbia.edu/tag/00LZ
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Proof. The proof of this is the same as the proof of Lemma 71.6. □

Consider a homological double complex of R-modules

. . .
d // A2,0

d // A1,0
d // A0,0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

This means that di,j : Ai,j → Ai−1,j and δi,j : Ai,j → Ai,j−1 have the following
properties

(1) Any composition of two di,j is zero. In other words the rows of the double
complex are complexes.

(2) Any composition of two δi,j is zero. In other words the columns of the
double complex are complexes.

(3) For any pair (i, j) we have δi−1,j ◦ di,j = di,j−1 ◦ δi,j . In other words, all
the squares commute.

The correct thing to do is to associate a spectral sequence to any such double
complex. However, for the moment we can get away with doing something slightly
easier.

Namely, for the purposes of this section only, given a double complex (A•,•, d, δ)
set R(A)j = Coker(A1,j → A0,j) and U(A)i = Coker(Ai,1 → Ai,0). (The letters R
and U are meant to suggest Right and Up.) We endow R(A)• with the structure
of a complex using the maps δ. Similarly we endow U(A)• with the structure
of a complex using the maps d. In other words we obtain the following huge
commutative diagram

. . .
d // U(A)2

d // U(A)1
d // U(A)0

. . .
d // A2,0

d //

OO

A1,0
d //

OO

A0,0 //

OO

R(A)0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1 //

δ

OO

R(A)1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2 //

δ

OO

R(A)2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO
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(This is no longer a double complex of course.) It is clear what a morphism Φ :
(A•,•, d, δ) → (B•,•, d, δ) of double complexes is, and it is clear that this induces
morphisms of complexes R(Φ) : R(A)• → R(B)• and U(Φ) : U(A)• → U(B)•.

Lemma 75.3.00M1 Let (A•,•, d, δ) be a double complex such that
(1) Each row A•,j is a resolution of R(A)j.
(2) Each column Ai,• is a resolution of U(A)i.

Then there are canonical isomorphisms
Hi(R(A)•) ∼= Hi(U(A)•).

The isomorphisms are functorial with respect to morphisms of double complexes
with the properties above.

Proof. We will show that Hi(R(A)•)) and Hi(U(A)•) are canonically isomorphic
to a third group. Namely

Hi(A) := {(ai,0, ai−1,1, . . . , a0,i) | d(ai,0) = δ(ai−1,1), . . . , d(a1,i−1) = δ(a0,i)}
{d(ai+1,0) + δ(ai,1), d(ai,1) + δ(ai−1,2), . . . , d(a1,i) + δ(a0,i+1)}

Here we use the notational convention that ai,j denotes an element of Ai,j . In other
words, an element of Hi is represented by a zig-zag, represented as follows for i = 2

a2,0
� // d(a2,0) = δ(a1,1)

a1,1
_

OO

� // d(a1,1) = δ(a0,2)

a0,2
_

OO

Naturally, we divide out by “trivial” zig-zags, namely the submodule generated by
elements of the form (0, . . . , 0,−δ(at+1,t−i), d(at+1,t−i), 0, . . . , 0). Note that there
are canonical homomorphisms

Hi(A)→ Hi(R(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of a0,i

and
Hi(A)→ Hi(U(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of ai,0

First we show that these maps are surjective. Suppose that r ∈ Hi(R(A)•). Let
r ∈ R(A)i be a cocycle representing the class of r. Let a0,i ∈ A0,i be an element
which maps to r. Because δ(r) = 0, we see that δ(a0,i) is in the image of d. Hence
there exists an element a1,i−1 ∈ A1,i−1 such that d(a1,i−1) = δ(a0,i). This in turn
implies that δ(a1,i−1) is in the kernel of d (because d(δ(a1,i−1)) = δ(d(a1,i−1)) =
δ(δ(a0,i)) = 0. By exactness of the rows we find an element a2,i−2 such that
d(a2,i−2) = δ(a1,i−1). And so on until a full zig-zag is found. Of course surjectivity
of Hi → Hi(U(A)) is shown similarly.
To prove injectivity we argue in exactly the same way. Namely, suppose we are
given a zig-zag (ai,0, ai−1,1, . . . , a0,i) which maps to zero in Hi(R(A)•). This means
that a0,i maps to an element of Coker(Ai,1 → Ai,0) which is in the image of δ :
Coker(Ai+1,1 → Ai+1,0)→ Coker(Ai,1 → Ai,0). In other words, a0,i is in the image
of δ⊕d : A0,i+1⊕A1,i → A0,i. From the definition of trivial zig-zags we see that we
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may modify our zig-zag by a trivial one and assume that a0,i = 0. This immediately
implies that d(a1,i−1) = 0. As the rows are exact this implies that a1,i−1 is in the
image of d : A2,i−1 → A1,i−1. Thus we may modify our zig-zag once again by a
trivial zig-zag and assume that our zig-zag looks like (ai,0, ai−1,1, . . . , a2,i−2, 0, 0).
Continuing like this we obtain the desired injectivity.

If Φ : (A•,•, d, δ) → (B•,•, d, δ) is a morphism of double complexes both of which
satisfy the conditions of the lemma, then we clearly obtain a commutative diagram

Hi(U(A)•)

��

Hi(A) //oo

��

Hi(R(A)•)

��
Hi(U(B)•) Hi(B) //oo Hi(R(B)•)

This proves the functoriality. □

Remark 75.4.00M2 The isomorphism constructed above is the “correct” one only up
to signs. A good part of homological algebra is concerned with choosing signs for
various maps and showing commutativity of diagrams with intervention of suitable
signs. For the moment we will simply use the isomorphism as given in the proof
above, and worry about signs later.

Lemma 75.5.00M3 Let R be a ring. For any i ≥ 0 the functors ModR×ModR → ModR,
(M,N) 7→ TorRi (M,N) and (M,N) 7→ TorRi (N,M) are canonically isomorphic.

Proof. Let F• be a free resolution of the module M and let G• be a free resolution
of the module N . Consider the double complex (Ai,j , d, δ) defined as follows:

(1) set Ai,j = Fi ⊗R Gj ,
(2) set di,j : Fi ⊗R Gj → Fi−1 ⊗Gj equal to dF,i ⊗ id, and
(3) set δi,j : Fi ⊗R Gj → Fi ⊗Gj−1 equal to id⊗ dG,j .

This double complex is usually simply denoted F• ⊗R G•.

Since each Gj is free, and hence flat we see that each row of the double complex is
exact except in homological degree 0. Since each Fi is free and hence flat we see
that each column of the double complex is exact except in homological degree 0.
Hence the double complex satisfies the conditions of Lemma 75.3.

To see what the lemma says we compute R(A)• and U(A)•. Namely,

R(A)i = Coker(A1,i → A0,i)
= Coker(F1 ⊗R Gi → F0 ⊗R Gi)
= Coker(F1 → F0)⊗R Gi
= M ⊗R Gi

In fact these isomorphisms are compatible with the differentials δ and we see that
R(A)• = M ⊗RG• as homological complexes. In exactly the same way we see that
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U(A)• = F• ⊗R N . We get

TorRi (M,N) = Hi(F• ⊗R N)
= Hi(U(A)•)
= Hi(R(A)•)
= Hi(M ⊗R G•)
= Hi(G• ⊗RM)
= TorRi (N,M)

Here the third equality is Lemma 75.3, and the fifth equality uses the isomorphism
V ⊗W = W ⊗ V of the tensor product.
Functoriality. Suppose that we have R-modules Mν , Nν , ν = 1, 2. Let φ : M1 →
M2 and ψ : N1 → N2 be morphisms of R-modules. Suppose that we have free
resolutions Fν,• for Mν and free resolutions Gν,• for Nν . By Lemma 71.4 we may
choose maps of complexes α : F1,• → F2,• and β : G1,• → G2,• compatible with φ
and ψ. We claim that the pair (α, β) induces a morphism of double complexes

α⊗ β : F1,• ⊗R G1,• −→ F2,• ⊗R G2,•

This is really a very straightforward check using the rule that F1,i⊗RG1,j → F2,i⊗R
G2,j is given by αi ⊗ βj where αi, resp. βj is the degree i, resp. j component of α,
resp. β. The reader also readily verifies that the induced maps R(F1,•⊗RG1,•)• →
R(F2,•⊗RG2,•)• agrees with the map M1⊗RG1,• →M2⊗RG2,• induced by φ⊗β.
Similarly for the map induced on the U(−)• complexes. Thus the statement on
functoriality follows from the statement on functoriality in Lemma 75.3. □

Remark 75.6.00M4 An interesting case occurs when M = N in the above. In this case
we get a canonical map TorRi (M,M)→ TorRi (M,M). Note that this map is not the
identity, because even when i = 0 this map is not the identity! For example, if V is
a vector space of dimension n over a field, then the switch map V ⊗k V → V ⊗k V
has (n2 + n)/2 eigenvalues +1 and (n2 − n)/2 eigenvalues −1. In characteristic 2
it is not even diagonalizable. Note that even changing the sign of the map will not
get rid of this.

Lemma 75.7.0AZ4 Let R be a Noetherian ring. Let M , N be finite R-modules. Then
TorRp (M,N) is a finite R-module for all p.

Proof. This holds because TorRp (M,N) is computed as the cohomology groups of
a complex F• ⊗R N with each Fn a finite free R-module, see Lemma 71.1. □

Lemma 75.8.00M5 Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) The module M is flat over R.
(2) For all i > 0 the functor TorRi (M,−) is zero.
(3) The functor TorR1 (M,−) is zero.
(4) For all ideals I ⊂ R we have TorR1 (M,R/I) = 0.
(5) For all finitely generated ideals I ⊂ R we have TorR1 (M,R/I) = 0.

Proof. Suppose M is flat. Let N be an R-module. Let F• be a free resolution of
N . Then F• ⊗RM is a resolution of N ⊗RM , by flatness of M . Hence all higher
Tor groups vanish.
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It now suffices to show that the last condition implies that M is flat. Let I ⊂ R
be an ideal. Consider the short exact sequence 0 → I → R → R/I → 0. Apply
Lemma 75.2. We get an exact sequence

TorR1 (M,R/I)→M ⊗R I →M ⊗R R→M ⊗R R/I → 0
Since obviously M ⊗R R = M we conclude that the last hypothesis implies that
M ⊗R I → M is injective for every finitely generated ideal I. Thus M is flat by
Lemma 39.5. □

Remark 75.9.00M6 The proof of Lemma 75.8 actually shows that

TorR1 (M,R/I) = Ker(I ⊗RM →M).

76. Functorialities for Tor

00M7 In this section we briefly discuss the functoriality of Tor with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given a ring map R → R′, an R-module M and an R′-module N ′ the
R-modules TorRi (M,N ′) have a natural R′-module structure.

(2) Given a ring map R→ R′ and R-modulesM , N there is a natural R-module
map TorRi (M,N)→ TorR

′

i (M ⊗R R′, N ⊗R R′).
(3) Given a ring map R → R′ an R-module M and an R′-module N ′ there

exists a natural R′-module map TorRi (M,N ′)→ TorR
′

i (M ⊗R R′, N ′).

Lemma 76.1.00M8 Given a flat ring map R → R′ and R-modules M , N the natural
R-module map TorRi (M,N)⊗RR′ → TorR

′

i (M ⊗RR′, N ⊗RR′) is an isomorphism
for all i.

Proof. Omitted. This is true because a free resolution F• of M over R stays exact
when tensoring with R′ over R and hence (F•⊗RN)⊗RR′ computes the Tor groups
over R′. □

The following lemma does not seem to fit anywhere else.

Lemma 76.2.0BNF Let R be a ring. Let M = colimMi be a filtered colimit of R-
modules. Let N be an R-module. Then TorRn (M,N) = colim TorRn (Mi, N) for all
n.

Proof. Choose a free resolution F• of N . Then F• ⊗R M = colimF• ⊗R Mi as
complexes by Lemma 12.9. Thus the result by Lemma 8.8. □

77. Projective modules

05CD Some lemmas on projective modules.

Definition 77.1.05CE Let R be a ring. An R-module P is projective if and only if the
functor HomR(P,−) : ModR → ModR is an exact functor.

The functor HomR(M,−) is left exact for any R-module M , see Lemma 10.1.
Hence the condition for P to be projective really signifies that given a surjection of
R-modules N → N ′ the map HomR(P,N)→ HomR(P,N ′) is surjective.

Lemma 77.2.05CF Let R be a ring. Let P be an R-module. The following are equiv-
alent
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(1) P is projective,
(2) P is a direct summand of a free R-module, and
(3) Ext1

R(P,M) = 0 for every R-module M .

Proof. Assume P is projective. Choose a surjection π : F → P where F is a free
R-module. As P is projective there exists a i ∈ HomR(P, F ) such that π ◦ i = idP .
In other words F ∼= Ker(π)⊕ i(P ) and we see that P is a direct summand of F .

Conversely, assume that P ⊕Q = F is a free R-module. Note that the free module
F =

⊕
i∈I R is projective as HomR(F,M) =

∏
i∈IM and the functor M 7→

∏
i∈IM

is exact. Then HomR(F,−) = HomR(P,−)×HomR(Q,−) as functors, hence both
P and Q are projective.

Assume P ⊕ Q = F is a free R-module. Then we have a free resolution F• of the
form

. . . F
a−→ F

b−→ F → P → 0
where the maps a, b alternate and are equal to the projector onto P and Q. Hence
the complex HomR(F•,M) is split exact in degrees ≥ 1, whence we see the vanishing
in (3).

Assume Ext1
R(P,M) = 0 for every R-module M . Pick a free resolution F• → P .

Set M = Im(F1 → F0) = Ker(F0 → P ). Consider the element ξ ∈ Ext1
R(P,M)

given by the class of the quotient map π : F1 → M . Since ξ is zero there exists a
map s : F0 →M such that π = s ◦ (F1 → F0). Clearly, this means that

F0 = Ker(s)⊕Ker(F0 → P ) = P ⊕Ker(F0 → P )

and we win. □

Lemma 77.3.0G8T Let R be a Noetherian ring. Let P be a finite R-module. If
Ext1

R(P,M) = 0 for every finite R-module M , then P is projective.

This lemma can be strengthened: There is a version for finitely presentedR-modules
if R is not assumed Noetherian. There is a version with M running through all
finite length modules in the Noetherian case.

Proof. Choose a surjection R⊕n → P with kernel M . Since Ext1
R(P,M) = 0 this

surjection is split and we conclude by Lemma 77.2. □

Lemma 77.4.065Q A direct sum of projective modules is projective.

Proof. This is true by the characterization of projectives as direct summands of
free modules in Lemma 77.2. □

Lemma 77.5.07LV Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let P be a projective
R/I-module. Then there exists a projective R-module P such that P/IP ∼= P .

Proof. By Lemma 77.2 we can choose a set A and a direct sum decomposition⊕
α∈AR/I = P ⊕ K for some R/I-module K. Write F =

⊕
α∈AR for the free

R-module on A. Choose a lift p : F → F of the projector p associated to the
direct summand P of

⊕
α∈AR/I. Note that p2 − p ∈ EndR(F ) is a nilpotent

endomorphism of F (as I is nilpotent and the matrix entries of p2 − p are in I;
more precisely, if In = 0, then (p2−p)n = 0). Hence by Lemma 32.7 we can modify
our choice of p and assume that p is a projector. Set P = Im(p). □
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Lemma 77.6.0D47 Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let P be a
finite projective R/I-module. Then there exists a finite projective R-module P such
that P/IP ∼= P .

Proof. Recall that P is a direct summand of a free R/I-module
⊕

α∈AR/I by
Lemma 77.2. As P is finite, it follows that P is contained in

⊕
α∈A′ R/I for

some A′ ⊂ A finite. Hence we may assume we have a direct sum decomposition
(R/I)⊕n = P ⊕K for some n and some R/I-module K. Choose a lift p ∈ Mat(n×
n,R) of the projector p associated to the direct summand P of (R/I)⊕n. Note that
p2− p ∈ Mat(n×n,R) is nilpotent: as I is locally nilpotent and the matrix entries
cij of p2 − p are in I we have ctij = 0 for some t > 0 and then (p2 − p)tn2 = 0 (by
looking at the matrix coefficients). Hence by Lemma 32.7 we can modify our choice
of p and assume that p is a projector. Set P = Im(p). □

Lemma 77.7.05CG Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) I is nilpotent,
(2) M/IM is a projective R/I-module,
(3) M is a flat R-module.

Then M is a projective R-module.

Proof. By Lemma 77.5 we can find a projective R-module P and an isomorphism
P/IP →M/IM . We are going to show that M is isomorphic to P which will finish
the proof. Because P is projective we can lift the map P → P/IP →M/IM to an
R-module map P →M which is an isomorphism modulo I. Since In = 0 for some
n, we can use the filtrations

0 = InM ⊂ In−1M ⊂ . . . ⊂ IM ⊂M
0 = InP ⊂ In−1P ⊂ . . . ⊂ IP ⊂ P

to see that it suffices to show that the induced maps IaP/Ia+1P → IaM/Ia+1M
are bijective. Since both P and M are flat R-modules we can identify this with the
map

Ia/Ia+1 ⊗R/I P/IP −→ Ia/Ia+1 ⊗R/I M/IM

induced by P → M . Since we chose P → M such that the induced map P/IP →
M/IM is an isomorphism, we win. □

78. Finite projective modules

00NV
Definition 78.1.00NW Let R be a ring and M an R-module.

(1) We say that M is locally free if we can cover Spec(R) by standard opens
D(fi), i ∈ I such that Mfi

is a free Rfi
-module for all i ∈ I.

(2) We say that M is finite locally free if we can choose the covering such that
each Mfi is finite free.

(3) We say that M is finite locally free of rank r if we can choose the covering
such that each Mfi is isomorphic to R⊕r

fi
.

Note that a finite locally free R-module is automatically finitely presented by
Lemma 23.2. Moreover, if M is a finite locally free module of rank r over a ring
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R and if R is nonzero, then r is uniquely determined by Lemma 15.8 (because at
least one of the localizations Rfi is a nonzero ring).

Lemma 78.2.00NX Let R be a ring and let M be an R-module. The following are
equivalent

(1) M is finitely presented and R-flat,
(2) M is finite projective,
(3) M is a direct summand of a finite free R-module,
(4) M is finitely presented and for all p ∈ Spec(R) the localization Mp is free,
(5) M is finitely presented and for all maximal ideals m ⊂ R the localization

Mm is free,
(6) M is finite and locally free,
(7) M is finite locally free, and
(8) M is finite, for every prime p the module Mp is free, and the function

ρM : Spec(R)→ Z, p 7−→ dimκ(p) M ⊗R κ(p)
is locally constant in the Zariski topology.

Proof. First suppose M is finite projective, i.e., (2) holds. Take a surjection Rn →
M and let K be the kernel. Since M is projective, 0→ K → Rn →M → 0 splits.
Hence (2) ⇒ (3). The implication (3) ⇒ (2) follows from the fact that a direct
summand of a projective is projective, see Lemma 77.2.
Assume (3), so we can write K ⊕M ∼= R⊕n. So K is a direct summand of Rn and
thus finitely generated. This shows M = R⊕n/K is finitely presented. In other
words, (3) ⇒ (1).
Assume M is finitely presented and flat, i.e., (1) holds. We will prove that (7)
holds. Pick any prime p and x1, . . . , xr ∈ M which map to a basis of M ⊗R κ(p).
By Nakayama’s lemma (in the form of Lemma 20.2) these elements generate Mg

for some g ∈ R, g ̸∈ p. The corresponding surjection φ : R⊕r
g → Mg has the

following two properties: (a) Ker(φ) is a finite Rg-module (see Lemma 5.3) and
(b) Ker(φ) ⊗ κ(p) = 0 by flatness of Mg over Rg (see Lemma 39.12). Hence by
Nakayama’s lemma again there exists a g′ ∈ Rg such that Ker(φ)g′ = 0. In other
words, Mgg′ is free.
A finite locally free module is a finite module, see Lemma 23.2, hence (7) ⇒ (6).
It is clear that (6) ⇒ (7) and that (7) ⇒ (8).
A finite locally free module is a finitely presented module, see Lemma 23.2, hence
(7) ⇒ (4). Of course (4) implies (5). Since we may check flatness locally (see
Lemma 39.18) we conclude that (5) implies (1). At this point we have

(2) ks +3 (3) +3 (1) +3 (7) ks +3

�$��

(6)

(5)

KS

(4)ks (8)

Suppose that M satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. It
suffices to show that M is projective. We have to show that HomR(M,−) is exact.
Let 0 → N ′′ → N → N ′ → 0 be a short exact sequence of R-module. We have to
show that 0→ HomR(M,N ′′)→ HomR(M,N)→ HomR(M,N ′)→ 0 is exact. As
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M is finite locally free there exist a covering Spec(R) =
⋃
D(fi) such that Mfi

is
finite free. By Lemma 10.2 we see that

0→ HomR(M,N ′′)fi
→ HomR(M,N)fi

→ HomR(M,N ′)fi
→ 0

is equal to 0→ HomRfi
(Mfi

, N ′′
fi

)→ HomRfi
(Mfi

, Nfi
)→ HomRfi

(Mfi
, N ′

fi
)→ 0

which is exact as Mfi is free and as the localization 0 → N ′′
fi
→ Nfi → N ′

fi
→ 0

is exact (as localization is exact). Whence we see that 0 → HomR(M,N ′′) →
HomR(M,N)→ HomR(M,N ′)→ 0 is exact by Lemma 23.2.

Finally, assume that (8) holds. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M
which map to a κ(m)-basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r.
By Nakayama’s Lemma 20.1 there exists an f ∈ R, f ̸∈ m such that x1, . . . , xr
generate Mf over Rf . By the assumption that ρM is locally constant there exists
a g ∈ R, g ̸∈ m such that ρM is constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7)
holds. To see the claim it suffices to show that the induced map on localizations
Ψp : R⊕r

p → Mp is an isomorphism for all p ∈ D(fg), see Lemma 23.1. By our
choice of f the map Ψp is surjective. By assumption (8) we have Mp

∼= R
⊕ρM (p)
p

and by our choice of g we have ρM (p) = r. Hence Ψp determines a surjection
R⊕r

p →Mp
∼= R⊕r

p whence is an isomorphism by Lemma 16.4. (Of course this last
fact follows from a simple matrix argument also.) □

Lemma 78.3.0FWG Let R be a reduced ring and let M be an R-module. Then the
equivalent conditions of Lemma 78.2 are also equivalent to

(9) M is finite and the function ρM : Spec(R)→ Z, p 7→ dimκ(p) M ⊗R κ(p) is
locally constant in the Zariski topology.

Proof. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M which map to a κ(m)-
basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r. By Nakayama’s Lemma
20.1 there exists an f ∈ R, f ̸∈ m such that x1, . . . , xr generate Mf over Rf . By
the assumption that ρM is locally constant there exists a g ∈ R, g ̸∈ m such that
ρM is constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that
(7) holds. Since Ψ is surjective, it suffices to show that Ψ is injective. Since Rfg
is reduced, it suffices to show that Ψ is injective after localization at all minimal
primes p of Rfg, see Lemma 25.2. However, we know that Rp = κ(p) by Lemma
25.1 and ρM (p) = r hence Ψp : R⊕r

p →M⊗Rκ(p) is an isomorphism as a surjective
map of finite dimensional vector spaces of the same dimension. □

Remark 78.4.00NY It is not true that a finite R-module which is R-flat is automat-
ically projective. A counter example is where R = C∞(R) is the ring of infinitely
differentiable functions on R, and M = Rm = R/I where m = {f ∈ R | f(0) = 0}
and I = {f ∈ R | ∃ϵ, ϵ > 0 : f(x) = 0 ∀x, |x| < ϵ}.

Lemma 78.5.00NZ (Warning: see Remark 78.4.) Suppose R is a local ring, and M is
a finite flat R-module. Then M is finite free.
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Proof. Follows from the equational criterion of flatness, see Lemma 39.11. Namely,
suppose that x1, . . . , xr ∈ M map to a basis of M/mM . By Nakayama’s Lemma
20.1 these elements generate M . We want to show there is no relation among the
xi. Instead, we will show by induction on n that if x1, . . . , xn ∈ M are linearly
independent in the vector space M/mM then they are independent over R.
The base case of the induction is where we have x ∈ M , x ̸∈ mM and a relation
fx = 0. By the equational criterion there exist yj ∈ M and aj ∈ R such that
x =

∑
ajyj and faj = 0 for all j. Since x ̸∈ mM we see that at least one aj is a

unit and hence f = 0.
Suppose that

∑
fixi is a relation among x1, . . . , xn. By our choice of xi we have

fi ∈ m. According to the equational criterion of flatness there exist aij ∈ R and
yj ∈ M such that xi =

∑
aijyj and

∑
fiaij = 0. Since xn ̸∈ mM we see that

anj ̸∈ m for at least one j. Since
∑
fiaij = 0 we get fn =

∑n−1
i=1 (−aij/anj)fi. The

relation
∑
fixi = 0 now can be rewritten as

∑n−1
i=1 fi(xi+(−aij/anj)xn) = 0. Note

that the elements xi + (−aij/anj)xn map to n− 1 linearly independent elements of
M/mM . By induction assumption we get that all the fi, i ≤ n− 1 have to be zero,
and also fn =

∑n−1
i=1 (−aij/anj)fi. This proves the induction step. □

Lemma 78.6.00O1 Let R → S be a flat local homomorphism of local rings. Let M
be a finite R-module. Then M is finite projective over R if and only if M ⊗R S is
finite projective over S.

Proof. By Lemma 78.2 being finite projective over a local ring is the same thing as
being finite free. Suppose that M ⊗R S is a finite free S-module. Pick x1, . . . , xr ∈
M whose images in M/mRM form a basis over κ(m). Then we see that x1 ⊗
1, . . . , xr ⊗ 1 are a basis for M ⊗R S. This implies that the map R⊕r →M, (ai) 7→∑
aixi becomes an isomorphism after tensoring with S. By faithful flatness of

R→ S, see Lemma 39.17 we see that it is an isomorphism. □

Lemma 78.7.02M9 Let R be a semi-local ring. Let M be a finite locally free module. If
M has constant rank, then M is free. In particular, if R has connected spectrum,
then M is free.

Proof. Omitted. Hints: First show that M/miM has the same dimension d for all
maximal ideal m1, . . . ,mn of R using the rank is constant. Next, show that there
exist elements x1, . . . , xd ∈M which form a basis for each M/miM by the Chinese
remainder theorem. Finally show that x1, . . . , xd is a basis for M . □

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 78.8.03C1 Let R be a local ring with maximal ideal m and infinite residue
field. Let R → S be a ring map. Let M be an S-module and let N ⊂ M be an
R-submodule. Assume

(1) S is semi-local and mS is contained in the Jacobson radical of S,
(2) M is a finite free S-module, and
(3) N generates M as an S-module.

Then N contains an S-basis of M .

Proof. Assume M is free of rank n. Let I ⊂ S be the Jacobson radical. By
Nakayama’s Lemma 20.1 a sequence of elements m1, . . . ,mn is a basis for M if and
only if mi ∈ M/IM generate M/IM . Hence we may replace M by M/IM , N by
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N/(N ∩ IM), R by R/m, and S by S/IS. In this case we see that S is a finite
product of fields S = k1× . . .×kr and M = k⊕n

1 × . . .×k⊕n
r . The fact that N ⊂M

generates M as an S-module means that there exist xj ∈ N such that a linear
combination

∑
ajxj with aj ∈ S has a nonzero component in each factor k⊕n

i .
Because R = k is an infinite field, this means that also some linear combination
y =

∑
cjxj with cj ∈ k has a nonzero component in each factor. Hence y ∈ N

generates a free direct summand Sy ⊂ M . By induction on n the result holds for
M/Sy and the submodule N = N/(N ∩ Sy). In other words there exist y2, . . . , yn
in N which (freely) generate M/Sy. Then y, y2, . . . , yn (freely) generate M and we
win. □

Lemma 78.9.0DVB Let R be ring. Let L, M , N be R-modules. The canonical map
HomR(M,N)⊗R L→ HomR(M,N ⊗R L)

is an isomorphism if M is finite projective.

Proof. By Lemma 78.2 we see that M is finitely presented as well as finite locally
free. By Lemmas 10.2 and 12.16 formation of the left and right hand side of the
arrow commutes with localization. We may check that our map is an isomorphism
after localization, see Lemma 23.2. Thus we may assume M is finite free. In this
case the lemma is immediate. □

79. Open loci defined by module maps

05GD The set of primes where a given module map is surjective, or an isomorphism is
sometimes open. In the case of finite projective modules we can look at the rank
of the map.

Lemma 79.1.05GE Let R be a ring. Let φ : M → N be a map of R-modules with N a
finite R-module. Then we have the equality

U = {p ⊂ R | φp : Mp → Np is surjective}
= {p ⊂ R | φ⊗ κ(p) : M ⊗ κ(p)→ N ⊗ κ(p) is surjective}

and U is an open subset of Spec(R). Moreover, for any f ∈ R such that D(f) ⊂ U
the map Mf → Nf is surjective.

Proof. The equality in the displayed formula follows from Nakayama’s lemma.
Nakayama’s lemma also implies that U is open. See Lemma 20.1 especially part
(3). If D(f) ⊂ U , then Mf → Nf is surjective on all localizations at primes of Rf ,
and hence it is surjective by Lemma 23.1. □

Lemma 79.2.05GF Let R be a ring. Let φ : M → N be a map of R-modules with M
finite and N finitely presented. Then

U = {p ⊂ R | φp : Mp → Np is an isomorphism}
is an open subset of Spec(R).

Proof. Let p ∈ U . Pick a presentation N = R⊕n/
∑
j=1,...,mRkj . Denote ei the

image in N of the ith basis vector of R⊕n. For each i ∈ {1, . . . , n} choose an
element mi ∈ Mp such that φ(mi) = fiei for some fi ∈ R, fi ̸∈ p. This is possible
as φp is an isomorphism. Set f = f1 . . . fn and let ψ : R⊕n

f → Mf be the map
which maps the ith basis vector to mi/fi. Note that φf ◦ ψ is the localization at
f of the given map R⊕n → N . As φp is an isomorphism we see that ψ(kj) is an
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element of M which maps to zero in Mp. Hence we see that there exist gj ∈ R,
gj ̸∈ p such that gjψ(kj) = 0. Setting g = g1 . . . gm, we see that ψg factors through
Nfg to give a map χ : Nfg → Mfg. By construction χ is a right inverse to φfg.
It follows that χp is an isomorphism. By Lemma 79.1 there is an h ∈ R, h ̸∈ p
such that χh : Nfgh →Mfgh is surjective. Hence φfgh and χh are mutually inverse
maps, which implies that D(fgh) ⊂ U as desired. □

Lemma 79.3.0GWM Let R be a ring. Let p ⊂ R be a prime. Let M be a finitely
presented R-module. If Mp is free, then there is an f ∈ R, f ̸∈ p such that Mf is
a free Rf -module.

Proof. Choose a basis x1, . . . , xn ∈ Mp. We can choose an f ∈ R, f ̸∈ p such
that xi is the image of some yi ∈ Mf . After replacing yi by fmyi for m ≫ 0 we
may assume yi ∈ M . Namely, this replaces x1, . . . , xn by fmx1, . . . , f

mxn which
is still a basis as f maps to a unit in Rp. Hence we obtain a homomorphism φ =
(y1, . . . , yn) : R⊕n → M of R-modules whose localization at p is an isomorphism.
By Lemma 79.2 we can find an f ∈ R, f ̸∈ p such that φq is an isomorphism for
all primes q ⊂ R with f ̸∈ q. Then it follows from Lemma 23.1 that φf is an
isomorphism and the proof is complete. □

Lemma 79.4.00O0 Let R be a ring. Let φ : P1 → P2 be a map of finite projective
modules. Then

(1) The set U of primes p ∈ Spec(R) such that φ ⊗ κ(p) is injective is open
and for any f ∈ R such that D(f) ⊂ U we have
(a) P1,f → P2,f is injective, and
(b) the module Coker(φ)f is finite projective over Rf .

(2) The set W of primes p ∈ Spec(R) such that φ ⊗ κ(p) is surjective is open
and for any f ∈ R such that D(f) ⊂W we have
(a) P1,f → P2,f is surjective, and
(b) the module Ker(φ)f is finite projective over Rf .

(3) The set V of primes p ∈ Spec(R) such that φ⊗ κ(p) is an isomorphism is
open and for any f ∈ R such that D(f) ⊂ V the map φ : P1,f → P2,f is an
isomorphism of modules over Rf .

Proof. To prove the set U is open we may work locally on Spec(R). Thus we may
replace R by a suitable localization and assume that P1 = Rn1 and P2 = Rn2 , see
Lemma 78.2. In this case injectivity of φ⊗ κ(p) is equivalent to n1 ≤ n2 and some
n1 × n1 minor f of the matrix of φ being invertible in κ(p). Thus D(f) ⊂ U . This
argument also shows that P1,p → P2,p is injective for p ∈ U .
Now suppose D(f) ⊂ U . By the remark in the previous paragraph and Lemma
23.1 we see that P1,f → P2,f is injective, i.e., (1)(a) holds. By Lemma 78.2 to prove
(1)(b) it suffices to prove that Coker(φ) is finite projective locally on D(f). Thus,
as we saw above, we may assume that P1 = Rn1 and P2 = Rn2 and that some
minor of the matrix of φ is invertible in R. If the minor in question corresponds to
the first n1 basis vectors of Rn2 , then using the last n2 − n1 basis vectors we get a
map Rn2−n1 → Rn2 → Coker(φ) which is easily seen to be an isomorphism.
Openness of W and (2)(a) for D(f) ⊂ W follow from Lemma 79.1. Since P2,f is
projective over Rf we see that φf : P1,f → P2,f has a section and it follows that
Ker(φ)f is a direct summand of P2,f . Therefore Ker(φ)f is finite projective. Thus
(2)(b) holds as well.
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It is clear that V = U ∩W is open and the other statement in (3) follows from
(1)(a) and (2)(a). □

80. Faithfully flat descent for projectivity of modules

058B In the next few sections we prove, following Raynaud and Gruson [GR71], that the
projectivity of modules descends along faithfully flat ring maps. The idea of the
proof is to use dévissage à la Kaplansky [Kap58] to reduce to the case of countably
generated modules. Given a well-behaved filtration of a module M , dévissage allows
us to express M as a direct sum of successive quotients of the filtering submodules
(see Section 84). Using this technique, we prove that a projective module is a
direct sum of countably generated modules (Theorem 84.5). To prove descent
of projectivity for countably generated modules, we introduce a “Mittag-Leffler”
condition on modules, prove that a countably generated module is projective if and
only if it is flat and Mittag-Leffler (Theorem 93.3), and then show that the property
of being a Mittag-Leffler module descends (Lemma 95.1). Finally, given an arbitrary
module M whose base change by a faithfully flat ring map is projective, we filter
M by submodules whose successive quotients are countably generated projective
modules, and then by dévissage conclude M is a direct sum of projectives, hence
projective itself (Theorem 95.6).

We note that there is an error in the proof of faithfully flat descent of projectivity
in [GR71]. There, descent of projectivity along faithfully flat ring maps is deduced
from descent of projectivity along a more general type of ring map ([GR71, Example
3.1.4(1) of Part II]). However, the proof of descent along this more general type
of map is incorrect. In [Gru73], Gruson explains what went wrong, although he
does not provide a fix for the case of interest. Patching this hole in the proof of
faithfully flat descent of projectivity comes down to proving that the property of
being a Mittag-Leffler module descends along faithfully flat ring maps. We do this
in Lemma 95.1.

81. Characterizing flatness

058C In this section we discuss criteria for flatness. The main result in this section is
Lazard’s theorem (Theorem 81.4 below), which says that a flat module is the colimit
of a directed system of free finite modules. We remind the reader of the “equational
criterion for flatness”, see Lemma 39.11. It turns out that this can be massaged
into a seemingly much stronger property.

Lemma 81.1.058D Let M be an R-module. The following are equivalent:
(1) M is flat.
(2) If f : Rn → M is a module map and x ∈ Ker(f), then there are module

maps h : Rn → Rm and g : Rm →M such that f = g ◦ h and x ∈ Ker(h).
(3) Suppose f : Rn → M is a module map, N ⊂ Ker(f) any submodule, and

h : Rn → Rm a map such that N ⊂ Ker(h) and f factors through h.
Then given any x ∈ Ker(f) we can find a map h′ : Rn → Rm

′ such that
N +Rx ⊂ Ker(h′) and f factors through h′.

(4) If f : Rn → M is a module map and N ⊂ Ker(f) is a finitely generated
submodule, then there are module maps h : Rn → Rm and g : Rm → M
such that f = g ◦ h and N ⊂ Ker(h).
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Proof. That (1) is equivalent to (2) is just a reformulation of the equational crite-
rion for flatness8. To show (2) implies (3), let g : Rm → M be the map such that
f factors as f = g ◦ h. By (2) find h′′ : Rm → Rm

′ such that h′′ kills h(x) and
g : Rm →M factors through h′′. Then taking h′ = h′′ ◦h works. (3) implies (4) by
induction on the number of generators of N ⊂ Ker(f) in (4). Clearly (4) implies
(2). □

Lemma 81.2.058E Let M be an R-module. Then M is flat if and only if the following
condition holds: if P is a finitely presented R-module and f : P → M a module
map, then there is a free finite R-module F and module maps h : P → F and
g : F →M such that f = g ◦ h.
Proof. This is just a reformulation of condition (4) from Lemma 81.1. □

Lemma 81.3.058F Let M be an R-module. Then M is flat if and only if the following
condition holds: for every finitely presented R-module P , if N →M is a surjective
R-module map, then the induced map HomR(P,N)→ HomR(P,M) is surjective.
Proof. First suppose M is flat. We must show that if P is finitely presented, then
given a map f : P →M , it factors through the map N →M . By Lemma 81.2 the
map f factors through a map F → M where F is free and finite. Since F is free,
this map factors through N →M . Thus f factors through N →M .
Conversely, suppose the condition of the lemma holds. Let f : P → M be a
map from a finitely presented module P . Choose a free module N with a surjection
N →M onto M . Then f factors through N →M , and since P is finitely generated,
f factors through a free finite submodule of N . Thus M satisfies the condition of
Lemma 81.2, hence is flat. □

Theorem 81.4 (Lazard’s theorem).058G Let M be an R-module. Then M is flat if
and only if it is the colimit of a directed system of free finite R-modules.
Proof. A colimit of a directed system of flat modules is flat, as taking directed
colimits is exact and commutes with tensor product. Hence if M is the colimit of
a directed system of free finite modules then M is flat.
For the converse, first recall that any module M can be written as the colimit of
a directed system of finitely presented modules, in the following way. Choose a
surjection f : RI → M for some set I, and let K be the kernel. Let E be the set
of ordered pairs (J,N) where J is a finite subset of I and N is a finitely generated
submodule of RJ ∩ K. Then E is made into a directed partially ordered set by
defining (J,N) ≤ (J ′, N ′) if and only if J ⊂ J ′ and N ⊂ N ′. Define Me = RJ/N
for e = (J,N), and define fee′ : Me → Me′ to be the natural map for e ≤ e′.
Then (Me, fee′) is a directed system and the natural maps fe : Me →M induce an
isomorphism colime∈EMe

∼=−→M .
Now suppose M is flat. Let I = M×Z, write (xi) for the canonical basis of RI , and
take in the above discussion f : RI →M to be the map sending xi to the projection

8In fact, a module map f : Rn → M corresponds to a choice of elements x1, x2, . . . , xn of M
(namely, the images of the standard basis elements e1, e2, . . . , en); furthermore, an element x ∈
Ker(f) corresponds to a relation between these x1, x2, . . . , xn (namely, the relation

∑
i

fixi = 0,
where the fi are the coordinates of x). The module map h (represented as an m × n-matrix)
corresponds to the matrix (aij) from Lemma 39.11, and the yj of Lemma 39.11 are the images of
the standard basis vectors of Rm under g.
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of i onto M . To prove the theorem it suffices to show that the e ∈ E such that Me

is free form a cofinal subset of E. So let e = (J,N) ∈ E be arbitrary. By Lemma
81.2 there is a free finite module F and maps h : RJ/N → F and g : F →M such
that the natural map fe : RJ/N → M factors as RJ/N h−→ F

g−→ M . We are going
to realize F as Me′ for some e′ ≥ e.

Let {b1, . . . , bn} be a finite basis of F . Choose n distinct elements i1, . . . , in ∈ I
such that iℓ /∈ J for all ℓ, and such that the image of xiℓ under f : RI →M equals
the image of bℓ under g : F → M . This is possible since every element of M can
be written as f(xi) for infinitely many distinct i ∈ I (by our choice of I). Now let
J ′ = J ∪ {i1, . . . , in}, and define RJ′ → F by xi 7→ h(xi) for i ∈ J and xiℓ 7→ bℓ for
ℓ = 1, . . . , n. Let N ′ = Ker(RJ′ → F ). Observe:

(1) The square

RJ
′ //� _

��

F

g

��
RI

f
// M

is commutative, hence N ′ ⊂ K = Ker(f);
(2) RJ

′ → F is a surjection onto a free finite module, hence it splits and so N ′

is finitely generated;
(3) J ⊂ J ′ and N ⊂ N ′.

By (1) and (2) e′ = (J ′, N ′) is in E, by (3) e′ ≥ e, and by construction Me′ =
RJ

′
/N ′ ∼= F is free. □

82. Universally injective module maps

058H Next we discuss universally injective module maps, which are in a sense comple-
mentary to flat modules (see Lemma 82.5). We follow Lazard’s thesis [Laz69]; also
see [Lam99].

Definition 82.1.058I Let f : M → N be a map of R-modules. Then f is called
universally injective if for every R-module Q, the map f ⊗R idQ : M ⊗R Q →
N ⊗R Q is injective. A sequence 0→M1 →M2 →M3 → 0 of R-modules is called
universally exact if it is exact and M1 →M2 is universally injective.

Example 82.2.058J Examples of universally exact sequences.
(1) A split short exact sequence is universally exact since tensoring commutes

with taking direct sums.
(2) The colimit of a directed system of universally exact sequences is universally

exact. This follows from the fact that taking directed colimits is exact and
that tensoring commutes with taking colimits. In particular the colimit of
a directed system of split exact sequences is universally exact. We will see
below that, conversely, any universally exact sequence arises in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They
are analogues of criteria for flatness given above. Parts (3)-(6) below correspond,
respectively, to the criteria for flatness given in Lemmas 39.11, 81.1, 81.3, and
Theorem 81.4.
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Theorem 82.3.058K Let
0→M1

f1−→M2
f2−→M3 → 0

be an exact sequence of R-modules. The following are equivalent:
(1) The sequence 0→M1 →M2 →M3 → 0 is universally exact.
(2) For every finitely presented R-module Q, the sequence

0→M1 ⊗R Q→M2 ⊗R Q→M3 ⊗R Q→ 0
is exact.

(3) Given elements xi ∈ M1 (i = 1, . . . , n), yj ∈ M2 (j = 1, . . . ,m), and
aij ∈ R (i = 1, . . . , n, j = 1, . . . ,m) such that for all i

f1(xi) =
∑

j
aijyj ,

there exists zj ∈M1 (j = 1, . . . ,m) such that for all i,

xi =
∑

j
aijzj .

(4) Given a commutative diagram of R-module maps

Rn //

��

Rm

��
M1

f1 // M2

where m and n are integers, there exists a map Rm → M1 making the top
triangle commute.

(5) For every finitely presented R-module P , the R-module map HomR(P,M2)→
HomR(P,M3) is surjective.

(6) The sequence 0→M1 →M2 →M3 → 0 is the colimit of a directed system
of split exact sequences of the form

0→M1 →M2,i →M3,i → 0
where the M3,i are finitely presented.

Proof. Obviously (1) implies (2).
Next we show (2) implies (3). Let f1(xi) =

∑
j aijyj be relations as in (3). Let

(dj) be a basis for Rm, (ei) a basis for Rn, and Rm → Rn the map given by dj 7→∑
i aijei. Let Q be the cokernel of Rm → Rn. Then tensoring Rm → Rn → Q→ 0

by the map f1 : M1 →M2, we get a commutative diagram

M⊕m
1

//

��

M⊕n
1

//

��

M1 ⊗R Q //

��

0

M⊕m
2

// M⊕n
2

// M2 ⊗R Q // 0

where M⊕m
1 →M⊕n

1 is given by

(z1, . . . , zm) 7→ (
∑

j
a1jzj , . . . ,

∑
j
anjzj),

and M⊕m
2 → M⊕n

2 is given similarly. We want to show x = (x1, . . . , xn) ∈ M⊕n
1

is in the image of M⊕m
1 → M⊕n

1 . By (2) the map M1 ⊗Q→ M2 ⊗Q is injective,
hence by exactness of the top row it is enough to show x maps to 0 in M2⊗Q, and
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so by exactness of the bottom row it is enough to show the image of x in M⊕n
2 is

in the image of M⊕m
2 →M⊕n

2 . This is true by assumption.
Condition (4) is just a translation of (3) into diagram form.
Next we show (4) implies (5). Let φ : P →M3 be a map from a finitely presented
R-module P . We must show that φ lifts to a map P →M2. Choose a presentation
of P ,

Rn
g1−→ Rm

g2−→ P → 0.
Using freeness of Rn and Rm, we can construct h2 : Rm →M2 and then h1 : Rn →
M1 such that the following diagram commutes

Rn
g1 //

h1
��

Rm
g2 //

h2
��

P //

φ

��

0

0 // M1
f1 // M2

f2 // M3 // 0.
By (4) there is a map k1 : Rm →M1 such that k1 ◦g1 = h1. Now define h′

2 : Rm →
M2 by h′

2 = h2 − f1 ◦ k1. Then
h′

2 ◦ g1 = h2 ◦ g1 − f1 ◦ k1 ◦ g1 = h2 ◦ g1 − f1 ◦ h1 = 0.
Hence by passing to the quotient h′

2 defines a map φ′ : P →M2 such that φ′ ◦ g2 =
h′

2. In a diagram, we have
Rm

g2 //

h′
2
��

P

φ

��

φ′

||
M2

f2 // M3.

where the top triangle commutes. We claim that φ′ is the desired lift, i.e. that
f2 ◦ φ′ = φ. From the definitions we have

f2 ◦ φ′ ◦ g2 = f2 ◦ h′
2 = f2 ◦ h2 − f2 ◦ f1 ◦ k1 = f2 ◦ h2 = φ ◦ g2.

Since g2 is surjective, this finishes the proof.
Now we show (5) implies (6). Write M3 as the colimit of a directed system of
finitely presented modules M3,i, see Lemma 11.3. Let M2,i be the fiber product of
M3,i and M2 over M3—by definition this is the submodule of M2×M3,i consisting
of elements whose two projections onto M3 are equal. Let M1,i be the kernel of the
projection M2,i →M3,i. Then we have a directed system of exact sequences

0→M1,i →M2,i →M3,i → 0,
and for each i a map of exact sequences

0 // M1,i

��

// M2,i //

��

M3,i

��

// 0

0 // M1 // M2 // M3 // 0
compatible with the directed system. From the definition of the fiber product M2,i,
it follows that the map M1,i → M1 is an isomorphism. By (5) there is a map
M3,i → M2 lifting M3,i → M3, and by the universal property of the fiber product
this gives rise to a section of M2,i →M3,i. Hence the sequences

0→M1,i →M2,i →M3,i → 0
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split. Passing to the colimit, we have a commutative diagram

0 // colimM1,i

∼=
��

// colimM2,i //

��

colimM3,i

∼=
��

// 0

0 // M1 // M2 // M3 // 0

with exact rows and outer vertical maps isomorphisms. Hence colimM2,i →M2 is
also an isomorphism and (6) holds.

Condition (6) implies (1) by Example 82.2 (2). □

The previous theorem shows that a universally exact sequence is always a colimit of
split short exact sequences. If the cokernel of a universally injective map is finitely
presented, then in fact the map itself splits:

Lemma 82.4.058L Let
0→M1 →M2 →M3 → 0

be an exact sequence of R-modules. Suppose M3 is of finite presentation. Then

0→M1 →M2 →M3 → 0

is universally exact if and only if it is split.

Proof. A split short exact sequence is always universally exact, see Example 82.2.
Conversely, if the sequence is universally exact, then by Theorem 82.3 (5) applied
to P = M3, the map M2 →M3 admits a section. □

The following lemma shows how universally injective maps are complementary to
flat modules.

Lemma 82.5.058M Let M be an R-module. Then M is flat if and only if any exact
sequence of R-modules

0→M1 →M2 →M → 0
is universally exact.

Proof. This follows from Lemma 81.3 and Theorem 82.3 (5). □

Example 82.6.058N Non-split and non-flat universally exact sequences.
(1) In spite of Lemma 82.4, it is possible to have a short exact sequence of

R-modules
0→M1 →M2 →M3 → 0

that is universally exact but non-split. For instance, take R = Z, let
M1 =

⊕∞
n=1 Z, let M2 =

∏∞
n=1 Z, and let M3 be the cokernel of the

inclusion M1 → M2. Then M1,M2,M3 are all flat since they are torsion-
free (More on Algebra, Lemma 22.11), so by Lemma 82.5,

0→M1 →M2 →M3 → 0

is universally exact. However there can be no section s : M3 → M2. In
fact, if x is the image of (2, 22, 23, . . .) ∈ M2 in M3, then any module map
s : M3 → M2 must kill x. This is because x ∈ 2nM3 for any n ≥ 1, hence
s(x) is divisible by 2n for all n ≥ 1 and so must be 0.
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(2) In spite of Lemma 82.5, it is possible to have a short exact sequence of
R-modules

0→M1 →M2 →M3 → 0
that is universally exact but with M1,M2,M3 all non-flat. In fact if M is
any non-flat module, just take the split exact sequence

0→M →M ⊕M →M → 0.

For instance over R = Z, take M to be any torsion module.
(3) Taking the direct sum of an exact sequence as in (1) with one as in (2), we

get a short exact sequence of R-modules

0→M1 →M2 →M3 → 0

that is universally exact, non-split, and such that M1,M2,M3 are all non-
flat.

Lemma 82.7.058P Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence of
R-modules, and suppose M2 is flat. Then M1 and M3 are flat.

Proof. Let 0 → N → N ′ → N ′′ → 0 be a short exact sequence of R-modules.
Consider the commutative diagram

M1 ⊗R N //

��

M2 ⊗R N //

��

M3 ⊗R N

��
M1 ⊗R N ′ //

��

M2 ⊗R N ′ //

��

M3 ⊗R N ′

��
M1 ⊗R N ′′ // M2 ⊗R N ′′ // M3 ⊗R N ′′

(we have dropped the 0’s on the boundary). By assumption the rows give short
exact sequences and the arrow M2⊗N →M2⊗N ′ is injective. Clearly this implies
that M1⊗N →M1⊗N ′ is injective and we see that M1 is flat. In particular the left
and middle columns give rise to short exact sequences. It follows from a diagram
chase that the arrow M3 ⊗N →M3 ⊗N ′ is injective. Hence M3 is flat. □

Lemma 82.8.05CH Let R be a ring. Let M →M ′ be a universally injective R-module
map. Then for any R-module N the map M ⊗R N → M ′ ⊗R N is universally
injective.

Proof. Omitted. □

Lemma 82.9.05CI Let R be a ring. A composition of universally injective R-module
maps is universally injective.

Proof. Omitted. □

Lemma 82.10.05CJ Let R be a ring. Let M →M ′ and M ′ →M ′′ be R-module maps.
If their composition M →M ′′ is universally injective, then M →M ′ is universally
injective.

Proof. Omitted. □
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Lemma 82.11.05CK Let R → S be a faithfully flat ring map. Then R → S is uni-
versally injective as a map of R-modules. In particular R ∩ IS = I for any ideal
I ⊂ R.

Proof. Let N be an R-module. We have to show that N → N ⊗R S is injective.
As S is faithfully flat as an R-module, it suffices to prove this after tensoring with
S. Hence it suffices to show that N ⊗R S → N ⊗R S ⊗R S, n ⊗ s 7→ n ⊗ 1 ⊗ s is
injective. This is true because there is a retraction, namely, n⊗s⊗s′ 7→ n⊗ss′. □

Lemma 82.12.05CL Let R→ S be a ring map. Let M →M ′ be a map of S-modules.
The following are equivalent

(1) M →M ′ is universally injective as a map of R-modules,
(2) for each prime q of S the map Mq →M ′

q is universally injective as a map
of R-modules,

(3) for each maximal ideal m of S the map Mm → M ′
m is universally injective

as a map of R-modules,
(4) for each prime q of S the map Mq →M ′

q is universally injective as a map
of Rp-modules, where p is the inverse image of q in R, and

(5) for each maximal ideal m of S the map Mm → M ′
m is universally injective

as a map of Rp-modules, where p is the inverse image of m in R.

Proof. Let N be an R-module. Let q be a prime of S lying over the prime p of R.
Then we have

(M ⊗R N)q = Mq ⊗R N = Mq ⊗Rp
Np.

Moreover, the same thing holds for M ′ and localization is exact. Also, if N is
an Rp-module, then Np = N . Using this the equivalences can be proved in a
straightforward manner.
For example, suppose that (5) holds. Let K = Ker(M ⊗R N → M ′ ⊗R N). By
the remarks above we see that Km = 0 for each maximal ideal m of S. Hence
K = 0 by Lemma 23.1. Thus (1) holds. Conversely, suppose that (1) holds. Take
any q ⊂ S lying over p ⊂ R. Take any module N over Rp. Then by assumption
Ker(M ⊗R N → M ′ ⊗R N) = 0. Hence by the formulae above and the fact that
N = Np we see that Ker(Mq ⊗Rp

N →M ′
q ⊗Rp

N) = 0. In other words (4) holds.
Of course (4) ⇒ (5) is immediate. Hence (1), (4) and (5) are all equivalent. We
omit the proof of the other equivalences. □

Lemma 82.13.05CM Let φ : A → B be a ring map. Let S ⊂ A and S′ ⊂ B be
multiplicative subsets such that φ(S) ⊂ S′. Let M →M ′ be a map of B-modules.

(1) If M →M ′ is universally injective as a map of A-modules, then (S′)−1M →
(S′)−1M ′ is universally injective as a map of A-modules and as a map of
S−1A-modules.

(2) If M and M ′ are (S′)−1B-modules, then M → M ′ is universally injective
as a map of A-modules if and only if it is universally injective as a map of
S−1A-modules.

Proof. You can prove this using Lemma 82.12 but you can also prove it directly as
follows. Assume M →M ′ is A-universally injective. Let Q be an A-module. Then
Q⊗AM → Q⊗AM ′ is injective. Since localization is exact we see that (S′)−1(Q⊗A
M) → (S′)−1(Q ⊗A M ′) is injective. As (S′)−1(Q ⊗A M) = Q ⊗A (S′)−1M and
similarly for M ′ we see that Q ⊗A (S′)−1M → Q ⊗A (S′)−1M ′ is injective, hence

https://stacks.math.columbia.edu/tag/05CK
https://stacks.math.columbia.edu/tag/05CL
https://stacks.math.columbia.edu/tag/05CM


COMMUTATIVE ALGEBRA 196

(S′)−1M → (S′)−1M ′ is universally injective as a map of A-modules. This proves
the first part of (1). To see (2) we can use the following two facts: (a) if Q is an
S−1A-module, then Q⊗AS−1A = Q, i.e., tensoring with Q over A is the same thing
as tensoring with Q over S−1A, (b) if M is any A-module on which the elements
of S are invertible, then M ⊗A Q = M ⊗S−1A S

−1Q. Part (2) follows from this
immediately. □

Lemma 82.14.0AS5 Let R be a ring and let M →M ′ be a map of R-modules. If M ′

is flat, then M → M ′ is universally injective if and only if M/IM → M ′/IM ′ is
injective for every finitely generated ideal I of R.

Proof. It suffices to show that M ⊗R Q → M ′ ⊗R Q is injective for every finite
R-module Q, see Theorem 82.3. Then Q has a finite filtration 0 = Q0 ⊂ Q1 ⊂
. . . ⊂ Qn = Q by submodules whose subquotients are isomorphic to cyclic modules
R/Ii, see Lemma 5.4. Since M ′ is flat, we obtain a filtration

M ⊗Q1 //

��

M ⊗Q2 //

��

. . . // M ⊗Q

��
M ′ ⊗Q1

� � // M ′ ⊗Q2
� � // . . . �

� // M ′ ⊗Q

of M ′⊗RQ by submodules M ′⊗RQi whose successive quotients are M ′⊗RR/Ii =
M ′/IiM

′. A simple induction argument shows that it suffices to check M/IiM →
M ′/IiM

′ is injective. Note that the collection of finitely generated ideals I ′
i ⊂ Ii

is a directed set. Thus M/IiM = colimM/I ′
iM is a filtered colimit, similarly for

M ′, the maps M/I ′
iM → M ′/I ′

iM
′ are injective by assumption, and since filtered

colimits are exact (Lemma 8.8) we conclude. □

83. Descent for finite projective modules

058Q In this section we give an elementary proof of the fact that the property of being a
finite projective module descends along faithfully flat ring maps. The proof does not
apply when we drop the finiteness condition. However, the method is indicative of
the one we shall use to prove descent for the property of being a countably generated
projective module—see the comments at the end of this section.

Lemma 83.1.058R Let M be an R-module. Then M is finite projective if and only if
M is finitely presented and flat.

Proof. This is part of Lemma 78.2. However, at this point we can give a more
elegant proof of the implication (1)⇒ (2) of that lemma as follows. If M is finitely
presented and flat, then take a surjection Rn → M . By Lemma 81.3 applied to
P = M , the map Rn → M admits a section. So M is a direct summand of a free
module and hence projective. □

Here are some properties of modules that descend.

Lemma 83.2.03C4 Let R → S be a faithfully flat ring map. Let M be an R-module.
Then

(1) if the S-module M ⊗R S is of finite type, then M is of finite type,
(2) if the S-module M ⊗R S is of finite presentation, then M is of finite pre-

sentation,
(3) if the S-module M ⊗R S is flat, then M is flat, and
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(4) add more here as needed.

Proof. Assume M ⊗R S is of finite type. Let y1, . . . , ym be generators of M ⊗R S
over S. Write yj =

∑
xi ⊗ fi for some x1, . . . , xn ∈M . Then we see that the map

φ : R⊕n → M has the property that φ⊗ idS : S⊕n → M ⊗R S is surjective. Since
R→ S is faithfully flat we see that φ is surjective, and M is finitely generated.

Assume M ⊗R S is of finite presentation. By (1) we see that M is of finite type.
Choose a surjection R⊕n → M and denote K the kernel. As R → S is flat we see
that K ⊗R S is the kernel of the base change S⊕n → M ⊗R S. As M ⊗R S is of
finite presentation we conclude that K ⊗R S is of finite type. Hence by (1) we see
that K is of finite type and hence M is of finite presentation.

Part (3) is Lemma 39.8. □

Proposition 83.3.058S Let R → S be a faithfully flat ring map. Let M be an R-
module. If the S-module M ⊗R S is finite projective, then M is finite projective.

Proof. Follows from Lemmas 83.1 and 83.2. □

The next few sections are about removing the finiteness assumption by using dévis-
sage to reduce to the countably generated case. In the countably generated case,
the strategy is to find a characterization of countably generated projective modules
analogous to Lemma 83.1, and then to prove directly that this characterization
descends. We do this by introducing the notion of a Mittag-Leffler module and
proving that if a module M is countably generated, then it is projective if and only
if it is flat and Mittag-Leffler (Theorem 93.3). When M is finitely generated, this
statement reduces to Lemma 83.1 (since, according to Example 91.1 (1), a finitely
generated module is Mittag-Leffler if and only if it is finitely presented).

84. Transfinite dévissage of modules

058T In this section we introduce a dévissage technique for decomposing a module into a
direct sum. The main result is that a projective module is a direct sum of countably
generated modules (Theorem 84.5 below). We follow [Kap58].

Definition 84.1.058U Let M be an R-module. A direct sum dévissage of M is a family
of submodules (Mα)α∈S , indexed by an ordinal S and increasing (with respect to
inclusion), such that:

(0) M0 = 0;
(1) M =

⋃
αMα;

(2) if α ∈ S is a limit ordinal, then Mα =
⋃
β<αMβ ;

(3) if α+ 1 ∈ S, then Mα is a direct summand of Mα+1.
If moreover

(4) Mα+1/Mα is countably generated for α+ 1 ∈ S,
then (Mα)α∈S is called a Kaplansky dévissage of M .

The terminology is justified by the following lemma.

Lemma 84.2.058V Let M be an R-module. If (Mα)α∈S is a direct sum dévissage of
M , then M ∼=

⊕
α+1∈SMα+1/Mα.
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Proof. By property (3) of a direct sum dévissage, there is an inclusionMα+1/Mα →
M for each α ∈ S. Consider the map

f :
⊕

α+1∈S
Mα+1/Mα →M

given by the sum of these inclusions. Further consider the restrictions

fβ :
⊕

α+1≤β
Mα+1/Mα −→M

for β ∈ S. Transfinite induction on S shows that the image of fβ is Mβ . For β = 0
this is true by (0). If β+ 1 is a successor ordinal and it is true for β, then it is true
for β + 1 by (3). And if β is a limit ordinal and it is true for α < β, then it is true
for β by (2). Hence f is surjective by (1).

Transfinite induction on S also shows that the restrictions fβ are injective. For
β = 0 it is true. If β+1 is a successor ordinal and fβ is injective, then let x be in the
kernel and write x = (xα+1)α+1≤β+1 in terms of its components xα+1 ∈Mα+1/Mα.
By property (3) and the fact that the image of fβ is Mβ both (xα+1)α+1≤β and
xβ+1 map to 0. Hence xβ+1 = 0 and, by the assumption that the restriction fβ is
injective also xα+1 = 0 for every α + 1 ≤ β. So x = 0 and fβ+1 is injective. If β
is a limit ordinal consider an element x of the kernel. Then x is already contained
in the domain of fα for some α < β. Thus x = 0 which finishes the induction. We
conclude that f is injective since fβ is for each β ∈ S. □

Lemma 84.3.058W Let M be an R-module. Then M is a direct sum of countably
generated R-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the “if” direction. Conversely, suppose M =⊕
i∈I Ni where each Ni is a countably generated R-module. Well-order I so that

we can think of it as an ordinal. Then setting Mi =
⊕

j<iNj gives a Kaplansky
dévissage (Mi)i∈I of M . □

Theorem 84.4.058X Suppose M is a direct sum of countably generated R-modules. If
P is a direct summand of M , then P is also a direct sum of countably generated
R-modules.

Proof. Write M = P ⊕ Q. We are going to construct a Kaplansky dévissage
(Mα)α∈S of M which, in addition to the defining properties (0)-(4), satisfies:

(5) Each Mα is a direct summand of M ;
(6) Mα = Pα ⊕Qα, where Pα = P ∩Mα and Qα = Q ∩Mα.

(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property
(5).)

To see how this implies the theorem, it is enough to show that (Pα)α∈S forms a
Kaplansky dévissage of P . Properties (0), (1), and (2) are clear. By (5) and (6)
for (Mα), each Pα is a direct summand of M . Since Pα ⊂ Pα+1, this implies Pα is
a direct summand of Pα+1; hence (3) holds for (Pα). For (4), note that

Mα+1/Mα
∼= Pα+1/Pα ⊕Qα+1/Qα,

so Pα+1/Pα is countably generated because this is true of Mα+1/Mα.

It remains to construct the Mα. Write M =
⊕

i∈I Ni where each Ni is a countably
generated R-module. Choose a well-ordering of I. By transfinite recursion we are
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going to define an increasing family of submodules Mα of M , one for each ordinal
α, such that Mα is a direct sum of some subset of the Ni.

For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mα =

⋃
β<αMβ . Since each Mβ for β < α is a direct sum of a subset

of the Ni, the same will be true of Mα. If α + 1 is a successor ordinal and Mα

has been defined, then define Mα+1 as follows. If Mα = M , then let Mα+1 = M .
If not, choose the smallest j ∈ I such that Nj is not contained in Mα. We will
construct an infinite matrix (xmn),m, n = 1, 2, 3, . . . such that:

(1) Nj is contained in the submodule of M generated by the entries xmn;
(2) if we write any entry xkℓ in terms of its P - and Q-components, xkℓ =

ykℓ + zkℓ, then the matrix (xmn) contains a set of generators for each Ni
for which ykℓ or zkℓ has nonzero component.

Then we define Mα+1 to be the submodule of M generated by Mα and all xmn;
by property (2) of the matrix (xmn), Mα+1 will be a direct sum of some subset of
the Ni. To construct the matrix (xmn), let x11, x12, x13, . . . be a countable set of
generators for Nj . Then if x11 = y11 + z11 is the decomposition into P - and Q-
components, let x21, x22, x23, . . . be a countable set of generators for the sum of the
Ni for which y11 or z11 have nonzero component. Repeat this process on x12 to get
elements x31, x32, . . ., the third row of our matrix. Repeat on x21 to get the fourth
row, on x13 to get the fifth, and so on, going down along successive anti-diagonals
as indicated below: 

x11 x12
zz

x13
zz

x14
zz

. . .

x21 x22
zz

x23
zz

. . .

x31 x32
zz

. . .

x41 . . .

. . .


.

Transfinite induction on I (using the fact that we constructed Mα+1 to contain Nj
for the smallest j such that Nj is not contained in Mα) shows that for each i ∈ I,
Ni is contained in some Mα. Thus, there is some large enough ordinal S satisfying:
for each i ∈ I there is α ∈ S such that Ni is contained in Mα. This means (Mα)α∈S
satisfies property (1) of a Kaplansky dévissage of M . The family (Mα)α∈S moreover
satisfies the other defining properties, and also (5) and (6) above: properties (0),
(2), (4), and (6) are clear by construction; property (5) is true because each Mα

is by construction a direct sum of some Ni; and (3) is implied by (5) and the fact
that Mα ⊂Mα+1. □

As a corollary we get the result for projective modules stated at the beginning of
the section.

Theorem 84.5.058Y If P is a projective R-module, then P is a direct sum of countably
generated projective R-modules.

Proof. A module is projective if and only if it is a direct summand of a free module,
so this follows from Theorem 84.4. □
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85. Projective modules over a local ring

058Z In this section we prove a very cute result: a projective module M over a local ring
is free (Theorem 85.4 below). Note that with the additional assumption that M is
finite, this result is Lemma 78.5. In general we have:

Lemma 85.1.0590 Let R be a ring. Then every projective R-module is free if and only
if every countably generated projective R-module is free.

Proof. Follows immediately from Theorem 84.5. □

Here is a criterion for a countably generated module to be free.

Lemma 85.2.0591 Let M be a countably generated R-module with the following prop-
erty: if M = N ⊕ N ′ with N ′ a finite free R-module, then any element of N is
contained in a free direct summand of N . Then M is free.

Proof. Let x1, x2, . . . be a countable set of generators for M . We inductively
construct finite free direct summands F1, F2, . . . of M such that for all n we have
that F1 ⊕ . . . ⊕ Fn is a direct summand of M which contains x1, . . . , xn. Namely,
given F1, . . . , Fn with the desired properties, write

M = F1 ⊕ . . .⊕ Fn ⊕N
and let x ∈ N be the image of xn+1. Then we can find a free direct summand
Fn+1 ⊂ N containing x by the assumption in the statement of the lemma. Of course
we can replace Fn+1 by a finite free direct summand of Fn+1 and the induction step
is complete. Then M =

⊕∞
i=1 Fi is free. □

Lemma 85.3.0592 Let P be a projective module over a local ring R. Then any element
of P is contained in a free direct summand of P .

Proof. Since P is projective it is a direct summand of some free R-module F , say
F = P ⊕Q. Let x ∈ P be the element that we wish to show is contained in a free
direct summand of P . Let B be a basis of F such that the number of basis elements
needed in the expression of x is minimal, say x =

∑n
i=1 aiei for some ei ∈ B and

ai ∈ R. Then no aj can be expressed as a linear combination of the other ai; for if
aj =

∑
i ̸=j aibi for some bi ∈ R, then replacing ei by ei + biej for i ̸= j and leaving

unchanged the other elements of B, we get a new basis for F in terms of which x
has a shorter expression.
Let ei = yi + zi, yi ∈ P, zi ∈ Q be the decomposition of ei into its P - and Q-
components. Write yi =

∑n
j=1 bijej+ti, where ti is a linear combination of elements

in B other than e1, . . . , en. To finish the proof it suffices to show that the matrix
(bij) is invertible. For then the map F → F sending ei 7→ yi for i = 1, . . . , n
and fixing B \ {e1, . . . , en} is an isomorphism, so that y1, . . . , yn together with
B \ {e1, . . . , en} form a basis for F . Then the submodule N spanned by y1, . . . , yn
is a free submodule of P ; N is a direct summand of P since N ⊂ P and both N
and P are direct summands of F ; and x ∈ N since x ∈ P implies x =

∑n
i=1 aiei =∑n

i=1 aiyi.
Now we prove that (bij) is invertible. Plugging yi =

∑n
j=1 bijej+ti into

∑n
i=1 aiei =∑n

i=1 aiyi and equating the coefficients of ej gives aj =
∑n
i=1 aibij . But as noted

above, our choice of B guarantees that no aj can be written as a linear combination
of the other ai. Thus bij is a non-unit for i ̸= j, and 1 − bii is a non-unit—so in
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particular bii is a unit—for all i. But a matrix over a local ring having units along
the diagonal and non-units elsewhere is invertible, as its determinant is a unit. □

Theorem 85.4.0593 If P is a projective module over a local ring R, then P is free.

Proof. Follows from Lemmas 85.1, 85.2, and 85.3. □

86. Mittag-Leffler systems

0594 The purpose of this section is to define Mittag-Leffler systems and why this is a
useful notion.
In the following, I will be a directed set, see Categories, Definition 21.1. Let
(Ai, φji : Aj → Ai) be an inverse system of sets or of modules indexed by I, see
Categories, Definition 21.4. This is a directed inverse system as we assumed I
directed (Categories, Definition 21.4). For each i ∈ I, the images φji(Aj) ⊂ Ai
for j ≥ i form a decreasing directed family of subsets (or submodules) of Ai. Let
A′
i =

⋂
j≥i φji(Aj). Then φji(A′

j) ⊂ A′
i for j ≥ i, hence by restricting we get

a directed inverse system (A′
i, φji|A′

j
). From the construction of the limit of an

inverse system in the category of sets or modules, we have limAi = limA′
i. The

Mittag-Leffler condition on (Ai, φji) is that A′
i equals φji(Aj) for some j ≥ i (and

hence equals φki(Ak) for all k ≥ j):

Definition 86.1.0595 Let (Ai, φji) be a directed inverse system of sets over I. Then
we say (Ai, φji) is Mittag-Leffler if for each i ∈ I, the family φji(Aj) ⊂ Ai for j ≥ i
stabilizes. Explicitly, this means that for each i ∈ I, there exists j ≥ i such that
for k ≥ j we have φki(Ak) = φji(Aj). If (Ai, φji) is a directed inverse system of
modules over a ring R, we say that it is Mittag-Leffler if the underlying inverse
system of sets is Mittag-Leffler.

Example 86.2.0596 If (Ai, φji) is a directed inverse system of sets or of modules and
the maps φji are surjective, then clearly the system is Mittag-Leffler. Conversely,
suppose (Ai, φji) is Mittag-Leffler. Let A′

i ⊂ Ai be the stable image of φji(Aj) for
j ≥ i. Then φji|A′

j
: A′

j → A′
i is surjective for j ≥ i and limAi = limA′

i. Hence
the limit of the Mittag-Leffler system (Ai, φji) can also be written as the limit of a
directed inverse system over I with surjective maps.

Lemma 86.3.0597 Let (Ai, φji) be a directed inverse system over I. Suppose I is
countable. If (Ai, φji) is Mittag-Leffler and the Ai are nonempty, then limAi is
nonempty.

Proof. Let i1, i2, i3, . . . be an enumeration of the elements of I. Define inductively
a sequence of elements jn ∈ I for n = 1, 2, 3, . . . by the conditions: j1 = i1, and
jn ≥ in and jn ≥ jm for m < n. Then the sequence jn is increasing and forms a
cofinal subset of I. Hence we may assume I = {1, 2, 3, . . .}. So by Example 86.2 we
are reduced to showing that the limit of an inverse system of nonempty sets with
surjective maps indexed by the positive integers is nonempty. This is obvious. □

The Mittag-Leffler condition will be important for us because of the following ex-
actness property.

Lemma 86.4.0598 Let
0→ Ai

fi−→ Bi
gi−→ Ci → 0

https://stacks.math.columbia.edu/tag/0593
https://stacks.math.columbia.edu/tag/0595
https://stacks.math.columbia.edu/tag/0596
https://stacks.math.columbia.edu/tag/0597
https://stacks.math.columbia.edu/tag/0598
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be an exact sequence of directed inverse systems of abelian groups over I. Suppose
I is countable. If (Ai) is Mittag-Leffler, then

0→ limAi → limBi → limCi → 0

is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need
to prove surjectivity of limBi → limCi. So let (ci) ∈ limCi. For each i ∈ I, let
Ei = g−1

i (ci), which is nonempty since gi : Bi → Ci is surjective. The system of
maps φji : Bj → Bi for (Bi) restrict to maps Ej → Ei which make (Ei) into an
inverse system of nonempty sets. It is enough to show that (Ei) is Mittag-Leffler.
For then Lemma 86.3 would show limEi is nonempty, and taking any element of
limEi would give an element of limBi mapping to (ci).

By the injection fi : Ai → Bi we will regard Ai as a subset of Bi. Since (Ai) is
Mittag-Leffler, if i ∈ I then there exists j ≥ i such that φki(Ak) = φji(Aj) for
k ≥ j. We claim that also φki(Ek) = φji(Ej) for k ≥ j. Always φki(Ek) ⊂ φji(Ej)
for k ≥ j. For the reverse inclusion let ej ∈ Ej , and we need to find xk ∈ Ek such
that φki(xk) = φji(ej). Let e′

k ∈ Ek be any element, and set e′
j = φkj(e′

k). Then
gj(ej − e′

j) = cj − cj = 0, hence ej − e′
j = aj ∈ Aj . Since φki(Ak) = φji(Aj), there

exists ak ∈ Ak such that φki(ak) = φji(aj). Hence

φki(e′
k + ak) = φji(e′

j) + φji(aj) = φji(ej),

so we can take xk = e′
k + ak. □

87. Inverse systems

03C9 In many papers (and in this section) the term inverse system is used to indicate
an inverse system over the partially ordered set (N,≥). We briefly discuss such
systems in this section. This material will be discussed more broadly in Homology,
Section 31. Suppose we are given a ring R and a sequence of R-modules

M1
φ2←−M2

φ3←−M3 ← . . .

with maps as indicated. By composing successive maps we obtain maps φii′ : Mi →
Mi′ whenever i ≥ i′ such that moreover φii′′ = φi′i′′ ◦ φii′ whenever i ≥ i′ ≥ i′′.
Conversely, given the system of maps φii′ we can set φi = φi(i−1) and recover the
maps displayed above. In this case

limMi = {(xi) ∈
∏

Mi | φi(xi) = xi−1, i = 2, 3, . . .}

compare with Categories, Section 15. As explained in Homology, Section 31 this is
actually a limit in the category of R-modules, as defined in Categories, Section 14.

Lemma 87.1.03CA Let R be a ring. Let 0 → Ki → Li → Mi → 0 be short exact
sequences of R-modules, i ≥ 1 which fit into maps of short exact sequences

0 // Ki
// Li // Mi

// 0

0 // Ki+1 //

OO

Li+1 //

OO

Mi+1 //

OO

0

https://stacks.math.columbia.edu/tag/03CA
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If for every i there exists a c = c(i) ≥ i such that Im(Kc → Ki) = Im(Kj → Ki)
for all j ≥ c, then the sequence

0→ limKi → limLi → limMi → 0
is exact.

Proof. This is a special case of the more general Lemma 86.4. □

88. Mittag-Leffler modules

0599 A Mittag-Leffler module is (very roughly) a module which can be written as a
directed limit whose dual is a Mittag-Leffler system. To be able to give a precise
definition we need to do a bit of work.

Definition 88.1.059A Let (Mi, fij) be a directed system of R-modules. We say that
(Mi, fij) is a Mittag-Leffler directed system of modules if each Mi is an R-module
of finite presentation and if for every R-module N , the inverse system

(HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.

We are going to characterize those R-modules that are colimits of Mittag-Leffler
directed systems of modules.

Definition 88.2.059B Let f : M → N and g : M →M ′ be maps of R-modules. Then
we say g dominates f if for anyR-moduleQ, we have Ker(f⊗RidQ) ⊂ Ker(g⊗RidQ).

It is enough to check this condition for finitely presented modules.

Lemma 88.3.059C Let f : M → N and g : M → M ′ be maps of R-modules. Then g
dominates f if and only if for any finitely presented R-module Q, we have Ker(f⊗R
idQ) ⊂ Ker(g ⊗R idQ).

Proof. Suppose Ker(f ⊗R idQ) ⊂ Ker(g⊗R idQ) for all finitely presented modules
Q. If Q is an arbitrary module, write Q = colimi∈I Qi as a colimit of a directed
system of finitely presented modules Qi. Then Ker(f ⊗R idQi

) ⊂ Ker(g ⊗R idQi
)

for all i. Since taking directed colimits is exact and commutes with tensor product,
it follows that Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ). □

Lemma 88.4.0AUM Let f : M → N and g : M →M ′ be maps of R-modules. Consider
the pushout of f and g,

M
f
//

g

��

N

g′

��
M ′ f ′

// N ′

Then g dominates f if and only if f ′ is universally injective.

Proof. Recall that N ′ is M ′ ⊕ N modulo the submodule consisting of elements
(g(x),−f(x)) for x ∈ M . From the construction of N ′ we have a short exact
sequence

0→ Ker(f) ∩Ker(g)→ Ker(f)→ Ker(f ′)→ 0.
Since tensoring commutes with taking pushouts, we have such a short exact se-
quence

0→ Ker(f ⊗ idQ) ∩Ker(g ⊗ idQ)→ Ker(f ⊗ idQ)→ Ker(f ′ ⊗ idQ)→ 0

https://stacks.math.columbia.edu/tag/059A
https://stacks.math.columbia.edu/tag/059B
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for every R-module Q. So f ′ is universally injective if and only if Ker(f ⊗ idQ) ⊂
Ker(g ⊗ idQ) for every Q, if and only if g dominates f . □

The above definition of domination is sometimes related to the usual notion of
domination of maps as the following lemma shows.

Lemma 88.5.059D Let f : M → N and g : M →M ′ be maps of R-modules. Suppose
Coker(f) is of finite presentation. Then g dominates f if and only if g factors
through f , i.e. there exists a module map h : N →M ′ such that g = h ◦ f .

Proof. Consider the pushout of f and g as in the statement of Lemma 88.4. From
the construction of the pushout it follows that Coker(f ′) = Coker(f), so Coker(f ′)
is of finite presentation. Then by Lemma 82.4, f ′ is universally injective if and only
if

0→M ′ f ′

−→ N ′ → Coker(f ′)→ 0
splits. This is the case if and only if there is a map h′ : N ′ → M ′ such that
h′ ◦ f ′ = idM ′ . From the universal property of the pushout, the existence of such
an h′ is equivalent to g factoring through f . □

Proposition 88.6.059E Let M be an R-module. Let (Mi, fij) be a directed system of
finitely presented R-modules, indexed by I, such that M = colimMi. Let fi : Mi →
M be the canonical map. The following are equivalent:

(1) For every finitely presented R-module P and module map f : P →M , there
exists a finitely presented R-module Q and a module map g : P → Q such
that g and f dominate each other, i.e., Ker(f ⊗R idN ) = Ker(g⊗R idN ) for
every R-module N .

(2) For each i ∈ I, there exists j ≥ i such that fij : Mi → Mj dominates
fi : Mi →M .

(3) For each i ∈ I, there exists j ≥ i such that fij : Mi → Mj factors through
fik : Mi →Mk for all k ≥ i.

(4) For every R-module N , the inverse system (HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.

(5) For N =
∏
s∈IMs, the inverse system (HomR(Mi, N),HomR(fij , N)) is

Mittag-Leffler.

Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let
i ∈ I. Corresponding to the map fi : Mi → M , we can choose g : Mi → Q as in
(1). Since Mi and Q are of finite presentation, so is Coker(g). Then by Lemma
88.5, fi : Mi →M factors through g : Mi → Q, say fi = h ◦ g for some h : Q→M .
Then since Q is finitely presented, h factors through Mj → M for some j ≥ i, say
h = fj ◦ h′ for some h′ : Q→Mj . In total we have a commutative diagram

M

Mi

g
  

fi

>>

fij // Mj

fj

aa

Q

h′

>>

Thus fij dominates g. But g dominates fi, so fij dominates fi.

https://stacks.math.columbia.edu/tag/059D
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Conversely, suppose (2) holds. Let P be of finite presentation and f : P → M a
module map. Then f factors through fi : Mi → M for some i ∈ I, say f = fi ◦ g′

for some g′ : P →Mi. Choose by (2) a j ≥ i such that fij dominates fi. We have
a commutative diagram

P

g′

��

f // M

Mi

fi

==

fij

// Mj

fj

OO

From the diagram and the fact that fij dominates fi, we find that f and fij ◦ g′

dominate each other. Hence taking g = fij ◦ g′ : P →Mj works.

Next we prove (2) is equivalent to (3). Let i ∈ I. It is always true that fi dominates
fik for k ≥ i, since fi factors through fik. If (2) holds, choose j ≥ i such that fij
dominates fi. Then since domination is a transitive relation, fij dominates fik for
k ≥ i. All Mi are of finite presentation, so Coker(fik) is of finite presentation for
k ≥ i. By Lemma 88.5, fij factors through fik for all k ≥ i. Thus (2) implies
(3). On the other hand, if (3) holds then for any R-module N , fij ⊗R idN factors
through fik⊗R idN for k ≥ i. So Ker(fik⊗R idN ) ⊂ Ker(fij ⊗R idN ) for k ≥ i. But
Ker(fi ⊗R idN : Mi ⊗R N → M ⊗R N) is the union of Ker(fik ⊗R idN ) for k ≥ i.
Thus Ker(fi ⊗R idN ) ⊂ Ker(fij ⊗R idN ) for any R-module N , which by definition
means fij dominates fi.

It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let N =∏
s∈IMs. If (5) holds, then given i ∈ I choose j ≥ i such that

Im(Hom(Mj , N)→ Hom(Mi, N)) = Im(Hom(Mk, N)→ Hom(Mi, N))

for all k ≥ j. Passing the product over s ∈ I outside of the Hom’s and looking at
the maps on each component of the product, this says

Im(Hom(Mj ,Ms)→ Hom(Mi,Ms)) = Im(Hom(Mk,Ms)→ Hom(Mi,Ms))

for all k ≥ j and s ∈ I. Taking s = j we have

Im(Hom(Mj ,Mj)→ Hom(Mi,Mj)) = Im(Hom(Mk,Mj)→ Hom(Mi,Mj))

for all k ≥ j. Since fij is the image of id ∈ Hom(Mj ,Mj) under Hom(Mj ,Mj) →
Hom(Mi,Mj), this shows that for any k ≥ j there is h ∈ Hom(Mk,Mj) such that
fij = h ◦ fik. If j ≥ k then we can take h = fkj . Hence (3) holds. □

Definition 88.7.059F Let M be an R-module. We say that M is Mittag-Leffler if the
equivalent conditions of Proposition 88.6 hold.

In particular a finitely presented module is Mittag-Leffler.

Remark 88.8.059G Let M be a flat R-module. By Lazard’s theorem (Theorem 81.4)
we can write M = colimMi as the colimit of a directed system (Mi, fij) where
the Mi are free finite R-modules. For M to be Mittag-Leffler, it is enough for the
inverse system of duals (HomR(Mi, R),HomR(fij , R)) to be Mittag-Leffler. This
follows from criterion (4) of Proposition 88.6 and the fact that for a free finite R-
module F , there is a functorial isomorphism HomR(F,R)⊗RN ∼= HomR(F,N) for
any R-module N .

https://stacks.math.columbia.edu/tag/059F
https://stacks.math.columbia.edu/tag/059G


COMMUTATIVE ALGEBRA 206

Lemma 88.9.05CN If R is a ring and M , N are Mittag-Leffler modules over R, then
M ⊗R N is a Mittag-Leffler module.

Proof. Write M = colimi∈IMi and N = colimj∈J Nj as directed colimits of
finitely presented R-modules. Denote fii′ : Mi → Mi′ and gjj′ : Nj → Nj′ the
transition maps. Then Mi ⊗R Nj is a finitely presented R-module (see Lemma
12.14), and M ⊗RN = colim(i,j)∈I×JMi⊗RMj . Pick (i, j) ∈ I ×J . By the defini-
tion of a Mittag-Leffler module we have Proposition 88.6 (3) for both systems. In
other words there exist i′ ≥ i and j′ ≥ j such that for every choice of i′′ ≥ i and
j′′ ≥ j there exist maps a : Mi′′ →Mi′ and b : Mj′′ →Mj′ such that fii′ = a ◦ fii′′

and gjj′ = b◦gjj′′ . Then it is clear that a⊗b : Mi′′⊗RNj′′ →Mi′⊗RNj′ serves the
same purpose for the system (Mi ⊗R Nj , fii′ ⊗ gjj′). Thus by the characterization
Proposition 88.6 (3) we conclude that M ⊗R N is Mittag-Leffler. □

Lemma 88.10.05CP Let R be a ring and M an R-module. Then M is Mittag-Leffler
if and only if for every finite free R-module F and module map f : F → M , there
exists a finitely presented R-module Q and a module map g : F → Q such that g and
f dominate each other, i.e., Ker(f ⊗R idN ) = Ker(g ⊗R idN ) for every R-module
N .

Proof. Since the condition is clear weaker than condition (1) of Proposition 88.6
we see that a Mittag-Leffler module satisfies the condition. Conversely, suppose
that M satisfies the condition and that f : P → M is an R-module map from
a finitely presented R-module P into M . Choose a surjection F → P where F
is a finite free R-module. By assumption we can find a map F → Q where Q
is a finitely presented R-module such that F → Q and F → M dominate each
other. In particular, the kernel of F → Q contains the kernel of F → P , hence we
obtain an R-module map g : P → Q such that F → Q is equal to the composition
F → P → Q. Let N be any R-module and consider the commutative diagram

F ⊗R N

��

// Q⊗R N

P ⊗R N

88

// M ⊗R N

By assumption the kernels of F⊗RN → Q⊗RN and F⊗RN →M⊗RN are equal.
Hence, as F ⊗R N → P ⊗R N is surjective, also the kernels of P ⊗R N → Q⊗R N
and P ⊗R N →M ⊗R N are equal. □

Lemma 88.11.05CQ Let R→ S be a finite and finitely presented ring map. Let M be
an S-module. If M is a Mittag-Leffler module over S then M is a Mittag-Leffler
module over R.

Proof. Assume M is a Mittag-Leffler module over S. Write M = colimMi as a
directed colimit of finitely presented S-modules Mi. As M is Mittag-Leffler over S
there exists for each i an index j ≥ i such that for all k ≥ j there is a factorization
fij = h ◦ fik (where h depends on i, the choice of j and k). Note that by Lemma
36.23 the modules Mi are also finitely presented as R-modules. Moreover, all the
maps fij , fik, h are maps of R-modules. Thus we see that the system (Mi, fij)
satisfies the same condition when viewed as a system of R-modules. Thus M is
Mittag-Leffler as an R-module. □

https://stacks.math.columbia.edu/tag/05CN
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Lemma 88.12.05CR Let R be a ring. Let S = R/I for some finitely generated ideal I.
Let M be an S-module. Then M is a Mittag-Leffler module over R if and only if
M is a Mittag-Leffler module over S.

Proof. One implication follows from Lemma 88.11. To prove the other, assume
M is Mittag-Leffler as an R-module. Write M = colimMi as a directed colimit
of finitely presented S-modules. As I is finitely generated, the ring S is finite and
finitely presented as an R-algebra, hence the modules Mi are finitely presented
as R-modules, see Lemma 36.23. Next, let N be any S-module. Note that for
each i we have HomR(Mi, N) = HomS(Mi, N) as R → S is surjective. Hence the
condition that the inverse system (HomR(Mi, N))i satisfies Mittag-Leffler, implies
that the system (HomS(Mi, N))i satisfies Mittag-Leffler. Thus M is Mittag-Leffler
over S by definition. □

Remark 88.13.05CS Let R → S be a finite and finitely presented ring map. Let M
be an S-module which is Mittag-Leffler as an R-module. Then it is in general not
the case that M is Mittag-Leffler as an S-module. For example suppose that S is
the ring of dual numbers over R, i.e., S = R⊕Rϵ with ϵ2 = 0. Then an S-module
consists of an R-module M endowed with a square zero R-linear endomorphism
ϵ : M → M . Now suppose that M0 is an R-module which is not Mittag-Leffler.
Choose a presentation F1

u−→ F0 → M0 → 0 with F1 and F0 free R-modules. Set
M = F1 ⊕ F0 with

ϵ =
(

0 0
u 0

)
: M −→M.

Then M/ϵM ∼= F1 ⊕M0 is not Mittag-Leffler over R = S/ϵS, hence not Mittag-
Leffler over S (see Lemma 88.12). On the other hand, M/ϵM = M ⊗S S/ϵS which
would be Mittag-Leffler over S if M was, see Lemma 88.9.

89. Interchanging direct products with tensor

059H Let M be an R-module and let (Qα)α∈A be a family of R-modules. Then there
is a canonical map M ⊗R

(∏
α∈AQα

)
→
∏
α∈A(M ⊗R Qα) given on pure tensors

by x⊗ (qα) 7→ (x⊗ qα). This map is not necessarily injective or surjective, as the
following example shows.

Example 89.1.059I Take R = Z, M = Q, and consider the family Qn = Z/n for
n ≥ 1. Then

∏
n(M ⊗Qn) = 0. However there is an injection Q→ M ⊗ (

∏
nQn)

obtained by tensoring the injection Z→
∏
nQn by M , so M ⊗ (

∏
nQn) is nonzero.

Thus M ⊗ (
∏
nQn)→

∏
n(M ⊗Qn) is not injective.

On the other hand, take again R = Z, M = Q, and let Qn = Z for n ≥ 1. The
image of M ⊗ (

∏
nQn)→

∏
n(M ⊗Qn) =

∏
nM consists precisely of sequences of

the form (an/m)n≥1 with an ∈ Z and m some nonzero integer. Hence the map is
not surjective.

We determine below the precise conditions needed on M for the map M ⊗R
(
∏
αQα)→

∏
α(M ⊗R Qα) to be surjective, bijective, or injective for all choices of

(Qα)α∈A. This is relevant because the modules for which it is injective turn out to
be exactly Mittag-Leffler modules (Proposition 89.5). In what follows, if M is an
R-module and A a set, we write MA for the product

∏
α∈AM .

Proposition 89.2.059J Let M be an R-module. The following are equivalent:

https://stacks.math.columbia.edu/tag/05CR
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(1) M is finitely generated.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is surjective.
(3) For every R-module Q and every set A, the canonical map M ⊗R QA →

(M ⊗R Q)A is surjective.
(4) For every set A, the canonical map M ⊗R RA →MA is surjective.

Proof. First we prove (1) implies (2). Choose a surjection Rn →M and consider
the commutative diagram

Rn ⊗R (
∏
αQα)

∼= //

��

∏
α(Rn ⊗R Qα)

��
M ⊗R (

∏
αQα) // ∏

α(M ⊗R Qα).

The top arrow is an isomorphism and the vertical arrows are surjections. We
conclude that the bottom arrow is a surjection.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact
for (1) to hold it suffices that the element d = (x)x∈M of MM is in the image of
the map f : M ⊗R RM →MM . In this case d =

∑n
i=1 f(xi ⊗ ai) for some xi ∈M

and ai ∈ RM . If for x ∈ M we write px : MM → M for the projection onto the
x-th factor, then

x = px(d) =
∑n

i=1
px(f(xi ⊗ ai)) =

∑n

i=1
px(ai)xi.

Thus x1, . . . , xn generate M . □

Proposition 89.3.059K Let M be an R-module. The following are equivalent:
(1) M is finitely presented.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is bijective.
(3) For every R-module Q and every set A, the canonical map M ⊗R QA →

(M ⊗R Q)A is bijective.
(4) For every set A, the canonical map M ⊗R RA →MA is bijective.

Proof. First we prove (1) implies (2). Choose a presentation Rm → Rn →M and
consider the commutative diagram

Rm ⊗R (
∏
αQα) //

∼=
��

Rn ⊗R (
∏
αQα) //

∼=
��

M ⊗R (
∏
αQα) //

��

0

∏
α(Rm ⊗R Qα) // ∏

α(Rn ⊗R Qα) // ∏
α(M ⊗R Qα) // 0.

The first two vertical arrows are isomorphisms and the rows are exact. This implies
that the map M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα) is surjective and, by a diagram

chase, also injective. Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From
Proposition 89.2, if (4) holds we already know that M is finitely generated. So we

https://stacks.math.columbia.edu/tag/059K
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can choose a surjection F →M where F is free and finite. Let K be the kernel. We
must show K is finitely generated. For any set A, we have a commutative diagram

K ⊗R RA //

f3
��

F ⊗R RA //

f2 ∼=
��

M ⊗R RA //

f1 ∼=
��

0

0 // KA // FA // MA // 0.
The map f1 is an isomorphism by assumption, the map f2 is a isomorphism since
F is free and finite, and the rows are exact. A diagram chase shows that f3 is
surjective, hence by Proposition 89.2 we get that K is finitely generated. □

We need the following lemma for the next proposition.

Lemma 89.4.059L Let M be an R-module, P a finitely presented R-module, and
f : P →M a map. Let Q be an R-module and suppose x ∈ Ker(P ⊗Q→M ⊗Q).
Then there exists a finitely presented R-module P ′ and a map f ′ : P → P ′ such
that f factors through f ′ and x ∈ Ker(P ⊗Q→ P ′ ⊗Q).

Proof. Write M as a colimit M = colimi∈IMi of a directed system of finitely
presented modules Mi. Since P is finitely presented, the map f : P → M factors
through Mj → M for some j ∈ I. Upon tensoring by Q we have a commutative
diagram

Mj ⊗Q

%%
P ⊗Q

99

// M ⊗Q.
The image y of x in Mj ⊗Q is in the kernel of Mj ⊗Q→M ⊗Q. Since M ⊗Q =
colimi∈I(Mi ⊗ Q), this means y maps to 0 in Mj′ ⊗ Q for some j′ ≥ j. Thus we
may take P ′ = Mj′ and f ′ to be the composite P →Mj →Mj′ . □

Proposition 89.5.059M Let M be an R-module. The following are equivalent:
(1) M is Mittag-Leffler.
(2) For every family (Qα)α∈A of R-modules, the canonical map M⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is injective.

Proof. First we prove (1) implies (2). Suppose M is Mittag-Leffler and let x
be in the kernel of M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα). Write M as a colimit

M = colimi∈IMi of a directed system of finitely presented modules Mi. Then
M ⊗R (

∏
αQα) is the colimit of Mi ⊗R (

∏
αQα). So x is the image of an element

xi ∈Mi⊗R (
∏
αQα). We must show that xi maps to 0 in Mj⊗R (

∏
αQα) for some

j ≥ i. Since M is Mittag-Leffler, we may choose j ≥ i such that Mi → Mj and
Mi →M dominate each other. Then consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

Mi ⊗R (
∏
αQα)

∼= //

��

OO

∏
α(Mi ⊗R Qα)

��

OO

Mj ⊗R (
∏
αQα)

∼= // ∏
α(Mj ⊗R Qα)

https://stacks.math.columbia.edu/tag/059L
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whose bottom two horizontal maps are isomorphisms, according to Proposition
89.3. Since xi maps to 0 in

∏
α(M ⊗R Qα), its image in

∏
α(Mi ⊗R Qα) is in the

kernel of the map
∏
α(Mi ⊗R Qα) →

∏
α(M ⊗R Qα). But this kernel equals the

kernel of
∏
α(Mi ⊗R Qα)→

∏
α(Mj ⊗R Qα) according to the choice of j. Thus xi

maps to 0 in
∏
α(Mj ⊗R Qα) and hence to 0 in Mj ⊗R (

∏
αQα).

Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-
Leffler from Proposition 88.6. Let f : P → M be a map from a finitely presented
module P to M . Choose a set B of representatives of the isomorphism classes of
finitely presented R-modules. Let A be the set of pairs (Q, x) where Q ∈ B and
x ∈ Ker(P ⊗Q → M ⊗Q). For α = (Q, x) ∈ A, we write Qα for Q and xα for x.
Consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

The top arrow is an injection by assumption, and the bottom arrow is an isomor-
phism by Proposition 89.3. Let x ∈ P ⊗R (

∏
αQα) be the element corresponding

to (xα) ∈
∏
α(P ⊗R Qα) under this isomorphism. Then x ∈ Ker(P ⊗R (

∏
αQα)→

M ⊗R (
∏
αQα)) since the top arrow in the diagram is injective. By Lemma 89.4,

we get a finitely presented module P ′ and a map f ′ : P → P ′ such that f : P →M
factors through f ′ and x ∈ Ker(P ⊗R (

∏
αQα) → P ′ ⊗R (

∏
αQα)). We have a

commutative diagram

P ′ ⊗R (
∏
αQα)

∼= // ∏
α(P ′ ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

where both the top and bottom arrows are isomorphisms by Proposition 89.3. Thus
since x is in the kernel of the left vertical map, (xα) is in the kernel of the right
vertical map. This means xα ∈ Ker(P ⊗R Qα → P ′ ⊗R Qα) for every α ∈ A. By
the definition of A this means Ker(P ⊗RQ→ P ′⊗RQ) ⊃ Ker(P ⊗RQ→M ⊗RQ)
for all finitely presented Q and, since f : P → M factors through f ′ : P → P ′,
actually equality holds. By Lemma 88.3, f and f ′ dominate each other. □

Lemma 89.6.0AS6 Let M be a flat Mittag-Leffler module over R. Let F be an R-
module and let x ∈ F ⊗RM . Then there exists a smallest submodule F ′ ⊂ F such
that x ∈ F ′ ⊗RM . Also, F ′ is a finite R-module.

Proof. Since M is flat we have F ′ ⊗R M ⊂ F ⊗R M if F ′ ⊂ F is a submodule,
hence the statement makes sense. Let I = {F ′ ⊂ F | x ∈ F ′ ⊗RM} and for i ∈ I
denote Fi ⊂ F the corresponding submodule. Then x maps to zero under the map

F ⊗RM −→
∏

(F/Fi ⊗RM)

whence by Proposition 89.5 x maps to zero under the map

F ⊗RM −→
(∏

F/Fi

)
⊗RM

https://stacks.math.columbia.edu/tag/0AS6
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Since M is flat the kernel of this arrow is (
⋂
Fi)⊗RM which proves that F ′ =

⋂
Fi.

To see that F ′ is a finite module, suppose that x =
∑
j=1,...,m fj ⊗mj with fj ∈ F ′

and mj ∈ M . Then x ∈ F ′′ ⊗RM where F ′′ ⊂ F ′ is the submodule generated by
f1, . . . , fm. Of course then F ′′ = F ′ and we conclude the final statement holds. □

Lemma 89.7.059N Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence of
R-modules. Then:

(1) If M2 is Mittag-Leffler, then M1 is Mittag-Leffler.
(2) If M1 and M3 are Mittag-Leffler, then M2 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules we have a commutative diagram

0 // M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

0 // ∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. Thus (1) and (2) follow from Proposition 89.5. □

Lemma 89.8.0EGI Let M1 → M2 → M3 → 0 be an exact sequence of R-modules. If
M1 is finitely generated and M2 is Mittag-Leffler, then M3 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules, since tensor product is right exact,
we have a commutative diagram

M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. By Proposition 89.2 the left vertical arrow is surjective. By
Proposition 89.5 the middle vertical arrow is injective. A diagram chase shows the
right vertical arrow is injective. Hence M3 is Mittag-Leffler by Proposition 89.5. □

Lemma 89.9.0AS7 If M = colimMi is the colimit of a directed system of Mittag-Leffler
R-modules Mi with universally injective transition maps, then M is Mittag-Leffler.

Proof. Let (Qα)α∈A be a family of R-modules. We have to show that M ⊗R
(
∏
Qα)→

∏
M⊗RQα is injective and we know that Mi⊗R (

∏
Qα)→

∏
Mi⊗RQα

is injective for each i, see Proposition 89.5. Since ⊗ commutes with filtered colimits,
it suffices to show that

∏
Mi ⊗R Qα →

∏
M ⊗R Qα is injective. This is clear as

each of the maps Mi ⊗R Qα → M ⊗R Qα is injective by our assumption that the
transition maps are universally injective. □

Lemma 89.10.059P If M =
⊕

i∈IMi is a direct sum of R-modules, then M is Mittag-
Leffler if and only if each Mi is Mittag-Leffler.

Proof. The “only if” direction follows from Lemma 89.7 (1) and the fact that a
split short exact sequence is universally exact. The converse follows from Lemma
89.9 but we can also argue it directly as follows. First note that if I is finite
then this follows from Lemma 89.7 (2). For general I, if all Mi are Mittag-Leffler
then we prove the same of M by verifying condition (1) of Proposition 88.6. Let
f : P → M be a map from a finitely presented module P . Then f factors as

https://stacks.math.columbia.edu/tag/059N
https://stacks.math.columbia.edu/tag/0EGI
https://stacks.math.columbia.edu/tag/0AS7
https://stacks.math.columbia.edu/tag/059P
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P
f ′

−→
⊕

i′∈I′ Mi′ ↪→
⊕

i∈IMi for some finite subset I ′ of I. By the finite case⊕
i′∈I′ Mi′ is Mittag-Leffler and hence there exists a finitely presented module Q

and a map g : P → Q such that g and f ′ dominate each other. Then also g and f
dominate each other. □

Lemma 89.11.05CT Let R→ S be a ring map. Let M be an S-module. If S is Mittag-
Leffler as an R-module, and M is flat and Mittag-Leffler as an S-module, then M
is Mittag-Leffler as an R-module.

Proof. We deduce this from the characterization of Proposition 89.5. Namely,
suppose that Qα is a family of R-modules. Consider the composition

M ⊗R
∏
αQα = M ⊗S S ⊗R

∏
αQα

��
M ⊗S

∏
α(S ⊗R Qα)

��∏
α(M ⊗S S ⊗R Qα) =

∏
α(M ⊗R Qα)

The first arrow is injective as M is flat over S and S is Mittag-Leffler over R and the
second arrow is injective as M is Mittag-Leffler over S. Hence M is Mittag-Leffler
over R. □

90. Coherent rings

05CU We use the discussion on interchanging
∏

and ⊗ to determine for which rings
products of flat modules are flat. It turns out that these are the so-called coherent
rings. You may be more familiar with the notion of a coherent OX -module on a
ringed space, see Modules, Section 12.

Definition 90.1.05CV Let R be a ring. Let M be an R-module.
(1) We say M is a coherent module if it is finitely generated and every finitely

generated submodule of M is finitely presented over R.
(2) We say R is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely pre-
sented as a module.

Example 90.2.0EWV A valuation ring is a coherent ring. Namely, every nonzero finitely
generated ideal is principal (Lemma 50.15), hence free as a valuation ring is a
domain, hence finitely presented.

The category of coherent modules is abelian.

Lemma 90.3.05CW Let R be a ring.
(1) A finite submodule of a coherent module is coherent.
(2) Let φ : N → M be a homomorphism from a finite module to a coherent

module. Then Ker(φ) is finite, Im(φ) is coherent, and Coker(φ) is coherent.
(3) Let φ : N → M be a homomorphism of coherent modules. Then Ker(φ)

and Coker(φ) are coherent modules.
(4) Given a short exact sequence of R-modules 0 → M1 → M2 → M3 → 0 if

two out of three are coherent so is the third.

https://stacks.math.columbia.edu/tag/05CT
https://stacks.math.columbia.edu/tag/05CV
https://stacks.math.columbia.edu/tag/0EWV
https://stacks.math.columbia.edu/tag/05CW
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Proof. The first statement is immediate from the definition.

Let φ : N →M satisfy the assumptions of (2). First, Im(φ) is finite, hence coherent
by (1). In particular Im(φ) is finitely presented, so applying Lemma 5.3 to the exact
sequence 0 → Ker(φ) → N → Im(φ) → 0 we see that Ker(φ) is finite. To prove
that Coker(φ) is coherent, let E ⊂ Coker(φ) be a finite submodule, and let E′ be
its inverse image in M . From the exact sequence 0 → Im(φ) → E′ → E → 0
and since Ker(φ) is finite we conclude by Lemma 5.3 that E′ ⊂ M is finite, hence
finitely presented because M is coherent. The same exact sequence then shows that
E is finitely presented, whence our claim.

Part (3) follows immediately from (1) and (2).

Let 0→M1
i−→M2

p−→M3 → 0 be a short exact sequence of R-modules as in (4). It
remains to prove that if M1 and M3 are coherent so is M2. By Lemma 5.3 we see
that M2 is finite. Let N2 ⊂M2 be a finite submodule. Put N3 = p(N2) ⊂M3 and
N1 = i−1(N2) ⊂M1. We have an exact sequence 0→ N1 → N2 → N3 → 0. Clearly
N3 is finite (as a quotient of N2), hence finitely presented (as a finite submodule
of M3). It follows by Lemma 5.3 (5) that N1 is finite, hence finitely presented
(as a finite submodule of M1). We conclude by Lemma 5.3 (2) that M2 is finitely
presented. □

Lemma 90.4.05CX Let R be a ring. If R is coherent, then a module is coherent if and
only if it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring).
Conversely, if R is coherent, then R⊕n is coherent and so is the cokernel of any
map R⊕m → R⊕n, see Lemma 90.3. □

Lemma 90.5.05CY A Noetherian ring is a coherent ring.

Proof. By Lemma 31.4 any finite R-module is finitely presented. In particular any
ideal of R is finitely presented. □

Proposition 90.6.05CZ This is [Cha60,
Theorem 2.1].

Let R be a ring. The following are equivalent
(1) R is coherent,
(2) any product of flat R-modules is flat, and
(3) for every set A the module RA is flat.

Proof. Assume R coherent, and let Qα, α ∈ A be a set of flat R-modules. We have
to show that I ⊗R

∏
αQα →

∏
Qα is injective for every finitely generated ideal I

of R, see Lemma 39.5. Since R is coherent I is an R-module of finite presentation.
Hence I ⊗R

∏
αQα =

∏
I ⊗R Qα by Proposition 89.3. The desired injectivity

follows as I ⊗R Qα → Qα is injective by flatness of Qα.

The implication (2) ⇒ (3) is trivial.

Assume that the R-module RA is flat for every set A. Let I be a finitely generated
ideal in R. Then I ⊗R RA → RA is injective by assumption. By Proposition 89.2
and the finiteness of I the image is equal to IA. Hence I ⊗R RA = IA for every set
A and we conclude that I is finitely presented by Proposition 89.3. □

https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CY
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91. Examples and non-examples of Mittag-Leffler modules

059Q We end this section with some examples and non-examples of Mittag-Leffler mod-
ules.
Example 91.1.059R Mittag-Leffler modules.

(1) Any finitely presented module is Mittag-Leffler. This follows, for instance,
from Proposition 88.6 (1). In general, it is true that a finitely generated
module is Mittag-Leffler if and only it is finitely presented. This follows
from Propositions 89.2, 89.3, and 89.5.

(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposition
88.6.

(3) By the previous example together with Lemma 89.10, projective modules
are Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian
ring R. This will be a consequence the following lemma.
Lemma 91.2.059S Let M be a flat R-module. The following are equivalent

(1) M is Mittag-Leffler, and
(2) if F is a finite free R-module and x ∈ F ⊗RM , then there exists a smallest

submodule F ′ of F such that x ∈ F ′ ⊗RM .
Proof. The implication (1) ⇒ (2) is a special case of Lemma 89.6. Assume (2).
By Theorem 81.4 we can write M as the colimit M = colimi∈IMi of a directed
system (Mi, fij) of finite free R-modules. By Remark 88.8, it suffices to show that
the inverse system (HomR(Mi, R),HomR(fij , R)) is Mittag-Leffler. In other words,
fix i ∈ I and for j ≥ i let Qj be the image of HomR(Mj , R) → HomR(Mi, R); we
must show that the Qj stabilize.
Since Mi is free and finite, we can make the identification HomR(Mi,Mj) =
HomR(Mi, R)⊗RMj for all j. Using the fact that the Mj are free, it follows that
for j ≥ i, Qj is the smallest submodule of HomR(Mi, R) such that fij ∈ Qj ⊗RMj .
Under the identification HomR(Mi,M) = HomR(Mi, R)⊗RM , the canonical map
fi : Mi → M is in HomR(Mi, R) ⊗R M . By the assumption on M , there exists a
smallest submodule Q of HomR(Mi, R) such that fi ∈ Q ⊗R M . We are going to
show that the Qj stabilize to Q.
For j ≥ i we have a commutative diagram

Qj ⊗RMj
//

��

HomR(Mi, R)⊗RMj

��
Qj ⊗RM // HomR(Mi, R)⊗RM.

Since fij ∈ Qj ⊗R Mj maps to fi ∈ HomR(Mi, R) ⊗R M , it follows that fi ∈
Qj ⊗RM . Hence, by the choice of Q, we have Q ⊂ Qj for all j ≥ i.
Since the Qj are decreasing and Q ⊂ Qj for all j ≥ i, to show that the Qj stabilize
to Q it suffices to find a j ≥ i such that Qj ⊂ Q. As an element of

HomR(Mi, R)⊗RM = colimj∈J(HomR(Mi, R)⊗RMj),
fi is the colimit of fij for j ≥ i, and fi also lies in the submodule

colimj∈J(Q⊗RMj) ⊂ colimj∈J(HomR(Mi, R)⊗RMj).

https://stacks.math.columbia.edu/tag/059R
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It follows that for some j ≥ i, fij lies in Q ⊗R Mj . Since Qj is the smallest
submodule of HomR(Mi, R) with fij ∈ Qj ⊗RMj , we conclude Qj ⊂ Q. □

Lemma 91.3.05D0 Let R be a Noetherian ring and A a set. Then M = RA is a flat
and Mittag-Leffler R-module.

Proof. Combining Lemma 90.5 and Proposition 90.6 we see that M is flat over
R. We show that M satisfies the condition of Lemma 91.2. Let F be a free finite
R-module. If F ′ is any submodule of F then it is finitely presented since R is
Noetherian. So by Proposition 89.3 we have a commutative diagram

F ′ ⊗RM //

∼=
��

F ⊗RM

∼=
��

(F ′)A // FA

by which we can identify the map F ′⊗RM → F ⊗RM with (F ′)A → FA. Hence if
x ∈ F ⊗RM corresponds to (xα) ∈ FA, then the submodule of F ′ of F generated
by the xα is the smallest submodule of F such that x ∈ F ′ ⊗RM . □

Lemma 91.4.059T Let R be a Noetherian ring and n a positive integer. Then the
R-module M = R[[t1, . . . , tn]] is flat and Mittag-Leffler.

Proof. As an R-module, we have M = RA for a (countable) set A. Hence this
lemma is a special case of Lemma 91.3. □

Example 91.5.059U Non Mittag-Leffler modules.
(1) By Example 89.1 and Proposition 89.5, Q is not a Mittag-Leffler Z-module.
(2) We prove below (Theorem 93.3) that for a flat and countably generated

module, projectivity is equivalent to being Mittag-Leffler. Thus any flat,
countably generated, non-projective module M is an example of a non-
Mittag-Leffler module. For such an example, see Remark 78.4.

(3) Let k be a field. Let R = k[[x]]. The R-module M =
∏
n∈N R/(xn) is not

Mittag-Leffler. Namely, consider the element ξ = (ξ1, ξ2, ξ3, . . .) defined by
ξ2m = x2m−1 and ξn = 0 else, so

ξ = (0, x, 0, x2, 0, 0, 0, x4, 0, 0, 0, 0, 0, 0, 0, x8, . . .)

Then the annihilator of ξ in M/x2m

M is generated x2m−1 for m≫ 0. But
if M was Mittag-Leffler, then there would exist a finite R-module Q and
an element ξ′ ∈ Q such that the annihilator of ξ′ in Q/xlQ agrees with
the annihilator of ξ in M/xlM for all l ≥ 1, see Proposition 88.6 (1). Now
you can prove there exists an integer a ≥ 0 such that the annihilator of
ξ′ in Q/xlQ is generated by either xa or xl−a for all l ≫ 0 (depending on
whether ξ′ ∈ Q is torsion or not). The combination of the above would give
for all l = 2m >> 0 the equality a = l/2 or l−a = l/2 which is nonsensical.

(4) The same argument shows that (x)-adic completion of
⊕

n∈N R/(xn) is
not Mittag-Leffler over R = k[[x]] (hint: ξ is actually an element of this
completion).

(5) Let R = k[a, b]/(a2, ab, b2). Let S be the finitely presented R-algebra with
presentation S = R[t]/(at − b). Then as an R-module S is countably
generated and indecomposable (details omitted). On the other hand, R

https://stacks.math.columbia.edu/tag/05D0
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is Artinian local, hence complete local, hence a henselian local ring, see
Lemma 153.9. If S was Mittag-Leffler as an R-module, then it would be a
direct sum of finite R-modules by Lemma 153.13. Thus we conclude that
S is not Mittag-Leffler as an R-module.

92. Countably generated Mittag-Leffler modules

05D1 It turns out that countably generated Mittag-Leffler modules have a particularly
simple structure.
Lemma 92.1.059W Let M be an R-module. Write M = colimi∈IMi where (Mi, fij)
is a directed system of finitely presented R-modules. If M is Mittag-Leffler and
countably generated, then there is a directed countable subset I ′ ⊂ I such that
M ∼= colimi∈I′ Mi.
Proof. Let x1, x2, . . . be a countable set of generators for M . For each xn choose
i ∈ I such that xn is in the image of the canonical map fi : Mi → M ; let I ′

0 ⊂ I
be the set of all these i. Now since M is Mittag-Leffler, for each i ∈ I ′

0 we can
choose j ∈ I such that j ≥ i and fij : Mi → Mj factors through fik : Mi → Mk

for all k ≥ i (condition (3) of Proposition 88.6); let I ′
1 be the union of I ′

0 with all
of these j. Since I ′

1 is a countable, we can enlarge it to a countable directed set
I ′

2 ⊂ I. Now we can apply the same procedure to I ′
2 as we did to I ′

0 to get a new
countable set I ′

3 ⊂ I. Then we enlarge I ′
3 to a countable directed set I ′

4. Continuing
in this way—adding in a j as in Proposition 88.6 (3) for each i ∈ I ′

ℓ if ℓ is odd and
enlarging I ′

ℓ to a directed set if ℓ is even—we get a sequence of subsets I ′
ℓ ⊂ I for

ℓ ≥ 0. The union I ′ =
⋃
I ′
ℓ satisfies:

(1) I ′ is countable and directed;
(2) each xn is in the image of fi : Mi →M for some i ∈ I ′;
(3) if i ∈ I ′, then there is j ∈ I ′ such that j ≥ i and fij : Mi → Mj factors

through fik : Mi → Mk for all k ∈ I with k ≥ i. In particular Ker(fik) ⊂
Ker(fij) for k ≥ i.

We claim that the canonical map colimi∈I′ Mi → colimi∈IMi = M is an isomor-
phism. By (2) it is surjective. For injectivity, suppose x ∈ colimi∈I′ Mi maps to 0
in colimi∈IMi. Representing x by an element x̃ ∈ Mi for some i ∈ I ′, this means
that fik(x̃) = 0 for some k ∈ I, k ≥ i. But then by (3) there is j ∈ I ′, j ≥ i, such
that fij(x̃) = 0. Hence x = 0 in colimi∈I′ Mi. □

Lemma 92.1 implies that a countably generated Mittag-Leffler module M over R
is the colimit of a system

M1 →M2 →M3 →M4 → . . .

with each Mn a finitely presented R-module. To see this argue as in the proof of
Lemma 86.3 to see that a countable directed set has a cofinal subset isomorphic to
(N,≥). Suppose R = k[x1, x2, x3, . . .] and M = R/(xi). Then M is finitely gen-
erated but not finitely presented, hence not Mittag-Leffler (see Example 91.1 part
(1)). But of course you can write M = colimnMn by taking Mn = R/(x1, . . . , xn),
hence the condition that you can write M as such a limit does not imply that M
is Mittag-Leffler.
Lemma 92.2.05D2 Let R be a ring. Let M be an R-module. Assume M is Mittag-
Leffler and countably generated. For any R-module map f : P →M with P finitely
generated there exists an endomorphism α : M →M such that

https://stacks.math.columbia.edu/tag/059W
https://stacks.math.columbia.edu/tag/05D2
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(1) α : M →M factors through a finitely presented R-module, and
(2) α ◦ f = f .

Proof. Write M = colimi∈IMi as a directed colimit of finitely presented R-
modules with I countable, see Lemma 92.1. The transition maps are denoted fij
and we use fi : Mi →M to denote the canonical maps into M . Set N =

∏
s∈IMs.

Denote
M∗
i = HomR(Mi, N) =

∏
s∈I

HomR(Mi,Ms)

so that (M∗
i ) is an inverse system of R-modules over I. Note that HomR(M,N) =

limM∗
i . As M is Mittag-Leffler, we find for every i ∈ I an index k(i) ≥ i such that

Ei :=
⋂

i′≥i
Im(M∗

i′ →M∗
i ) = Im(M∗

k(i) →M∗
i )

Choose and fix j ∈ I such that Im(P → M) ⊂ Im(Mj → M). This is possible as
P is finitely generated. Set k = k(j). Let x = (0, . . . , 0, idMk

, 0, . . . , 0) ∈ M∗
k and

note that this maps to y = (0, . . . , 0, fjk, 0, . . . , 0) ∈M∗
j . By our choice of k we see

that y ∈ Ej . By Example 86.2 the transition maps Ei → Ej are surjective for each
i ≥ j and limEi = limM∗

i = HomR(M,N). Hence Lemma 86.3 guarantees there
exists an element z ∈ HomR(M,N) which maps to y in Ej ⊂ M∗

j . Let zk be the
kth component of z. Then zk : M →Mk is a homomorphism such that

M
zk

// Mk

Mj

fjk

==

fj

OO

commutes. Let α : M → M be the composition fk ◦ zk : M → Mk → M . Then α
factors through a finitely presented module by construction and α ◦ fj = fj . Since
the image of f is contained in the image of fj this also implies that α ◦ f = f . □

We will see later (see Lemma 153.13) that Lemma 92.2 means that a countably
generated Mittag-Leffler module over a henselian local ring is a direct sum of finitely
presented modules.

93. Characterizing projective modules

059V The goal of this section is to prove that a module is projective if and only if it
is flat, Mittag-Leffler, and a direct sum of countably generated modules (Theorem
93.3 below).

Lemma 93.1.059X Let M be an R-module. If M is flat, Mittag-Leffler, and countably
generated, then M is projective.

Proof. By Lazard’s theorem (Theorem 81.4), we can write M = colimi∈IMi for a
directed system of finite free R-modules (Mi, fij) indexed by a set I. By Lemma
92.1, we may assume I is countable. Now let

0→ N1 → N2 → N3 → 0

be an exact sequence of R-modules. We must show that applying HomR(M,−)
preserves exactness. Since Mi is finite free,

0→ HomR(Mi, N1)→ HomR(Mi, N2)→ HomR(Mi, N3)→ 0

https://stacks.math.columbia.edu/tag/059X
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is exact for each i. Since M is Mittag-Leffler, (HomR(Mi, N1)) is a Mittag-Leffler
inverse system. So by Lemma 86.4,

0→ limi∈I HomR(Mi, N1)→ limi∈I HomR(Mi, N2)→ limi∈I HomR(Mi, N3)→ 0

is exact. But for any R-module N there is a functorial isomorphism HomR(M,N) ∼=
limi∈I HomR(Mi, N), so

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)→ 0

is exact. □

Remark 93.2.059Y Lemma 93.1 does not hold without the countable generation as-
sumption. For example, the Z-module M = Z[[x]] is flat and Mittag-Leffler but not
projective. It is Mittag-Leffler by Lemma 91.4. Subgroups of free abelian groups
are free, hence a projective Z-module is in fact free and so are its submodules.
Thus to show M is not projective it suffices to produce a non-free submodule. Fix
a prime p and consider the submodule N consisting of power series f(x) =

∑
aix

i

such that for every integer m ≥ 1, pm divides ai for all but finitely many i. Then∑
aip

ixi is in N for all ai ∈ Z, so N is uncountable. Thus if N were free it would
have uncountable rank and the dimension of N/pN over Z/p would be uncountable.
This is not true as the elements xi ∈ N/pN for i ≥ 0 span N/pN .

Theorem 93.3.059Z Let M be an R-module. Then M is projective if and only it
satisfies:

(1) M is flat,
(2) M is Mittag-Leffler,
(3) M is a direct sum of countably generated R-modules.

Proof. First suppose M is projective. Then M is a direct summand of a free mod-
ule, so M is flat and Mittag-Leffler since these properties pass to direct summands.
By Kaplansky’s theorem (Theorem 84.5), M satisfies (3).

Conversely, suppose M satisfies (1)-(3). Since being flat and Mittag-Leffler passes
to direct summands, M is a direct sum of flat, Mittag-Leffler, countably generated
R-modules. Lemma 93.1 implies M is a direct sum of projective modules. Hence
M is projective. □

Lemma 93.4.05A0 Let f : M → N be universally injective map of R-modules. Suppose
M is a direct sum of countably generated R-modules, and suppose N is flat and
Mittag-Leffler. Then M is projective.

Proof. By Lemmas 82.7 and 89.7, M is flat and Mittag-Leffler, so the conclusion
follows from Theorem 93.3. □

Lemma 93.5.05A1 Let R be a Noetherian ring and let M be a R-module. Suppose M
is a direct sum of countably generated R-modules, and suppose there is a universally
injective map M → R[[t1, . . . , tn]] for some n. Then M is projective.

Proof. Follows from Lemmas 93.4 and 91.4. □

https://stacks.math.columbia.edu/tag/059Y
https://stacks.math.columbia.edu/tag/059Z
https://stacks.math.columbia.edu/tag/05A0
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94. Ascending properties of modules

05A2 All of the properties of a module in Theorem 93.3 ascend along arbitrary ring maps:

Lemma 94.1.05A3 Let R→ S be a ring map. Let M be an R-module. Then:
(1) If M is flat, then the S-module M ⊗R S is flat.
(2) If M is Mittag-Leffler, then the S-module M ⊗R S is Mittag-Leffler.
(3) If M is a direct sum of countably generated R-modules, then the S-module

M ⊗R S is a direct sum of countably generated S-modules.
(4) If M is projective, then the S-module M ⊗R S is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-
Leffler from Proposition 88.6 and the fact that tensoring commutes with taking
colimits. □

95. Descending properties of modules

05A4 We address the faithfully flat descent of the properties from Theorem 93.3 that
characterize projectivity. In the presence of flatness, the property of being a Mittag-
Leffler module descends:

Lemma 95.1.05A5 Email from Juan
Pablo Acosta Lopez
dated 12/20/14.

Let R → S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is Mittag-Leffler, then M is Mittag-Leffler.

Proof. Write M = colimi∈IMi as a directed colimit of finitely presented R-
modules Mi. Using Proposition 88.6, we see that we have to prove that for each
i ∈ I there exists i ≤ j, j ∈ I such that Mi →Mj dominates Mi →M .
Take N the pushout

Mi
//

��

Mj

��
M // N

Then the lemma is equivalent to the existence of j such that Mj → N is universally
injective, see Lemma 88.4. Observe that the tensorization by S

Mi ⊗R S //

��

Mj ⊗R S

��
M ⊗R S // N ⊗R S

Is a pushout diagram. So because M ⊗R S = colimi∈IMi ⊗R S expresses M ⊗R S
as a colimit of S-modules of finite presentation, and M⊗RS is Mittag-Leffler, there
exists j ≥ i such that Mj ⊗R S → N ⊗R S is universally injective. So using that
R→ S is faithfully flat we conclude that Mj → N is universally injective too. □

Lemma 95.2.0GVD Let R → S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is countably generated, then M is countably generated.

Proof. Say M ⊗R S is generated by the elements yi, i = 1, 2, 3, . . .. Write yi =∑
j=1,...,ni

xij ⊗ sij for some ni ≥ 0, xij ∈ M and sij ∈ S. Denote M ′ ⊂ M the
submodule generated by the countable collection of elements xij . Then M ′⊗RS →
M ⊗R S is surjective as the image contains the generators yi. Since S is faithfully
flat over R we conclude that M ′ = M as desired. □

https://stacks.math.columbia.edu/tag/05A3
https://stacks.math.columbia.edu/tag/05A5
https://stacks.math.columbia.edu/tag/0GVD
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At this point the faithfully flat descent of countably generated projective modules
follows easily.

Lemma 95.3.05A6 Let R → S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is countably generated and projective, then M is countably
generated and projective.

Proof. Follows from Lemmas 83.2, 95.1, and 95.2 and Theorem 93.3. □

All that remains is to use dévissage to reduce descent of projectivity in the general
case to the countably generated case. First, two simple lemmas.

Lemma 95.4.05A7 Let R → S be a ring map, let M be an R-module, and let Q
be a countably generated S-submodule of M ⊗R S. Then there exists a countably
generated R-submodule P of M such that Im(P ⊗R S →M ⊗R S) contains Q.

Proof. Let y1, y2, . . . be generators for Q and write yj =
∑
k xjk ⊗ sjk for some

xjk ∈ M and sjk ∈ S. Then take P be the submodule of M generated by the
xjk. □

Lemma 95.5.05A8 Let R → S be a ring map, and let M be an R-module. Suppose
M ⊗R S =

⊕
i∈I Qi is a direct sum of countably generated S-modules Qi. If N is a

countably generated submodule of M , then there is a countably generated submodule
N ′ of M such that N ′ ⊃ N and Im(N ′ ⊗R S → M ⊗R S) =

⊕
i∈I′ Qi for some

subset I ′ ⊂ I.

Proof. Let N ′
0 = N . We construct by induction an increasing sequence of count-

ably generated submodules N ′
ℓ ⊂ M for ℓ = 0, 1, 2, . . . such that: if I ′

ℓ is the set of
i ∈ I such that the projection of Im(N ′

ℓ ⊗R S →M ⊗R S) onto Qi is nonzero, then
Im(N ′

ℓ+1 ⊗R S →M ⊗R S) contains Qi for all i ∈ I ′
ℓ. To construct N ′

ℓ+1 from N ′
ℓ,

let Q be the sum of (the countably many) Qi for i ∈ I ′
ℓ, choose P as in Lemma 95.4,

and then let N ′
ℓ+1 = N ′

ℓ + P . Having constructed the N ′
ℓ, just take N ′ =

⋃
ℓN

′
ℓ

and I ′ =
⋃
ℓ I

′
ℓ. □

Theorem 95.6.05A9 Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is projective, then M is projective.

Proof. We are going to construct a Kaplansky dévissage of M to show that it is
a direct sum of projective modules and hence projective. By Theorem 84.5 we can
write M ⊗R S =

⊕
i∈I Qi as a direct sum of countably generated S-modules Qi.

Choose a well-ordering on M . Using transfinite recursion we are going to define
an increasing family of submodules Mα of M , one for each ordinal α, such that
Mα ⊗R S is a direct sum of some subset of the Qi.
For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mα =

⋃
β<αMβ . Since each Mβ ⊗R S for β < α is a direct sum of a

subset of the Qi, the same will be true of Mα⊗RS. If α+1 is a successor ordinal and
Mα has been defined, then defineMα+1 as follows. IfMα = M , then letMα+1 = M .
Otherwise choose the smallest x ∈M (with respect to the fixed well-ordering) such
that x /∈Mα. Since S is flat over R, (M/Mα)⊗R S = M ⊗R S/Mα ⊗R S, so since
Mα⊗R S is a direct sum of some Qi, the same is true of (M/Mα)⊗R S. By Lemma
95.5, we can find a countably generated R-submodule P of M/Mα containing the
image of x in M/Mα and such that P ⊗R S (which equals Im(P ⊗R S →M ⊗R S)
since S is flat over R) is a direct sum of some Qi. Since M ⊗R S =

⊕
i∈I Qi is

https://stacks.math.columbia.edu/tag/05A6
https://stacks.math.columbia.edu/tag/05A7
https://stacks.math.columbia.edu/tag/05A8
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projective and projectivity passes to direct summands, P ⊗R S is also projective.
Thus by Lemma 95.3, P is projective. Finally we define Mα+1 to be the preimage
of P in M , so that Mα+1/Mα = P is countably generated and projective. In
particular Mα is a direct summand of Mα+1 since projectivity of Mα+1/Mα implies
the sequence 0→Mα →Mα+1 →Mα+1/Mα → 0 splits.

Transfinite induction on M (using the fact that we constructed Mα+1 to contain
the smallest x ∈ M not contained in Mα) shows that each x ∈ M is contained in
some Mα. Thus, there is some large enough ordinal S satisfying: for each x ∈ M
there is α ∈ S such that x ∈ Mα. This means (Mα)α∈S satisfies property (1)
of a Kaplansky dévissage of M . The other properties are clear by construction.
We conclude M =

⊕
α+1∈SMα+1/Mα. Since each Mα+1/Mα is projective by

construction, M is projective. □

96. Completion

00M9 Suppose that R is a ring and I is an ideal. We define the completion of R with
respect to I to be the limit

R∧ = limnR/I
n.

An element of R∧ is given by a sequence of elements fn ∈ R/In such that fn ≡
fn+1 mod In for all n. We will view R∧ as an R-algebra. Similarly, if M is an
R-module then we define the completion of M with respect to I to be the limit

M∧ = limnM/InM.

An element of M∧ is given by a sequence of elements mn ∈ M/InM such that
mn ≡ mn+1 mod InM for all n. We will view M∧ as an R∧-module. From this
description it is clear that there are always canonical maps

M −→M∧ and M ⊗R R∧ −→M∧.

Moreover, given a map φ : M → N of modules we get an induced map φ∧ : M∧ →
N∧ on completions making the diagram

M //

��

N

��
M∧ // N∧

commute. In general completion is not an exact functor, see Examples, Section 9.
Here are some initial positive results.

Lemma 96.1.0315 Let R be a ring. Let I ⊂ R be an ideal. Let φ : M → N be a map
of R-modules.

(1) If M/IM → N/IN is surjective, then M∧ → N∧ is surjective.
(2) If M → N is surjective, then M∧ → N∧ is surjective.
(3) If 0→ K →M → N → 0 is a short exact sequence of R-modules and N is

flat, then 0→ K∧ →M∧ → N∧ → 0 is a short exact sequence.
(4) The map M ⊗R R∧ →M∧ is surjective for any finite R-module M .

Proof. Assume M/IM → N/IN is surjective. Then the map M/InM → N/InN
is surjective for each n ≥ 1 by Nakayama’s lemma. More precisely, apply Lemma
20.1 part (11) to the map M/InM → N/InN over the ring R/In and the nilpotent

https://stacks.math.columbia.edu/tag/0315
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ideal I/In to see this. Set Kn = {x ∈ M | φ(x) ∈ InN}. Thus we get short exact
sequences

0→ Kn/I
nM →M/InM → N/InN → 0

We claim that the canonical map Kn+1/I
n+1M → Kn/I

nM is surjective. Namely,
if x ∈ Kn write φ(x) =

∑
zjnj with zj ∈ In, nj ∈ N . By assumption we can write

nj = φ(mj) +
∑
zjknjk with mj ∈M , zjk ∈ I and njk ∈ N . Hence

φ(x−
∑

zjmj) =
∑

zjzjknjk.

This means that x′ = x −
∑
zjmj ∈ Kn+1 maps to x mod InM which proves

the claim. Now we may apply Lemma 87.1 to the inverse system of short exact
sequences above to see (1). Part (2) is a special case of (1). If the assumptions of
(3) hold, then for each n the sequence

0→ K/InK →M/InM → N/InN → 0

is short exact by Lemma 39.12. Hence we can directly apply Lemma 87.1 to con-
clude (3) is true. To see (4) choose generators xi ∈M , i = 1, . . . , n. Then the map
R⊕n →M , (a1, . . . , an) 7→

∑
aixi is surjective. Hence by (2) we see (R∧)⊕n →M∧,

(a1, . . . , an) 7→
∑
aixi is surjective. Assertion (4) follows from this. □

Definition 96.2.0317 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
We say M is I-adically complete if the map

M −→M∧ = limnM/InM

is an isomorphism9. We say R is I-adically complete if R is I-adically complete as
an R-module.

It is not true that the completion of an R-module M with respect to I is I-adically
complete. For an example see Examples, Section 7. If the ideal is finitely generated,
then the completion is complete.

Lemma 96.3.05GG [Mat78, Theorem
15]. The slick proof
given here is from
an email of Bjorn
Poonen dated Nov
5, 2016.

Let R be a ring. Let I be a finitely generated ideal of R. Let M be
an R-module. Then

(1) the completion M∧ is I-adically complete, and
(2) InM∧ = Ker(M∧ →M/InM) = (InM)∧ for all n ≥ 1.

In particular R∧ is I-adically complete, InR∧ = (In)∧, and R∧/InR∧ = R/In.

Proof. Since I is finitely generated, In is finitely generated, say by f1, . . . , fr.
Applying Lemma 96.1 part (2) to the surjection (f1, . . . , fr) : M⊕r → InM yields
a surjection

(M∧)⊕r (f1,...,fr)−−−−−−→ (InM)∧ = limm≥n I
nM/ImM = Ker(M∧ →M/InM).

On the other hand, the image of (f1, . . . , fr) : (M∧)⊕r → M∧ is InM∧. Thus
M∧/InM∧ ≃ M/InM . Taking inverse limits yields (M∧)∧ ≃ M∧; that is, M∧ is
I-adically complete. □

Lemma 96.4.0BNG Let R be a ring. Let I ⊂ R be an ideal. Let 0→M → N → Q→ 0
be an exact sequence of R-modules such that Q is annihilated by a power of I. Then
completion produces an exact sequence 0→M∧ → N∧ → Q→ 0.

9This includes the condition that
⋂

InM = 0.

https://stacks.math.columbia.edu/tag/0317
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Proof. Say IcQ = 0. Then Q/InQ = Q for n ≥ c. On the other hand, it is clear
that InM ⊂M ∩ InN ⊂ In−cM for n ≥ c. Thus M∧ = limM/(M ∩ InN). Apply
Lemma 87.1 to the system of exact sequences

0→M/(M ∩ InN)→ N/InN → Q→ 0
for n ≥ c to conclude. □

Lemma 96.5.0318 Taken from an
unpublished note of
Lenstra and de
Smit.

Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Denote Kn = Ker(M∧ → M/InM). Then M∧ is I-adically complete if and only
if Kn is equal to InM∧ for all n ≥ 1.

Proof. The module InM∧ is contained in Kn. Thus for each n ≥ 1 there is a
canonical exact sequence

0→ Kn/I
nM∧ →M∧/InM∧ →M/InM → 0.

As InM∧ maps onto InM/In+1M we see that Kn+1 + InM∧ = Kn. Thus the
inverse system {Kn/I

nM∧}n≥1 has surjective transition maps. By Lemma 87.1 we
see that there is a short exact sequence

0→ limnKn/I
nM∧ → (M∧)∧ →M∧ → 0

Hence M∧ is complete if and only if Kn/I
nM∧ = 0 for all n ≥ 1. □

Lemma 96.6.05GI Let R be a ring, let I ⊂ R be an ideal, and let R∧ = limR/In.
(1) any element of R∧ which maps to a unit of R/I is a unit,
(2) any element of 1 + I maps to an invertible element of R∧,
(3) any element of 1 + IR∧ is invertible in R∧, and
(4) the ideals IR∧ and Ker(R∧ → R/I) are contained in the Jacobson radical

of R∧.

Proof. Let x ∈ R∧ map to a unit x1 in R/I. Then x maps to a unit xn in R/In

for every n by Lemma 32.4. Hence y = (x−1
n ) ∈ limR/In = R∧ is an inverse to

x. Parts (2) and (3) follow immediately from (1). Part (4) follows from (1) and
Lemma 19.1. □

Lemma 96.7.090S Let A be a ring. Let I = (f1, . . . , fr) be a finitely generated ideal.
If M → limM/fni M is surjective for each i, then M → limM/InM is surjective.

Proof. Note that limM/InM = limM/(fn1 , . . . , fnr )M as In ⊃ (fn1 , . . . , fnr ) ⊃
Irn. An element ξ of limM/(fn1 , . . . , fnr )M can be symbolically written as

ξ =
∑

n≥0

∑
i
fni xn,i

with xn,i ∈M . If M → limM/fni M is surjective, then there is an xi ∈M mapping
to
∑
xn,if

n
i in limM/fni M . Then x =

∑
xi maps to ξ in limM/InM . □

Lemma 96.8.090T Let A be a ring. Let I ⊂ J ⊂ A be ideals. If M is J-adically
complete and I is finitely generated, then M is I-adically complete.

Proof. Assume M is J-adically complete and I is finitely generated. We have⋂
InM = 0 because

⋂
JnM = 0. By Lemma 96.7 it suffices to prove the surjectivity

of M → limM/InM in case I is generated by a single element. Say I = (f). Let
xn ∈M with xn+1−xn ∈ fnM . We have to show there exists an x ∈M such that
xn − x ∈ fnM for all n. As xn+1 − xn ∈ JnM and as M is J-adically complete,
there exists an element x ∈ M such that xn − x ∈ JnM . Replacing xn by xn − x

https://stacks.math.columbia.edu/tag/0318
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https://stacks.math.columbia.edu/tag/090S
https://stacks.math.columbia.edu/tag/090T


COMMUTATIVE ALGEBRA 224

we may assume that xn ∈ JnM . To finish the proof we will show that this implies
xn ∈ InM . Namely, write xn − xn+1 = fnzn. Then

xn = fn(zn + fzn+1 + f2zn+2 + . . .)

The sum zn + fzn+1 + f2zn+2 + . . . converges in M as f c ∈ Jc. The sum fn(zn +
fzn+1+f2zn+2+. . .) converges in M to xn because the partial sums equal xn−xn+c
and xn+c ∈ Jn+cM . □

Lemma 96.9.0319 Let R be a ring. Let I, J be ideals of R. Assume there exist integers
c, d > 0 such that Ic ⊂ J and Jd ⊂ I. Then completion with respect to I agrees
with completion with respect to J for any R-module. In particular an R-module M
is I-adically complete if and only if it is J-adically complete.

Proof. Consider the system of maps M/InM → M/J⌊n/d⌋M and the system of
maps M/JmM →M/I⌊m/c⌋M to get mutually inverse maps between the comple-
tions. □

Lemma 96.10.031A Let R be a ring. Let I be an ideal of R. Let M be an I-adically
complete R-module, and let K ⊂M be an R-submodule. The following are equiva-
lent

(1) K =
⋂

(K + InM) and
(2) M/K is I-adically complete.

Proof. Set N = M/K. By Lemma 96.1 the map M = M∧ → N∧ is surjective.
Hence N → N∧ is surjective. It is easy to see that the kernel of N → N∧ is the
module

⋂
(K + InM)/K. □

Lemma 96.11.031B Let R be a ring. Let I be an ideal of R. Let M be an R-module.
If (a) R is I-adically complete, (b) M is a finite R-module, and (c)

⋂
InM = (0),

then M is I-adically complete.

Proof. By Lemma 96.1 the map M = M ⊗R R = M ⊗R R∧ → M∧ is surjective.
The kernel of this map is

⋂
InM hence zero by assumption. Hence M ∼= M∧ and

M is complete. □

Lemma 96.12.031D Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is I-adically complete,
(2)

⋂
n≥1 I

nM = (0), and
(3) M/IM is a finite R/I-module.

Then M is a finite R-module.

Proof. Let x1, . . . , xn ∈ M be elements whose images in M/IM generate M/IM
as a R/I-module. Denote M ′ ⊂ M the R-submodule generated by x1, . . . , xn. By
Lemma 96.1 the map (M ′)∧ → M∧ is surjective. Since

⋂
InM = 0 we see in

particular that
⋂
InM ′ = (0). Hence by Lemma 96.11 we see that M ′ is complete,

and we conclude that M ′ → M∧ is surjective. Finally, the kernel of M → M∧ is
zero since it is equal to

⋂
InM = (0). Hence we conclude that M ∼= M ′ ∼= M∧ is

finitely generated. □
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97. Completion for Noetherian rings

0BNH In this section we discuss completion with respect to ideals in Noetherian rings.

Lemma 97.1.00MA Let I be an ideal of a Noetherian ring R. Denote ∧ completion
with respect to I.

(1) If K → N is an injective map of finite R-modules, then the map on com-
pletions K∧ → N∧ is injective.

(2) If 0 → K → N → M → 0 is a short exact sequence of finite R-modules,
then 0→ K∧ → N∧ →M∧ → 0 is a short exact sequence.

(3) If M is a finite R-module, then M∧ = M ⊗R R∧.

Proof. Setting M = N/K we find that part (1) follows from part (2). Let 0 →
K → N →M → 0 be as in (2). For each n we get the short exact sequence

0→ K/(InN ∩K)→ N/InN →M/InM → 0.

By Lemma 87.1 we obtain the exact sequence

0→ limK/(InN ∩K)→ N∧ →M∧ → 0.

By the Artin-Rees Lemma 51.2 we may choose c such that InK ⊂ InN∩K ⊂ In−cK
for n ≥ c. Hence K∧ = limK/InK = limK/(InN ∩K) and we conclude that (2)
is true.

Let M be as in (3) and let 0 → K → R⊕t → M → 0 be a presentation of M . We
get a commutative diagram

K ⊗R R∧ //

��

R⊕t ⊗R R∧ //

��

M ⊗R R∧ //

��

0

0 // K∧ // (R⊕t)∧ // M∧ // 0

The top row is exact, see Section 39. The bottom row is exact by part (2). By
Lemma 96.1 the vertical arrows are surjective. The middle vertical arrow is an
isomorphism. We conclude (3) holds by the Snake Lemma 4.1. □

Lemma 97.2.00MB Let I be a ideal of a Noetherian ring R. Denote ∧ completion with
respect to I.

(1) The ring map R→ R∧ is flat.
(2) The functor M 7→ M∧ is exact on the category of finitely generated R-

modules.

Proof. Consider J ⊗R R∧ → R ⊗R R∧ = R∧ where J is an arbitrary ideal of
R. According to Lemma 97.1 this is identified with J∧ → R∧ and J∧ → R∧ is
injective. Part (1) follows from Lemma 39.5. Part (2) is a reformulation of Lemma
97.1 part (2). □

Lemma 97.3.00MC Let I be an ideal of a Noetherian ring R. Denote R∧ the completion
of R with respect to I. If I is contained in the Jacobson radical of R, then the ring
map R → R∧ is faithfully flat. In particular, if (R,m) is a Noetherian local ring,
then the completion limnR/m

n is faithfully flat.

https://stacks.math.columbia.edu/tag/00MA
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Proof. By Lemma 97.2 it is flat. The composition R → R∧ → R/I where the
last map is the projection map R∧ → R/I shows that any maximal ideal of R is
in the image of Spec(R∧) → Spec(R). Hence the map is faithfully flat by Lemma
39.15. □

Lemma 97.4.031C Let R be a Noetherian ring. Let I be an ideal of R. Let M be an
R-module. Then the completion M∧ of M with respect to I is I-adically complete,
InM∧ = (InM)∧, and M∧/InM∧ = M/InM .

Proof. This is a special case of Lemma 96.3 because I is a finitely generated
ideal. □

Lemma 97.5.05GH Let I be an ideal of a ring R. Assume
(1) R/I is a Noetherian ring,
(2) I is finitely generated.

Then the completion R∧ of R with respect to I is a Noetherian ring complete with
respect to IR∧.

Proof. By Lemma 96.3 we see that R∧ is I-adically complete. Hence it is also IR∧-
adically complete. Since R∧/IR∧ = R/I is Noetherian we see that after replacing
R by R∧ we may in addition to assumptions (1) and (2) assume that also R is
I-adically complete.

Let f1, . . . , ft be generators of I. Then there is a surjection of ringsR/I[T1, . . . , Tt]→⊕
In/In+1 mapping Ti to the element f i ∈ I/I2. Hence

⊕
In/In+1 is a Noetherian

ring. Let J ⊂ R be an ideal. Consider the ideal⊕
J ∩ In/J ∩ In+1 ⊂

⊕
In/In+1.

Let g1, . . . , gm be generators of this ideal. We may choose gj to be a homogeneous
element of degree dj and we may pick gj ∈ J∩Idj mapping to gj ∈ J∩Idj/J∩Idj+1.
We claim that g1, . . . , gm generate J .

Let x ∈ J ∩ In. There exist aj ∈ Imax(0,n−dj) such that x −
∑
ajgj ∈ J ∩ In+1.

The reason is that J ∩ In/J ∩ In+1 is equal to
∑
gjI

n−dj/In−dj+1 by our choice
of g1, . . . , gm. Hence starting with x ∈ J we can find a sequence of vectors
(a1,n, . . . , am,n)n≥0 with aj,n ∈ Imax(0,n−dj) such that

x =
∑

n=0,...,N

∑
j=1,...,m

aj,ngj mod IN+1

Setting Aj =
∑
n≥0 aj,n we see that x =

∑
Ajgj as R is complete. Hence J is

finitely generated and we win. □

Lemma 97.6.0316 Let R be a Noetherian ring. Let I be an ideal of R. The completion
R∧ of R with respect to I is Noetherian.

Proof. This is a consequence of Lemma 97.5. It can also be seen directly as follows.
Choose generators f1, . . . , fn of I. Consider the map

R[[x1, . . . , xn]] −→ R∧, xi 7−→ fi.

This is a well defined and surjective ring map (details omitted). SinceR[[x1, . . . , xn]]
is Noetherian (see Lemma 31.2) we win. □
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Suppose R→ S is a local homomorphism of local rings (R,m) and (S, n). Let S∧ be
the completion of S with respect to n. In general S∧ is not the m-adic completion
of S. If nt ⊂ mS for some t ≥ 1 then we do have S∧ = limS/mnS by Lemma 96.9.
In some cases this even implies that S∧ is finite over R∧.

Lemma 97.7.0394 Let R → S be a local homomorphism of local rings (R,m) and
(S, n). Let R∧, resp. S∧ be the completion of R, resp. S with respect to m, resp. n.
If m and n are finitely generated and dimκ(m) S/mS <∞, then

(1) S∧ is equal to the m-adic completion of S, and
(2) S∧ is a finite R∧-module.

Proof. We have mS ⊂ n because R → S is a local ring map. The assumption
dimκ(m) S/mS <∞ implies that S/mS is an Artinian ring, see Lemma 53.2. Hence
has dimension 0, see Lemma 60.5, hence n =

√
mS. This and the fact that n is

finitely generated implies that nt ⊂ mS for some t ≥ 1. By Lemma 96.9 we see that
S∧ can be identified with the m-adic completion of S. As m is finitely generated
we see from Lemma 96.3 that S∧ and R∧ are m-adically complete. At this point
we may apply Lemma 96.12 to S∧ as an R∧-module to conclude. □

Lemma 97.8.07N9 Let R be a Noetherian ring. Let R → S be a finite ring map. Let
p ⊂ R be a prime and let q1, . . . , qm be the primes of S lying over p (Lemma 36.21).
Then

R∧
p ⊗R S = (Sp)∧ = S∧

q1
× . . .× S∧

qm

where the (Sp)∧ is the completion with respect to p and the local rings Rp and Sqi

are completed with respect to their maximal ideals.

Proof. The first equality follows from Lemma 97.1. We may replace R by the
localization Rp and S by Sp = S ⊗R Rp. Hence we may assume that R is a local
Noetherian ring and that p = m is its maximal ideal. The qiSqi -adic completion
S∧
qi

is equal to the m-adic completion by Lemma 97.7. For every n ≥ 1 prime ideals
of S/mnS are in 1-to-1 correspondence with the maximal ideals q1, . . . , qm of S (by
going up for S over R, see Lemma 36.22). Hence S/mnS =

∏
Sqi

/mnSqi
by Lemma

53.6 (using for example Proposition 60.7 to see that S/mnS is Artinian). Hence
the m-adic completion S∧ of S is equal to

∏
S∧
qi

. Finally, we have R∧ ⊗R S = S∧

by Lemma 97.1. □

Lemma 97.9.05D3 Let R be a ring. Let I ⊂ R be an ideal. Let 0→ K → P →M → 0
be a short exact sequence of R-modules. If M is flat over R and M/IM is a
projective R/I-module, then the sequence of I-adic completions

0→ K∧ → P∧ →M∧ → 0
is a split exact sequence.

Proof. As M is flat, each of the sequences
0→ K/InK → P/InP →M/InM → 0

is short exact, see Lemma 39.12 and the sequence 0 → K∧ → P∧ → M∧ → 0
is a short exact sequence, see Lemma 96.1. It suffices to show that we can find
splittings sn : M/InM → P/InP such that sn+1 mod In = sn. We will construct
these sn by induction on n. Pick any splitting s1, which exists as M/IM is a
projective R/I-module. Assume given sn for some n > 0. Set Pn+1 = {x ∈ P |
x mod InP ∈ Im(sn)}. The map π : Pn+1/I

n+1Pn+1 → M/In+1M is surjective

https://stacks.math.columbia.edu/tag/0394
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(details omitted). As M/In+1M is projective as a R/In+1-module by Lemma 77.7
we may choose a section t : M/In+1M → Pn+1/I

n+1Pn+1 of π. Setting sn+1
equal to the composition of t with the canonical map Pn+1/I

n+1Pn+1 → P/In+1P
works. □

Lemma 97.10.0DYC Let A be a Noetherian ring. Let I, J ⊂ A be ideals. If A is
I-adically complete and A/I is J-adically complete, then A is J-adically complete.

Proof. Let B be the (I + J)-adic completion of A. By Lemma 97.2 B/IB is the
J-adic completion of A/I hence isomorphic to A/I by assumption. Moreover B
is I-adically complete by Lemma 96.8. Hence B is a finite A-module by Lemma
96.12. By Nakayama’s lemma (Lemma 20.1 using I is in the Jacobson radical of
A by Lemma 96.6) we find that A → B is surjective. The map A → B is flat by
Lemma 97.2. The image of Spec(B)→ Spec(A) contains V (I) and as I is contained
in the Jacobson radical of A we find A→ B is faithfully flat (Lemma 39.16). Thus
A → B is injective. Thus A is complete with respect to I + J , hence a fortiori
complete with respect to J . □

98. Taking limits of modules

09B7 In this section we discuss what happens when we take a limit of modules.

Lemma 98.1.0G1Q Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be
an inverse system of A-modules with InMn = 0. Then M = limMn is I-adically
complete.

Proof. We have M → M/InM → Mn. Taking the limit we get M → M∧ → M .
Hence M is a direct summand of M∧. Since M∧ is I-adically complete by Lemma
96.3, so is M . □

Lemma 98.2.09B8 Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be an
inverse system of A-modules with Mn = Mn+1/I

nMn+1. Set M = limMn. Then
M/InM = Mn and M is I-adically complete.

Proof. By Lemma 98.1 we see that M is I-adically complete. Since the transition
maps are surjective, the maps M →Mn are surjective. Consider the inverse system
of short exact sequences

0→ Nn →M →Mn → 0

defining Nn. Since Mn = Mn+1/I
nMn+1 the map Nn+1 +InM → Nn is surjective.

Hence Nn+1/(Nn+1 ∩ In+1M)→ Nn/(Nn ∩ InM) is surjective. Taking the inverse
limit of the short exact sequences

0→ Nn/(Nn ∩ InM)→M/InM →Mn → 0

we obtain an exact sequence

0→ limNn/(Nn ∩ InM)→M∧ →M

Since M is I-adically complete we conclude that limNn/(Nn∩InM) = 0 and hence
by the surjectivity of the transition maps we get Nn/(Nn ∩ InM) = 0 for all n.
Thus Mn = M/InM as desired. □
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Lemma 98.3.0EKC Let A be a Noetherian graded ring. Let I ⊂ A+ be a homoge-
neous ideal. Let (Nn) be an inverse system of finite graded A-modules with Nn =
Nn+1/I

nNn+1. Then there is a finite graded A-module N such that Nn = N/InN
as graded modules for all n.

Proof. Pick r and homogeneous elements x1,1, . . . , x1,r ∈ N1 of degrees d1, . . . , dr
generating N1. Since the transition maps are surjective, we can pick a compatible
system of homogeneous elements xn,i ∈ Nn lifting x1,i. By the graded Nakayama
lemma (Lemma 56.1) we see that Nn is generated by the elements xn,1, . . . , xn,r
sitting in degrees d1, . . . , dr. Thus for m ≤ n we see that Nn → Nn/I

mNn is an
isomorphism in degrees < min(di) + m (as ImNn is zero in those degrees). Thus
the inverse system of degree d parts

. . . = N2+d−min(di),d = N1+d−min(di),d = Nd−min(di),d → N−1+d−min(di),d → . . .

stabilizes as indicated. Let N be the graded A-module whose dth graded part is
this stabilization. In particular, we have the elements xi = lim xn,i in N . We claim
the xi generate N : any x ∈ Nd is a linear combination of x1, . . . , xr because we
can check this in Nd−min(di),d where it holds as xd−min(di),i generate Nd−min(di).
Finally, the reader checks that the surjective map N/InN → Nn is an isomorphism
by checking to see what happens in each degree as before. Details omitted. □

Lemma 98.4.0EKD Let A be a graded ring. Let I ⊂ A+ be a homogeneous ideal.
Denote A′ = limA/In. Let (Gn) be an inverse system of graded A-modules with
Gn annihilated by In. Let M be a graded A-module and let φn : M → Gn be a
compatible system of graded A-module maps. If the induced map

φ : M ⊗A A′ −→ limGn

is an isomorphism, then Md → limGn,d is an isomorphism for all d ∈ Z.

Proof. By convention graded rings are in degrees ≥ 0 and graded modules may
have nonzero parts of any degree, see Section 56. The map φ exists because limGn
is a module over A′ as Gn is annihilated by In. Another useful thing to keep in
mind is that we have⊕

d∈Z
limGn,d ⊂ limGn ⊂

∏
d∈Z

limGn,d

where a subscript d indicates the dth graded part.

Injective. Let x ∈ Md. If x 7→ 0 in limGn,d then x ⊗ 1 = 0 in M ⊗A A′. Then
we can find a finitely generated submodule M ′ ⊂ M with x ∈ M ′ such that x⊗ 1
is zero in M ′ ⊗A A′. Say M ′ is generated by homogeneous elements sitting in
degrees d1, . . . , dr. Let n = d−min(di) + 1. Since A′ has a map to A/In and since
A → A/In is an isomorphism in degrees ≤ n − 1 we see that M ′ → M ′ ⊗A A′ is
injective in degrees ≤ n− 1. Thus x = 0 as desired.

Surjective. Let y ∈ limGn,d. Choose a finite sum
∑
xi ⊗ f ′

i in M ⊗A A′ mapping
to y. We may assume xi is homogeneous, say of degree di. Observe that although
A′ is not a graded ring, it is a limit of the graded rings A/InA and moreover, in
any given degree the transition maps eventually become isomorphisms (see above).
This gives

A =
⊕

d≥0
Ad ⊂ A′ ⊂

∏
d≥0

Ad
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Thus we can write
f ′
i =

∑
j=0,...,d−di−1

fi,j + fi + g′
i

with fi,j ∈ Aj , fi ∈ Ad−di
, and g′

i ∈ A′ mapping to zero in
∏
j≤d−di

Aj . Now if
we compute φn(

∑
i,j fi,jxi) ∈ Gn, then we get a sum of homogeneous elements of

degree < d. Hence φ(
∑
xi⊗fi,j) maps to zero in limGn,d. Similarly, a computation

shows the element φ(
∑
xi ⊗ g′

i) maps to zero in
∏
d′≤d limGn,d′ . Since we know

that φ(
∑
xi ⊗ f ′

i) is y, we conclude that
∑
fixi ∈Md maps to y as desired. □

99. Criteria for flatness

00MD In this section we prove some important technical lemmas in the Noetherian case.
We will (partially) generalize these to the non-Noetherian case in Section 128.

Lemma 99.1.00ME Suppose that R→ S is a local homomorphism of Noetherian local
rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a finite
S-module. Let u : N → M be a map of R-modules. If u : N/mN → M/mM is
injective then u is injective. In this case M/u(N) is flat over R.

Proof. First we claim that un : N/mnN →M/mnM is injective for all n ≥ 1. We
proceed by induction, the base case is that u = u1 is injective. By our assumption
that M is flat over R we have a short exact sequence 0 → M ⊗R mn/mn+1 →
M/mn+1M → M/mnM → 0. Also, M ⊗R mn/mn+1 = M/mM ⊗R/m mn/mn+1.
We have a similar exact sequence N ⊗R mn/mn+1 → N/mn+1N → N/mnN → 0
for N except we do not have the zero on the left. We also have N ⊗R mn/mn+1 =
N/mN ⊗R/m mn/mn+1. Thus the map un+1 is injective as both un and the map
u⊗ idmn/mn+1 are.

By Krull’s intersection theorem (Lemma 51.4) applied to N over the ring S and
the ideal mS we have

⋂
mnN = 0. Thus the injectivity of un for all n implies u is

injective.

To show that M/u(N) is flat over R, it suffices to show that TorR1 (M/u(N), R/I) =
0 for every ideal I ⊂ R, see Lemma 75.8. From the short exact sequence

0→ N
u−→M →M/u(N)→ 0

and the flatness of M we obtain an exact sequence of Tors

0→ TorR1 (M/u(N), R/I)→ N/IN →M/IM

See Lemma 75.2. Thus it suffices to show that N/IN injects into M/IM . Note that
R/I → S/IS is a local homomorphism of Noetherian local rings, N/IN →M/IM
is a map of R/I-modules, N/IN is finite over S/IS, and M/IM is flat over R/I
and u mod I : N/IN →M/IM is injective modulo m. Thus we may apply the first
part of the proof to u mod I and we conclude. □

Lemma 99.2.00MF Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f ∈ S is a
nonzerodivisor in S/mS. Then S/fS is flat over R, and f is a nonzerodivisor in
S.

Proof. Follows directly from Lemma 99.1. □
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Lemma 99.3.00MG Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f1, . . . , fc is a
sequence of elements of S such that the images f1, . . . , f c form a regular sequence
in S/mS. Then f1, . . . , fc is a regular sequence in S and each of the quotients
S/(f1, . . . , fi) is flat over R.

Proof. Induction and Lemma 99.2. □

Lemma 99.4.00MH Let R → S be a local homomorphism of Noetherian local rings.
Let m be the maximal ideal of R. Let M be a finite S-module. Suppose that (a)
M/mM is a free S/mS-module, and (b) M is flat over R. Then M is free and S
is flat over R.

Proof. Let x1, . . . , xn be a basis for the free module M/mM . Choose x1, . . . , xn ∈
M with xi mapping to xi. Let u : S⊕n → M be the map which maps the ith
standard basis vector to xi. By Lemma 99.1 we see that u is injective. On the other
hand, by Nakayama’s Lemma 20.1 the map is surjective. The lemma follows. □

Lemma 99.5.00MI Let R → S be a local homomorphism of local Noetherian rings.
Let m be the maximal ideal of R. Let 0 → Fe → Fe−1 → . . . → F0 be a finite
complex of finite S-modules. Assume that each Fi is R-flat, and that the complex
0 → Fe/mFe → Fe−1/mFe−1 → . . . → F0/mF0 is exact. Then 0 → Fe → Fe−1 →
. . .→ F0 is exact, and moreover the module Coker(F1 → F0) is R-flat.

Proof. By induction on e. If e = 1, then this is exactly Lemma 99.1. If e > 1, we
see by Lemma 99.1 that Fe → Fe−1 is injective and that C = Coker(Fe → Fe−1)
is a finite S-module flat over R. Hence we can apply the induction hypothesis to
the complex 0 → C → Fe−2 → . . . → F0. We deduce that C → Fe−2 is injective
and the exactness of the complex follows, as well as the flatness of the cokernel of
F1 → F0. □

In the rest of this section we prove two versions of what is called the “local criterion
of flatness”. Note also the interesting Lemma 128.1 below.

Lemma 99.6.00MJ Let R be a local ring with maximal ideal m and residue field κ =
R/m. Let M be an R-module. If TorR1 (κ,M) = 0, then for every finite length
R-module N we have TorR1 (N,M) = 0.

Proof. By descending induction on the length of N . If the length of N is 1, then
N ∼= κ and we are done. If the length of N is more than 1, then we can fit N
into a short exact sequence 0 → N ′ → N → N ′′ → 0 where N ′, N ′′ are finite
length R-modules of smaller length. The vanishing of TorR1 (N,M) follows from the
vanishing of TorR1 (N ′,M) and TorR1 (N ′′,M) (induction hypothesis) and the long
exact sequence of Tor groups, see Lemma 75.2. □

Lemma 99.7 (Local criterion for flatness).00MK Let R→ S be a local homomorphism
of local Noetherian rings. Let m be the maximal ideal of R, and let κ = R/m. Let
M be a finite S-module. If TorR1 (κ,M) = 0, then M is flat over R.

Proof. Let I ⊂ R be an ideal. By Lemma 39.5 it suffices to show that I⊗RM →M
is injective. By Remark 75.9 we see that this kernel is equal to TorR1 (M,R/I). By
Lemma 99.6 we see that J ⊗RM →M is injective for all ideals of finite colength.
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Choose n >> 0 and consider the following short exact sequence

0→ I ∩mn → I ⊕mn → I + mn → 0

This is a sub sequence of the short exact sequence 0→ R→ R⊕2 → R→ 0. Thus
we get the diagram

(I ∩mn)⊗RM //

��

I ⊗RM ⊕mn ⊗RM //

��

(I + mn)⊗RM

��
M // M ⊕M // M

Note that I +mn and mn are ideals of finite colength. Thus a diagram chase shows
that Ker((I ∩mn)⊗RM →M)→ Ker(I⊗RM →M) is surjective. We conclude in
particular that K = Ker(I⊗RM →M) is contained in the image of (I ∩mn)⊗RM
in I⊗RM . By Artin-Rees, Lemma 51.2 we see that K is contained in mn−c(I⊗RM)
for some c > 0 and all n >> 0. Since I ⊗RM is a finite S-module (!) and since S
is Noetherian, we see that this implies K = 0. Namely, the above implies K maps
to zero in the mS-adic completion of I ⊗RM . But the map from S to its mS-adic
completion is faithfully flat by Lemma 97.3. Hence K = 0, as desired. □

In the following we often encounter the conditions “M/IM is flat over R/I and
TorR1 (R/I,M) = 0”. The following lemma gives some consequences of these condi-
tions (it is a generalization of Lemma 99.6).

Lemma 99.8.051C Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. If
M/IM is flat over R/I and TorR1 (R/I,M) = 0 then

(1) M/InM is flat over R/In for all n ≥ 1, and
(2) for any module N which is annihilated by Im for some m ≥ 0 we have

TorR1 (N,M) = 0.
In particular, if I is nilpotent, then M is flat over R.

Proof. Assume M/IM is flat over R/I and TorR1 (R/I,M) = 0. Let N be an
R/I-module. Choose a short exact sequence

0→ K →
⊕

i∈I
R/I → N → 0

By the long exact sequence of Tor and the vanishing of TorR1 (R/I,M) we get

0→ TorR1 (N,M)→ K ⊗RM → (
⊕

i∈I
R/I)⊗RM → N ⊗RM → 0

But since K,
⊕

i∈I R/I, and N are all annihilated by I we see that

K ⊗RM = K ⊗R/I M/IM,

(
⊕

i∈I
R/I)⊗RM = (

⊕
i∈I

R/I)⊗R/I M/IM,

N ⊗RM = N ⊗R/I M/IM.

As M/IM is flat over R/I we conclude that

0→ K ⊗R/I M/IM → (
⊕

i∈I
R/I)⊗R/I M/IM → N ⊗R/M/IM → 0

is exact. Combining this with the above we conclude that TorR1 (N,M) = 0 for any
R-module N annihilated by I.

https://stacks.math.columbia.edu/tag/051C
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Let us prove (2) by induction on m. The case m = 1 was done in the previous
paragraph. For N annihilated by Im for m > 1 we may choose an exact sequence
0 → N ′ → N → N ′′ → 0 with N ′ and N ′′ annihilated by Im−1. For example one
can take N ′ = IN and N ′′ = N/IN . Then the exact sequence

TorR1 (N ′,M)→ TorR1 (N,M)→ TorR1 (N ′′,M)
and induction prove the vanishing we want.
Finally, we prove (1). Given n ≥ 1 we have to show that M/InM is flat over R/In.
In other words, we have to show that the functor N 7→ N ⊗R/In M/InM is exact
on the category of R-modules N annihilated by In. However, for such N we have
N ⊗R/In M/InM = N ⊗R M . By the vanishing of Tor1 in (2) we see that the
functor N 7→ N ⊗RM is exact on the category of N annihilated by some power of
I and we conclude. □

Lemma 99.9.0AS8 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
(1) If M/IM is flat over R/I and M ⊗R I/I2 → IM/I2M is injective, then

M/I2M is flat over R/I2.
(2) If M/IM is flat over R/I and M ⊗R In/In+1 → InM/In+1M is injective

for n = 1, . . . , k, then M/Ik+1M is flat over R/Ik+1.

Proof. The first statement is a consequence of Lemma 99.8 applied with R replaced
by R/I2 and M replaced by M/I2M using that

TorR/I
2

1 (M/I2M,R/I) = Ker(M ⊗R I/I2 → IM/I2M),
see Remark 75.9. The second statement follows in the same manner using induction
on n to show that M/In+1M is flat over R/In+1 for n = 1, . . . , k. Here we use that

TorR/I
n+1

1 (M/In+1M,R/In) = Ker(M ⊗R In/In+1 → InM/In+1M)
for every n. □

Lemma 99.10 (Variant of the local criterion).00ML Let R → S be a local homomor-
phism of Noetherian local rings. Let I ̸= R be an ideal in R. Let M be a finite
S-module. If TorR1 (M,R/I) = 0 and M/IM is flat over R/I, then M is flat over
R.

Proof. First proof: By Lemma 99.8 we see that TorR1 (κ,M) is zero where κ is the
residue field of R. Hence we see that M is flat over R by Lemma 99.7.
Second proof: Let m be the maximal ideal of R. We will show that m⊗RM →M
is injective, and then apply Lemma 99.7. Suppose that

∑
fi ⊗ xi ∈ m ⊗R M

and that
∑
fixi = 0 in M . By the equational criterion for flatness Lemma 39.11

applied to M/IM over R/I we see there exist aij ∈ R/I and yj ∈M/IM such that
xi mod IM =

∑
j aijyj and 0 =

∑
i(fi mod I)aij . Let aij ∈ R be a lift of aij and

similarly let yj ∈M be a lift of yj . Then we see that∑
fi ⊗ xi =

∑
fi ⊗ xi +

∑
fiaij ⊗ yj −

∑
fi ⊗ aijyj

=
∑

fi ⊗ (xi −
∑

aijyj) +
∑

(
∑

fiaij)⊗ yj
Since xi −

∑
aijyj ∈ IM and

∑
fiaij ∈ I we see that there exists an element in

I ⊗RM which maps to our given element
∑
fi⊗xi in m⊗RM . But I ⊗RM →M

is injective by assumption (see Remark 75.9) and we win. □
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In particular, in the situation of Lemma 99.10, suppose that I = (x) is generated
by a single element x which is a nonzerodivisor in R. Then TorR1 (M,R/(x)) = (0)
if and only if x is a nonzerodivisor on M .

Lemma 99.11.0523 Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for each n ≥ 1 the module M/InM is flat over R/In.

Then for every q ∈ V (IS) the localization Mq is flat over R. In particular, if S is
local and IS is contained in its maximal ideal, then M is flat over R.

Proof. We are going to use Lemma 99.10. By assumption M/IM is flat over
R/I. Hence it suffices to check that TorR1 (M,R/I) is zero on localization at q. By
Remark 75.9 this Tor group is equal to K = Ker(I⊗RM →M). We know that the
kernel of I/In ⊗R/In M/InM → M/InM is zero for all n ≥ 1. Hence an element
of K maps to zero in I/In ⊗R/In M/InM . Since

I/In ⊗R/In M/InM = I/In ⊗RM = (I ⊗RM)/In−1(I ⊗RM)

we conclude that K ⊂ In−1(I ⊗RM) for all n ≥ 1. By the Artin-Rees lemma, and
more precisely Lemma 51.5 we conclude that Kq = 0, as desired. □

Lemma 99.12.00MM Let R → R′ → R′′ be ring maps. Let M be an R-module.
Suppose that M⊗RR′ is flat over R′. Then the natural map TorR1 (M,R′)⊗R′R′′ →
TorR1 (M,R′′) is onto.

Proof. Let F• be a free resolution of M over R. The complex F2 ⊗R R′ → F1 ⊗R
R′ → F0 ⊗R R′ computes TorR1 (M,R′). The complex F2 ⊗R R′′ → F1 ⊗R R′′ →
F0 ⊗R R′′ computes TorR1 (M,R′′). Note that Fi ⊗R R′ ⊗R′ R′′ = Fi ⊗R R′′. Let
K ′ = Ker(F1⊗R R′ → F0⊗R R′) and similarly K ′′ = Ker(F1⊗R R′′ → F0⊗R R′′).
Thus we have an exact sequence

0→ K ′ → F1 ⊗R R′ → F0 ⊗R R′ →M ⊗R R′ → 0.
By the assumption that M ⊗R R′ is flat over R′, the sequence

K ′ ⊗R′ R′′ → F1 ⊗R R′′ → F0 ⊗R R′′ →M ⊗R R′′ → 0
is still exact. This means that K ′ ⊗R′ R′′ → K ′′ is surjective. Since TorR1 (M,R′)
is a quotient of K ′ and TorR1 (M,R′′) is a quotient of K ′′ we win. □

Lemma 99.13.00MN Let R→ R′ be a ring map. Let I ⊂ R be an ideal and I ′ = IR′.
Let M be an R-module and set M ′ = M⊗RR′. The natural map TorR1 (R′/I ′,M)→
TorR

′

1 (R′/I ′,M ′) is surjective.

Proof. Let F2 → F1 → F0 → M → 0 be a free resolution of M over R. Set
F ′
i = Fi ⊗R R′. The sequence F ′

2 → F ′
1 → F ′

0 → M ′ → 0 may no longer be exact
at F ′

1. A free resolution of M ′ over R′ therefore looks like
F ′

2 ⊕ F ′′
2 → F ′

1 → F ′
0 →M ′ → 0

for a suitable free module F ′′
2 over R′. Next, note that Fi ⊗R R′/I ′ = F ′

i/IF
′
i =

F ′
i/I

′F ′
i . So the complex F ′

2/I
′F ′

2 → F ′
1/I

′F ′
1 → F ′

0/I
′F ′

0 computes TorR1 (M,R′/I ′).

https://stacks.math.columbia.edu/tag/0523
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On the other hand F ′
i ⊗R′ R′/I ′ = F ′

i/I
′F ′
i and similarly for F ′′

2 . Thus the complex
F ′

2/I
′F ′

2 ⊕ F ′′
2 /I

′F ′′
2 → F ′

1/I
′F ′

1 → F ′
0/I

′F ′
0 computes TorR

′

1 (M ′, R′/I ′). Since the
vertical map on complexes

F ′
2/I

′F ′
2

//

��

F ′
1/I

′F ′
1

//

��

F ′
0/I

′F ′
0

��
F ′

2/I
′F ′

2 ⊕ F ′′
2 /I

′F ′′
2

// F ′
1/I

′F ′
1

// F ′
0/I

′F ′
0

clearly induces a surjection on cohomology we win. □

Lemma 99.14.00MO Let

S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local Noetherian rings. Let
I ⊂ R be a proper ideal. Let M be a finite S-module. Denote I ′ = IR′ and
M ′ = M ⊗S S′. Assume that

(1) S′ is a localization of the tensor product S ⊗R R′,
(2) M/IM is flat over R/I,
(3) TorR1 (M,R/I)→ TorR

′

1 (M ′, R′/I ′) is zero.
Then M ′ is flat over R′.

Proof. Since S′ is a localization of S ⊗R R′ we see that M ′ is a localization of
M ⊗R R′. Note that by Lemma 39.7 the module M/IM ⊗R/I R′/I ′ = M ⊗R
R′/I ′(M ⊗R R′) is flat over R′/I ′. Hence also M ′/I ′M ′ is flat over R′/I ′ as the
localization of a flat module is flat. By Lemma 99.10 it suffices to show that
TorR

′

1 (M ′, R′/I ′) is zero. Since M ′ is a localization of M⊗RR′, the last assumption
implies that it suffices to show that TorR1 (M,R/I)⊗RR′ → TorR

′

1 (M ⊗RR′, R′/I ′)
is surjective.

By Lemma 99.13 we see that TorR1 (M,R′/I ′)→ TorR
′

1 (M⊗RR′, R′/I ′) is surjective.
So now it suffices to show that TorR1 (M,R/I)⊗RR′ → TorR1 (M,R′/I ′) is surjective.
This follows from Lemma 99.12 by looking at the ring maps R→ R/I → R′/I ′ and
the module M . □

Please compare the lemma below to Lemma 101.8 (the case of a nilpotent ideal)
and Lemma 128.8 (the case of finitely presented algebras).

Lemma 99.15 (Critère de platitude par fibres; Noetherian case).00MP Let R, S, S′

be Noetherian local rings and let R → S → S′ be local ring homomorphisms. Let
m ⊂ R be the maximal ideal. Let M be an S′-module. Assume

(1) The module M is finite over S′.
(2) The module M is not zero.
(3) The module M/mM is a flat S/mS-module.
(4) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

https://stacks.math.columbia.edu/tag/00MO
https://stacks.math.columbia.edu/tag/00MP


COMMUTATIVE ALGEBRA 236

Proof. Set I = mS ⊂ S. Then we see that M/IM is a flat S/I-module because of
(3). Since m⊗R S′ → I ⊗S S′ is surjective we see that also m⊗RM → I ⊗S M is
surjective. Consider

m⊗RM → I ⊗S M →M.

As M is flat over R the composition is injective and so both arrows are injective.
In particular TorS1 (S/I,M) = 0 see Remark 75.9. By Lemma 99.10 we conclude
that M is flat over S. Note that since M/mS′M is not zero by Nakayama’s Lemma
20.1 we see that actually M is faithfully flat over S by Lemma 39.15 (since it forces
M/mSM ̸= 0).
Consider the exact sequence 0 → m → R → κ → 0. This gives an exact sequence
0 → TorR1 (κ, S) → m ⊗R S → I → 0. Since M is flat over S this gives an exact
sequence 0 → TorR1 (κ, S) ⊗S M → m ⊗R M → I ⊗S M → 0. By the above this
implies that TorR1 (κ, S) ⊗S M = 0. Since M is faithfully flat over S this implies
that TorR1 (κ, S) = 0 and we conclude that S is flat over R by Lemma 99.7. □

100. Base change and flatness

051D Some lemmas which deal with what happens with flatness when doing a base change.

Lemma 100.1.00MQ Let
S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local rings. Assume that S′

is a localization of the tensor product S ⊗R R′. Let M be an S-module and set
M ′ = S′ ⊗S M .

(1) If M is flat over R then M ′ is flat over R′.
(2) If M ′ is flat over R′ and R→ R′ is flat then M is flat over R.

In particular we have
(3) If S is flat over R then S′ is flat over R′.
(4) If R′ → S′ and R→ R′ are flat then S is flat over R.

Proof. Proof of (1). If M is flat over R, then M ⊗R R′ is flat over R′ by Lemma
39.7. If W ⊂ S ⊗R R′ is the multiplicative subset such that W−1(S ⊗R R′) = S′

then M ′ = W−1(M ⊗R R′). Hence M ′ is flat over R′ as the localization of a flat
module, see Lemma 39.18 part (5). This proves (1) and in particular, we see that
(3) holds.
Proof of (2). Suppose that M ′ is flat over R′ and R→ R′ is flat. By (3) applied to
the diagram reflected in the northwest diagonal we see that S → S′ is flat. Thus
S → S′ is faithfully flat by Lemma 39.17. We are going to use the criterion of
Lemma 39.5 (3) to show that M is flat. Let I ⊂ R be an ideal. If I ⊗R M → M
has a kernel, so does (I ⊗RM)⊗S S′ →M ⊗S S′ = M ′. Note that I ⊗R R′ = IR′

as R→ R′ is flat, and that
(I ⊗RM)⊗S S′ = (I ⊗R R′)⊗R′ (M ⊗S S′) = IR′ ⊗R′ M ′.

From flatness of M ′ over R′ we conclude that this maps injectively into M ′. This
concludes the proof of (2), and hence (4) is true as well. □

https://stacks.math.columbia.edu/tag/00MQ
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Here is yet another application of the local criterion of flatness.

Lemma 100.2.0GEB Consider a commutative diagram of local rings and local homo-
morphisms

S // S′

R //

OO

R′

OO

Let M be a finite S-module. Assume that
(1) the horizontal arrows are flat ring maps
(2) M is flat over R,
(3) mRR

′ = mR′ ,
(4) R′ and S′ are Noetherian.

Then M ′ = M ⊗S S′ is flat over R′.

Proof. Since mR ⊂ R and R → R′ is flat, we get mR ⊗R R′ = mRR
′ = mR′ by

assumption (3). Observe that M ′ is a finite S′-module which is flat over R by
Lemma 39.9. Thus mR ⊗RM ′ →M ′ is injective. Then we get

mR ⊗RM ′ = mR ⊗R R′ ⊗R′ M ′ = mR′ ⊗R′ M ′

Thus mR′ ⊗R′ M ′ →M ′ is injective. This shows that TorR
′

1 (κR′ ,M ′) = 0 (Remark
75.9). Thus M ′ is flat over R′ by Lemma 99.7. □

101. Flatness criteria over Artinian rings

051E We discuss some flatness criteria for modules over Artinian rings. Note that an
Artinian local ring has a nilpotent maximal ideal so that the following two lemmas
apply to Artinian local rings.

Lemma 101.1.051F Let (R,m) be a local ring with nilpotent maximal ideal m. Let M
be a flat R-module. If A is a set and xα ∈M , α ∈ A is a collection of elements of
M , then the following are equivalent:

(1) {xα}α∈A forms a basis for the vector space M/mM over R/m, and
(2) {xα}α∈A forms a basis for M over R.

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). By Nakayama’s
Lemma 20.1 the elements xα generate M . Then one gets a short exact sequence

0→ K →
⊕

α∈A
R→M → 0

Tensoring with R/m and using Lemma 39.12 we obtain K/mK = 0. By Nakayama’s
Lemma 20.1 we conclude K = 0. □

Lemma 101.2.051G Let R be a local ring with nilpotent maximal ideal. Let M be an
R-module. The following are equivalent

(1) M is flat over R,
(2) M is a free R-module, and
(3) M is a projective R-module.

Proof. Since any projective module is flat (as a direct summand of a free module)
and every free module is projective, it suffices to prove that a flat module is free.
Let M be a flat module. Let A be a set and let xα ∈ M , α ∈ A be elements such

https://stacks.math.columbia.edu/tag/0GEB
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that xα ∈ M/mM forms a basis over the residue field of R. By Lemma 101.1 the
xα are a basis for M over R and we win. □

Lemma 101.3.051H Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Let A be a set and let xα ∈M , α ∈ A be a collection of elements of M . Assume

(1) I is nilpotent,
(2) {xα}α∈A forms a basis for M/IM over R/I, and
(3) TorR1 (R/I,M) = 0.

Then M is free on {xα}α∈A over R.

Proof. Let R, I, M , {xα}α∈A be as in the lemma and satisfy assumptions (1), (2),
and (3). By Nakayama’s Lemma 20.1 the elements xα generate M over R. The
assumption TorR1 (R/I,M) = 0 implies that we have a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Let
∑
fαxα = 0 be a relation in M . By choice of xα we see that fα ∈ I. Hence we

conclude that
∑
fα ⊗ xα = 0 in I ⊗RM . The map I ⊗RM → I/I2 ⊗R/I M/IM

and the fact that {xα}α∈A forms a basis for M/IM implies that fα ∈ I2! Hence
we conclude that there are no relations among the images of the xα in M/I2M . In
other words, we see that M/I2M is free with basis the images of the xα. Using the
map I ⊗R M → I/I3 ⊗R/I2 M/I2M we then conclude that fα ∈ I3! And so on.
Since In = 0 for some n by assumption (1) we win. □

Lemma 101.4.051I Let φ : R→ R′ be a ring map. Let I ⊂ R be an ideal. Let M be
an R-module. Assume

(1) M/IM is flat over R/I, and
(2) R′ ⊗RM is flat over R′.

Set I2 = φ−1(φ(I2)R′). Then M/I2M is flat over R/I2.

Proof. We may replace R, M , and R′ by R/I2, M/I2M , and R′/φ(I)2R′. Then
I2 = 0 and φ is injective. By Lemma 99.8 and the fact that I2 = 0 it suffices to
prove that TorR1 (R/I,M) = K = Ker(I ⊗RM → M) is zero. Set M ′ = M ⊗R R′

and I ′ = IR′. By assumption the map I ′⊗R′ M ′ →M ′ is injective. Hence K maps
to zero in

I ′ ⊗R′ M ′ = I ′ ⊗RM = I ′ ⊗R/I M/IM.

Then I → I ′ is an injective map of R/I-modules. Since M/IM is flat over R/I the
map

I ⊗R/I M/IM −→ I ′ ⊗R/I M/IM

is injective. This implies that K is zero in I ⊗RM = I ⊗R/IM/IM as desired. □

Lemma 101.5.051J Let φ : R→ R′ be a ring map. Let I ⊂ R be an ideal. Let M be
an R-module. Assume

(1) I is nilpotent,
(2) R→ R′ is injective,
(3) M/IM is flat over R/I, and
(4) R′ ⊗RM is flat over R′.

Then M is flat over R.
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Proof. Define inductively I1 = I and In+1 = φ−1(φ(In)2R′) for n ≥ 1. Note that
by Lemma 101.4 we find that M/InM is flat over R/In for each n ≥ 1. It is clear
that φ(In) ⊂ φ(I)2n

R′. Since I is nilpotent we see that φ(In) = 0 for some n. As
φ is injective we conclude that In = 0 for some n and we win. □

Here is the local Artinian version of the local criterion for flatness.

Lemma 101.6.051K Let R be an Artinian local ring. Let M be an R-module. Let
I ⊂ R be a proper ideal. The following are equivalent

(1) M is flat over R, and
(2) M/IM is flat over R/I and TorR1 (R/I,M) = 0.

Proof. The implication (1) ⇒ (2) follows immediately from the definitions. As-
sume M/IM is flat over R/I and TorR1 (R/I,M) = 0. By Lemma 101.2 this implies
that M/IM is free over R/I. Pick a set A and elements xα ∈ M such that the
images in M/IM form a basis. By Lemma 101.3 we conclude that M is free and
in particular flat. □

It turns out that flatness descends along injective homomorphism whose source is
an Artinian ring.

Lemma 101.7.051L Let R→ S be a ring map. Let M be an R-module. Assume
(1) R is Artinian
(2) R→ S is injective, and
(3) M ⊗R S is a flat S-module.

Then M is a flat R-module.

Proof. First proof: Let I ⊂ R be the Jacobson radical of R. Then I is nilpotent
and M/IM is flat over R/I as R/I is a product of fields, see Section 53. Hence M
is flat by an application of Lemma 101.5.

Second proof: By Lemma 53.6 we may write R =
∏
Ri as a finite product of local

Artinian rings. This induces similar product decompositions for both R and S.
Hence we reduce to the case where R is local Artinian (details omitted).

Assume that R → S, M are as in the lemma satisfying (1), (2), and (3) and in
addition that R is local with maximal ideal m. Let A be a set and xα ∈ A be
elements such that xα forms a basis for M/mM over R/m. By Nakayama’s Lemma
20.1 we see that the elements xα generate M as an R-module. Set N = S ⊗R M
and I = mS. Then {1 ⊗ xα}α∈A is a family of elements of N which form a basis
for N/IN . Moreover, since N is flat over S we have TorS1 (S/I,N) = 0. Thus we
conclude from Lemma 101.3 that N is free on {1 ⊗ xα}α∈A. The injectivity of
R → S then guarantees that there cannot be a nontrivial relation among the xα
with coefficients in R. □

Please compare the lemma below to Lemma 99.15 (the case of Noetherian local
rings), Lemma 128.8 (the case of finitely presented algebras), and Lemma 128.10
(the case of locally nilpotent ideals).
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Lemma 101.8 (Critère de platitude par fibres: Nilpotent case).06A5 Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a nilpotent ideal
and M an S′-module. Assume

(1) The module M/IM is a flat S/IS-module.
(2) The module M is a flat R-module.

Then M is a flat S-module and Sq is flat over R for every q ⊂ S such that M⊗Sκ(q)
is nonzero.

Proof. As M is flat over R tensoring with the short exact sequence 0→ I → R→
R/I → 0 gives a short exact sequence

0→ I ⊗RM →M →M/IM → 0.
Note that I ⊗RM → IS ⊗S M is surjective. Combined with the above this means
both maps in

I ⊗RM → IS ⊗S M →M

are injective. Hence TorS1 (IS,M) = 0 (see Remark 75.9) and we conclude that M
is a flat S-module by Lemma 99.8. To finish we need to show that Sq is flat over
R for any prime q ⊂ S such that M ⊗S κ(q) is nonzero. This follows from Lemma
39.15 and 39.10. □

102. What makes a complex exact?

00MR Some of this material can be found in the paper [BE73] by Buchsbaum and Eisen-
bud.

Situation 102.1.00MS Here R is a ring, and we have a complex

0→ Rne
φe−→ Rne−1

φe−1−−−→ . . .
φi+1−−−→ Rni

φi−→ Rni−1
φi−1−−−→ . . .

φ1−→ Rn0

In other words we require φi ◦ φi+1 = 0 for i = 1, . . . , e− 1.

Lemma 102.2.00MT Suppose R is a ring. Let

. . .
φi+1−−−→ Rni

φi−→ Rni−1
φi−1−−−→ . . .

be a complex of finite free R-modules. Suppose that for some i some matrix coeffi-
cient of the map φi is invertible. Then the displayed complex is isomorphic to the
direct sum of a complex

. . .→ Rni+2
φi+2−−−→ Rni+1 → Rni−1 → Rni−1−1 → Rni−2

φi−2−−−→ Rni−3 → . . .

and the complex . . .→ 0→ R→ R→ 0→ . . . where the map R→ R is the identity
map.

Proof. The assumption means, after a change of basis of Rni and Rni−1 that the
first basis vector of Rni is mapped via φi to the first basis vector of Rni−1 . Let
ej denote the jth basis vector of Rni and fk the kth basis vector of Rni−1 . Write
φi(ej) =

∑
ajkfk. So a1k = 0 unless k = 1 and a11 = 1. Change basis on Rni

again by setting e′
j = ej −aj1e1 for j > 1. After this change of coordinates we have

https://stacks.math.columbia.edu/tag/06A5
https://stacks.math.columbia.edu/tag/00MS
https://stacks.math.columbia.edu/tag/00MT


COMMUTATIVE ALGEBRA 241

aj1 = 0 for j > 1. Note the image of Rni+1 → Rni is contained in the subspace
spanned by ej , j > 1. Note also that Rni−1 → Rni−2 has to annihilate f1 since it is
in the image. These conditions and the shape of the matrix (ajk) for φi imply the
lemma. □

In Situation 102.1 we say a complex of the form

0→ . . .→ 0→ R
1−→ R→ 0→ . . .→ 0

or of the form
0→ . . .→ 0→ R

is trivial. More precisely, we say 0→ Rne → Rne−1 → . . .→ Rn0 is trivial if either
there exists an e ≥ i ≥ 1 with ni = ni−1 = 1, φi = idR, and nj = 0 for j ̸∈ {i, i−1}
or n0 = 1 and ni = 0 for i > 0. The lemma above clearly says that any finite
complex of finite free modules over a local ring is up to direct sums with trivial
complexes the same as a complex all of whose maps have all matrix coefficients in
the maximal ideal.

Lemma 102.3.00MY In Situation 102.1. Suppose R is a local Noetherian ring with
maximal ideal m. Assume m ∈ Ass(R), in other words R has depth 0. Suppose that
0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Then the complex is
isomorphic to a direct sum of trivial complexes.

Proof. Pick x ∈ R, x ̸= 0, with mx = 0. Let i be the biggest index such that
ni > 0. If i = 0, then the statement is true. If i > 0 denote f1 the first basis vector
of Rni . Since xf1 is not mapped to zero by exactness of the complex we deduce
that some matrix coefficient of the map Rni → Rni−1 is not in m. Lemma 102.2
then allows us to decrease ne + . . .+ n1. Induction finishes the proof. □

Lemma 102.4.00MU In Situation 102.1. Let R be a Artinian local ring. Suppose that
0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Then the complex is
isomorphic to a direct sum of trivial complexes.

Proof. This is a special case of Lemma 102.3 because an Artinian local ring has
depth 0. □

Below we define the rank of a map of finite free modules. This is just one possible
definition of rank. It is just the definition that works in this section; there are
others that may be more convenient in other settings.

Definition 102.5.00MV Let R be a ring. Suppose that φ : Rm → Rn is a map of finite
free modules.

(1) The rank of φ is the maximal r such that ∧rφ : ∧rRm → ∧rRn is nonzero.
(2) We let I(φ) ⊂ R be the ideal generated by the r × r minors of the matrix

of φ, where r is the rank as defined above.

The rank of φ : Rm → Rn is 0 if and only if φ = 0 and in this case I(φ) = R.

Lemma 102.6.00MW In Situation 102.1, suppose the complex is isomorphic to a direct
sum of trivial complexes. Then we have

(1) the maps φi have rank ri = ni − ni+1 + . . .+ (−1)e−i−1ne−1 + (−1)e−ine,
(2) for all i, 1 ≤ i ≤ e− 1 we have rank(φi+1) + rank(φi) = ni,
(3) each I(φi) = R.

https://stacks.math.columbia.edu/tag/00MY
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Proof. We may assume the complex is the direct sum of trivial complexes. Then
for each i we can split the standard basis elements of Rni into those that map to a
basis element of Rni−1 and those that are mapped to zero (and these are mapped
onto by basis elements of Rni+1 if i > 0). Using descending induction starting with
i = e it is easy to prove that there are ri+1-basis elements of Rni which are mapped
to zero and ri which are mapped to basis elements of Rni−1 . From this the result
follows. □

Lemma 102.7.00MZ In Situation 102.1. Suppose R is a local ring with maximal ideal
m. Suppose that 0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Let
x ∈ m be a nonzerodivisor. The complex 0 → (R/xR)ne → . . . → (R/xR)n1 is
exact at (R/xR)ne , . . . , (R/xR)n2 .

Proof. Denote F• the complex with terms Fi = Rni and differential given by φi.
Then we have a short exact sequence of complexes

0→ F•
x−→ F• → F•/xF• → 0

Applying the snake lemma we get a long exact sequence
Hi(F•) x−→ Hi(F•)→ Hi(F•/xF•)→ Hi−1(F•) x−→ Hi−1(F•)

The lemma follows. □

Lemma 102.8 (Acyclicity lemma).00N0 [PS73, Lemma 1.8]Let R be a local Noetherian ring. Let 0 →
Me →Me−1 → . . .→M0 be a complex of finite R-modules. Assume depth(Mi) ≥ i.
Let i be the largest index such that the complex is not exact at Mi. If i > 0 then
Ker(Mi →Mi−1)/ Im(Mi+1 →Mi) has depth ≥ 1.

Proof. Let H = Ker(Mi → Mi−1)/ Im(Mi+1 → Mi) be the cohomology group
in question. We may break the complex into short exact sequences 0 → Me →
Me−1 → Ke−2 → 0, 0 → Kj → Mj → Kj−1 → 0, for i + 2 ≤ j ≤ e − 2,
0 → Ki+1 → Mi+1 → Bi → 0, 0 → Ki → Mi → Mi−1, and 0 → Bi → Ki →
H → 0. We proceed up through these complexes to prove the statements about
depths, repeatedly using Lemma 72.6. First of all, since depth(Me) ≥ e, and
depth(Me−1) ≥ e − 1 we deduce that depth(Ke−2) ≥ e − 1. At this point the
sequences 0 → Kj → Mj → Kj−1 → 0 for i + 2 ≤ j ≤ e − 2 imply similarly that
depth(Kj−1) ≥ j for i+ 2 ≤ j ≤ e− 2. The sequence 0→ Ki+1 →Mi+1 → Bi → 0
then shows that depth(Bi) ≥ i + 1. The sequence 0 → Ki → Mi → Mi−1 shows
that depth(Ki) ≥ 1 since Mi has depth ≥ i ≥ 1 by assumption. The sequence
0→ Bi → Ki → H → 0 then implies the result. □

Proposition 102.9.00N1 [BE73, Corollary 1]In Situation 102.1, suppose R is a local Noetherian ring.
The following are equivalent

(1) 0→ Rne → Rne−1 → . . .→ Rn0 is exact at Rne , . . . , Rn1 , and
(2) for all i, 1 ≤ i ≤ e the following two conditions are satisfied:

(a) rank(φi) = ri where ri = ni−ni+1 + . . .+(−1)e−i−1ne−1 +(−1)e−ine,
(b) I(φi) = R, or I(φi) contains a regular sequence of length i.

Proof. If for some i some matrix coefficient of φi is not in m, then we apply Lemma
102.2. It is easy to see that the proposition for a complex and for the same complex
with a trivial complex added to it are equivalent. Thus we may assume that all
matrix entries of each φi are elements of the maximal ideal. We may also assume
that e ≥ 1.

https://stacks.math.columbia.edu/tag/00MZ
https://stacks.math.columbia.edu/tag/00N0
https://stacks.math.columbia.edu/tag/00N1


COMMUTATIVE ALGEBRA 243

Assume the complex is exact at Rne , . . . , Rn1 . Let q ∈ Ass(R). Note that the ring
Rq has depth 0 and that the complex remains exact after localization at q. We
apply Lemmas 102.3 and 102.6 to the localized complex over Rq. We conclude that
φi,q has rank ri for all i. Since R →

⊕
q∈Ass(R) Rq is injective (Lemma 63.19), we

conclude that φi has rank ri over R by the definition of rank as given in Definition
102.5. Therefore we see that I(φi)q = I(φi,q) as the ranks do not change. Since
all of the ideals I(φi)q, e ≥ i ≥ 1 are equal to Rq (by the lemmas referenced
above) we conclude none of the ideals I(φi) is contained in q. This implies that
I(φe)I(φe−1) . . . I(φ1) is not contained in any of the associated primes of R. By
Lemma 15.2 we may choose x ∈ I(φe)I(φe−1) . . . I(φ1), x ̸∈ q for all q ∈ Ass(R).
Observe that x is a nonzerodivisor (Lemma 63.9). According to Lemma 102.7 the
complex 0 → (R/xR)ne → . . . → (R/xR)n1 is exact at (R/xR)ne , . . . , (R/xR)n2 .
By induction on e all the ideals I(φi)/xR have a regular sequence of length i− 1.
This proves that I(φi) contains a regular sequence of length i.

Assume (2)(a) and (2)(b) hold. We will prove that (1) holds by induction on
dim(R). If dim(R) = 0, then we must have I(φi) = R for 1 ≤ i ≤ e by (2)(b).
Since the coefficients of φi are contained in the maximal ideal this can happen
only if ri = 0 for all i. By (2)(a) we conclude that e = 0 and (1) holds. Assume
dim(R) > 0. We claim that for any prime p ⊂ R conditions (2)(a) and (2)(b) hold
for the complex 0→ Rne

p → R
ne−1
p → . . .→ Rn0

p with maps φi,p over Rp. Namely,
since I(φi) contains a nonzero divisor, the image of I(φi) in Rp is nonzero. This
implies that the rank of φi,p is the same as the rank of φi: the rank as defined
above of a matrix φ over a ring R can only drop when passing to an R-algebra R′

and this happens if and only if I(φ) maps to zero in R′. Thus (2)(a) holds. Having
said this we know that I(φi,p) = I(φi)p and we see that (2)(b) is preserved under
localization as well. By induction on the dimension ofR we may assume the complex
is exact when localized at any nonmaximal prime p of R. Thus Ker(φi)/ Im(φi+1)
has support contained in {m} and hence if nonzero has depth 0. As I(φi) ⊂ m
for all i because of what was said in the first paragraph of the proof, we see that
(2)(b) implies depth(R) ≥ e. By Lemma 102.8 we see that the complex is exact at
Rne , . . . , Rn1 concluding the proof. □

Remark 102.10.0GLM If in Proposition 102.9 the equivalent conditions (1) and (2) are
satisfied, then there exists a j such that I(φi) = R if and only if i ≥ j. As in the
proof of the proposition, it suffices to see this when all the matrices have coefficients
in the maximal ideal m of R. In this case we see that I(φj) = R if and only if φj = 0.
But if φj = 0, then we get arbitrarily long exact complexes 0 → Rne → Rne−1 →
. . .→ Rnj → 0→ 0→ . . .→ 0 and hence by the proposition we see that I(φi) for
i > j has to be R (since otherwise it is a proper ideal of a Noetherian local ring
containing arbitrary long regular sequences which is impossible).

103. Cohen-Macaulay modules

00N2 Here we show that Cohen-Macaulay modules have good properties. We postpone
using Ext groups to establish the connection with duality and so on.

Definition 103.1.00N3 Let R be a Noetherian local ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if dim(Supp(M)) = depth(M).

https://stacks.math.columbia.edu/tag/0GLM
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A first goal will be to establish Proposition 103.4. We do this by a (perhaps
nonstandard) sequence of elementary lemmas involving almost none of the earlier
results on depth. Let us introduce some notation.

Let R be a local Noetherian ring. Let M be a Cohen-Macaulay module, and
let f1, . . . , fd be an M -regular sequence with d = dim(Supp(M)). We say that
g ∈ m is good with respect to (M,f1, . . . , fd) if for all i = 0, 1, . . . , d − 1 we have
dim(Supp(M) ∩ V (g, f1, . . . , fi)) = d − i − 1. This is equivalent to the condition
that dim(Supp(M/(f1, . . . , fi)M) ∩ V (g)) = d− i− 1 for i = 0, 1, . . . , d− 1.

Lemma 103.2.00N4 Notation and assumptions as above. If g is good with respect to
(M,f1, . . . , fd), then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-
Macaulay with maximal regular sequence f1, . . . , fd−1.

Proof. We prove the lemma by induction on d. If d = 0, then M is finite and
there is no case to which the lemma applies. If d = 1, then we have to show that
g : M → M is injective. The kernel K has support {m} because by assumption
dim Supp(M) ∩ V (g) = 0. Hence K has finite length. Hence f1 : K → K injective
implies the length of the image is the length of K, and hence f1K = K, which
by Nakayama’s Lemma 20.1 implies K = 0. Also, dim Supp(M/gM) = 0 and so
M/gM is Cohen-Macaulay of depth 0.

Assume d > 1. Observe that g is good for (M/f1M,f2, . . . , fd), as is easily seen from
the definition. By induction, we have that (a) g is a nonzerodivisor on M/f1M and
(b)M/(g, f1)M is Cohen-Macaulay with maximal regular sequence f2, . . . , fd−1. By
Lemma 68.4 we see that g, f1 is an M -regular sequence. Hence g is a nonzerodivisor
on M and f1, . . . , fd−1 is an M/gM -regular sequence. □

Lemma 103.3.00N5 Let R be a Noetherian local ring. Let M be a Cohen-Macaulay
module over R. Suppose g ∈ m is such that dim(Supp(M)∩V (g)) = dim(Supp(M))−
1. Then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-Macaulay of depth
one less.

Proof. Choose a M -regular sequence f1, . . . , fd with d = dim(Supp(M)). If g is
good with respect to (M,f1, . . . , fd) we win by Lemma 103.2. In particular the
lemma holds if d = 1. (The case d = 0 does not occur.) Assume d > 1. Choose
an element h ∈ R such that (i) h is good with respect to (M,f1, . . . , fd), and
(ii) dim(Supp(M) ∩ V (h, g)) = d − 2. To see h exists, let {qj} be the (finite)
set of minimal primes of the closed sets Supp(M), Supp(M) ∩ V (f1, . . . , fi), i =
1, . . . , d − 1, and Supp(M) ∩ V (g). None of these qj is equal to m and hence we
may find h ∈ m, h ̸∈ qj by Lemma 15.2. It is clear that h satisfies (i) and (ii).
From Lemma 103.2 we conclude that M/hM is Cohen-Macaulay. By (ii) we see
that the pair (M/hM, g) satisfies the induction hypothesis. Hence M/(h, g)M is
Cohen-Macaulay and g : M/hM → M/hM is injective. By Lemma 68.4 we see
that g : M → M and h : M/gM → M/gM are injective. Combined with the fact
that M/(g, h)M is Cohen-Macaulay this finishes the proof. □

Proposition 103.4.00N6 Let R be a Noetherian local ring, with maximal ideal m. Let
M be a Cohen-Macaulay module over R whose support has dimension d. Suppose
that g1, . . . , gc are elements of m such that dim(Supp(M/(g1, . . . , gc)M)) = d − c.
Then g1, . . . , gc is an M -regular sequence, and can be extended to a maximal M -
regular sequence.
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Proof. Let Z = Supp(M) ⊂ Spec(R). By Lemma 60.13 in the chain Z ⊃ Z ∩
V (g1) ⊃ . . . ⊃ Z ∩ V (g1, . . . , gc) each step decreases the dimension at most by 1.
Hence by assumption each step decreases the dimension by exactly 1 each time.
Thus we may successively apply Lemma 103.3 to the modules M/(g1, . . . , gi) and
the element gi+1.
To extend g1, . . . , gc by one element if c < d we simply choose an element gc+1 ∈ m
which is not in any of the finitely many minimal primes of Z ∩ V (g1, . . . , gc), using
Lemma 15.2. □

Having proved Proposition 103.4 we continue the development of standard theory.

Lemma 103.5.0C6G Let R be a Noetherian local ring with maximal ideal m. Let M be a
finite R-module. Let x ∈ m be a nonzerodivisor on M . Then M is Cohen-Macaulay
if and only if M/xM is Cohen-Macaulay.

Proof. By Lemma 72.7 we have depth(M/xM) = depth(M)−1. By Lemma 63.10
we have dim(Supp(M/xM)) = dim(Supp(M))− 1. □

Lemma 103.6.0AAD Let R → S be a surjective homomorphism of Noetherian local
rings. Let N be a finite S-module. Then N is Cohen-Macaulay as an S-module if
and only if N is Cohen-Macaulay as an R-module.

Proof. Omitted. □

Lemma 103.7.0BUS [DG67, Chapter 0,
Proposition 16.5.4]

Let R be a Noetherian local ring. Let M be a finite Cohen-
Macaulay R-module. If p ∈ Ass(M), then dim(R/p) = dim(Supp(M)) and p is a
minimal prime in the support of M . In particular, M has no embedded associated
primes.

Proof. By Lemma 72.9 we have depth(M) ≤ dim(R/p). Of course dim(R/p) ≤
dim(Supp(M)) as p ∈ Supp(M) (Lemma 63.2). Thus we have equality in both in-
equalities as M is Cohen-Macaulay. Then p must be minimal in Supp(M) otherwise
we would have dim(R/p) < dim(Supp(M)). Finally, minimal primes in the support
of M are equal to the minimal elements of Ass(M) (Proposition 63.6) hence M has
no embedded associated primes (Definition 67.1). □

Definition 103.8.00NF Let R be a Noetherian local ring. A finite module M over R
is called a maximal Cohen-Macaulay module if depth(M) = dim(R).

In other words, a maximal Cohen-Macaulay module over a Noetherian local ring
is a finite module with the largest possible depth over that ring. Equivalently,
a maximal Cohen-Macaulay module over a Noetherian local ring R is a Cohen-
Macaulay module of dimension equal to the dimension of the ring. In particular, if
M is a Cohen-Macaulay R-module with Spec(R) = Supp(M), then M is maximal
Cohen-Macaulay. Thus the following two lemmas are on maximal Cohen-Macaulay
modules.

Lemma 103.9.0AAE Let R be a Noetherian local ring. Assume there exists a Cohen-
Macaulay module M with Spec(R) = Supp(M). Then any maximal chain of prime
ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = dim(R).

Proof. We will prove this by induction on dim(R). If dim(R) = 0, then the
statement is clear. Assume dim(R) > 0. Then n > 0. Choose an element x ∈ p1,
with x not in any of the minimal primes of R, and in particular x ̸∈ p0. (See Lemma
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15.2.) Then dim(R/xR) = dim(R) − 1 by Lemma 60.13. The module M/xM is
Cohen-Macaulay over R/xR by Proposition 103.4 and Lemma 103.6. The support
of M/xM is Spec(R/xR) by Lemma 40.9. After replacing x by xn for some n, we
may assume that p1 is an associated prime of M/xM , see Lemma 72.8. By Lemma
103.7 we conclude that p1/(x) is a minimal prime of R/xR. It follows that the
chain p1/(x) ⊂ . . . ⊂ pn/(x) is a maximal chain of primes in R/xR. By induction
we find that this chain has length dim(R/xR) = dim(R)− 1 as desired. □

Lemma 103.10.0AAF Suppose R is a Noetherian local ring. Assume there exists a
Cohen-Macaulay module M with Spec(R) = Supp(M). Then for a prime p ⊂ R we
have

dim(R) = dim(Rp) + dim(R/p).
Proof. Follows immediately from Lemma 103.9. □

Lemma 103.11.0AAG Suppose R is a Noetherian local ring. Let M be a Cohen-
Macaulay module over R. For any prime p ⊂ R the module Mp is Cohen-Macaulay
over Rp.
Proof. We may and do assume p ̸= m and M not zero. Choose a maximal chain
of primes p = pc ⊂ pc−1 ⊂ . . . ⊂ p1 ⊂ m. If we prove the result for Mp1 over Rp1 ,
then the lemma will follow by induction on c. Thus we may assume that there is no
prime strictly between p and m. Note that dim(Supp(Mp)) ≤ dim(Supp(M)) − 1
because any chain of primes in the support of Mp can be extended by one more
prime (namely m) in the support of M . On the other hand, we have depth(Mp) ≥
depth(M)− dim(R/p) = depth(M)− 1 by Lemma 72.10 and our choice of p. Thus
depth(Mp) ≥ dim(Supp(Mp)) as desired (the other inequality is Lemma 72.3). □

Definition 103.12.0AAH Let R be a Noetherian ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if Mp is a Cohen-Macaulay module over Rp for all
primes p of R.
By Lemma 103.11 it suffices to check this in the maximal ideals of R.
Lemma 103.13.0AAI Let R be a Noetherian ring. Let M be a Cohen-Macaulay module
over R. Then M ⊗RR[x1, . . . , xn] is a Cohen-Macaulay module over R[x1, . . . , xn].
Proof. By induction on the number of variables it suffices to prove this for M [x] =
M ⊗R R[x] over R[x]. Let m ⊂ R[x] be a maximal ideal, and let p = R ∩ m.
Let f1, . . . , fd be a Mp-regular sequence in the maximal ideal of Rp of length d =
dim(Supp(Mp)). Note that sinceR[x] is flat overR the localizationR[x]m is flat over
Rp. Hence, by Lemma 68.5, the sequence f1, . . . , fd is a M [x]m-regular sequence of
length d in R[x]m. The quotient

Q = M [x]m/(f1, . . . , fd)M [x]m = Mp/(f1, . . . , fd)Mp ⊗Rp
R[x]m

has support equal to the primes lying over p because Rp → R[x]m is flat and the
support of Mp/(f1, . . . , fd)Mp is equal to {p} (details omitted; hint: follows from
Lemmas 40.4 and 40.5). Hence the dimension is 1. To finish the proof it suffices
to find an f ∈ m which is a nonzerodivisor on Q. Since m is a maximal ideal, the
field extension κ(m)/κ(p) is finite (Theorem 34.1). Hence we can find f ∈ m which
viewed as a polynomial in x has leading coefficient not in p. Such an f acts as a
nonzerodivisor on

Mp/(f1, . . . , fd)Mp ⊗R R[x] =
⊕

n≥0
Mp/(f1, . . . , fd)Mp · xn
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and hence acts as a nonzerodivisor on Q. □

104. Cohen-Macaulay rings

00N7 Most of the results of this section are special cases of the results in Section 103.

Definition 104.1.00N8 A Noetherian local ring R is called Cohen-Macaulay if it is
Cohen-Macaulay as a module over itself.

Note that this is equivalent to requiring the existence of a R-regular sequence
x1, . . . , xd of the maximal ideal such that R/(x1, . . . , xd) has dimension 0. We will
usually just say “regular sequence” and not “R-regular sequence”.

Lemma 104.2.02JN Let R be a Noetherian local Cohen-Macaulay ring with maximal
ideal m. Let x1, . . . , xc ∈ m be elements. Then

x1, . . . , xc is a regular sequence ⇔ dim(R/(x1, . . . , xc)) = dim(R)− c
If so x1, . . . , xc can be extended to a regular sequence of length dim(R) and each
quotient R/(x1, . . . , xi) is a Cohen-Macaulay ring of dimension dim(R)− i.

Proof. Special case of Proposition 103.4. □

Lemma 104.3.00N9 Let R be Noetherian local. Suppose R is Cohen-Macaulay of
dimension d. Any maximal chain of ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = d.

Proof. Special case of Lemma 103.9. □

Lemma 104.4.00NA Suppose R is a Noetherian local Cohen-Macaulay ring of dimen-
sion d. For any prime p ⊂ R we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 104.3. (Also, this is a special case of
Lemma 103.10.) □

Lemma 104.5.00NB Suppose R is a Cohen-Macaulay local ring. For any prime p ⊂ R
the ring Rp is Cohen-Macaulay as well.

Proof. Special case of Lemma 103.11. □

Definition 104.6.00NC A Noetherian ring R is called Cohen-Macaulay if all its local
rings are Cohen-Macaulay.

Lemma 104.7.00ND Suppose R is a Noetherian Cohen-Macaulay ring. Any polynomial
algebra over R is Cohen-Macaulay.

Proof. Special case of Lemma 103.13. □

Lemma 104.8.00NE Let R be a Noetherian local Cohen-Macaulay ring of dimension
d. Let 0 → K → R⊕n → M → 0 be an exact sequence of R-modules. Then either
M = 0, or depth(K) > depth(M), or depth(K) = depth(M) = d.

Proof. This is a special case of Lemma 72.6. □

Lemma 104.9.00NG Let R be a local Noetherian Cohen-Macaulay ring of dimension
d. Let M be a finite R-module of depth e. There exists an exact complex

0→ K → Fd−e−1 → . . .→ F0 →M → 0
with each Fi finite free and K maximal Cohen-Macaulay.
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Proof. Immediate from the definition and Lemma 104.8. □

Lemma 104.10.06LC Let φ : A → B be a map of local rings. Assume that B is
Noetherian and Cohen-Macaulay and that mB =

√
φ(mA)B. Then there exists

a sequence of elements f1, . . . , fdim(B) in A such that φ(f1), . . . , φ(fdim(B)) is a
regular sequence in B.

Proof. By induction on dim(B) it suffices to prove: If dim(B) ≥ 1, then we can
find an element f of A which maps to a nonzerodivisor in B. By Lemma 104.2 it
suffices to find f ∈ A whose image in B is not contained in any of the finitely many
minimal primes q1, . . . , qr of B. By the assumption that mB =

√
φ(mA)B we see

that mA ̸⊂ φ−1(qi). Hence we can find f by Lemma 15.2. □

105. Catenary rings

00NH Compare with Topology, Section 11.

Definition 105.1.00NI A ring R is said to be catenary if for any pair of prime ideals
p ⊂ q, there exists an integer bounding the lengths of all finite chains of prime
ideals p = p0 ⊂ p1 ⊂ . . . ⊂ pe = q and all maximal such chains have the same
length.

Lemma 105.2.02IH A ring R is catenary if and only if the topological space Spec(R)
is catenary (see Topology, Definition 11.4).

Proof. Immediate from the definition and the characterization of irreducible closed
subsets in Lemma 26.1. □

In general it is not the case that a finitely generated R-algebra is catenary if R is.
Thus we make the following definition.

Definition 105.3.00NL A Noetherian ring R is said to be universally catenary if every
R-algebra of finite type is catenary.

We restrict to Noetherian rings as it is not clear this definition is the right one for
non-Noetherian rings. By Lemma 105.7 to check a Noetherian ring R is universally
catenary, it suffices to check each polynomial algebra R[x1, . . . , xn] is catenary.

Lemma 105.4.00NJ Any localization of a catenary ring is catenary. Any localization
of a Noetherian universally catenary ring is universally catenary.

Proof. Let A be a ring and let S ⊂ A be a multiplicative subset. The description
of Spec(S−1A) in Lemma 17.5 shows that if A is catenary, then so is S−1A. If
S−1A→ C is of finite type, then C = S−1B for some finite type ring map A→ B.
Hence if A is Noetherian and universally catenary, then B is catenary and we see
that C is catenary too. This proves the lemma. □

Lemma 105.5.0ECE Let A be a Noetherian universally catenary ring. Any A-algebra
essentially of finite type over A is universally catenary.

Proof. If B is a finite type A-algebra, then B is Noetherian by Lemma 31.1.
Any finite type B-algebra is a finite type A-algebra and hence catenary by our
assumption that A is universally catenary. Thus B is universally catenary. Any
localization of B is universally catenary by Lemma 105.4 and this finishes the
proof. □
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Lemma 105.6.0AUN Let R be a ring. The following are equivalent
(1) R is catenary,
(2) Rp is catenary for all prime ideals p,
(3) Rm is catenary for all maximal ideals m.

Assume R is Noetherian. The following are equivalent
(1) R is universally catenary,
(2) Rp is universally catenary for all prime ideals p,
(3) Rm is universally catenary for all maximal ideals m.

Proof. The implication (1) ⇒ (2) follows from Lemma 105.4 in both cases. The
implication (2) ⇒ (3) is immediate in both cases. Assume Rm is catenary for all
maximal ideals m of R. If p ⊂ q are primes in R, then choose a maximal ideal
q ⊂ m. Chains of primes ideals between p and q are in 1-to-1 correspondence with
chains of prime ideals between pRm and qRm hence we see R is catenary. Assume
R is Noetherian and Rm is universally catenary for all maximal ideals m of R. Let
R→ S be a finite type ring map. Let q be a prime ideal of S lying over the prime
p ⊂ R. Choose a maximal ideal p ⊂ m in R. Then Rp is a localization of Rm hence
universally catenary by Lemma 105.4. Then Sp is catenary as a finite type ring
over Rp. Hence Sq is catenary as a localization. Thus S is catenary by the first
case treated above. □

Lemma 105.7.00NK Any quotient of a catenary ring is catenary. Any quotient of a
Noetherian universally catenary ring is universally catenary.

Proof. Let A be a ring and let I ⊂ A be an ideal. The description of Spec(A/I)
in Lemma 17.7 shows that if A is catenary, then so is A/I. The second statement
is a special case of Lemma 105.5. □

Lemma 105.8.0AUP Let R be a Noetherian ring.
(1) R is catenary if and only if R/p is catenary for every minimal prime p.
(2) R is universally catenary if and only if R/p is universally catenary for

every minimal prime p.

Proof. If a ⊂ b is an inclusion of primes of R, then we can find a minimal prime
p ⊂ a and the first assertion is clear. We omit the proof of the second. □

Lemma 105.9.00NM A Noetherian Cohen-Macaulay ring is universally catenary. More
generally, if R is a Noetherian ring and M is a Cohen-Macaulay R-module with
Supp(M) = Spec(R), then R is universally catenary.

Proof. Since a polynomial algebra over R is Cohen-Macaulay, by Lemma 104.7, it
suffices to show that a Cohen-Macaulay ring is catenary. Let R be Cohen-Macaulay
and p ⊂ q primes of R. By definition Rq and Rp are Cohen-Macaulay. Take a
maximal chain of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pn = q. Next choose a maximal chain
of primes q0 ⊂ q1 ⊂ . . . ⊂ qm = p. By Lemma 104.3 we have n + m = dim(Rq).
And we have m = dim(Rp) by the same lemma. Hence n = dim(Rq)− dim(Rp) is
independent of choices.
To prove the more general statement, argue exactly as above but using Lemmas
103.13 and 103.9. □

Lemma 105.10.0ECF Let (A,m) be a Noetherian local ring. The following are equiv-
alent
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(1) A is catenary, and
(2) p 7→ dim(A/p) is a dimension function on Spec(A).

Proof. If A is catenary, then Spec(A) has a dimension function δ by Topology,
Lemma 20.4 (and Lemma 105.2). We may assume δ(m) = 0. Then we see that

δ(p) = codim(V (m), V (p)) = dim(A/p)
by Topology, Lemma 20.2. In this way we see that (1) implies (2). The reverse
implication follows from Topology, Lemma 20.2 as well. □

106. Regular local rings

00NN Regular local rings are defined in Definition 60.10. It is not that easy to show that
all prime localizations of a regular local ring are regular. In fact, quite a bit of the
material developed so far is geared towards a proof of this fact. See Proposition
110.5, and trace back the references.

Lemma 106.1.00NO Let (R,m, κ) be a regular local ring of dimension d. The graded
ring

⊕
mn/mn+1 is isomorphic to the graded polynomial algebra κ[X1, . . . , Xd].

Proof. Let x1, . . . , xd be a minimal set of generators for the maximal ideal m, see
Definition 60.10. There is a surjection κ[X1, . . . , Xd] →

⊕
mn/mn+1, which maps

Xi to the class of xi in m/m2. Since d(R) = d by Proposition 60.9 we know that the
numerical polynomial n 7→ dimκm

n/mn+1 has degree d − 1. By Lemma 58.10 we
conclude that the surjection κ[X1, . . . , Xd]→

⊕
mn/mn+1 is an isomorphism. □

Lemma 106.2.00NP Any regular local ring is a domain.

Proof. We will use that
⋂
mn = 0 by Lemma 51.4. Let f, g ∈ R such that

fg = 0. Suppose that f ∈ ma and g ∈ mb, with a, b maximal. Since fg = 0 ∈
ma+b+1 we see from the result of Lemma 106.1 that either f ∈ ma+1 or g ∈ mb+1.
Contradiction. □

Lemma 106.3.00NQ Let R be a regular local ring and let x1, . . . , xd be a minimal set
of generators for the maximal ideal m. Then x1, . . . , xd is a regular sequence, and
each R/(x1, . . . , xc) is a regular local ring of dimension d − c. In particular R is
Cohen-Macaulay.

Proof. Note that R/x1R is a Noetherian local ring of dimension ≥ d−1 by Lemma
60.13 with x2, . . . , xd generating the maximal ideal. Hence it is a regular local ring
by definition. Since R is a domain by Lemma 106.2 x1 is a nonzerodivisor. □

Lemma 106.4.00NR Let R be a regular local ring. Let I ⊂ R be an ideal such that
R/I is a regular local ring as well. Then there exists a minimal set of generators
x1, . . . , xd for the maximal ideal m of R such that I = (x1, . . . , xc) for some 0 ≤
c ≤ d.

Proof. Say dim(R) = d and dim(R/I) = d − c. Denote m = m/I the maximal
ideal of R/I. Let κ = R/m. We have

dimκ((I + m2)/m2) = dimκ(m/m2)− dim(m/m2) = d− (d− c) = c

by the definition of a regular local ring. Hence we can choose x1, . . . , xc ∈ I whose
images in m/m2 are linearly independent and supplement with xc+1, . . . , xd to get
a minimal system of generators of m. The induced map R/(x1, . . . , xc) → R/I is
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a surjection between regular local rings of the same dimension (Lemma 106.3). It
follows that the kernel is zero, i.e., I = (x1, . . . , xc). Namely, if not then we would
have dim(R/I) < dim(R/(x1, . . . , xc)) by Lemmas 106.2 and 60.13. □

Lemma 106.5.00NS Let R be a Noetherian local ring. Let x ∈ m. Let M be a finite
R-module such that x is a nonzerodivisor on M and M/xM is free over R/xR.
Then M is free over R.

Proof. Let m1, . . . ,mr be elements of M which map to a R/xR-basis of M/xM .
By Nakayama’s Lemma 20.1 m1, . . . ,mr generate M . If

∑
aimi = 0 is a relation,

then ai ∈ xR for all i. Hence ai = bix for some bi ∈ R. Hence the kernel K of
Rr →M satisfies xK = K and hence is zero by Nakayama’s lemma. □

Lemma 106.6.00NT Let R be a regular local ring. Any maximal Cohen-Macaulay
module over R is free.

Proof. Let M be a maximal Cohen-Macaulay module over R. Let x ∈ m be part of
a regular sequence generating m. Then x is a nonzerodivisor on M by Proposition
103.4, and M/xM is a maximal Cohen-Macaulay module over R/xR. By induction
on dim(R) we see that M/xM is free. We win by Lemma 106.5. □

Lemma 106.7.00NU Suppose R is a Noetherian local ring. Let x ∈ m be a nonze-
rodivisor such that R/xR is a regular local ring. Then R is a regular local ring.
More generally, if x1, . . . , xr is a regular sequence in R such that R/(x1, . . . , xr) is
a regular local ring, then R is a regular local ring.

Proof. This is true because x together with the lifts of a system of minimal gener-
ators of the maximal ideal of R/xR will give dim(R) generators of m. Use Lemma
60.13. The last statement follows from the first and induction. □

Lemma 106.8.07DX Let (Ri, φii′) be a directed system of local rings whose transition
maps are local ring maps. If each Ri is a regular local ring and R = colimRi is
Noetherian, then R is a regular local ring.

Proof. Let m ⊂ R be the maximal ideal; it is the colimit of the maximal ideal
mi ⊂ Ri. We prove the lemma by induction on d = dimm/m2. If d = 0, then
R = R/m is a field and R is a regular local ring. If d > 0 pick an x ∈ m, x ̸∈ m2. For
some i we can find an xi ∈ mi mapping to x. Note that R/xR = colimi′≥iRi′/xiRi′

is a Noetherian local ring. By Lemma 106.3 we see that Ri′/xiRi′ is a regular local
ring. Hence by induction we see that R/xR is a regular local ring. Since each Ri is
a domain (Lemma 106.1) we see that R is a domain. Hence x is a nonzerodivisor
and we conclude that R is a regular local ring by Lemma 106.7. □

107. Epimorphisms of rings

04VM In any category there is a notion of an epimorphism. Some of this material is taken
from [Laz69] and [Maz68].

Lemma 107.1.04VN Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism,
(2) the two ring maps S → S ⊗R S are equal,
(3) either of the ring maps S → S ⊗R S is an isomorphism, and
(4) the ring map S ⊗R S → S is an isomorphism.
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Proof. Omitted. □

Lemma 107.2.04VP The composition of two epimorphisms of rings is an epimorphism.

Proof. Omitted. Hint: This is true in any category. □

Lemma 107.3.04VQ If R → S is an epimorphism of rings and R → R′ is any ring
map, then R′ → R′ ⊗R S is an epimorphism.

Proof. Omitted. Hint: True in any category with pushouts. □

Lemma 107.4.04VR If A→ B → C are ring maps and A→ C is an epimorphism, so
is B → C.

Proof. Omitted. Hint: This is true in any category. □

This means in particular, that if R→ S is an epimorphism with image R ⊂ S, then
R → S is an epimorphism. Hence while proving results for epimorphisms we may
often assume the map is injective. The following lemma means in particular that
every localization is an epimorphism.

Lemma 107.5.04VS Let R→ S be a ring map. The following are equivalent:
(1) R→ S is an epimorphism, and
(2) Rp → Sp is an epimorphism for each prime p of R.

Proof. Since Sp = Rp ⊗R S (see Lemma 12.15) we see that (1) implies (2) by
Lemma 107.3. Conversely, assume that (2) holds. Let a, b : S → A be two ring
maps from S to a ring A equalizing the map R → S. By assumption we see that
for every prime p of R the induced maps ap, bp : Sp → Ap are the same. Hence
a = b as A ⊂

∏
pAp, see Lemma 23.1. □

Lemma 107.6.04VT Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism and finite, and
(2) R→ S is surjective.

Proof. (This lemma seems to have been reproved many times in the literature, and
has many different proofs.) It is clear that a surjective ring map is an epimorphism.
Suppose that R→ S is a finite ring map such that S⊗R S → S is an isomorphism.
Our goal is to show that R→ S is surjective. Assume S/R is not zero. The exact
sequence R→ S → S/R→ 0 leads to an exact sequence

R⊗R S → S ⊗R S → S/R⊗R S → 0.

Our assumption implies that the first arrow is an isomorphism, hence we conclude
that S/R ⊗R S = 0. Hence also S/R ⊗R S/R = 0. By Lemma 5.4 there exists a
surjection of R-modules S/R → R/I for some proper ideal I ⊂ R. Hence there
exists a surjection S/R⊗R S/R→ R/I ⊗R R/I = R/I ̸= 0, contradiction. □

Lemma 107.7.04VU A faithfully flat epimorphism is an isomorphism.

Proof. This is clear from Lemma 107.1 part (3) as the map S → S ⊗R S is the
map R→ S tensored with S. □

Lemma 107.8.04VV If k → S is an epimorphism and k is a field, then S = k or S = 0.
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Proof. This is clear from the result of Lemma 107.7 (as any nonzero algebra over
k is faithfully flat), or by arguing directly that R → R ⊗k R cannot be surjective
unless dimk(R) ≤ 1. □

Lemma 107.9.04VW Let R→ S be an epimorphism of rings. Then
(1) Spec(S)→ Spec(R) is injective, and
(2) for q ⊂ S lying over p ⊂ R we have κ(p) = κ(q).

Proof. Let p be a prime of R. The fibre of the map is the spectrum of the fibre
ring S ⊗R κ(p). By Lemma 107.3 the map κ(p) → S ⊗R κ(p) is an epimorphism,
and hence by Lemma 107.8 we have either S ⊗R κ(p) = 0 or S ⊗R κ(p) = κ(p)
which proves (1) and (2). □

Lemma 107.10.04VX Let R be a ring. Let M , N be R-modules. Let {xi}i∈I be a set
of generators of M . Let {yj}j∈J be a set of generators of N . Let {mj}j∈J be a
family of elements of M with mj = 0 for all but finitely many j. Then∑

j∈J
mj ⊗ yj = 0 in M ⊗R N

is equivalent to the following: There exist ai,j ∈ R with ai,j = 0 for all but finitely
many pairs (i, j) such that

mj =
∑

i∈I
ai,jxi for all j ∈ J,

0 =
∑

j∈J
ai,jyj for all i ∈ I.

Proof. The sufficiency is immediate. Suppose that
∑
j∈J mj ⊗ yj = 0. Consider

the short exact sequence

0→ K →
⊕

j∈J
R→ N → 0

where the jth basis vector of
⊕

j∈J R maps to yj . Tensor this with M to get the
exact sequence

K ⊗RM →
⊕

j∈J
M → N ⊗RM → 0.

The assumption implies that there exist elements ki ∈ K such that
∑
ki⊗xi maps

to the element (mj)j∈J of the middle. Writing ki = (ai,j)j∈J and we obtain what
we want. □

Lemma 107.11.04VY Let φ : R → S be a ring map. Let g ∈ S. The following are
equivalent:

(1) g ⊗ 1 = 1⊗ g in S ⊗R S, and
(2) there exist n ≥ 0 and elements yi, zj ∈ S and xi,j ∈ R for 1 ≤ i, j ≤ n such

that
(a) g =

∑
i,j≤n xi,jyizj,

(b) for each j we have
∑
xi,jyi ∈ φ(R), and

(c) for each i we have
∑
xi,jzj ∈ φ(R).

Proof. It is clear that (2) implies (1). Conversely, suppose that g ⊗ 1 = 1 ⊗ g.
Choose generators {si}i∈I of S as an R-module with 0, 1 ∈ I and s0 = 1 and s1 = g.
Apply Lemma 107.10 to the relation g ⊗ s0 + (−1) ⊗ s1 = 0. We see that there
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exist ai,j ∈ R such that g =
∑
i ai,0si, −1 =

∑
i ai,1si, and for j ̸= 0, 1 we have

0 =
∑
i ai,jsi, and moreover for all i we have

∑
j ai,jsj = 0. Then we have∑

i,j ̸=0
ai,jsisj = −g + a0,0

and for each j ̸= 0 we have
∑
i̸=0 ai,jsi ∈ R. This proves that −g + a0,0 can be

written as in (2). It follows that g can be written as in (2). Details omitted. Hint:
Show that the set of elements of S which have an expression as in (2) form an
R-subalgebra of S. □

Remark 107.12.04VZ Let R → S be a ring map. Sometimes the set of elements
g ∈ S such that g ⊗ 1 = 1 ⊗ g is called the epicenter of S. It is an R-algebra.
By the construction of Lemma 107.11 we get for each g in the epicenter a matrix
factorization

(g) = Y XZ

with X ∈ Mat(n × n,R), Y ∈ Mat(1 × n, S), and Z ∈ Mat(n × 1, S). Namely,
let xi,j , yi, zj be as in part (2) of the lemma. Set X = (xi,j), let y be the row
vector whose entries are the yi and let z be the column vector whose entries are the
zj . With this notation conditions (b) and (c) of Lemma 107.11 mean exactly that
Y X ∈ Mat(1 × n,R), XZ ∈ Mat(n × 1, R). It turns out to be very convenient to
consider the triple of matrices (X,Y X,XZ). Given n ∈ N and a triple (P,U, V ) we
say that (P,U, V ) is a n-triple associated to g if there exists a matrix factorization
as above such that P = X, U = Y X and V = XZ.

Lemma 107.13.04W0 Let R→ S be an epimorphism of rings. Then the cardinality of
S is at most the cardinality of R. In a formula: |S| ≤ |R|.

Proof. The condition that R → S is an epimorphism means that each g ∈ S
satisfies g⊗1 = 1⊗g, see Lemma 107.1. We are going to use the notation introduced
in Remark 107.12. Suppose that g, g′ ∈ S and suppose that (P,U, V ) is an n-triple
which is associated to both g and g′. Then we claim that g = g′. Namely, write
(P,U, V ) = (X,Y X,XZ) for a matrix factorization (g) = Y XZ of g and write
(P,U, V ) = (X ′, Y ′X ′, X ′Z ′) for a matrix factorization (g′) = Y ′X ′Z ′ of g′. Then
we see that

(g) = Y XZ = UZ = Y ′X ′Z = Y ′PZ = Y ′XZ = Y ′V = Y ′X ′Z ′ = (g′)
and hence g = g′. This implies that the cardinality of S is bounded by the number
of possible triples, which has cardinality at most supn∈N |R|n. If R is infinite then
this is at most |R|, see [Kun83, Ch. I, 10.13].
If R is a finite ring then the argument above only proves that S is at worst countable.
In fact in this case R is Artinian and the map R → S is surjective. We omit the
proof of this case. □

Lemma 107.14.08YS Let R → S be an epimorphism of rings. Let N1, N2 be S-
modules. Then HomS(N1, N2) = HomR(N1, N2). In other words, the restriction
functor ModS → ModR is fully faithful.

Proof. Let φ : N1 → N2 be an R-linear map. For any x ∈ N1 consider the map
S ⊗R S → N2 defined by the rule g ⊗ g′ 7→ gφ(g′x). Since both maps S → S ⊗R S
are isomorphisms (Lemma 107.1), we conclude that gφ(g′x) = gg′φ(x) = φ(gg′x).
Thus φ is S-linear. □
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108. Pure ideals

04PQ The material in this section is discussed in many papers, see for example [Laz67],
[Bko70], and [DM83].

Definition 108.1.04PR Let R be a ring. We say that I ⊂ R is pure if the quotient
ring R/I is flat over R.

Lemma 108.2.04PS Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent:

(1) I is pure,
(2) for every ideal J ⊂ R we have J ∩ I = IJ ,
(3) for every finitely generated ideal J ⊂ R we have J ∩ I = JI,
(4) for every x ∈ R we have (x) ∩ I = xI,
(5) for every x ∈ I we have x = yx for some y ∈ I,
(6) for every x1, . . . , xn ∈ I there exists a y ∈ I such that xi = yxi for all

i = 1, . . . , n,
(7) for every prime p of R we have IRp = 0 or IRp = Rp,
(8) Supp(I) = Spec(R) \ V (I),
(9) I is the kernel of the map R→ (1 + I)−1R,

(10) R/I ∼= S−1R as R-algebras for some multiplicative subset S of R, and
(11) R/I ∼= (1 + I)−1R as R-algebras.

Proof. For any ideal J of R we have the short exact sequence 0 → J → R →
R/J → 0. Tensoring with R/I we get an exact sequence J ⊗R R/I → R/I →
R/I + J → 0 and J ⊗R R/I = J/JI. Thus the equivalence of (1), (2), and (3)
follows from Lemma 39.5. Moreover, these imply (4).

The implication (4)⇒ (5) is trivial. Assume (5) and let x1, . . . , xn ∈ I. Choose yi ∈
I such that xi = yixi. Let y ∈ I be the element such that 1−y =

∏
i=1,...,n(1−yi).

Then xi = yxi for all i = 1, . . . , n. Hence (6) holds, and it follows that (5) ⇔ (6).

Assume (5). Let x ∈ I. Then x = yx for some y ∈ I. Hence x(1 − y) = 0,
which shows that x maps to zero in (1 + I)−1R. Of course the kernel of the map
R→ (1+I)−1R is always contained in I. Hence we see that (5) implies (9). Assume
(9). Then for any x ∈ I we see that x(1 − y) = 0 for some y ∈ I. In other words,
x = yx. We conclude that (5) is equivalent to (9).

Assume (5). Let p be a prime of R. If p ̸∈ V (I), then IRp = Rp. If p ∈ V (I), in
other words, if I ⊂ p, then x ∈ I implies x(1 − y) = 0 for some y ∈ I, implies x
maps to zero in Rp, i.e., IRp = 0. Thus we see that (7) holds.

Assume (7). Then (R/I)p is either 0 or Rp for any prime p of R. Hence by Lemma
39.18 we see that (1) holds. At this point we see that all of (1) – (7) and (9) are
equivalent.

As IRp = Ip we see that (7) implies (8). Finally, if (8) holds, then this means
exactly that Ip is the zero module if and only if p ∈ V (I), which is clearly saying
that (7) holds. Now (1) – (9) are equivalent.

Assume (1) – (9) hold. Then R/I ⊂ (1 + I)−1R by (9) and the map R/I →
(1 + I)−1R is also surjective by the description of localizations at primes afforded
by (7). Hence (11) holds.
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The implication (11) ⇒ (10) is trivial. And (10) implies that (1) holds because a
localization of R is flat over R, see Lemma 39.18. □

Lemma 108.3.04PT Let R be a ring. If I, J ⊂ R are pure ideals, then V (I) = V (J)
implies I = J .

Proof. For example, by property (7) of Lemma 108.2 we see that I = Ker(R →∏
p∈V (I) Rp) can be recovered from the closed subset associated to it. □

Lemma 108.4.04PU Let R be a ring. The rule I 7→ V (I) determines a bijection

{I ⊂ R pure} ↔ {Z ⊂ Spec(R) closed and closed under generalizations}

Proof. Let I be a pure ideal. Then since R → R/I is flat, by going down gener-
alizations lift along the map Spec(R/I) → Spec(R). Hence V (I) is closed under
generalizations. This shows that the map is well defined. By Lemma 108.3 the map
is injective. Suppose that Z ⊂ Spec(R) is closed and closed under generalizations.
Let J ⊂ R be the radical ideal such that Z = V (J). Let I = {x ∈ R : x ∈ xJ}.
Note that I is an ideal: if x, y ∈ I then there exist f, g ∈ J such that x = xf and
y = yg. Then

x+ y = (x+ y)(f + g − fg)
Verification left to the reader. We claim that I is pure and that V (I) = V (J). If
the claim is true then the map of the lemma is surjective and the lemma holds.

Note that I ⊂ J , so that V (J) ⊂ V (I). Let I ⊂ p be a prime. Consider the
multiplicative subset S = (R \ p)(1 + J). By definition of I and I ⊂ p we see that
0 ̸∈ S. Hence we can find a prime q of R which is disjoint from S, see Lemmas 9.4
and 17.5. Hence q ⊂ p and q ∩ (1 + J) = ∅. This implies that q + J is a proper
ideal of R. Let m be a maximal ideal containing q+ J . Then we get m ∈ V (J) and
hence q ∈ V (J) = Z as Z was assumed to be closed under generalization. This in
turn implies p ∈ V (J) as q ⊂ p. Thus we see that V (I) = V (J).

Finally, since V (I) = V (J) (and J radical) we see that J =
√
I. Pick x ∈ I, so

that x = xy for some y ∈ J by definition. Then x = xy = xy2 = . . . = xyn. Since
yn ∈ I for some n > 0 we conclude that property (5) of Lemma 108.2 holds and we
see that I is indeed pure. □

Lemma 108.5.05KK Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent

(1) I is pure and finitely generated,
(2) I is generated by an idempotent,
(3) I is pure and V (I) is open, and
(4) R/I is a projective R-module.

Proof. If (1) holds, then I = I ∩ I = I2 by Lemma 108.2. Hence I is generated
by an idempotent by Lemma 21.5. Thus (1) ⇒ (2). If (2) holds, then I = (e) and
R = (1−e)⊕(e) as an R-module hence R/I is flat and I is pure and V (I) = D(1−e)
is open. Thus (2) ⇒ (1) + (3). Finally, assume (3). Then V (I) is open and
closed, hence V (I) = D(1 − e) for some idempotent e of R, see Lemma 21.3. The
ideal J = (e) is a pure ideal such that V (J) = V (I) hence I = J by Lemma
108.3. In this way we see that (3) ⇒ (2). By Lemma 78.2 we see that (4) is
equivalent to the assertion that I is pure and R/I finitely presented. Moreover,
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R/I is finitely presented if and only if I is finitely generated, see Lemma 5.3.
Hence (4) is equivalent to (1). □

We can use the above to characterize those rings for which every finite flat module
is finitely presented.

Lemma 108.6.052U Let R be a ring. The following are equivalent:
(1) every Z ⊂ Spec(R) which is closed and closed under generalizations is also

open, and
(2) any finite flat R-module is finite locally free.

Proof. If any finite flat R-module is finite locally free then the support of R/I
where I is a pure ideal is open. Hence the implication (2) ⇒ (1) follows from
Lemma 108.3.

For the converse assume that R satisfies (1). Let M be a finite flat R-module.
The support Z = Supp(M) of M is closed, see Lemma 40.5. On the other hand,
if p ⊂ p′, then by Lemma 78.5 the module Mp′ is free, and Mp = Mp′ ⊗Rp′ Rp

Hence p′ ∈ Supp(M)⇒ p ∈ Supp(M), in other words, the support is closed under
generalization. As R satisfies (1) we see that the support of M is open and closed.
Suppose that M is generated by r elements m1, . . . ,mr. The modules ∧i(M),
i = 1, . . . , r are finite flat R-modules also, because ∧i(M)p = ∧i(Mp) is free over
Rp. Note that Supp(∧i+1(M)) ⊂ Supp(∧i(M)). Thus we see that there exists a
decomposition

Spec(R) = U0 ⨿ U1 ⨿ . . .⨿ Ur
by open and closed subsets such that the support of ∧i(M) is Ur ∪ . . . ∪ Ui for all
i = 0, . . . , r. Let p be a prime of R, and say p ∈ Ui. Note that ∧i(M) ⊗R κ(p) =
∧i(M⊗Rκ(p)). Hence, after possibly renumbering m1, . . . ,mr we may assume that
m1, . . . ,mi generate M ⊗R κ(p). By Nakayama’s Lemma 20.1 we get a surjection

R⊕i
f −→Mf , (a1, . . . , ai) 7−→

∑
aimi

for some f ∈ R, f ̸∈ p. We may also assume that D(f) ⊂ Ui. This means
that ∧i(Mf ) = ∧i(M)f is a flat Rf module whose support is all of Spec(Rf ).
By the above it is generated by a single element, namely m1 ∧ . . . ∧ mi. Hence
∧i(M)f ∼= Rf/J for some pure ideal J ⊂ Rf with V (J) = Spec(Rf ). Clearly this
means that J = (0), see Lemma 108.3. Thus m1 ∧ . . . ∧mi is a basis for ∧i(Mf )
and it follows that the displayed map is injective as well as surjective. This proves
that M is finite locally free as desired. □

109. Rings of finite global dimension

00O2 The following lemma is often used to compare different projective resolutions of a
given module.

Lemma 109.1 (Schanuel’s lemma).00O3 Let R be a ring. Let M be an R-module.
Suppose that

0→ K
c1−→ P1

p1−→M → 0 and 0→ L
c2−→ P2

p2−→M → 0

https://stacks.math.columbia.edu/tag/052U
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are two short exact sequences, with Pi projective. Then K ⊕ P2 ∼= L ⊕ P1. More
precisely, there exist a commutative diagram

0 // K ⊕ P2 (c1,id)
//

��

P1 ⊕ P2(p1,0)
//

��

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0
whose vertical arrows are isomorphisms.

Proof. Consider the module N defined by the short exact sequence 0 → N →
P1 ⊕ P2 → M → 0, where the last map is the sum of the two maps Pi → M . It is
easy to see that the projection N → P1 is surjective with kernel L, and that N → P2
is surjective with kernel K. Since Pi are projective we have N ∼= K ⊕P2 ∼= L⊕P1.
This proves the first statement.
To prove the second statement (and to reprove the first), choose a : P1 → P2 and
b : P2 → P1 such that p1 = p2 ◦ a and p2 = p1 ◦ b. This is possible because P1 and
P2 are projective. Then we get a commutative diagram

0 // K ⊕ P2 (c1,id)
// P1 ⊕ P2(p1,0)

// M // 0

0 // N //

��

OO

P1 ⊕ P2(p1,p2)
//

S

��

T

OO

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0
with T and S given by the matrices

S =
(

id 0
a id

)
and T =

(
id b
0 id

)
Then S, T and the maps N → P1 ⊕ L and N → K ⊕ P2 are isomorphisms as
desired. □

Definition 109.2.00O4 Let R be a ring. Let M be an R-module. We say M has finite
projective dimension if it has a finite length resolution by projective R-modules.
The minimal length of such a resolution is called the projective dimension of M .

It is clear that the projective dimension of M is 0 if and only if M is a projective
module. The following lemma explains to what extent the projective dimension is
independent of the choice of a projective resolution.

Lemma 109.3.00O5 Let R be a ring. Suppose that M is an R-module of projective
dimension d. Suppose that Fe → Fe−1 → . . . → F0 → M → 0 is exact with Fi
projective and e ≥ d− 1. Then the kernel of Fe → Fe−1 is projective (or the kernel
of F0 →M is projective in case e = 0).

Proof. We prove this by induction on d. If d = 0, then M is projective. In this
case there is a splitting F0 = Ker(F0 → M) ⊕ M , and hence Ker(F0 → M) is
projective. This finishes the proof if e = 0, and if e > 0, then replacing M by
Ker(F0 →M) we decrease e.
Next assume d > 0. Let 0 → Pd → Pd−1 → . . . → P0 → M → 0 be a minimal
length finite resolution with Pi projective. According to Schanuel’s Lemma 109.1
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we have P0 ⊕ Ker(F0 → M) ∼= F0 ⊕ Ker(P0 → M). This proves the case d = 1,
e = 0, because then the right hand side is F0 ⊕ P1 which is projective. Hence now
we may assume e > 0. The module F0 ⊕ Ker(P0 → M) has the finite projective
resolution

0→ Pd → Pd−1 → . . .→ P2 → P1 ⊕ F0 → Ker(P0 →M)⊕ F0 → 0

of length d− 1. By induction applied to the exact sequence

Fe → Fe−1 → . . .→ F2 → P0 ⊕ F1 → P0 ⊕Ker(F0 →M)→ 0

of length e−1 we conclude Ker(Fe → Fe−1) is projective (if e ≥ 2) or that Ker(F1⊕
P0 → F0 ⊕ P0) is projective. This implies the lemma. □

Lemma 109.4.0CXC Let R be a ring. Let M be an R-module. Let d ≥ 0. The following
are equivalent

(1) M has projective dimension ≤ d,
(2) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi

projective,
(3) for some resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective

we have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is
projective if d = 1, or M is projective if d = 0,

(4) for any resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective
we have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is
projective if d = 1, or M is projective if d = 0.

Proof. The equivalence of (1) and (2) is the definition of projective dimension, see
Definition 109.2. We have (2) ⇒ (4) by Lemma 109.3. The implications (4) ⇒ (3)
and (3) ⇒ (2) are immediate. □

Lemma 109.5.0CXD Let R be a local ring. Let M be an R-module. Let d ≥ 0. The
equivalent conditions (1) – (4) of Lemma 109.4 are also equivalent to

(5) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
free.

Proof. Follows from Lemma 109.4 and Theorem 85.4. □

Lemma 109.6.0CXE Let R be a Noetherian ring. Let M be a finite R-module. Let
d ≥ 0. The equivalent conditions (1) – (4) of Lemma 109.4 are also equivalent to

(6) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
finite projective.

Proof. Choose a resolution . . . → F2 → F1 → F0 → M → 0 with Fi finite free
(Lemma 71.1). By Lemma 109.4 we see that Pd = Ker(Fd−1 → Fd−2) is projective
at least if d ≥ 2. Then Pd is a finite R-module as R is Noetherian and Pd ⊂ Fd−1
which is finite free. Whence 0 → Pd → Fd−1 → . . . → F1 → F0 → M → 0 is the
desired resolution. □

Lemma 109.7.0CXF Let R be a local Noetherian ring. Let M be a finite R-module.
Let d ≥ 0. The equivalent conditions (1) – (4) of Lemma 109.4, condition (5) of
Lemma 109.5, and condition (6) of Lemma 109.6 are also equivalent to

(7) there exists a resolution 0 → Fd → Fd−1 → . . . → F0 → M → 0 with Fi
finite free.
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Proof. This follows from Lemmas 109.4, 109.5, and 109.6 and because a finite
projective module over a local ring is finite free, see Lemma 78.2. □

Lemma 109.8.065R Let R be a ring. Let M be an R-module. Let n ≥ 0. The following
are equivalent

(1) M has projective dimension ≤ n,
(2) ExtiR(M,N) = 0 for all R-modules N and all i ≥ n+ 1, and
(3) Extn+1

R (M,N) = 0 for all R-modules N .

Proof. Assume (1). Choose a free resolution F• → M of M . Denote de : Fe →
Fe−1. By Lemma 109.3 we see that Pe = Ker(de) is projective for e ≥ n− 1. This
implies that Fe ∼= Pe ⊕ Pe−1 for e ≥ n where de maps the summand Pe−1 isomor-
phically to Pe−1 in Fe−1. Hence, for any R-module N the complex HomR(F•, N)
is split exact in degrees ≥ n + 1. Whence (2) holds. The implication (2) ⇒ (3) is
trivial.
Assume (3) holds. If n = 0 then M is projective by Lemma 77.2 and we see that
(1) holds. If n > 0 choose a free R-module F and a surjection F →M with kernel
K. By Lemma 71.7 and the vanishing of ExtiR(F,N) for all i > 0 by part (1) we
see that ExtnR(K,N) = 0 for all R-modules N . Hence by induction we see that K
has projective dimension ≤ n − 1. Then M has projective dimension ≤ n as any
finite projective resolution of K gives a projective resolution of length one more for
M by adding F to the front. □

Lemma 109.9.065S Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short exact
sequence of R-modules.

(1) If M has projective dimension ≤ n and M ′′ has projective dimension ≤
n+ 1, then M ′ has projective dimension ≤ n.

(2) If M ′ and M ′′ have projective dimension ≤ n then M has projective di-
mension ≤ n.

(3) If M ′ has projective dimension ≤ n and M has projective dimension ≤ n+1
then M ′′ has projective dimension ≤ n+ 1.

Proof. Combine the characterization of projective dimension in Lemma 109.8 with
the long exact sequence of ext groups in Lemma 71.7. □

Definition 109.10.00O6 Let R be a ring. The ring R is said to have finite global
dimension if there exists an integer n such that every R-module has a resolution
by projective R-modules of length at most n. The minimal such n is then called
the global dimension of R.

The argument in the proof of the following lemma can be found in the paper [Aus55]
by Auslander.

Lemma 109.11.0D1U Let R be a ring. Suppose we have a module M =
⋃
e∈EMe

where the Me are submodules well-ordered by inclusion. Assume the quotients
Me/

⋃
e′<eMe′ have projective dimension ≤ n. Then M has projective dimension

≤ n.

Proof. We will prove this by induction on n.
Base case: n = 0. Then Pe = Me/

⋃
e′<eMe′ is projective. Thus we may choose

a section Pe → Me of the projection Me → Pe. We claim that the induced map
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ψ :
⊕

e∈E Pe → M is an isomorphism. Namely, if x =
∑
xe ∈

⊕
Pe is nonzero,

then we let emax be maximal such that xemax is nonzero and we conclude that
y = ψ(x) = ψ(

∑
xe) is nonzero because y ∈ Memax has nonzero image xemax

in Pemax
. On the other hand, let y ∈ M . Then y ∈ Me for some e. We show

that y ∈ Im(ψ) by transfinite induction on e. Let xe ∈ Pe be the image of y. Then
y−ψ(xe) ∈

⋃
e′<eMe′ . By induction hypothesis we conclude that y−ψ(xe) ∈ Im(ψ)

hence y ∈ Im(ψ). Thus the claim is true and ψ is an isomorphism. We conclude
that M is projective as a direct sum of projectives, see Lemma 77.4.

If n > 0, then for e ∈ E we denote Fe the free R-module on the set of elements of
Me. Then we have a system of short exact sequences

0→ Ke → Fe →Me → 0

over the well-ordered set E. Note that the transition maps Fe′ → Fe and Ke′ → Ke

are injective too. Set F =
⋃
Fe and K =

⋃
Ke. Then

0→ Ke/
⋃

e′<e
Ke′ → Fe/

⋃
e′<e

Fe′ →Me/
⋃

e′<e
Me′ → 0

is a short exact sequence of R-modules too and Fe/
⋃
e′<e Fe′ is the free R-module

on the set of elements in Me which are not contained in
⋃
e′<eMe′ . Hence by

Lemma 109.9 we see that the projective dimension of Ke/
⋃
e′<eKe′ is at most

n − 1. By induction we conclude that K has projective dimension at most n − 1.
Whence M has projective dimension at most n and we win. □

Lemma 109.12.065T Let R be a ring. The following are equivalent
(1) R has finite global dimension ≤ n,
(2) every finite R-module has projective dimension ≤ n, and
(3) every cyclic R-module R/I has projective dimension ≤ n.

Proof. It is clear that (1)⇒ (2) and (2)⇒ (3). Assume (3). Choose a set E ⊂M of
generators of M . Choose a well ordering on E. For e ∈ E denote Me the submodule
of M generated by the elements e′ ∈ E with e′ ≤ e. Then M =

⋃
e∈EMe. Note

that for each e ∈ E the quotient

Me/
⋃

e′<e
Me′

is either zero or generated by one element, hence has projective dimension ≤ n by
(3). By Lemma 109.11 this means that M has projective dimension ≤ n. □

Lemma 109.13.00O8 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset.

(1) If M has projective dimension ≤ n, then S−1M has projective dimension
≤ n over S−1R.

(2) If R has finite global dimension ≤ n, then S−1R has finite global dimension
≤ n.

Proof. Let 0→ Pn → Pn−1 → . . .→ P0 → M → 0 be a projective resolution. As
localization is exact, see Proposition 9.12, and as each S−1Pi is a projective S−1R-
module, see Lemma 94.1, we see that 0 → S−1Pn → . . . → S−1P0 → S−1M → 0
is a projective resolution of S−1M . This proves (1). Let M ′ be an S−1R-module.
Note that M ′ = S−1M ′. Hence we see that (2) follows from (1). □
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110. Regular rings and global dimension

065U We can use the material on rings of finite global dimension to give another charac-
terization of regular local rings.

Proposition 110.1.00O7 Let R be a regular local ring of dimension d. Every finite
R-module M of depth e has a finite free resolution

0→ Fd−e → . . .→ F0 →M → 0.

In particular a regular local ring has global dimension ≤ d.

Proof. The first part holds in view of Lemma 106.6 and Lemma 104.9. The last
part follows from this and Lemma 109.12. □

Lemma 110.2.00O9 Let R be a Noetherian ring. Then R has finite global dimension
if and only if there exists an integer n such that for all maximal ideals m of R the
ring Rm has global dimension ≤ n.

Proof. We saw, Lemma 109.13 that if R has finite global dimension n, then all
the localizations Rm have finite global dimension at most n. Conversely, suppose
that all the Rm have global dimension ≤ n. Let M be a finite R-module. Let
0 → Kn → Fn−1 → . . . → F0 → M → 0 be a resolution with Fi finite free. Then
Kn is a finite R-module. According to Lemma 109.3 and the assumption all the
modules Kn ⊗R Rm are projective. Hence by Lemma 78.2 the module Kn is finite
projective. □

Lemma 110.3.00OA Suppose that R is a Noetherian local ring with maximal ideal m
and residue field κ. In this case the projective dimension of κ is ≥ dimκm/m

2.

Proof. Let x1, . . . , xn be elements of m whose images in m/m2 form a basis. Con-
sider the Koszul complex on x1, . . . , xn. This is the complex

0→ ∧nRn → ∧n−1Rn → ∧n−2Rn → . . .→ ∧iRn → . . .→ Rn → R

with maps given by

ej1 ∧ . . . ∧ eji
7−→

i∑
a=1

(−1)a+1xja
ej1 ∧ . . . ∧ êja

∧ . . . ∧ eji

It is easy to see that this is a complex K•(R, x•). Note that the cokernel of the last
map of K•(R, x•) is κ by Lemma 20.1 part (8).

If κ has finite projective dimension d, then we can find a resolution F• → κ by
finite free R-modules of length d (Lemma 109.7). By Lemma 102.2 we may assume
all the maps in the complex F• have the property that Im(Fi → Fi−1) ⊂ mFi−1,
because removing a trivial summand from the resolution can at worst shorten the
resolution. By Lemma 71.4 we can find a map of complexes α : K•(R, x•) → F•
inducing the identity on κ. We will prove by induction that the maps αi : ∧iRn =
Ki(R, x•)→ Fi have the property that αi ⊗ κ : ∧iκn → Fi ⊗ κ are injective. This
shows that Fn ̸= 0 and hence d ≥ n as desired.

The result is clear for i = 0 because the composition R
α0−→ F0 → κ is nonzero.

Note that F0 must have rank 1 since otherwise the map F1 → F0 whose cokernel is
a single copy of κ cannot have image contained in mF0.
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Next we check the case i = 1 as we feel that it is instructive; the reader can skip this
as the induction step will deduce the i = 1 case from the case i = 0. We saw above
that F0 = R and F1 → F0 = R has image m. We have a commutative diagram

Rn = K1(R, x•) → K0(R, x•) = R
↓ ↓ ↓
F1 → F0 = R

where the rightmost vertical arrow is given by multiplication by a unit. Hence we
see that the image of the composition Rn → F1 → F0 = R is also equal to m. Thus
the map Rn ⊗ κ→ F1 ⊗ κ has to be injective since dimκ(m/m2) = n.

Let i ≥ 1 and assume injectivity of αj⊗κ has been proved for all j ≤ i−1. Consider
the commutative diagram

∧iRn = Ki(R, x•) → Ki−1(R, x•) = ∧i−1Rn

↓ ↓
Fi → Fi−1

We know that ∧i−1κn → Fi−1⊗κ is injective. This proves that ∧i−1κn⊗κm/m2 →
Fi−1 ⊗m/m2 is injective. Also, by our choice of the complex, Fi maps into mFi−1,
and similarly for the Koszul complex. Hence we get a commutative diagram

∧iκn → ∧i−1κn ⊗m/m2

↓ ↓
Fi ⊗ κ → Fi−1 ⊗m/m2

At this point it suffices to verify the map ∧iκn → ∧i−1κn⊗m/m2 is injective, which
can be done by hand. □

Lemma 110.4.00OB Let R be a Noetherian local ring. Suppose that the residue field κ
has finite projective dimension n over R. In this case dim(R) ≥ n.

Proof. Let F• be a finite resolution of κ by finite free R-modules (Lemma 109.7).
By Lemma 102.2 we may assume all the maps in the complex F• have to property
that Im(Fi → Fi−1) ⊂ mFi−1, because removing a trivial summand from the
resolution can at worst shorten the resolution. Say Fn ̸= 0 and Fi = 0 for i >
n, so that the projective dimension of κ is n. By Proposition 102.9 we see that
depthI(φn)(R) ≥ n since I(φn) cannot equal R by our choice of the complex. Thus
by Lemma 72.3 also dim(R) ≥ n. □

Proposition 110.5.00OC Let (R,m, κ) be a Noetherian local ring. The following are
equivalent

(1) κ has finite projective dimension as an R-module,
(2) R has finite global dimension,
(3) R is a regular local ring.

Moreover, in this case the global dimension of R equals dim(R) = dimκ(m/m2).

Proof. We have (3)⇒ (2) by Proposition 110.1. The implication (2)⇒ (1) is triv-
ial. Assume (1). By Lemmas 110.3 and 110.4 we see that dim(R) ≥ dimκ(m/m2).
Thus R is regular, see Definition 60.10 and the discussion preceding it. Assume the
equivalent conditions (1) – (3) hold. By Proposition 110.1 the global dimension of
R is at most dim(R) and by Lemma 110.3 it is at least dimκ(m/m2). Thus the
stated equality holds. □
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Lemma 110.6.0AFS A Noetherian local ring R is a regular local ring if and only if it
has finite global dimension. In this case Rp is a regular local ring for all primes p.

Proof. By Propositions 110.5 and 110.1 we see that a Noetherian local ring is
a regular local ring if and only if it has finite global dimension. Furthermore,
any localization Rp has finite global dimension, see Lemma 109.13, and hence is a
regular local ring. □

By Lemma 110.6 it makes sense to make the following definition, because it does
not conflict with the earlier definition of a regular local ring.

Definition 110.7.00OD A Noetherian ring R is said to be regular if all the localizations
Rp at primes are regular local rings.

It is enough to require the local rings at maximal ideals to be regular. Note that
this is not the same as asking R to have finite global dimension, even assuming R
is Noetherian. This is because there is an example of a regular Noetherian ring
which does not have finite global dimension, namely because it does not have finite
dimension.

Lemma 110.8.00OE Let R be a Noetherian ring. The following are equivalent:
(1) R has finite global dimension n,
(2) R is a regular ring of dimension n,
(3) there exists an integer n such that all the localizations Rm at maximal ideals

are regular of dimension ≤ n with equality for at least one m, and
(4) there exists an integer n such that all the localizations Rp at prime ideals

are regular of dimension ≤ n with equality for at least one p.

Proof. This follows from the discussion above. More precisely, it follows by com-
bining Definition 110.7 with Lemma 110.2 and Proposition 110.5. □

Lemma 110.9.00OF Let R → S be a local homomorphism of local Noetherian rings.
Assume that R→ S is flat and that S is regular. Then R is regular.

Proof. Let m ⊂ R be the maximal ideal and let κ = R/m be the residue field. Let
d = dimS. Choose any resolution F• → κ with each Fi a finite free R-module. Set
Kd = Ker(Fd−1 → Fd−2). By flatness of R → S the complex 0 → Kd ⊗R S →
Fd−1 ⊗R S → . . . → F0 ⊗R S → κ ⊗R S → 0 is still exact. Because the global
dimension of S is d, see Proposition 110.1, we see that Kd ⊗R S is a finite free
S-module (see also Lemma 109.3). By Lemma 78.6 we see that Kd is a finite free
R-module. Hence κ has finite projective dimension and R is regular by Proposition
110.5. □

111. Auslander-Buchsbaum

090U The following result can be found in [AB57].

Proposition 111.1.090V Let R be a Noetherian local ring. Let M be a nonzero finite
R-module which has finite projective dimension pdR(M). Then we have

depth(R) = pdR(M) + depth(M)

Proof. We prove this by induction on depth(M). The most interesting case is the
case depth(M) = 0. In this case, let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0
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be a minimal finite free resolution, so e = pdR(M). By Lemma 102.2 we may
assume all matrix coefficients of the maps in the complex are contained in the
maximal ideal of R. Then on the one hand, by Proposition 102.9 we see that
depth(R) ≥ e. On the other hand, breaking the long exact sequence into short
exact sequences

0→ Rne → Rne−1 → Ke−2 → 0,
0→ Ke−2 → Rne−2 → Ke−3 → 0,

. . . ,

0→ K0 → Rn0 →M → 0

we see, using Lemma 72.6, that

depth(Ke−2) ≥ depth(R)− 1,
depth(Ke−3) ≥ depth(R)− 2,

. . . ,

depth(K0) ≥ depth(R)− (e− 1),
depth(M) ≥ depth(R)− e

and since depth(M) = 0 we conclude depth(R) ≤ e. This finishes the proof of the
case depth(M) = 0.

Induction step. If depth(M) > 0, then we pick x ∈ m which is a nonzerodivisor on
both M and R. This is possible, because either pdR(M) > 0 and depth(R) > 0 by
the aforementioned Proposition 102.9 or pdR(M) = 0 in which case M is finite free
hence also depth(R) = depth(M) > 0. Thus depth(R ⊕M) > 0 by Lemma 72.6
(for example) and we can find an x ∈ m which is a nonzerodivisor on both R and
M . Let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal resolution as above. An application of the snake lemma shows that

0→ (R/xR)ne → (R/xR)ne−1 → . . .→ (R/xR)n0 →M/xM → 0

is a minimal resolution too. Thus pdR(M) = pdR/xR(M/xM). By Lemma 72.7 we
have depth(R/xR) = depth(R)− 1 and depth(M/xM) = depth(M)− 1. Till now
depths have all been depths as R modules, but we observe that depthR(M/xM) =
depthR/xR(M/xM) and similarly for R/xR. By induction hypothesis we see that
the Auslander-Buchsbaum formula holds for M/xM over R/xR. Since the depths
of both R/xR and M/xM have decreased by one and the projective dimension has
not changed we conclude. □

112. Homomorphisms and dimension

00OG This section contains a collection of easy results relating dimensions of rings when
there are maps between them.

Lemma 112.1.00OH Suppose R→ S is a ring map satisfying either going up, see Defi-
nition 41.1, or going down see Definition 41.1. Assume in addition that Spec(S)→
Spec(R) is surjective. Then dim(R) ≤ dim(S).

https://stacks.math.columbia.edu/tag/00OH
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Proof. Assume going up. Take any chain p0 ⊂ p1 ⊂ . . . ⊂ pe of prime ideals in
R. By surjectivity we may choose a prime q0 mapping to p0. By going up we may
extend this to a chain of length e of primes qi lying over pi. Thus dim(S) ≥ dim(R).
The case of going down is exactly the same. See also Topology, Lemma 19.9 for a
purely topological version. □

Lemma 112.2.00OI Suppose that R → S is a ring map with the going up property,
see Definition 41.1. If q ⊂ S is a maximal ideal. Then the inverse image of q in R
is a maximal ideal too.

Proof. Trivial. □

Lemma 112.3.00OJ Suppose that R→ S is a ring map such that S is integral over R.
Then dim(R) ≥ dim(S), and every closed point of Spec(S) maps to a closed point
of Spec(R).

Proof. Immediate from Lemmas 36.20 and 112.2 and the definitions. □

Lemma 112.4.00OK Suppose R ⊂ S and S integral over R. Then dim(R) = dim(S).

Proof. This is a combination of Lemmas 36.22, 36.17, 112.1, and 112.3. □

Definition 112.5.00OL Suppose that R → S is a ring map. Let q ⊂ S be a prime
lying over the prime p of R. The local ring of the fibre at q is the local ring

Sq/pSq = (S/pS)q = (S ⊗R κ(p))q
Lemma 112.6.00OM Let R → S be a homomorphism of Noetherian rings. Let q ⊂ S
be a prime lying over the prime p. Then

dim(Sq) ≤ dim(Rp) + dim(Sq/pSq).

Proof. We use the characterization of dimension of Proposition 60.9. Let x1, . . . , xd
be elements of p generating an ideal of definition of Rp with d = dim(Rp). Let
y1, . . . , ye be elements of q generating an ideal of definition of Sq/pSq with e =
dim(Sq/pSq). It is clear that Sq/(x1, . . . , xd, y1, . . . , ye) has a nilpotent maximal
ideal. Hence x1, . . . , xd, y1, . . . , ye generate an ideal of definition of Sq. □

Lemma 112.7.00ON Let R→ S be a homomorphism of Noetherian rings. Let q ⊂ S be
a prime lying over the prime p. Assume the going down property holds for R→ S
(for example if R→ S is flat, see Lemma 39.19). Then

dim(Sq) = dim(Rp) + dim(Sq/pSq).

Proof. By Lemma 112.6 we have an inequality dim(Sq) ≤ dim(Rp)+dim(Sq/pSq).
To get equality, choose a chain of primes pS ⊂ q0 ⊂ q1 ⊂ . . . ⊂ qd = q with d =
dim(Sq/pSq). On the other hand, choose a chain of primes p0 ⊂ p1 ⊂ . . . ⊂ pe = p
with e = dim(Rp). By the going down theorem we may choose q−1 ⊂ q0 lying over
pe−1. And then we may choose q−2 ⊂ qe−1 lying over pe−2. Inductively we keep
going until we get a chain q−e ⊂ . . . ⊂ qd of length e+ d. □

Lemma 112.8.031E Let R → S be a local homomorphism of local Noetherian rings.
Assume

(1) R is regular,
(2) S/mRS is regular, and
(3) R→ S is flat.
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Then S is regular.

Proof. By Lemma 112.7 we have dim(S) = dim(R) + dim(S/mRS). Pick gen-
erators x1, . . . , xd ∈ mR with d = dim(R), and pick y1, . . . , ye ∈ mS which gen-
erate the maximal ideal of S/mRS with e = dim(S/mRS). Then we see that
x1, . . . , xd, y1, . . . , ye are elements which generate the maximal ideal of S and e+d =
dim(S). □

The lemma below will later be used to show that rings of finite type over a field
are Cohen-Macaulay if and only if they are quasi-finite flat over a polynomial ring.
It is a partial converse to Lemma 128.1.

Lemma 112.9.00R5 Let R → S be a local homomorphism of Noetherian local rings.
Assume R Cohen-Macaulay. If S is finite flat over R, or if S is flat over R and
dim(S) ≤ dim(R), then S is Cohen-Macaulay and dim(R) = dim(S).

Proof. Let x1, . . . , xd ∈ mR be a regular sequence of length d = dim(R). By
Lemma 68.5 this maps to a regular sequence in S. Hence S is Cohen-Macaulay if
dim(S) ≤ d. This is true if S is finite flat over R by Lemma 112.4. And in the
second case we assumed it. □

113. The dimension formula

02II Recall the definitions of catenary (Definition 105.1) and universally catenary (Def-
inition 105.3).

Lemma 113.1.02IJ Let R → S be a ring map. Let q be a prime of S lying over the
prime p of R. Assume that

(1) R is Noetherian,
(2) R→ S is of finite type,
(3) R, S are domains, and
(4) R ⊂ S.

Then we have

height(q) ≤ height(p) + trdegR(S)− trdegκ(p)κ(q)

with equality if R is universally catenary.

Proof. Suppose that R ⊂ S′ ⊂ S, where S′ is a finitely generated R-subalgebra
of S. In this case set q′ = S′ ∩ q. The lemma for the ring maps R → S′ and
S′ → S implies the lemma for R → S by additivity of transcendence degree in
towers of fields (Fields, Lemma 26.5). Hence we can use induction on the number
of generators of S over R and reduce to the case where S is generated by one
element over R.

Case I: S = R[x] is a polynomial algebra over R. In this case we have trdegR(S) = 1.
Also R→ S is flat and hence

dim(Sq) = dim(Rp) + dim(Sq/pSq)

see Lemma 112.7. Let r = pS. Then trdegκ(p)κ(q) = 1 is equivalent to q = r, and
implies that dim(Sq/pSq) = 0. In the same vein trdegκ(p)κ(q) = 0 is equivalent to
having a strict inclusion r ⊂ q, which implies that dim(Sq/pSq) = 1. Thus we are
done with case I with equality in every instance.
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Case II: S = R[x]/n with n ̸= 0. In this case we have trdegR(S) = 0. Denote
q′ ⊂ R[x] the prime corresponding to q. Thus we have

Sq = (R[x])q′/n(R[x])q′

By the previous case we have dim((R[x])q′) = dim(Rp) + 1 − trdegκ(p)κ(q). Since
n ̸= 0 we see that the dimension of Sq decreases by at least one, see Lemma 60.13,
which proves the inequality of the lemma. To see the equality in case R is universally
catenary note that n ⊂ R[x] is a height one prime as it corresponds to a nonzero
prime in F [x] where F is the fraction field of R. Hence any maximal chain of primes
in Sq = R[x]q′/nR[x]q′ corresponds to a maximal chain of primes with length 1
greater between q′ and (0) in R[x]. If R is universally catenary these all have the
same length equal to the height of q′. This proves that dim(Sq) = dim(R[x]q′)− 1
and this implies equality holds as desired. □

The following lemma says that generically finite maps tend to be quasi-finite in
codimension 1.

Lemma 113.2.02MA Let A→ B be a ring map. Assume
(1) A ⊂ B is an extension of domains,
(2) the induced extension of fraction fields is finite,
(3) A is Noetherian, and
(4) A→ B is of finite type.

Let p ⊂ A be a prime of height 1. Then there are at most finitely many primes of
B lying over p and they all have height 1.

Proof. By the dimension formula (Lemma 113.1) for any prime q lying over p we
have

dim(Bq) ≤ dim(Ap)− trdegκ(p)κ(q).
As the domain Bq has at least 2 prime ideals we see that dim(Bq) ≥ 1. We conclude
that dim(Bq) = 1 and that the extension κ(p) ⊂ κ(q) is algebraic. Hence q defines
a closed point of its fibre Spec(B ⊗A κ(p)), see Lemma 35.9. Since B ⊗A κ(p) is
a Noetherian ring the fibre Spec(B ⊗A κ(p)) is a Noetherian topological space, see
Lemma 31.5. A Noetherian topological space consisting of closed points is finite,
see for example Topology, Lemma 9.2. □

114. Dimension of finite type algebras over fields

00OO In this section we compute the dimension of a polynomial ring over a field. We
also prove that the dimension of a finite type domain over a field is the dimension
of its local rings at maximal ideals. We will establish the connection with the
transcendence degree over the ground field in Section 116.

Lemma 114.1.00OP Let m be a maximal ideal in k[x1, . . . , xn]. The ideal m is generated
by n elements. The dimension of k[x1, . . . , xn]m is n. Hence k[x1, . . . , xn]m is a
regular local ring of dimension n.

Proof. By the Hilbert Nullstellensatz (Theorem 34.1) we know the residue field
κ = κ(m) is a finite extension of k. Denote αi ∈ κ the image of xi. Denote
κi = k(α1, . . . , αi) ⊂ κ, i = 1, . . . , n and κ0 = k. Note that κi = k[α1, . . . , αi]
by field theory. Define inductively elements fi ∈ m ∩ k[x1, . . . , xi] as follows: Let
Pi(T ) ∈ κi−1[T ] be the monic minimal polynomial of αi over κi−1. Let Qi(T ) ∈
k[x1, . . . , xi−1][T ] be a monic lift of Pi(T ) (of the same degree). Set fi = Qi(xi).
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Note that if di = degT (Pi) = degT (Qi) = degxi
(fi) then d1d2 . . . di = [κi : k] by

Fields, Lemmas 7.7 and 9.2.
We claim that for all i = 0, 1, . . . , n there is an isomorphism

ψi : k[x1, . . . , xi]/(f1, . . . , fi) ∼= κi.

By construction the composition k[x1, . . . , xi] → k[x1, . . . , xn] → κ is surjective
onto κi and f1, . . . , fi are in the kernel. This gives a surjective homomorphism.
We prove ψi is injective by induction. It is clear for i = 0. Given the state-
ment for i we prove it for i + 1. The ring extension k[x1, . . . , xi]/(f1, . . . , fi) →
k[x1, . . . , xi+1]/(f1, . . . , fi+1) is generated by 1 element over a field and one irre-
ducible equation. By elementary field theory k[x1, . . . , xi+1]/(f1, . . . , fi+1) is a field,
and hence ψi is injective.
This implies that m = (f1, . . . , fn). Moreover, we also conclude that

k[x1, . . . , xn]/(f1, . . . , fi) ∼= κi[xi+1, . . . , xn].
Hence (f1, . . . , fi) is a prime ideal. Thus

(0) ⊂ (f1) ⊂ (f1, f2) ⊂ . . . ⊂ (f1, . . . , fn) = m

is a chain of primes of length n. The lemma follows. □

Proposition 114.2.00OQ A polynomial algebra in n variables over a field is a regular
ring. It has global dimension n. All localizations at maximal ideals are regular local
rings of dimension n.

Proof. By Lemma 114.1 all localizations k[x1, . . . , xn]m at maximal ideals are reg-
ular local rings of dimension n. Hence we conclude by Lemma 110.8. □

Lemma 114.3.00OR Let k be a field. Let p ⊂ q ⊂ k[x1, . . . , xn] be a pair of primes.
Any maximal chain of primes between p and q has length height(q)− height(p).

Proof. By Proposition 114.2 any local ring of k[x1, . . . , xn] is regular. Hence all
local rings are Cohen-Macaulay, see Lemma 106.3. The local rings at maximal
ideals have dimension n hence every maximal chain of primes in k[x1, . . . , xn] has
length n, see Lemma 104.3. Hence every maximal chain of primes between (0) and
p has length height(p), see Lemma 104.4 for example. Putting these together leads
to the assertion of the lemma. □

Lemma 114.4.00OS Let k be a field. Let S be a finite type k-algebra which is an
integral domain. Then dim(S) = dim(Sm) for any maximal ideal m of S. In words:
every maximal chain of primes has length equal to the dimension of S.

Proof. Write S = k[x1, . . . , xn]/p. By Proposition 114.2 and Lemma 114.3 all the
maximal chains of primes in S (which necessarily end with a maximal ideal) have
length n − height(p). Thus this number is the dimension of S and of Sm for any
maximal ideal m of S. □

Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 10.1.

Lemma 114.5.00OT Let k be a field. Let S be a finite type k-algebra. Let X = Spec(S).
Let p ⊂ S be a prime ideal and let x ∈ X be the corresponding point. The following
numbers are equal

(1) dimx(X),
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(2) max dim(Z) where the maximum is over those irreducible components Z of
X passing through x, and

(3) min dim(Sm) where the minimum is over maximal ideals m with p ⊂ m.

Proof. Let X =
⋃
i∈I Zi be the decomposition of X into its irreducible com-

ponents. There are finitely many of them (see Lemmas 31.3 and 31.5). Let
I ′ = {i | x ∈ Zi}, and let T =

⋃
i ̸∈I′ Zi. Then U = X \ T is an open subset

of X containing the point x. The number (2) is maxi∈I′ dim(Zi). For any open
W ⊂ U with x ∈ W the irreducible components of W are the irreducible sets
Wi = Zi ∩W for i ∈ I ′ and x is contained in each of these. Note that each Wi,
i ∈ I ′ contains a closed point because X is Jacobson, see Section 35. Since Wi ⊂ Zi
we have dim(Wi) ≤ dim(Zi). The existence of a closed point implies, via Lemma
114.4, that there is a chain of irreducible closed subsets of length equal to dim(Zi)
in the open Wi. Thus dim(Wi) = dim(Zi) for any i ∈ I ′. Hence dim(W ) is equal
to the number (2). This proves that (1) = (2).
Let m ⊃ p be any maximal ideal containing p. Let x0 ∈ X be the corresponding
point. First of all, x0 is contained in all the irreducible components Zi, i ∈ I ′. Let
qi denote the minimal primes of S corresponding to the irreducible components Zi.
For each i such that x0 ∈ Zi (which is equivalent to m ⊃ qi) we have a surjection

Sm −→ Sm/qiSm = (S/qi)m
Moreover, the primes qiSm so obtained exhaust the minimal primes of the Noe-
therian local ring Sm, see Lemma 26.3. We conclude, using Lemma 114.4, that the
dimension of Sm is the maximum of the dimensions of the Zi passing through x0.
To finish the proof of the lemma it suffices to show that we can choose x0 such that
x0 ∈ Zi ⇒ i ∈ I ′. Because S is Jacobson (as we saw above) it is enough to show
that V (p)\T (with T as above) is nonempty. And this is clear since it contains the
point x (i.e. p). □

Lemma 114.6.00OU Let k be a field. Let S be a finite type k-algebra. Let X = Spec(S).
Let m ⊂ S be a maximal ideal and let x ∈ X be the associated closed point. Then
dimx(X) = dim(Sm).

Proof. This is a special case of Lemma 114.5. □

Lemma 114.7.00OV Let k be a field. Let S be a finite type k algebra. Assume that
S is Cohen-Macaulay. Then Spec(S) =

∐
Td is a finite disjoint union of open

and closed subsets Td with Td equidimensional (see Topology, Definition 10.5) of
dimension d. Equivalently, S is a product of rings Sd, d = 0, . . . ,dim(S) such that
every maximal ideal m of Sd has height d.

Proof. The equivalence of the two statements follows from Lemma 24.3. Let m ⊂ S
be a maximal ideal. Every maximal chain of primes in Sm has the same length equal
to dim(Sm), see Lemma 104.3. Hence, the dimension of the irreducible components
passing through the point corresponding to m all have dimension equal to dim(Sm),
see Lemma 114.4. Since Spec(S) is a Jacobson topological space the intersection
of any two irreducible components of it contains a closed point if nonempty, see
Lemmas 35.2 and 35.4. Thus we have shown that any two irreducible components
that meet have the same dimension. The lemma follows easily from this, and the
fact that Spec(S) has a finite number of irreducible components (see Lemmas 31.3
and 31.5). □
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115. Noether normalization

00OW In this section we prove variants of the Noether normalization lemma. The key
ingredient we will use is contained in the following two lemmas.

Lemma 115.1.051M Let n ∈ N. Let N be a finite nonempty set of multi-indices
ν = (ν1, . . . , νn). Given e = (e1, . . . , en) we set e · ν =

∑
eiνi. Then for e1 ≫ e2 ≫

. . .≫ en−1 ≫ en we have: If ν, ν′ ∈ N then

(e · ν = e · ν′)⇔ (ν = ν′)

Proof. Say N = {νj} with νj = (νj1, . . . , νjn). Let Ai = maxj νji − minj νji. If
for each i we have ei−1 > Aiei +Ai+1ei+1 + . . .+Anen then the lemma holds. For
suppose that e · (ν − ν′) = 0. Then for n ≥ 2,

e1(ν1 − ν′
1) =

∑n

i=2
ei(ν′

i − νi).

We may assume that (ν1 − ν′
1) ≥ 0. If (ν1 − ν′

1) > 0, then

e1(ν1 − ν′
1) ≥ e1 > A2e2 + . . .+Anen ≥

∑n

i=2
ei|ν′

i − νi| ≥
∑n

i=2
ei(ν′

i − νi).

This contradiction implies that ν′
1 = ν1. By induction, ν′

i = νi for 2 ≤ i ≤ n. □

Lemma 115.2.051N Let R be a ring. Let g ∈ R[x1, . . . , xn] be an element which is
nonconstant, i.e., g ̸∈ R. For e1 ≫ e2 ≫ . . .≫ en−1 ≫ en = 1 the polynomial

g(x1 + xe1
n , x2 + xe2

n , . . . , xn−1 + xen−1
n , xn) = axdn + lower order terms in xn

where d > 0 and a ∈ R is one of the nonzero coefficients of g.

Proof. Write g =
∑
ν∈N aνx

ν with aν ∈ R not zero. Here N is a finite set of
multi-indices as in Lemma 115.1 and xν = xν1

1 . . . xνn
n . Note that the leading term

in
(x1 + xe1

n )ν1 . . . (xn−1 + xen−1
n )νn−1xνn

n is xe1ν1+...+en−1νn−1+νn
n .

Hence the lemma follows from Lemma 115.1 which guarantees that there is exactly
one nonzero term aνx

ν of g which gives rise to the leading term of g(x1 + xe1
n , x2 +

xe2
n , . . . , xn−1 + x

en−1
n , xn), i.e., a = aν for the unique ν ∈ N such that e · ν is

maximal. □

Lemma 115.3.00OX Let k be a field. Let S = k[x1, . . . , xn]/I for some proper ideal
I. If I ̸= 0, then there exist y1, . . . , yn−1 ∈ k[x1, . . . , xn] such that S is finite
over k[y1, . . . , yn−1]. Moreover we may choose yi to be in the Z-subalgebra of
k[x1, . . . , xn] generated by x1, . . . , xn.

Proof. Pick f ∈ I, f ̸= 0. It suffices to show the lemma for k[x1, . . . , xn]/(f) since
S is a quotient of that ring. We will take yi = xi−xei

n , i = 1, . . . , n− 1 for suitable
integers ei. When does this work? It suffices to show that xn ∈ k[x1, . . . , xn]/(f)
is integral over the ring k[y1, . . . , yn−1]. The equation for xn over this ring is

f(y1 + xe1
n , . . . , yn−1 + xen−1

n , xn) = 0.

Hence we are done if we can show there exists integers ei such that the leading
coefficient with respect to xn of the equation above is a nonzero element of k.
This can be achieved for example by choosing e1 ≫ e2 ≫ . . . ≫ en−1, see Lemma
115.2. □
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Lemma 115.4.00OY Let k be a field. Let S = k[x1, . . . , xn]/I for some ideal I. If
I ̸= (1), there exist r ≥ 0, and y1, . . . , yr ∈ k[x1, . . . , xn] such that (a) the map
k[y1, . . . , yr] → S is injective, and (b) the map k[y1, . . . , yr] → S is finite. In this
case the integer r is the dimension of S. Moreover we may choose yi to be in the
Z-subalgebra of k[x1, . . . , xn] generated by x1, . . . , xn.

Proof. By induction on n, with n = 0 being trivial. If I = 0, then take r = n
and yi = xi. If I ̸= 0, then choose y1, . . . , yn−1 as in Lemma 115.3. Let S′ ⊂ S
be the subring generated by the images of the yi. By induction we can choose r
and z1, . . . , zr ∈ k[y1, . . . , yn−1] such that (a), (b) hold for k[z1, . . . , zr]→ S′. Since
S′ → S is injective and finite we see (a), (b) hold for k[z1, . . . , zr] → S. The last
assertion follows from Lemma 112.4. □

Lemma 115.5.00OZ Let k be a field. Let S be a finite type k algebra and denote
X = Spec(S). Let q be a prime of S, and let x ∈ X be the corresponding point.
There exists a g ∈ S, g ̸∈ q such that dim(Sg) = dimx(X) =: d and such that there
exists a finite injective map k[y1, . . . , yd]→ Sg.

Proof. Note that by definition dimx(X) is the minimum of the dimensions of Sg
for g ∈ S, g ̸∈ q, i.e., the minimum is attained. Thus the lemma follows from
Lemma 115.4. □

Lemma 115.6.051P Let k be a field. Let q ⊂ k[x1, . . . , xn] be a prime ideal. Set
r = trdegk κ(q). Then there exists a finite ring map φ : k[y1, . . . , yn]→ k[x1, . . . , xn]
such that φ−1(q) = (yr+1, . . . , yn).

Proof. By induction on n. The case n = 0 is clear. Assume n > 0. If r = n, then
q = (0) and the result is clear. Choose a nonzero f ∈ q. Of course f is nonconstant.
After applying an automorphism of the form

k[x1, . . . , xn] −→ k[x1, . . . , xn], xn 7→ xn, xi 7→ xi + xei
n (i < n)

we may assume that f is monic in xn over k[x1, . . . , xn], see Lemma 115.2. Hence
the ring map

k[y1, . . . , yn] −→ k[x1, . . . , xn], yn 7→ f, yi 7→ xi (i < n)
is finite. Moreover yn ∈ q ∩ k[y1, . . . , yn] by construction. Thus q ∩ k[y1, . . . , yn] =
pk[y1, . . . , yn] + (yn) where p ⊂ k[y1, . . . , yn−1] is a prime ideal. Note that κ(p) ⊂
κ(q) is finite, and hence r = trdegk κ(p). Apply the induction hypothesis to
the pair (k[y1, . . . , yn−1], p) and we obtain a finite ring map k[z1, . . . , zn−1] →
k[y1, . . . , yn−1] such that p∩k[z1, . . . , zn−1] = (zr+1, . . . , zn−1). We extend the ring
map k[z1, . . . , zn−1] → k[y1, . . . , yn−1] to a ring map k[z1, . . . , zn] → k[y1, . . . , yn]
by mapping zn to yn. The composition of the ring maps

k[z1, . . . , zn]→ k[y1, . . . , yn]→ k[x1, . . . , xn]
solves the problem. □

Lemma 115.7.07NA Let R → S be an injective finite type ring map. Assume R is a
domain. Then there exists an integer d and a factorization

R→ R[y1, . . . , yd]→ S′ → S

by injective maps such that S′ is finite over R[y1, . . . , yd] and such that S′
f
∼= Sf

for some nonzero f ∈ R.
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Proof. Pick x1, . . . , xn ∈ S which generate S over R. Let K be the fraction field
of R and SK = S ⊗R K. By Lemma 115.4 we can find y1, . . . , yd ∈ S such that
K[y1, . . . , yd]→ SK is a finite injective map. Note that yi ∈ S because we may pick
the yj in the Z-algebra generated by x1, . . . , xn. As a finite ring map is integral
(see Lemma 36.3) we can find monic Pi ∈ K[y1, . . . , yd][T ] such that Pi(xi) = 0
in SK . Let f ∈ R be a nonzero element such that fPi ∈ R[y1, . . . , yd][T ] for all
i. Then fPi(xi) maps to zero in SK . Hence after replacing f by another nonzero
element of R we may also assume fPi(xi) is zero in S. Set x′

i = fxi and let
S′ ⊂ S be the R-subalgebra generated by y1, . . . , yd and x′

1, . . . , x
′
n. Note that x′

i

is integral over R[y1, . . . , yd] as we have Qi(x′
i) = 0 where Qi = fdegT (Pi)Pi(T/f)

which is a monic polynomial in T with coefficients in R[y1, . . . , yd] by our choice of
f . Hence R[y1, . . . , yd] ⊂ S′ is finite by Lemma 36.5. Since S′ ⊂ S we have S′

f ⊂ Sf
(localization is exact). On the other hand, the elements xi = x′

i/f in S′
f generate

Sf over Rf and hence S′
f → Sf is surjective. Whence S′

f
∼= Sf and we win. □

116. Dimension of finite type algebras over fields, reprise

07NB This section is a continuation of Section 114. In this section we establish the
connection between dimension and transcendence degree over the ground field for
finite type domains over a field.

Lemma 116.1.00P0 Let k be a field. Let S be a finite type k algebra which is an
integral domain. Let K be the field of fractions of S. Let r = trdeg(K/k) be the
transcendence degree of K over k. Then dim(S) = r. Moreover, the local ring of S
at every maximal ideal has dimension r.

Proof. We may write S = k[x1, . . . , xn]/p. By Lemma 114.3 all local rings of S
at maximal ideals have the same dimension. Apply Lemma 115.4. We get a finite
injective ring map

k[y1, . . . , yd]→ S

with d = dim(S). Clearly, k(y1, . . . , yd) ⊂ K is a finite extension and we win. □

Lemma 116.2.06RP Let k be a field. Let S be a finite type k-algebra. Let q ⊂ q′ ⊂ S
be distinct prime ideals. Then trdegk κ(q′) < trdegk κ(q).

Proof. By Lemma 116.1 we have dimV (q) = trdegk κ(q) and similarly for q′.
Hence the result follows as the strict inclusion V (q′) ⊂ V (q) implies a strict in-
equality of dimensions. □

The following lemma generalizes Lemma 114.6.

Lemma 116.3.00P1 Let k be a field. Let S be a finite type k algebra. Let X = Spec(S).
Let p ⊂ S be a prime ideal, and let x ∈ X be the corresponding point. Then we
have

dimx(X) = dim(Sp) + trdegk κ(p).

Proof. By Lemma 116.1 we know that r = trdegk κ(p) is equal to the dimension
of V (p). Pick any maximal chain of primes p ⊂ p1 ⊂ . . . ⊂ pr starting with p in
S. This has length r by Lemma 114.4. Let qj , j ∈ J be the minimal primes of S
which are contained in p. These correspond 1− 1 to minimal primes in Sp via the
rule qj 7→ qjSp. By Lemma 114.5 we know that dimx(X) is equal to the maximum
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of the dimensions of the rings S/qj . For each j pick a maximal chain of primes
qj ⊂ p′

1 ⊂ . . . ⊂ p′
s(j) = p. Then dim(Sp) = maxj∈J s(j). Now, each chain

qi ⊂ p′
1 ⊂ . . . ⊂ p′

s(j) = p ⊂ p1 ⊂ . . . ⊂ pr

is a maximal chain in S/qj , and by what was said before we have dimx(X) =
maxj∈J r + s(j). The lemma follows. □

The following lemma says that the codimension of one finite type Spec in another
is the difference of heights.
Lemma 116.4.00P2 Let k be a field. Let S′ → S be a surjection of finite type k
algebras. Let p ⊂ S be a prime ideal, and let p′ be the corresponding prime ideal of
S′. Let X = Spec(S), resp. X ′ = Spec(S′), and let x ∈ X, resp. x′ ∈ X ′ be the
point corresponding to p, resp. p′. Then

dimx′ X ′ − dimxX = height(p′)− height(p).
Proof. Immediate from Lemma 116.3. □

Lemma 116.5.00P3 Let k be a field. Let S be a finite type k-algebra. Let K/k be a
field extension. Then dim(S) = dim(K ⊗k S).
Proof. By Lemma 115.4 there exists a finite injective map k[y1, . . . , yd]→ S with
d = dim(S). Since K is flat over k we also get a finite injective map K[y1, . . . , yd]→
K ⊗k S. The result follows from Lemma 112.4. □

Lemma 116.6.00P4 Let k be a field. Let S be a finite type k-algebra. Set X = Spec(S).
Let K/k be a field extension. Set SK = K ⊗k S, and XK = Spec(SK). Let q ⊂ S
be a prime corresponding to x ∈ X and let qK ⊂ SK be a prime corresponding to
xK ∈ XK lying over q. Then dimxX = dimxK

XK .
Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation K⊗k
S = K[x1, . . . , xn]/(K⊗kI). Let q′

K ⊂ K[x1, . . . , xn], resp. q′ ⊂ k[x1, . . . , xn] be the
corresponding primes. Consider the following commutative diagram of Noetherian
local rings

K[x1, . . . , xn]q′
K

// (K ⊗k S)qK

k[x1, . . . , xn]q′ //

OO

Sq

OO

Both vertical arrows are flat because they are localizations of the flat ring maps
S → SK and k[x1, . . . , xn]→ K[x1, . . . , xn]. Moreover, the vertical arrows have the
same fibre rings. Hence, we see from Lemma 112.7 that height(q′) − height(q) =
height(q′

K) − height(qK). Denote x′ ∈ X ′ = Spec(k[x1, . . . , xn]) and x′
K ∈ X ′

K =
Spec(K[x1, . . . , xn]) the points corresponding to q′ and q′

K . By Lemma 116.4 and
what we showed above we have

n− dimxX = dimx′ X ′ − dimxX

= height(q′)− height(q)
= height(q′

K)− height(qK)
= dimx′

K
X ′
K − dimxK

XK

= n− dimxK
XK

and the lemma follows. □
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Lemma 116.7.0CWE Let k be a field. Let S be a finite type k-algebra. Let K/k be a
field extension. Set SK = K ⊗k S. Let q ⊂ S be a prime and let qK ⊂ SK be a
prime lying over q. Then

dim(SK ⊗S κ(q))qK
= dim(SK)qK

− dimSq = trdegkκ(q)− trdegKκ(qK)
Moreover, given q we can always choose qK such that the number above is zero.

Proof. Observe that Sq → (SK)qK
is a flat local homomorphism of local Noether-

ian rings with special fibre (SK ⊗S κ(q))qK
. Hence the first equality by Lemma

112.7. The second equality follows from the fact that we have dimxX = dimxK
XK

with notation as in Lemma 116.6 and we have dimxX = dimSq + trdegkκ(q) by
Lemma 116.3 and similarly for dimxK

XK . If we choose qK minimal over qSK , then
the dimension of the fibre ring will be zero. □

117. Dimension of graded algebras over a field

00P5 Here is a basic result.

Lemma 117.1.00P6 Let k be a field. Let S be a graded k-algebra generated over k
by finitely many elements of degree 1. Assume S0 = k. Let P (T ) ∈ Q[T ] be the
polynomial such that dim(Sd) = P (d) for all d≫ 0. See Proposition 58.7. Then

(1) The irrelevant ideal S+ is a maximal ideal m.
(2) Any minimal prime of S is a homogeneous ideal and is contained in S+ = m.
(3) We have dim(S) = deg(P ) + 1 = dimx Spec(S) (with the convention that

deg(0) = −1) where x is the point corresponding to the maximal ideal S+ =
m.

(4) The Hilbert function of the local ring R = Sm is equal to the Hilbert function
of S.

Proof. The first statement is obvious. The second follows from Lemma 57.8.
By (2) every irreducible component passes through x. Thus we have dim(S) =
dimx Spec(S) = dim(Sm) by Lemma 114.5. Since md/md+1 ∼= mdSm/m

d+1Sm we
see that the Hilbert function of the local ring Sm is equal to the Hilbert function
of S, which is (4). We conclude the last equality of (3) by Proposition 60.9. □

118. Generic flatness

051Q Basically this says that a finite type algebra over a domain becomes flat after
inverting a single element of the domain. There are several versions of this result
(in increasing order of strength).

Lemma 118.1.051R Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is Noetherian,
(2) R is a domain,
(3) R→ S is of finite type, and
(4) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Let K be the fraction field of R. Set SK = K ⊗R S. This is an algebra of
finite type over K. We will argue by induction on d = dim(SK) (which is finite for
example by Noether normalization, see Section 115). Fix d ≥ 0. Assume we know
that the lemma holds in all cases where dim(SK) < d.
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Suppose given R → S and M as in the lemma with dim(SK) = d. By Lemma
62.1 there exists a filtration 0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn = M so that Mi/Mi−1
is isomorphic to S/q for some prime q of S. Note that dim((S/q)K) ≤ dim(SK).
Also, note that an extension of free modules is free (see basic notion 50). Thus we
may assume M = S and that S is a domain of finite type over R.
If R→ S has a nontrivial kernel, then take a nonzero f ∈ R in this kernel. In this
case Sf = 0 and the lemma holds. (This is really the case d = −1 and the start
of the induction.) Hence we may assume that R → S is a finite type extension of
Noetherian domains.
Apply Lemma 115.7 and replace R by Rf (with f as in the lemma) to get a
factorization

R ⊂ R[y1, . . . , yd] ⊂ S
where the second extension is finite. Choose z1, . . . , zr ∈ S which form a basis for
the fraction field of S over the fraction field of R[y1, . . . , yd]. This gives a short
exact sequence

0→ R[y1, . . . , yd]⊕r
(z1,...,zr)−−−−−−→ S → N → 0

By construction N is a finite R[y1, . . . , yd]-module whose support does not contain
the generic point (0) of Spec(R[y1, . . . , yd]). By Lemma 40.5 there exists a nonzero
g ∈ R[y1, . . . , yd] such that g annihilates N , so we may view N as a finite module
over S′ = R[y1, . . . , yd]/(g). Since dim(S′

K) < d by induction there exists a nonzero
f ∈ R such that Nf is a free Rf -module. Since (R[y1, . . . , yd])f ∼= Rf [y1, . . . , yd]
is free also we conclude by the already mentioned fact that an extension of free
modules is free. □

Lemma 118.2.051S Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite presentation, and
(3) M is an S-module of finite presentation.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). For g ∈ R[x1, . . . , xn] denote g its
image in S. We may write M = S⊕t/

∑
Sni for some ni ∈ S⊕t. Write ni =

(gi1, . . . , git) for some gij ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated
by all the coefficients of all the elements gi, gij ∈ R[x1, . . . , xn]. Define S0 =
R0[x1, . . . , xn]/(g1, . . . , gm). Define M0 = S⊕t

0 /
∑
S0ni. Then R0 is a domain

of finite type over Z and hence Noetherian (see Lemma 31.1). Moreover via the
injection R0 → R we have S ∼= R ⊗R0 S0 and M ∼= R ⊗R0 M0. Applying Lemma
118.1 we obtain a nonzero f ∈ R0 such that (M0)f is a free (R0)f -module. Hence
Mf = Rf ⊗(R0)f

(M0)f is a free Rf -module. □

Lemma 118.3.051T Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite type, and
(3) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that
(a) Mf and Sf are free as Rf -modules, and
(b) Sf is a finitely presented Rf -algebra and Mf is a finitely presented Sf -

module.
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Proof. We first prove the lemma for S = R[x1, . . . , xn], and then we deduce the
result in general.

Assume S = R[x1, . . . , xn]. Choose elements m1, . . . ,mt which generate M . This
gives a short exact sequence

0→ N → S⊕t (m1,...,mt)−−−−−−−→M → 0.

Denote K the fraction field of R. Denote SK = K ⊗R S = K[x1, . . . , xn], and
similarly NK = K ⊗R N , MK = K ⊗RM . As R→ K is flat the sequence remains
exact after tensoring with K. As SK = K[x1, . . . , xn] is a Noetherian ring (see
Lemma 31.1) we can find finitely many elements n′

1, . . . , n
′
s ∈ NK which generate

it. Choose n1, . . . , nr ∈ N such that n′
i =

∑
aijnj for some aij ∈ K. Set

M ′ = S⊕t/
∑

i=1,...,r
Sni

By construction M ′ is a finitely presented S-module, and there is a surjection
M ′ →M which induces an isomorphism M ′

K
∼= MK . We may apply Lemma 118.2

to R → S and M ′ and we find an f ∈ R such that M ′
f is a free Rf -module. Thus

M ′
f → Mf is a surjection of modules over the domain Rf where the source is a

free module and which becomes an isomorphism upon tensoring with K. Thus it
is injective as M ′

f ⊂ M ′
K as it is free over the domain Rf . Hence M ′

f → Mf is an
isomorphism and the result is proved.

For the general case, choose a surjection R[x1, . . . , xn] → S. Think of both S
and M as finite modules over R[x1, . . . , xn]. By the special case proved above
there exists a nonzero f ∈ R such that both Sf and Mf are free as Rf -modules
and finitely presented as Rf [x1, . . . , xn]-modules. Clearly this implies that Sf is a
finitely presented Rf -algebra and that Mf is a finitely presented Sf -module. □

Let R→ S be a ring map. Let M be an S-module. Consider the following condition
on an element f ∈ R:

(118.3.1)051U

 Sf is of finite presentation over Rf
Mf is of finite presentation as Sf -module

Sf ,Mf are free as Rf -modules

We define

(118.3.2)051V U(R→ S,M) =
⋃

f∈R with (118.3.1)
D(f)

which is an open subset of Spec(R).

Lemma 118.4.051W Let R → S be a ring map. Let 0 → M1 → M2 → M3 → 0 be a
short exact sequence of S-modules. Then

U(R→ S,M1) ∩ U(R→ S,M3) ⊂ U(R→ S,M2).

Proof. Let u ∈ U(R → S,M1) ∩ U(R → S,M3). Choose f1, f3 ∈ R such that
u ∈ D(f1), u ∈ D(f3) and such that (118.3.1) holds for f1 and M1 and for f3 and
M3. Then set f = f1f3. Then u ∈ D(f) and (118.3.1) holds for f and both M1
and M3. An extension of free modules is free, and an extension of finitely presented
modules is finitely presented (Lemma 5.3). Hence we see that (118.3.1) holds for f
and M2. Thus u ∈ U(R→ S,M2) and we win. □
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Lemma 118.5.051X Let R → S be a ring map. Let M be an S-module. Let f ∈ R.
Using the identification Spec(Rf ) = D(f) we have U(Rf → Sf ,Mf ) = D(f) ∩
U(R→ S,M).

Proof. Suppose that u ∈ U(Rf → Sf ,Mf ). Then there exists an element g ∈
Rf such that u ∈ D(g) and such that (118.3.1) holds for the pair ((Rf )g →
(Sf )g, (Mf )g). Write g = a/fn for some a ∈ R. Set h = af . Then Rh = (Rf )g,
Sh = (Sf )g, and Mh = (Mf )g. Moreover u ∈ D(h). Hence u ∈ U(R → S,M).
Conversely, suppose that u ∈ D(f) ∩ U(R → S,M). Then there exists an element
g ∈ R such that u ∈ D(g) and such that (118.3.1) holds for the pair (Rg → Sg,Mg).
Then it is clear that (118.3.1) also holds for the pair (Rfg → Sfg,Mfg) = ((Rf )g →
(Sf )g, (Mf )g). Hence u ∈ U(Rf → Sf ,Mf ) and we win. □

Lemma 118.6.051Y Let R → S be a ring map. Let M be an S-module. Let U ⊂
Spec(R) be a dense open. Assume there is a covering U =

⋃
i∈I D(fi) of opens

such that U(Rfi → Sfi ,Mfi) is dense in D(fi) for each i ∈ I. Then U(R→ S,M)
is dense in Spec(R).

Proof. In view of Lemma 118.5 this is a purely topological statement. Namely, by
that lemma we see that U(R→ S,M) ∩D(fi) is dense in D(fi) for each i ∈ I. By
Topology, Lemma 21.4 we see that U(R → S,M) ∩ U is dense in U . Since U is
dense in Spec(R) we conclude that U(R→ S,M) is dense in Spec(R). □

Lemma 118.7.051Z Let R→ S be a ring map. Let M be an S-module. Assume
(1) R→ S is of finite type,
(2) M is a finite S-module, and
(3) R is reduced.

Then there exists a subset U ⊂ Spec(R) such that
(1) U is open and dense in Spec(R),
(2) for every u ∈ U there exists an f ∈ R such that u ∈ D(f) ⊂ U and such

that we have
(a) Mf and Sf are free over Rf ,
(b) Sf is a finitely presented Rf -algebra, and
(c) Mf is a finitely presented Sf -module.

Proof. Note that the lemma is equivalent to the statement that the open U(R→
S,M), see Equation (118.3.2), is dense in Spec(R). We first prove the lemma for
S = R[x1, . . . , xn], and then we deduce the result in general.

Proof of the case S = R[x1, . . . , xn] and M any finite module over S. Note that in
this case Sf = Rf [x1, . . . , xn] is free and of finite presentation over Rf , so we do
not have to worry about the conditions regarding S, only those that concern M .
We will use induction on n.

There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt = M

such that Mi/Mi−1 ∼= S/Ji for some ideal Ji ⊂ S, see Lemma 5.4. Since a finite
intersection of dense opens is dense open, we see from Lemma 118.4 that it suffices
to prove the lemma for each of the modules R/Ji. Hence we may assume that
M = S/J for some ideal J of S = R[x1, . . . , xn].

https://stacks.math.columbia.edu/tag/051X
https://stacks.math.columbia.edu/tag/051Y
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Let I ⊂ R be the ideal generated by the coefficients of elements of J . Let U1 =
Spec(R) \ V (I) and let

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 118.6 we see that
U(R→ S,M) is dense in Spec(R). Hence we may assume either (a) I = R, or (b)
V (I) = Spec(R).

In case (b) we actually have I = 0 as R is reduced! Hence J = 0 and M = S and
the lemma holds in this case.

In case (a) we have to do a little bit more work. Note that every element of I
is actually the coefficient of a monomial of an element of J , because the set of
coefficients of elements of J forms an ideal (details omitted). Hence we find an
element

g =
∑

K∈E
aKx

K ∈ J

where E is a finite set of multi-indices K = (k1, . . . , kn) with at least one coefficient
aK0 a unit in R. Actually we can find one which has a coefficient equal to 1 as 1 ∈ I
in case (a). Let m = #{K ∈ E | aK is not a unit}. Note that 0 ≤ m ≤ #E − 1.
We will argue by induction on m.

The case m = 0. In this case all the coefficients aK , K ∈ E of g are units and
E ̸= ∅. If E = {K0} is a singleton and K0 = (0, . . . , 0), then g is a unit and J = S
so the result holds for sure. (This happens in particular when n = 0 and it provides
the base case of the induction on n.) If not E = {(0, . . . , 0)}, then at least one K
is not equal to (0, . . . , 0), i.e., g ̸∈ R. At this point we employ the usual trick of
Noether normalization. Namely, we consider

G(y1, . . . , yn) = g(y1 + ye1
n , y2 + ye2

n , . . . , yn−1 + yen−1
n , yn)

with 0≪ en−1 ≪ en−2 ≪ . . .≪ e1. By Lemma 115.2 it follows that G(y1, . . . , yn)
as a polynomial in yn looks like

aKy
kn+
∑

i=1,...,n−1
eiki

n + lower order terms in yn

As aK is a unit we conclude that M = R[x1, . . . , xn]/J is finite over R[y1, . . . , yn−1].
Hence U(R → R[x1, . . . , xn],M) = U(R → R[y1, . . . , yn−1],M) and we win by
induction on n.

The case m > 0. Pick a multi-index K ∈ E such that aK is not a unit. As before
set U1 = Spec(RaK

) = Spec(R) \ V (aK) and set

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 118.6 we see that
U(R → S,M) is dense in Spec(R). Hence we may assume either (a) aKR = R, or
(b) V (aK) = Spec(R). In case (a) the number m drops, as aK has turned into a
unit. In case (b), since R is reduced, we conclude that aK = 0. Hence the set E
decreases so the number m drops as well. In both cases we win by induction on m.
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At this point we have proven the lemma in case S = R[x1, . . . , xn]. Assume that
(R → S,M) is an arbitrary pair satisfying the conditions of the lemma. Choose
a surjection R[x1, . . . , xn] → S. Observe that, with the notation introduced in
(118.3.2), we have

U(R→ S,M) = U(R→ R[x1, . . . , xn], S) ∩ U(R→ R[x1, . . . , xn],M)
Hence as we’ve just finished proving the right two opens are dense also the open
on the left is dense. □

119. Around Krull-Akizuki

00P7 One application of Krull-Akizuki is to show that there are plenty of discrete val-
uation rings. More generally in this section we show how to construct discrete
valuation rings dominating Noetherian local rings.
First we show how to dominate a Noetherian local domain by a 1-dimensional
Noetherian local domain by blowing up the maximal ideal.

Lemma 119.1.00P8 Let R be a local Noetherian domain with fraction field K. Assume
R is not a field. Then there exist R ⊂ R′ ⊂ K with

(1) R′ local Noetherian of dimension 1,
(2) R→ R′ a local ring map, i.e., R′ dominates R, and
(3) R→ R′ essentially of finite type.

Proof. Choose any valuation ring A ⊂ K dominating R (which exist by Lemma
50.2). Denote v the corresponding valuation. Let x1, . . . , xr be a minimal set of
generators of the maximal ideal m of R. We may and do assume that v(xr) =
min{v(x1), . . . , v(xr)}. Consider the ring

S = R[x1/xr, x2/xr, . . . , xr−1/xr] ⊂ K.
Note that mS = xrS is a principal ideal. Note that S ⊂ A and that v(xr) > 0, hence
we see that xrS ̸= S. Choose a minimal prime q over xrS. Then height(q) = 1 by
Lemma 60.11 and q lies over m. Hence we see that R′ = Sq is a solution. □

Lemma 119.2 (Kollár).0BHZ This is taken from a
forthcoming paper
by János Kollár
entitled “Variants of
normality for
Noetherian
schemes”.

Let (R,m) be a local Noetherian ring. Then exactly one
of the following holds:

(1) (R,m) is Artinian,
(2) (R,m) is regular of dimension 1,
(3) depth(R) ≥ 2, or
(4) there exists a finite ring map R → R′ which is not an isomorphism whose

kernel and cokernel are annihilated by a power of m such that m is not an
associated prime of R′ and R′ ̸= 0.

Proof. Observe that (R,m) is not Artinian if and only if V (m) ⊂ Spec(R) is
nowhere dense. See Proposition 60.7. We assume this from now on.
Let J ⊂ R be the largest ideal killed by a power of m. If J ̸= 0 then R → R/J
shows that (R,m) is as in (4).
Otherwise J = 0. In particular m is not an associated prime of R and we see that
there is a nonzerodivisor x ∈ m by Lemma 63.18. If m is not an associated prime
of R/xR then depth(R) ≥ 2 by the same lemma. Thus we are left with the case
when there is a y ∈ R, y ̸∈ xR such that ym ⊂ xR.

https://stacks.math.columbia.edu/tag/00P8
https://stacks.math.columbia.edu/tag/0BHZ
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If ym ⊂ xm then we can consider the map φ : m → m, f 7→ yf/x (well defined as
x is a nonzerodivisor). By the determinantal trick of Lemma 16.2 there exists a
monic polynomial P with coefficients in R such that P (φ) = 0. We conclude that
P (y/x) = 0 in Rx. Let R′ ⊂ Rx be the ring generated by R and y/x. Then R ⊂ R′

and R′/R is a finite R-module annihilated by a power of m. Thus R is as in (4).
Otherwise there is a t ∈ m such that yt = ux for some unit u of R. After replacing
t by u−1t we get yt = x. In particular y is a nonzerodivisor. For any t′ ∈ m we have
yt′ = xs for some s ∈ R. Thus y(t′−st) = xs−xs = 0. Since y is not a zero-divisor
this implies that t′ = ts and so m = (t). Thus (R,m) is regular of dimension 1. □

Lemma 119.3.00P9 Let R be a local ring with maximal ideal m. Assume R is Noe-
therian, has dimension 1, and that dim(m/m2) > 1. Then there exists a ring map
R→ R′ such that

(1) R→ R′ is finite,
(2) R→ R′ is not an isomorphism,
(3) the kernel and cokernel of R→ R′ are annihilated by a power of m, and
(4) m is not an associated prime of R′.

Proof. This follows from Lemma 119.2 and the fact that R is not Artinian, not
regular, and does not have depth ≥ 2 (the last part because the depth does not
exceed the dimension by Lemma 72.3). □

Example 119.4.00PA Consider the Noetherian local ring

R = k[[x, y]]/(y2)
It has dimension 1 and it is Cohen-Macaulay. An example of an extension as in
Lemma 119.3 is the extension

k[[x, y]]/(y2) ⊂ k[[x, z]]/(z2), y 7→ xz

in other words it is gotten by adjoining y/x to R. The effect of repeating the
construction n > 1 times is to adjoin the element y/xn.

Example 119.5.00PB Let k be a field of characteristic p > 0 such that k has infi-
nite degree over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .).
Consider the ring

A =
{∑

aix
i ∈ k[[x]] such that [kp(a0, a1, a2, . . .) : kp] <∞

}
Then A is a discrete valuation ring and its completion is A∧ = k[[x]]. Note that
the induced extension of fraction fields of A ⊂ k[[x]] is infinite purely inseparable.
Choose any f ∈ k[[x]], f ̸∈ A. Let R = A[f ] ⊂ k[[x]]. Then R is a Noetherian local
domain of dimension 1 whose completion R∧ is nonreduced (think!).

Remark 119.6.00PC Suppose that R is a 1-dimensional semi-local Noetherian domain.
If there is a maximal ideal m ⊂ R such that Rm is not regular, then we may apply
Lemma 119.3 to (R,m) to get a finite ring extension R ⊂ R1. (For example one
can do this so that Spec(R1) → Spec(R) is the blowup of Spec(R) in the ideal
m.) Of course R1 is a 1-dimensional semi-local Noetherian domain with the same
fraction field as R. If R1 is not a regular semi-local ring, then we may repeat the
construction to get R1 ⊂ R2. Thus we get a sequence

R ⊂ R1 ⊂ R2 ⊂ R3 ⊂ . . .

https://stacks.math.columbia.edu/tag/00P9
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https://stacks.math.columbia.edu/tag/00PB
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of finite ring extensions which may stop if Rn is regular for some n. Resolution
of singularities would be the claim that eventually Rn is indeed regular. In reality
this is not the case. Namely, there exists a characteristic 0 Noetherian local domain
A of dimension 1 whose completion is nonreduced, see [FR70, Proposition 3.1] or
our Examples, Section 17. For an example in characteristic p > 0 see Example
119.5. Since the construction of blowing up commutes with completion it is easy to
see the sequence never stabilizes. See [Ben73] for a discussion (mostly in positive
characteristic). On the other hand, if the completion of R in all of its maximal
ideals is reduced, then the procedure stops (insert future reference here).

Lemma 119.7.00PD Let A be a ring. The following are equivalent.
(1) The ring A is a discrete valuation ring.
(2) The ring A is a valuation ring and Noetherian but not a field.
(3) The ring A is a regular local ring of dimension 1.
(4) The ring A is a Noetherian local domain with maximal ideal m generated

by a single nonzero element.
(5) The ring A is a Noetherian local normal domain of dimension 1.

In this case if π is a generator of the maximal ideal of A, then every element of A
can be uniquely written as uπn, where u ∈ A is a unit.

Proof. The equivalence of (1) and (2) is Lemma 50.18. Moreover, in the proof of
Lemma 50.18 we saw that if A is a discrete valuation ring, then A is a PID, hence
(3). Note that a regular local ring is a domain (see Lemma 106.2). Using this the
equivalence of (3) and (4) follows from dimension theory, see Section 60.
Assume (3) and let π be a generator of the maximal ideal m. For all n ≥ 0 we
have dimA/m mn/mn+1 = 1 because it is generated by πn (and it cannot be zero).
In particular mn = (πn) and the graded ring

⊕
mn/mn+1 is isomorphic to the

polynomial ring A/m[T ]. For x ∈ A \ {0} define v(x) = max{n | x ∈ mn}. In other
words x = uπv(x) with u ∈ A∗. By the remarks above we have v(xy) = v(x) + v(y)
for all x, y ∈ A \ {0}. We extend this to the field of fractions K of A by setting
v(a/b) = v(a)−v(b) (well defined by multiplicativity shown above). Then it is clear
that A is the set of elements of K which have valuation ≥ 0. Hence we see that A
is a valuation ring by Lemma 50.16.
A valuation ring is a normal domain by Lemma 50.3. Hence we see that the
equivalent conditions (1) – (3) imply (5). Assume (5). Suppose that m cannot be
generated by 1 element to get a contradiction. Then Lemma 119.3 implies there
is a finite ring map A → A′ which is an isomorphism after inverting any nonzero
element of m but not an isomorphism. In particular we may identify A′ with a
subset of the fraction field of A. Since A → A′ is finite it is integral (see Lemma
36.3). Since A is normal we get A = A′ a contradiction. □

Definition 119.8.09DZ Let A be a discrete valuation ring. A uniformizer is an element
π ∈ A which generates the maximal ideal of A.

By Lemma 119.7 any two uniformizers of a discrete valuation ring are associates.

Lemma 119.9.00PE Let R be a domain with fraction field K. Let M be an R-submodule
of K⊕r. Assume R is local Noetherian of dimension 1. For any nonzero x ∈ R we
have lengthR(R/xR) <∞ and

lengthR(M/xM) ≤ r · lengthR(R/xR).

https://stacks.math.columbia.edu/tag/00PD
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Proof. If x is a unit then the result is true. Hence we may assume x ∈ m the
maximal ideal of R. Since x is not zero and R is a domain we have dim(R/xR) = 0,
and hence R/xR has finite length. Consider M ⊂ K⊕r as in the lemma. We may
assume that the elements of M generate K⊕r as a K-vector space after replacing
K⊕r by a smaller subspace if necessary.
Suppose first that M is a finite R-module. In that case we can clear denominators
and assume M ⊂ R⊕r. Since M generates K⊕r as a vectors space we see that
R⊕r/M has finite length. In particular there exists an integer c ≥ 0 such that
xcR⊕r ⊂ M . Note that M ⊃ xM ⊃ x2M ⊃ . . . is a sequence of modules with
successive quotients each isomorphic to M/xM . Hence we see that

nlengthR(M/xM) = lengthR(M/xnM).
The same argument for M = R⊕r shows that

nlengthR(R⊕r/xR⊕r) = lengthR(R⊕r/xnR⊕r).
By our choice of c above we see that xnM is sandwiched between xnR⊕r and
xn+cR⊕r. This easily gives that

r(n+ c)lengthR(R/xR) ≥ nlengthR(M/xM) ≥ r(n− c)lengthR(R/xR)
Hence in the finite case we actually get the result of the lemma with equality.
Suppose now that M is not finite. Suppose that the length of M/xM is ≥ k for
some natural number k. Then we can find

0 ⊂ N0 ⊂ N1 ⊂ N2 ⊂ . . . Nk ⊂M/xM

with Ni ̸= Ni+1 for i = 0, . . . k − 1. Choose an element mi ∈M whose congruence
class mod xM falls into Ni but not into Ni−1 for i = 1, . . . , k. Consider the finite
R-module M ′ = Rm1 + . . . + Rmk ⊂ M . Let N ′

i ⊂ M ′/xM ′ be the inverse
image of Ni. It is clear that N ′

i ̸= N ′
i+1 by our choice of mi. Hence we see that

lengthR(M ′/xM ′) ≥ k. By the finite case we conclude k ≤ rlengthR(R/xR) as
desired. □

Here is a first application.

Lemma 119.10.031F Let R→ S be a homomorphism of domains inducing an injection
of fraction fields K ⊂ L. If R is Noetherian local of dimension 1 and [L : K] <∞
then

(1) each prime ideal ni of S lying over the maximal ideal m of R is maximal,
(2) there are finitely many of these, and
(3) [κ(ni) : κ(m)] <∞ for each i.

Proof. Pick x ∈ m nonzero. Apply Lemma 119.9 to the submodule S ⊂ L ∼= K⊕n

where n = [L : K]. Thus the ring S/xS has finite length over R. It follows that
S/mS has finite length over κ(m). In other words, dimκ(m) S/mS is finite (Lemma
52.6). Thus S/mS is Artinian (Lemma 53.2). The structural results on Artinian
rings implies parts (1) and (2), see for example Lemma 53.6. Part (3) is implied by
the finiteness established above. □

Lemma 119.11.00PF Let R be a domain with fraction field K. Let M be an R-
submodule of K⊕r. Assume R is Noetherian of dimension 1. For any nonzero
x ∈ R we have lengthR(M/xM) <∞.

https://stacks.math.columbia.edu/tag/031F
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Proof. Since R has dimension 1 we see that x is contained in finitely many primes
mi, i = 1, . . . , n, each maximal. Since R is Noetherian we see that R/xR is
Artinian and R/xR =

∏
i=1,...,n(R/xR)mi by Proposition 60.7 and Lemma 53.6.

Hence M/xM similarly decomposes as the product M/xM =
∏

(M/xM)mi
of

its localizations at the mi. By Lemma 119.9 applied to Mmi
over Rmi

we see each
Mmi

/xMmi
= (M/xM)mi

has finite length over Rmi
. Thus M/xM has finite length

over R as the above implies M/xM has a finite filtration by R-submodules whose
successive quotients are isomorphic to the residue fields κ(mi). □

Lemma 119.12 (Krull-Akizuki).00PG Let R be a domain with fraction field K. Let
L/K be a finite extension of fields. Assume R is Noetherian and dim(R) = 1. In
this case any ring A with R ⊂ A ⊂ L is Noetherian.

Proof. To begin we may assume that L is the fraction field of A by replacing L
by the fraction field of A if necessary. Let I ⊂ A be a nonzero ideal. Clearly I
generates L as a K-vector space. Hence we see that I ∩R ̸= (0). Pick any nonzero
x ∈ I ∩ R. Then we get I/xA ⊂ A/xA. By Lemma 119.11 the R-module A/xA
has finite length as an R-module. Hence I/xA has finite length as an R-module.
Hence I is finitely generated as an ideal in A. □

Lemma 119.13.00PH Let R be a Noetherian local domain with fraction field K. As-
sume that R is not a field. Let L/K be a finitely generated field extension. Then
there exists discrete valuation ring A with fraction field L which dominates R.

Proof. If L is not finite over K choose a transcendence basis x1, . . . , xr of L over
K and replace R by R[x1, . . . , xr] localized at the maximal ideal generated by mR
and x1, . . . , xr. Thus we may assume K ⊂ L finite.
By Lemma 119.1 we may assume dim(R) = 1.
Let A ⊂ L be the integral closure of R in L. By Lemma 119.12 this is Noetherian.
By Lemma 36.17 there is a prime ideal q ⊂ A lying over the maximal ideal of R. By
Lemma 119.7 the ring Aq is a discrete valuation ring dominating R as desired. □

120. Factorization

034O Here are some notions and relations between them that are typically taught in a
first year course on algebra at the undergraduate level.

Definition 120.1.034P Let R be a domain.
(1) Elements x, y ∈ R are called associates if there exists a unit u ∈ R∗ such

that x = uy.
(2) An element x ∈ R is called irreducible if it is nonzero, not a unit and

whenever x = yz, y, z ∈ R, then y is either a unit or an associate of x.
(3) An element x ∈ R is called prime if the ideal generated by x is a prime

ideal.

Lemma 120.2.034Q Let R be a domain. Let x, y ∈ R. Then x, y are associates if and
only if (x) = (y).

Proof. If x = uy for some unit u ∈ R, then (x) ⊂ (y) and y = u−1x so also
(y) ⊂ (x). Conversely, suppose that (x) = (y). Then x = fy and y = gx for
some f, g ∈ A. Then x = fgx and since R is a domain fg = 1. Thus x and y are
associates. □

https://stacks.math.columbia.edu/tag/00PG
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Lemma 120.3.034R Let R be a domain. Consider the following conditions:
(1) The ring R satisfies the ascending chain condition for principal ideals.
(2) Every nonzero, nonunit element a ∈ R has a factorization a = b1 . . . bk with

each bi an irreducible element of R.
Then (1) implies (2).

Proof. Let x be a nonzero element, not a unit, which does not have a factorization
into irreducibles. Set x1 = x. We can write x = yz where neither y nor z is
irreducible or a unit. Then either y does not have a factorization into irreducibles,
in which case we set x2 = y, or z does not have a factorization into irreducibles, in
which case we set x2 = z. Continuing in this fashion we find a sequence

x1|x2|x3| . . .
of elements of R with xn/xn+1 not a unit. This gives a strictly increasing sequence
of principal ideals (x1) ⊂ (x2) ⊂ (x3) ⊂ . . . thereby finishing the proof. □

Definition 120.4.034S A unique factorization domain, abbreviated UFD, is a do-
main R such that if x ∈ R is a nonzero, nonunit, then x has a factorization into
irreducibles, and if

x = a1 . . . am = b1 . . . bn

are factorizations into irreducibles then n = m and there exists a permutation
σ : {1, . . . , n} → {1, . . . , n} such that ai and bσ(i) are associates.

Lemma 120.5.034T Let R be a domain. Assume every nonzero, nonunit factors into
irreducibles. Then R is a UFD if and only if every irreducible element is prime.

Proof. Assume R is a UFD and let x ∈ R be an irreducible element. Say ab ∈ (x),
i.e., ab = cx. Choose factorizations a = a1 . . . an, b = b1 . . . bm, and c = c1 . . . cr.
By uniqueness of the factorization

a1 . . . anb1 . . . bm = c1 . . . crx

we find that x is an associate of one of the elements a1, . . . , bm. In other words,
either a ∈ (x) or b ∈ (x) and we conclude that x is prime.
Assume every irreducible element is prime. We have to prove that factorization
into irreducibles is unique up to permutation and taking associates. Say a1 . . . am =
b1 . . . bn with ai and bj irreducible. Since a1 is prime, we see that bj ∈ (a1) for some
j. After renumbering we may assume b1 ∈ (a1). Then b1 = a1u and since b1 is
irreducible we see that u is a unit. Hence a1 and b1 are associates and a2 . . . an =
ub2 . . . bm. By induction on n + m we see that n = m and ai associate to bσ(i) for
i = 2, . . . , n as desired. □

Lemma 120.6.0AFT Let R be a Noetherian domain. Then R is a UFD if and only if
every height 1 prime ideal is principal.

Proof. Assume R is a UFD and let p be a height 1 prime ideal. Take x ∈ p nonzero
and let x = a1 . . . an be a factorization into irreducibles. Since p is prime we see
that ai ∈ p for some i. By Lemma 120.5 the ideal (ai) is prime. Since p has height
1 we conclude that (ai) = p.
Assume every height 1 prime is principal. Since R is Noetherian every nonzero
nonunit element x has a factorization into irreducibles, see Lemma 120.3. It suffices
to prove that an irreducible element x is prime, see Lemma 120.5. Let (x) ⊂ p be
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a prime minimal over (x). Then p has height 1 by Lemma 60.11. By assumption
p = (y). Hence x = yz and z is a unit as x is irreducible. Thus (x) = (y) and we
see that x is prime. □

Lemma 120.7 (Nagata’s criterion for factoriality).0AFU [Nag57, Lemma 2]Let A be a domain. Let S ⊂ A
be a multiplicative subset generated by prime elements. Let x ∈ A be irreducible.
Then

(1) the image of x in S−1A is irreducible or a unit, and
(2) x is prime if and only if the image of x in S−1A is a unit or a prime

element in S−1A.
Moreover, then A is a UFD if and only if every element of A has a factorization
into irreducibles and S−1A is a UFD.

Proof. Say x = αβ for α, β ∈ S−1A. Then α = a/s and β = b/s′ for a, b ∈ A,
s, s′ ∈ S. Thus we get ss′x = ab. By assumption we can write ss′ = p1 . . . pr for
some prime elements pi. For each i the element pi divides either a or b. Dividing
we find a factorization x = a′b′ and a = s′′a′, b = s′′′b′ for some s′′, s′′′ ∈ S. As x
is irreducible, either a′ or b′ is a unit. Tracing back we find that either α or β is a
unit. This proves (1).

Suppose x is prime. Then A/(x) is a domain. Hence S−1A/xS−1A = S−1(A/(x))
is a domain or zero. Thus x maps to a prime element or a unit.

Suppose that the image of x in S−1A is a unit. Then yx = s for some s ∈ S and
y ∈ A. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. But if the first case happens for all i = 1, . . . , r, then
x is a unit which is a contradiction.

Suppose that the image of x in S−1A is a prime element. Assume a, b ∈ A and
ab ∈ (x). Then sa = xy or sb = xy for some s ∈ S and y ∈ A. Say the first case
happens. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. If the first case happens for all i = 1, . . . , r, then
a ∈ (x) as desired. This completes the proof of (2).

The final statement of the lemma follows from (1) and (2) and Lemma 120.5. □

Lemma 120.8.0BUD A UFD satisfies the ascending chain condition for principal ideals.

Proof. Consider an ascending chain (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . of principal ideals
in R. Write a1 = pe1

1 . . . per
r with pi prime. Then we see that an is an associate of

pc1
1 . . . pcr

r for some 0 ≤ ci ≤ ei. Since there are only finitely many possibilities we
conclude. □

Lemma 120.9.0BUE Let R be a domain. Assume R has the ascending chain condition
for principal ideals. Then the same property holds for a polynomial ring over R.

Proof. Consider an ascending chain (f1) ⊂ (f2) ⊂ (f3) ⊂ . . . of principal ideals in
R[x]. Since fn+1 divides fn we see that the degrees decrease in the sequence. Thus
fn has fixed degree d ≥ 0 for all n≫ 0. Let an be the leading coefficient of fn. The
condition fn ∈ (fn+1) implies that an+1 divides an for all n. By our assumption
on R we see that an+1 and an are associates for all n large enough (Lemma 120.2).
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Thus for large n we see that fn = ufn+1 where u ∈ R (for reasons of degree) is a
unit (as an and an+1 are associates). □

Lemma 120.10.0BC1 A polynomial ring over a UFD is a UFD. In particular, if k is
a field, then k[x1, . . . , xn] is a UFD.

Proof. Let R be a UFD. Then R satisfies the ascending chain condition for prin-
cipal ideals (Lemma 120.8), hence R[x] satisfies the ascending chain condition for
principal ideals (Lemma 120.9), and hence every element of R[x] has a factorization
into irreducibles (Lemma 120.3). Let S ⊂ R be the multiplicative subset generated
by prime elements. Since every nonunit of R is a product of prime elements we see
that K = S−1R is the fraction field of R. Observe that every prime element of R
maps to a prime element of R[x] and that S−1(R[x]) = S−1R[x] = K[x] is a UFD
(and even a PID). Thus we may apply Lemma 120.7 to conclude. □

Lemma 120.11.0AFV A unique factorization domain is normal.

Proof. Let R be a UFD. Let x be an element of the fraction field of R which
is integral over R. Say xd − a1x

d−1 − . . . − ad = 0 with ai ∈ R. We can write
x = upe1

1 . . . per
r with u a unit, ei ∈ Z, and p1, . . . , pr irreducible elements which are

not associates. To prove the lemma we have to show ei ≥ 0. If not, say e1 < 0,
then for N ≫ 0 we get

udpde2+N
2 . . . pder+N

r = p−de1
1 pN2 . . . pNr (

∑
i=1,...,d

aix
d−i) ∈ (p1)

which contradicts uniqueness of factorization in R. □

Definition 120.12.034U A principal ideal domain, abbreviated PID, is a domain R
such that every ideal is a principal ideal.

Lemma 120.13.034V A principal ideal domain is a unique factorization domain.

Proof. As a PID is Noetherian this follows from Lemma 120.6. □

Definition 120.14.034W A Dedekind domain is a domain R such that every nonzero
ideal I ⊂ R can be written as a product

I = p1 . . . pr

of nonzero prime ideals uniquely up to permutation of the pi.

Lemma 120.15.0AUQ A PID is a Dedekind domain.

Proof. Let R be a PID. Since every nonzero ideal of R is principal, and R is a
UFD (Lemma 120.13), this follows from the fact that every irreducible element in
R is prime (Lemma 120.5) so that factorizations of elements turn into factorizations
into primes. □

Lemma 120.16.09ME Let A be a ring. Let I and J be nonzero ideals of A such that
IJ = (f) for some nonzerodivisor f ∈ A. Then I and J are finitely generated ideals
and finitely locally free of rank 1 as A-modules.

Proof. It suffices to show that I and J are finite locally free A-modules of rank 1,
see Lemma 78.2. To do this, write f =

∑
i=1,...,n xiyi with xi ∈ I and yi ∈ J . We

can also write xiyi = aif for some ai ∈ A. Since f is a nonzerodivisor we see that∑
ai = 1. Thus it suffices to show that each Iai

and Jai
is free of rank 1 over Aai

.
After replacing A by Aai

we conclude that f = xy for some x ∈ I and y ∈ J . Note
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that both x and y are nonzerodivisors. We claim that I = (x) and J = (y) which
finishes the proof. Namely, if x′ ∈ I, then x′y = af = axy for some a ∈ A. Hence
x′ = ax and we win. □

Lemma 120.17.034X Let R be a ring. The following are equivalent
(1) R is a Dedekind domain,
(2) R is a Noetherian domain and for every nonzero maximal ideal m the local

ring Rm is a discrete valuation ring, and
(3) R is a Noetherian, normal domain, and dim(R) ≤ 1.

Proof. Assume (1). The argument is nontrivial because we did not assume that
R was Noetherian in our definition of a Dedekind domain. Let p ⊂ R be a prime
ideal. Observe that p ̸= p2 by uniqueness of the factorizations in the definition.
Pick x ∈ p with x ̸∈ p2. Let y ∈ p be a second element (for example y = 0). Write
(x, y) = p1 . . . pr. Since (x, y) ⊂ p at least one of the primes pi is contained in p.
But as x ̸∈ p2 there is at most one. Thus exactly one of p1, . . . , pr is contained in
p, say p1 ⊂ p. We conclude that (x, y)Rp = p1Rp is prime for every choice of y.
We claim that (x)Rp = pRp. Namely, pick y ∈ p. By the above applied with y2 we
see that (x, y2)Rp is prime. Hence y ∈ (x, y2)Rp, i.e., y = ax + by2 in Rp. Thus
(1− by)y = ax ∈ (x)Rp, i.e., y ∈ (x)Rp as desired.

Writing (x) = p1 . . . pr anew with p1 ⊂ p we conclude that p1Rp = pRp, i.e., p1 = p.
Moreover, p1 = p is a finitely generated ideal of R by Lemma 120.16. We conclude
that R is Noetherian by Lemma 28.10. Moreover, it follows that Rm is a discrete
valuation ring for every prime ideal p, see Lemma 119.7.

The equivalence of (2) and (3) follows from Lemmas 37.10 and 119.7. Assume (2)
and (3) are satisfied. Let I ⊂ R be an ideal. We will construct a factorization of
I. If I is prime, then there is nothing to prove. If not, pick I ⊂ p with p ⊂ R
maximal. Let J = {x ∈ R | xp ⊂ I}. We claim Jp = I. It suffices to check
this after localization at the maximal ideals m of R (the formation of J commutes
with localization and we use Lemma 23.1). Then either pRm = Rm and the result
is clear, or pRm = mRm. In the last case pRm = (π) and the case where p is
principal is immediate. By Noetherian induction the ideal J has a factorization
and we obtain the desired factorization of I. We omit the proof of uniqueness of
the factorization. □

The following is a variant of the Krull-Akizuki lemma.

Lemma 120.18.09IG Let A be a Noetherian domain of dimension 1 with fraction field
K. Let L/K be a finite extension. Let B be the integral closure of A in L. Then B
is a Dedekind domain and Spec(B) → Spec(A) is surjective, has finite fibres, and
induces finite residue field extensions.

Proof. By Krull-Akizuki (Lemma 119.12) the ring B is Noetherian. By Lemma
112.4 dim(B) = 1. Thus B is a Dedekind domain by Lemma 120.17. Surjectivity
of the map on spectra follows from Lemma 36.17. The last two statements follow
from Lemma 119.10. □

121. Orders of vanishing

02MB
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Lemma 121.1.02MC Let R be a semi-local Noetherian ring of dimension 1. If a, b ∈ R
are nonzerodivisors then

lengthR(R/(ab)) = lengthR(R/(a)) + lengthR(R/(b))

and these lengths are finite.

Proof. We saw the finiteness in Lemma 119.11. Additivity holds since there is a
short exact sequence 0 → R/(a) → R/(ab) → R/(b) → 0 where the first map is
given by multiplication by b. (Use length is additive, see Lemma 52.3.) □

Definition 121.2.02MD Suppose that K is a field, and R ⊂ K is a local10 Noetherian
subring of dimension 1 with fraction field K. In this case we define the order of
vanishing along R

ordR : K∗ −→ Z

by the rule
ordR(x) = lengthR(R/(x))

if x ∈ R and we set ordR(x/y) = ordR(x)− ordR(y) for x, y ∈ R both nonzero.

We can use the order of vanishing to compare lattices in a vector space. Here is
the definition.

Definition 121.3.02ME Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. A lattice in V is a
finite R-submodule M ⊂ V such that V = K ⊗RM .

The condition V = K ⊗RM signifies that M contains a basis for the vector space
V . We remark that in many places in the literature the notion of a lattice may
be defined only in case the ring R is a discrete valuation ring. If R is a discrete
valuation ring then any lattice is a free R-module, and this may not be the case in
general.

Lemma 121.4.02MF Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space.

(1) If M is a lattice in V and M ⊂M ′ ⊂ V is an R-submodule of V containing
M then the following are equivalent
(a) M ′ is a lattice,
(b) lengthR(M ′/M) is finite, and
(c) M ′ is finitely generated.

(2) If M is a lattice in V and M ′ ⊂M is an R-submodule of M then M ′ is a
lattice if and only if lengthR(M/M ′) is finite.

(3) If M , M ′ are lattices in V , then so are M ∩M ′ and M +M ′.
(4) If M ⊂M ′ ⊂M ′′ ⊂ V are lattices in V then

lengthR(M ′′/M) = lengthR(M ′/M) + lengthR(M ′′/M ′).

10We could also define this when R is only semi-local but this is probably never really what
you want!
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(5) If M , M ′, N , N ′ are lattices in V and N ⊂M ∩M ′, M +M ′ ⊂ N ′, then
we have

lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
= lengthR(M/N)− lengthR(M ′/N)
= lengthR(M +M ′/M ′)− lengthR(M +M ′/M)
= lengthR(N ′/M ′)− lengthR(N ′/M)

Proof. Proof of (1). Assume (1)(a). Say y1, . . . , ym generate M ′. Then each yi =
xi/fi for some xi ∈ M and nonzero fi ∈ R. Hence we see that f1 . . . fmM

′ ⊂ M .
Since R is Noetherian local of dimension 1 we see that mn ⊂ (f1 . . . fm) for some
n (for example combine Lemmas 60.13 and Proposition 60.7 or combine Lemmas
119.9 and 52.4). In other words mnM ′ ⊂M for some n Hence length(M ′/M) <∞
by Lemma 52.8, in other words (1)(b) holds. Assume (1)(b). Then M ′/M is a
finite R-module (see Lemma 52.2). Hence M ′ is a finite R-module as an extension
of finite R-modules. Hence (1)(c). The implication (1)(c) ⇒ (1)(a) follows from
the remark following Definition 121.3.

Proof of (2). Suppose M is a lattice in V and M ′ ⊂M is an R-submodule. We have
seen in (1) that if M ′ is a lattice, then lengthR(M/M ′) < ∞. Conversely, assume
that lengthR(M/M ′) < ∞. Then M ′ is finitely generated as R is Noetherian and
for some n we have mnM ⊂ M ′ (Lemma 52.4). Hence it follows that M ′ contains
a basis for V , and M ′ is a lattice.

Proof of (3). Assume M , M ′ are lattices in V . Since R is Noetherian the submodule
M ∩M ′ of M is finite. As M is a lattice we can find x1, . . . , xn ∈ M which form
a K-basis for V . Because M ′ is a lattice we can write xi = yi/fi with yi ∈ M ′

and fi ∈ R. Hence fixi ∈ M ∩M ′. Hence M ∩M ′ is a lattice also. The fact that
M +M ′ is a lattice follows from part (1).

Part (4) follows from additivity of lengths (Lemma 52.3) and the exact sequence

0→M ′/M →M ′′/M →M ′′/M ′ → 0

Part (5) follows from repeatedly applying part (4). □

Definition 121.5.02MG Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. Let M , M ′ be two
lattices in V . The distance between M and M ′ is the integer

d(M,M ′) = lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)

of Lemma 121.4 part (5).

In particular, if M ′ ⊂M , then d(M,M ′) = lengthR(M/M ′).

Lemma 121.6.02MH Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. This distance function has
the property that

d(M,M ′′) = d(M,M ′) + d(M ′,M ′′)
whenever given three lattices M , M ′, M ′′ of V . In particular we have d(M,M ′) =
−d(M ′,M).

Proof. Omitted. □
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Lemma 121.7.02MI Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. Let φ : V → V be a K-linear
isomorphism. For any lattice M ⊂ V we have

d(M,φ(M)) = ordR(det(φ))

Proof. We can see that the integer d(M,φ(M)) does not depend on the lattice M
as follows. Suppose that M ′ is a second such lattice. Then we see that

d(M,φ(M)) = d(M,M ′) + d(M ′, φ(M))
= d(M,M ′) + d(φ(M ′), φ(M)) + d(M ′, φ(M ′))

Since φ is an isomorphism we see that d(φ(M ′), φ(M)) = d(M ′,M) = −d(M,M ′),
and hence d(M,φ(M)) = d(M ′, φ(M ′)). Moreover, both sides of the equation (of
the lemma) are additive in φ, i.e.,

ordR(det(φ ◦ ψ)) = ordR(det(φ)) + ordR(det(ψ))

and also

d(M,φ(ψ((M))) = d(M,ψ(M)) + d(ψ(M), φ(ψ(M)))
= d(M,ψ(M)) + d(M,φ(M))

by the independence shown above. Hence it suffices to prove the lemma for gen-
erators of GL(V ). Choose an isomorphism K⊕n ∼= V . Then GL(V ) = GLn(K) is
generated by elementary matrices E. The result is clear for E equal to the identity
matrix. If E = Eij(λ) with i ̸= j, λ ∈ K, λ ̸= 0, for example

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .


then with respect to a different basis we get E12(1). The result is clear for E =
E12(1) by taking as lattice R⊕n ⊂ K⊕n. Finally, if E = Ei(a), with a ∈ K∗ for
example

E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


then E1(a)(R⊕b) = aR⊕R⊕n−1 and it is clear that d(R⊕n, aR⊕R⊕n−1) = ordR(a)
as desired. □

Lemma 121.8.02MJ Let A→ B be a ring map. Assume
(1) A is a Noetherian local domain of dimension 1,
(2) A ⊂ B is a finite extension of domains.

Let L/K be the corresponding finite extension of fraction fields. Let y ∈ L∗ and
x = NmL/K(y). In this situation B is semi-local. Let mi, i = 1, . . . , n be the
maximal ideals of B. Then

ordA(x) =
∑

i
[κ(mi) : κ(mA)]ordBmi

(y)

where ord is defined as in Definition 121.2.
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Proof. The ring B is semi-local by Lemma 113.2. Write y = b/b′ for some b, b′ ∈ B.
By the additivity of ord and multiplicativity of Nm it suffices to prove the lemma
for y = b or y = b′. In other words we may assume y ∈ B. In this case the right
hand side of the formula is∑

[κ(mi) : κ(mA)]lengthBmi
((B/yB)mi)

By Lemma 52.12 this is equal to lengthA(B/yB). By Lemma 121.7 we have

lengthA(B/yB) = d(B, yB) = ordA(detK(L y−→ L)).

Since x = NmL/K(y) = detK(L y−→ L) by definition the lemma is proved. □

122. Quasi-finite maps

02MK Consider a ring map R → S of finite type. A map Spec(S) → Spec(R) is quasi-
finite at a point if that point is isolated in its fibre. This means that the fibre is
zero dimensional at that point. In this section we study the basic properties of this
important but technical notion. More advanced material can be found in the next
section.

Lemma 122.1.00PJ Let k be a field. Let S be a finite type k-algebra. Let q be a prime
of S. The following are equivalent:

(1) q is an isolated point of Spec(S),
(2) Sq is finite over k,
(3) there exists a g ∈ S, g ̸∈ q such that D(g) = {q},
(4) dimq Spec(S) = 0,
(5) q is a closed point of Spec(S) and dim(Sq) = 0, and
(6) the field extension κ(q)/k is finite and dim(Sq) = 0.

In this case S = Sq × S′ for some finite type k-algebra S′. Also, the element g as
in (3) has the property Sq = Sg.

Proof. Suppose q is an isolated point of Spec(S), i.e., {q} is open in Spec(S).
Because Spec(S) is a Jacobson space (see Lemmas 35.2 and 35.4) we see that q is a
closed point. Hence {q} is open and closed in Spec(S). By Lemmas 21.3 and 24.3
we may write S = S1×S2 with q corresponding to the only point Spec(S1). Hence
S1 = Sq is a zero dimensional ring of finite type over k. Hence it is finite over k for
example by Lemma 115.4. We have proved (1) implies (2).
Suppose Sq is finite over k. Then Sq is Artinian local, see Lemma 53.2. So
Spec(Sq) = {qSq} by Lemma 53.6. Consider the exact sequence 0 → K → S →
Sq → Q → 0. It is clear that Kq = Qq = 0. Also, K is a finite S-module as S is
Noetherian and Q is a finite S-module since Sq is finite over k. Hence there exists
g ∈ S, g ̸∈ q such that Kg = Qg = 0. Thus Sq = Sg and D(g) = {q}. We have
proved that (2) implies (3).
Suppose D(g) = {q}. Since D(g) is open by construction of the topology on Spec(S)
we see that q is an isolated point of Spec(S). We have proved that (3) implies (1).
In other words (1), (2) and (3) are equivalent.
Assume dimq Spec(S) = 0. This means that there is some open neighbourhood of q
in Spec(S) which has dimension zero. Then there is an open neighbourhood of the
form D(g) which has dimension zero. Since Sg is Noetherian we conclude that Sg
is Artinian and D(g) = Spec(Sg) is a finite discrete set, see Proposition 60.7. Thus
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q is an isolated point of D(g) and, by the equivalence of (1) and (2) above applied
to qSg ⊂ Sg, we see that Sq = (Sg)qSg is finite over k. Hence (4) implies (2). It is
clear that (1) implies (4). Thus (1) – (4) are all equivalent.
Lemma 114.6 gives the implication (5) ⇒ (4). The implication (4) ⇒ (6) follows
from Lemma 116.3. The implication (6) ⇒ (5) follows from Lemma 35.9. At this
point we know (1) – (6) are equivalent.
The two statements at the end of the lemma we saw during the course of the proof
of the equivalence of (1), (2) and (3) above. □

Lemma 122.2.00PK Let R → S be a ring map of finite type. Let q ⊂ S be a prime
lying over p ⊂ R. Let F = Spec(S ⊗R κ(p)) be the fibre of Spec(S) → Spec(R),
see Remark 18.5. Denote q ∈ F the point corresponding to q. The following are
equivalent

(1) q is an isolated point of F ,
(2) Sq/pSq is finite over κ(p),
(3) there exists a g ∈ S, g ̸∈ q such that the only prime of D(g) mapping to p

is q,
(4) dimq(F ) = 0,
(5) q is a closed point of F and dim(Sq/pSq) = 0, and
(6) the field extension κ(q)/κ(p) is finite and dim(Sq/pSq) = 0.

Proof. Note that Sq/pSq = (S ⊗R κ(p))q. Moreover S ⊗R κ(p) is of finite type
over κ(p). The conditions correspond exactly to the conditions of Lemma 122.1 for
the κ(p)-algebra S ⊗R κ(p) and the prime q, hence they are equivalent. □

Definition 122.3.00PL Let R→ S be a finite type ring map. Let q ⊂ S be a prime.
(1) If the equivalent conditions of Lemma 122.2 are satisfied then we say R→ S

is quasi-finite at q.
(2) We say a ring map A→ B is quasi-finite if it is of finite type and quasi-finite

at all primes of B.

Lemma 122.4.00PM Let R→ S be a finite type ring map. Then R→ S is quasi-finite
if and only if for all primes p ⊂ R the fibre S ⊗R κ(p) is finite over κ(p).

Proof. If the fibres are finite then the map is clearly quasi-finite. For the converse,
note that S ⊗R κ(p) is a κ(p)-algebra of finite type and of dimension 0. Hence it is
finite over κ(p) for example by Lemma 115.4. □

Lemma 122.5.077H Let R→ S be a finite type ring map. Let q ⊂ S be a prime lying
over p ⊂ R. Let f ∈ R, f ̸∈ p and g ∈ S, g ̸∈ q. Then R→ S is quasi-finite at q if
and only if Rf → Sfg is quasi-finite at qSfg.

Proof. The fibre of Spec(Sfg) → Spec(Rf ) is homeomorphic to an open subset
of the fibre of Spec(S) → Spec(R). Hence the lemma follows from part (1) of the
equivalent conditions of Lemma 122.2. □

Lemma 122.6.00PN Let

S // S′ q q′

R

OO

// R′

OO

p p′
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be a commutative diagram of rings with primes as indicated. Assume R → S of
finite type, and S⊗RR′ → S′ surjective. If R→ S is quasi-finite at q, then R′ → S′

is quasi-finite at q′.

Proof. Write S ⊗R κ(p) = S1 × S2 with S1 finite over κ(p) and such that q cor-
responds to a point of S1 as in Lemma 122.1. This product decomposition in-
duces a corresponding product decomposition for any S ⊗R κ(p)-algebra. In par-
ticular, we obtain S′ ⊗R′ κ(p′) = S′

1 × S′
2. Because S ⊗R R′ → S′ is surjective

the canonical map (S ⊗R κ(p)) ⊗κ(p) κ(p′) → S′ ⊗R′ κ(p′) is surjective and hence
Si ⊗κ(p) κ(p′) → S′

i is surjective. It follows that S′
1 is finite over κ(p′). The map

S′ ⊗R′ κ(p′) → κ(q′) factors through S′
1 (i.e. it annihilates the factor S′

2) because
the map S ⊗R κ(p) → κ(q) factors through S1 (i.e. it annihilates the factor S2).
Thus q′ corresponds to a point of Spec(S′

1) in the disjoint union decomposition of
the fibre: Spec(S′ ⊗R′ κ(p′)) = Spec(S′

1) ⨿ Spec(S′
2), see Lemma 21.2. Since S′

1 is
finite over a field, it is Artinian ring, and hence Spec(S′

1) is a finite discrete set.
(See Proposition 60.7.) We conclude q′ is isolated in its fibre as desired. □

Lemma 122.7.00PO A composition of quasi-finite ring maps is quasi-finite.

Proof. Suppose A → B and B → C are quasi-finite ring maps. By Lemma 6.2
we see that A → C is of finite type. Let r ⊂ C be a prime of C lying over q ⊂ B
and p ⊂ A. Since A→ B and B → C are quasi-finite at q and r respectively, then
there exist b ∈ B and c ∈ C such that q is the only prime of D(b) which maps to p
and similarly r is the only prime of D(c) which maps to q. If c′ ∈ C is the image
of b ∈ B, then r is the only prime of D(cc′) which maps to p. Therefore A→ C is
quasi-finite at r. □

Lemma 122.8.00PP Let R→ S be a ring map of finite type. Let R→ R′ be any ring
map. Set S′ = R′ ⊗R S.

(1) The set {q′ | R′ → S′ quasi-finite at q′} is the inverse image of the corre-
sponding set of Spec(S) under the canonical map Spec(S′)→ Spec(S).

(2) If Spec(R′)→ Spec(R) is surjective, then R→ S is quasi-finite if and only
if R′ → S′ is quasi-finite.

(3) Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let p′ ⊂ R′ be a prime lying over p ⊂ R. Then the fibre ring S′⊗R′ κ(p′) is
the base change of the fibre ring S⊗Rκ(p) by the field extension κ(p)→ κ(p′). Hence
the first assertion follows from the invariance of dimension under field extension
(Lemma 116.6) and Lemma 122.1. The stability of quasi-finite maps under base
change follows from this and the stability of finite type property under base change.
The second assertion follows since the assumption implies that given a prime q ⊂ S
we can find a prime q′ ⊂ S′ lying over it. □

Lemma 122.9.0C6H Let A→ B and B → C be ring homomorphisms such that A→ C
is of finite type. Let r be a prime of C lying over q ⊂ B and p ⊂ A. If A → C is
quasi-finite at r, then B → C is quasi-finite at r.

Proof. Observe that B → C is of finite type (Lemma 6.2) so that the statement
makes sense. Let us use characterization (3) of Lemma 122.2. If A → C is quasi-
finite at r, then there exists some c ∈ C such that

{r′ ⊂ C lying over p} ∩D(c) = {r}.
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Since the primes r′ ⊂ C lying over q form a subset of the primes r′ ⊂ C lying over
p we conclude B → C is quasi-finite at r. □

The following lemma is not quite about quasi-finite ring maps, but it does not seem
to fit anywhere else so well.

Lemma 122.10.02ML Let R→ S be a ring map of finite type. Let p ⊂ R be a minimal
prime. Assume that there are at most finitely many primes of S lying over p. Then
there exists a g ∈ R, g ̸∈ p such that the ring map Rg → Sg is finite.

Proof. Let x1, . . . , xn be generators of S over R. Since p is a minimal prime we
have that pRp is a locally nilpotent ideal, see Lemma 25.1. Hence pSp is a locally
nilpotent ideal, see Lemma 32.3. By assumption the finite type κ(p)-algebra Sp/pSp

has finitely many primes. Hence (for example by Lemmas 61.3 and 115.4) κ(p)→
Sp/pSp is a finite ring map. Thus we may find monic polynomials Pi ∈ Rp[X] such
that Pi(xi) maps to zero in Sp/pSp. By what we said above there exist ei ≥ 1
such that P (xi)ei = 0 in Sp. Let g1 ∈ R, g1 ̸∈ p be an element such that Pi has
coefficients in R[1/g1] for all i. Next, let g2 ∈ R, g2 ̸∈ p be an element such that
P (xi)ei = 0 in Sg1g2 . Setting g = g1g2 we win. □

123. Zariski’s Main Theorem

00PI In this section our aim is to prove the algebraic version of Zariski’s Main theorem.
This theorem will be the basis of many further developments in the theory of
schemes and morphisms of schemes later in the Stacks project.
Let R → S be a ring map of finite type. Our goal in this section is to show that
the set of points of Spec(S) where the map is quasi-finite is open (Theorem 123.12).
In fact, it will turn out that there exists a finite ring map R → S′ such that in
some sense the quasi-finite locus of S/R is open in Spec(S′) (but we will not prove
this in the algebra chapter since we do not develop the language of schemes here –
for the case where R→ S is quasi-finite see Lemma 123.14). These statements are
somewhat tricky to prove and we do it by a long list of lemmas concerning integral
and finite extensions of rings. This material may be found in [Ray70], and [Pes66].
We also found notes by Thierry Coquand helpful.

Lemma 123.1.00PQ Let φ : R→ S be a ring map. Suppose t ∈ S satisfies the relation
φ(a0) + φ(a1)t+ . . .+ φ(an)tn = 0. Then φ(an)t is integral over R.

Proof. Namely, multiply the equation φ(a0) + φ(a1)t + . . . + φ(an)tn = 0 with
φ(an)n−1 and write it as φ(a0a

n−1
n )+φ(a1a

n−2
n )(φ(an)t)+ . . .+(φ(an)t)n = 0. □

The following lemma is in some sense the key lemma in this section.

Lemma 123.2.00PT Let R be a ring. Let φ : R[x] → S be a ring map. Let t ∈ S.
Assume that (a) t is integral over R[x], and (b) there exists a monic p ∈ R[x] such
that tφ(p) ∈ Im(φ). Then there exists a q ∈ R[x] such that t−φ(q) is integral over
R.

Proof. Write tφ(p) = φ(r) for some r ∈ R[x]. Using euclidean division, write
r = qp + r′ with q, r′ ∈ R[x] and deg(r′) < deg(p). We may replace t by t − φ(q)
which is still integral over R[x], so that we obtain tφ(p) = φ(r′). In the ring St we
may write this as φ(p)− (1/t)φ(r′) = 0. This implies that φ(x) gives an element of
the localization St which is integral over φ(R)[1/t] ⊂ St. On the other hand, t is
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integral over the subring φ(R)[φ(x)] ⊂ S. Combined we conclude that t is integral
over the subring φ(R)[1/t] ⊂ St, see Lemma 36.6. In other words there exists an
equation of the form

td +
∑

i<d

(∑
j=0,...,ni

φ(ri,j)/tj
)
ti = 0

in St with ri,j ∈ R. This means that td+N +
∑
i<d

∑
j=0,...,ni

φ(ri,j)ti+N−j = 0 in
S for some N large enough. In other words t is integral over R. □

Lemma 123.3.00PV Let R be a ring. Let φ : R[x] → S be a ring map. Let t ∈ S.
Assume t is integral over R[x]. Let p ∈ R[x], p = a0 + a1x + . . . + akx

k such that
tφ(p) ∈ Im(φ). Then there exists a q ∈ R[x] and n ≥ 0 such that φ(ak)nt−φ(q) is
integral over R.

Proof. Let R′ and S′ be the localization of R and S at the element ak. Let
φ′ : R′[x] → S′ be the localization of φ. Let t′ ∈ S′ be the image of t. Set
p′ = p/ak ∈ R′[x]. Then t′φ′(p′) ∈ Im(φ′) since tφ(p) ∈ Im(φ). As p′ is monic, by
Lemma 123.2 there exists a q′ ∈ R′[x] such that t′ − φ′(q′) is integral over R′. We
may choose an n ≥ 0 and an element q ∈ R[x] such that ankq′ is the image of q.
Then φ(ak)nt− φ(q) is an element of S whose image in S′ is integral over R′. By
Lemma 36.11 there exists an m ≥ 0 such that φ(ak)m(φ(ak)nt − φ(q)) is integral
over R. Thus φ(ak)m+nt− φ(amk q) is integral over R as desired. □

Situation 123.4.00PW Let R be a ring. Let φ : R[x]→ S be finite. Let
J = {g ∈ S | gS ⊂ Im(φ)}

be the “conductor ideal” of φ. Assume φ(R) ⊂ S integrally closed in S.

Lemma 123.5.00PX In Situation 123.4. Suppose u ∈ S, a0, . . . , ak ∈ R, uφ(a0 +a1x+
. . .+ akx

k) ∈ J . Then there exists an m ≥ 0 such that uφ(ak)m ∈ J .

Proof. Assume that S is generated by t1, . . . , tn as an R[x]-module. In this case
J = {g ∈ S | gti ∈ Im(φ) for all i}. Note that each element uti is integral over
R[x], see Lemma 36.3. We have φ(a0 + a1x+ . . .+ akx

k)uti ∈ Im(φ). By Lemma
123.3, for each i there exists an integer ni and an element qi ∈ R[x] such that
φ(ani

k )uti − φ(qi) is integral over R. By assumption this element is in φ(R) and
hence φ(ani

k )uti ∈ Im(φ). It follows that m = max{n1, . . . , nn} works. □

Lemma 123.6.00PY In Situation 123.4. Suppose u ∈ S, a0, . . . , ak ∈ R, uφ(a0 +a1x+
. . .+ akx

k) ∈
√
J . Then uφ(ai) ∈

√
J for all i.

Proof. Under the assumptions of the lemma we have unφ(a0 +a1x+. . .+akxk)n ∈
J for some n ≥ 1. By Lemma 123.5 we deduce unφ(anmk ) ∈ J for some m ≥ 1.
Thus uφ(ak) ∈

√
J , and so uφ(a0 + a1x+ . . .+ akx

k)− uφ(akxk) = uφ(a0 + a1x+
. . .+ ak−1x

k−1) ∈
√
J . We win by induction on k. □

This lemma suggests the following definition.

Definition 123.7.00PZ Given an inclusion of rings R ⊂ S and an element x ∈ S we
say that x is strongly transcendental over R if whenever u(a0 +a1x+ . . .+akxk) = 0
with u ∈ S and ai ∈ R, then we have uai = 0 for all i.

Note that if S is a domain then this is the same as saying that x as an element of
the fraction field of S is transcendental over the fraction field of R.

https://stacks.math.columbia.edu/tag/00PV
https://stacks.math.columbia.edu/tag/00PW
https://stacks.math.columbia.edu/tag/00PX
https://stacks.math.columbia.edu/tag/00PY
https://stacks.math.columbia.edu/tag/00PZ


COMMUTATIVE ALGEBRA 297

Lemma 123.8.00Q0 Suppose R ⊂ S is an inclusion of reduced rings and suppose that
x ∈ S is strongly transcendental over R. Let q ⊂ S be a minimal prime and let
p = R ∩ q. Then the image of x in S/q is strongly transcendental over the subring
R/p.

Proof. Suppose u(a0 + a1x + . . . + akx
k) ∈ q. By Lemma 25.1 the local ring Sq

is a field, and hence u(a0 + a1x + . . . + akx
k) is zero in Sq. Thus uu′(a0 + a1x +

. . .+ akx
k) = 0 for some u′ ∈ S, u′ ̸∈ q. Since x is strongly transcendental over R

we get uu′ai = 0 for all i. This in turn implies that uai ∈ q. □

Lemma 123.9.00Q1 Suppose R ⊂ S is an inclusion of domains and let x ∈ S. Assume
x is (strongly) transcendental over R and that S is finite over R[x]. Then R → S
is not quasi-finite at any prime of S.

Proof. As a first case, assume that R is normal, see Definition 37.11. By Lemma
37.14 we see that R[x] is normal. Take a prime q ⊂ S, and set p = R ∩ q. Assume
that the extension κ(p) ⊂ κ(q) is finite. This would be the case if R → S is
quasi-finite at q. Let r = R[x] ∩ q. Then since κ(p) ⊂ κ(r) ⊂ κ(q) we see that
the extension κ(p) ⊂ κ(r) is finite too. Thus the inclusion r ⊃ pR[x] is strict. By
going down for R[x] ⊂ S, see Proposition 38.7, we find a prime q′ ⊂ q, lying over
the prime pR[x]. Hence the fibre Spec(S ⊗R κ(p)) contains a point not equal to q,
namely q′, whose closure contains q and hence q is not isolated in its fibre.
If R is not normal, let R ⊂ R′ ⊂ K be the integral closure R′ of R in its field
of fractions K. Let S ⊂ S′ ⊂ L be the subring S′ of the field of fractions L of
S generated by R′ and S. Note that by construction the map S ⊗R R′ → S′ is
surjective. This implies that R′[x] ⊂ S′ is finite. Also, the map S ⊂ S′ induces
a surjection on Spec, see Lemma 36.17. We conclude by Lemma 122.6 and the
normal case we just discussed. □

Lemma 123.10.00Q2 Suppose R ⊂ S is an inclusion of reduced rings. Assume x ∈ S
be strongly transcendental over R, and S finite over R[x]. Then R → S is not
quasi-finite at any prime of S.

Proof. Let q ⊂ S be any prime. Choose a minimal prime q′ ⊂ q. According to
Lemmas 123.8 and 123.9 the extension R/(R ∩ q′) ⊂ S/q′ is not quasi-finite at the
prime corresponding to q. By Lemma 122.6 the extension R→ S is not quasi-finite
at q. □

Lemma 123.11.00Q8 Let R be a ring. Let S = R[x]/I. Let q ⊂ S be a prime. Assume
R→ S is quasi-finite at q. Let S′ ⊂ S be the integral closure of R in S. Then there
exists an element g ∈ S′, g ̸∈ q such that S′

g
∼= Sg.

Proof. Let p be the image of q in Spec(R). There exists an f ∈ I, f = anx
n +

. . . + a0 such that ai ̸∈ p for some i. Namely, otherwise the fibre ring S ⊗R κ(p)
would be κ(p)[x] and the map would not be quasi-finite at any prime lying over p.
We conclude there exists a relation bmxm + . . .+ b0 = 0 with bj ∈ S′, j = 0, . . . ,m
and bj ̸∈ q∩S′ for some j. We prove the lemma by induction on m. The base case
is m = 0 is vacuous (because the statements b0 = 0 and b0 ̸∈ q are contradictory).
The case bm ̸∈ q. In this case x is integral over S′

bm
, in fact bmx ∈ S′ by Lemma

123.1. Hence the injective map S′
bm
→ Sbm

is also surjective, i.e., an isomorphism
as desired.
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The case bm ∈ q. In this case we have bmx ∈ S′ by Lemma 123.1. Set b′
m−1 =

bmx+ bm−1. Then
b′
m−1x

m−1 + bm−2x
m−2 + . . .+ b0 = 0

Since b′
m−1 is congruent to bm−1 modulo S′ ∩ q we see that it is still the case that

one of b′
m−1, bm−2, . . . , b0 is not in S′ ∩ q. Thus we win by induction on m. □

Theorem 123.12 (Zariski’s Main Theorem).00Q9 Let R be a ring. Let R → S be a
finite type R-algebra. Let S′ ⊂ S be the integral closure of R in S. Let q ⊂ S be a
prime of S. If R→ S is quasi-finite at q then there exists a g ∈ S′, g ̸∈ q such that
S′
g
∼= Sg.

Proof. There exist finitely many elements x1, . . . , xn ∈ S such that S is finite over
the R-sub algebra generated by x1, . . . , xn. (For example generators of S over R.)
We prove the proposition by induction on the minimal such number n.
The case n = 0 is trivial, because in this case S′ = S, see Lemma 36.3.
The case n = 1. We may replace R by its integral closure in S (Lemma 122.9
guarantees that R → S is still quasi-finite at q). Thus we may assume R ⊂ S is
integrally closed in S, in other words R = S′. Consider the map φ : R[x] → S,
x 7→ x1. (We will see that φ is not injective below.) By assumption φ is finite.
Hence we are in Situation 123.4. Let J ⊂ S be the “conductor ideal” defined in
Situation 123.4. Consider the diagram

R[x] // S // S/
√
J R/(R ∩

√
J)[x]oo

R

``

//

OO

R/(R ∩
√
J)

OO 66

According to Lemma 123.6 the image of x in the quotient S/
√
J is strongly transcen-

dental overR/(R∩
√
J). Hence by Lemma 123.10 the ring mapR/(R∩

√
J)→ S/

√
J

is not quasi-finite at any prime of S/
√
J . By Lemma 122.6 we deduce that q does not

lie in V (J) ⊂ Spec(S). Thus there exists an element s ∈ J , s ̸∈ q. By definition of J
we may write s = φ(f) for some polynomial f ∈ R[x]. Let I = Ker(φ : R[x]→ S).
Since φ(f) ∈ J we get (R[x]/I)f ∼= Sφ(f). Also s ̸∈ q means that f ̸∈ φ−1(q). Thus
φ−1(q) is a prime of R[x]/I at which R→ R[x]/I is quasi-finite, see Lemma 122.5.
Note that R is integrally closed in R[x]/I since R is integrally closed in S. By
Lemma 123.11 there exists an element h ∈ R, h ̸∈ R∩ q such that Rh ∼= (R[x]/I)h.
Thus (R[x]/I)fh = Sφ(fh) is isomorphic to a principal localization Rh′ of R for
some h′ ∈ R, h′ ̸∈ q.
The case n > 1. Consider the subring R′ ⊂ S which is the integral closure of
R[x1, . . . , xn−1] in S. By Lemma 122.9 the extension S/R′ is quasi-finite at q.
Also, note that S is finite over R′[xn]. By the case n = 1 above, there exists a
g′ ∈ R′, g′ ̸∈ q such that (R′)g′ ∼= Sg′ . At this point we cannot apply induction to
R→ R′ since R′ may not be finite type over R. Since S is finitely generated over R
we deduce in particular that (R′)g′ is finitely generated over R. Say the elements
g′, and y1/(g′)n1 , . . . , yN/(g′)nN with yi ∈ R′ generate (R′)g′ over R. Let R′′ be the
R-sub algebra of R′ generated by x1, . . . , xn−1, y1, . . . , yN , g

′. This has the property
(R′′)g′ ∼= Sg′ . Surjectivity because of how we chose yi, injectivity because R′′ ⊂ R′,
and localization is exact. Note that R′′ is finite over R[x1, . . . , xn−1] because of our
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choice of R′, see Lemma 36.4. Let q′′ = R′′ ∩ q. Since (R′′)q′′ = Sq we see that
R→ R′′ is quasi-finite at q′′, see Lemma 122.2. We apply our induction hypothesis
to R → R′′, q′′ and x1, . . . , xn−1 ∈ R′′ and we find a subring R′′′ ⊂ R′′ which is
integral over R and an element g′′ ∈ R′′′, g′′ ̸∈ q′′ such that (R′′′)g′′ ∼= (R′′)g′′ . Write
the image of g′ in (R′′)g′′ as g′′′/(g′′)n for some g′′′ ∈ R′′′. Set g = g′′g′′′ ∈ R′′′.
Then it is clear that g ̸∈ q and (R′′′)g ∼= Sg. Since by construction we have R′′′ ⊂ S′

we also have S′
g
∼= Sg as desired. □

Lemma 123.13.00QA Let R → S be a finite type ring map. The set of points q of
Spec(S) at which S/R is quasi-finite is open in Spec(S).

Proof. Let q ⊂ S be a point at which the ring map is quasi-finite. By Theorem
123.12 there exists an integral ring extension R → S′, S′ ⊂ S and an element
g ∈ S′, g ̸∈ q such that S′

g
∼= Sg. Since S and hence Sg are of finite type over

R we may find finitely many elements y1, . . . , yN of S′ such that S′′
g
∼= Sg where

S′′ ⊂ S′ is the sub R-algebra generated by g, y1, . . . , yN . Since S′′ is finite over
R (see Lemma 36.4) we see that S′′ is quasi-finite over R (see Lemma 122.4). It
is easy to see that this implies that S′′

g is quasi-finite over R, for example because
the property of being quasi-finite at a prime depends only on the local ring at the
prime. Thus we see that Sg is quasi-finite over R. By the same token this implies
that R→ S is quasi-finite at every prime of S which lies in D(g). □

Lemma 123.14.00QB Let R → S be a finite type ring map. Suppose that S is quasi-
finite over R. Let S′ ⊂ S be the integral closure of R in S. Then

(1) Spec(S)→ Spec(S′) is a homeomorphism onto an open subset,
(2) if g ∈ S′ and D(g) is contained in the image of the map, then S′

g
∼= Sg, and

(3) there exists a finite R-algebra S′′ ⊂ S′ such that (1) and (2) hold for the
ring map S′′ → S.

Proof. Because S/R is quasi-finite we may apply Theorem 123.12 to each point
q of Spec(S). Since Spec(S) is quasi-compact, see Lemma 17.8, we may choose a
finite number of gi ∈ S′, i = 1, . . . , n such that S′

gi
= Sgi , and such that g1, . . . , gn

generate the unit ideal in S (in other words the standard opens of Spec(S) associated
to g1, . . . , gn cover all of Spec(S)).
Suppose that D(g) ⊂ Spec(S′) is contained in the image. Then D(g) ⊂

⋃
D(gi).

In other words, g1, . . . , gn generate the unit ideal of S′
g. Note that S′

ggi

∼= Sggi
by

our choice of gi. Hence S′
g
∼= Sg by Lemma 23.2.

We construct a finite algebra S′′ ⊂ S′ as in (3). To do this note that each S′
gi

∼= Sgi

is a finite type R-algebra. For each i pick some elements yij ∈ S′ such that each
S′
gi

is generated as R-algebra by 1/gi and the elements yij . Then set S′′ equal to
the sub R-algebra of S′ generated by all gi and all the yij . Details omitted. □

124. Applications of Zariski’s Main Theorem

03GB Here is an immediate application characterizing the finite maps of 1-dimensional
semi-local rings among the quasi-finite ones as those where equality always holds
in the formula of Lemma 121.8.

Lemma 124.1.02MM Let A ⊂ B be an extension of domains. Assume
(1) A is a local Noetherian ring of dimension 1,
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(2) A→ B is of finite type, and
(3) the induced extension L/K of fraction fields is finite.

Then B is semi-local. Let x ∈ mA, x ̸= 0. Let mi, i = 1, . . . , n be the maximal
ideals of B. Then

[L : K]ordA(x) ≥
∑

i
[κ(mi) : κ(mA)]ordBmi

(x)

where ord is defined as in Definition 121.2. We have equality if and only if A→ B
is finite.

Proof. The ring B is semi-local by Lemma 113.2. Let B′ be the integral closure
of A in B. By Lemma 123.14 we can find a finite A-subalgebra C ⊂ B′ such that
on setting ni = C ∩ mi we have Cni

∼= Bmi
and the primes n1, . . . , nn are pairwise

distinct. The ring C is semi-local by Lemma 113.2. Let pj , j = 1, . . . ,m be the
other maximal ideals of C (the “missing points”). By Lemma 121.8 we have

ordA(x[L:K]) =
∑

i
[κ(ni) : κ(mA)]ordCni

(x) +
∑

j
[κ(pj) : κ(mA)]ordCpj

(x)

hence the inequality follows. In case of equality we conclude that m = 0 (no
“missing points”). Hence C ⊂ B is an inclusion of semi-local rings inducing a
bijection on maximal ideals and an isomorphism on all localizations at maximal
ideals. So if b ∈ B, then I = {x ∈ C | xb ∈ C} is an ideal of C which is not
contained in any of the maximal ideals of C, and hence I = C, hence b ∈ C. Thus
B = C and B is finite over A. □

Here is a more standard application of Zariski’s main theorem to the structure of
local homomorphisms of local rings.

Lemma 124.2.052V Let (R,mR) → (S,mS) be a local homomorphism of local rings.
Assume

(1) R→ S is essentially of finite type,
(2) κ(mR) ⊂ κ(mS) is finite, and
(3) dim(S/mRS) = 0.

Then S is the localization of a finite R-algebra.

Proof. Let S′ be a finite type R-algebra such that S = S′
q′ for some prime q′ of

S′. By Definition 122.3 we see that R → S′ is quasi-finite at q′. After replacing
S′ by S′

g′ for some g′ ∈ S′, g′ ̸∈ q′ we may assume that R → S′ is quasi-finite,
see Lemma 123.13. Then by Lemma 123.14 there exists a finite R-algebra S′′ and
elements g′ ∈ S′, g′ ̸∈ q′ and g′′ ∈ S′′ such that S′

g′
∼= S′′

g′′ as R-algebras. This
proves the lemma. □

Lemma 124.3.07NC Let R→ S be a ring map, q a prime of S lying over p in R. If
(1) R is Noetherian,
(2) R→ S is of finite type, and
(3) R→ S is quasi-finite at q,

then R∧
p ⊗R S = S∧

q ×B for some R∧
p -algebra B.

Proof. There exists a finite R-algebra S′ ⊂ S and an element g ∈ S′, g ̸∈ q′ = S′∩q
such that S′

g = Sg and in particular S′
q′ = Sq, see Lemma 123.14. We have

R∧
p ⊗R S′ = (S′

q′)∧ ×B′
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by Lemma 97.8. Observe that under this product decomposition g maps to a pair
(u, b′) with u ∈ (S′

q′)∧ a unit because g ̸∈ q′. The product decomposition for
R∧

p ⊗R S′ induces a product decomposition

R∧
p ⊗R S = A×B

Since S′
g = Sg we also have (R∧

p ⊗R S′)g = (R∧
p ⊗R S)g and since g 7→ (u, b′) where

u is a unit we see that (S′
q′)∧ = A. Since the isomorphism S′

q′ = Sq determines
an isomorphism on completions this also tells us that A = S∧

q . This finishes the
proof, except that we should perform the sanity check that the induced map ϕ :
R∧

p ⊗R S → A = S∧
q is the natural one. For elements of the form x⊗1 with x ∈ R∧

p

this is clear as the natural map R∧
p → S∧

q factors through (S′
q′)∧. For elements of

the form 1 ⊗ y with y ∈ S we can argue that for some n ≥ 1 the element gny is
the image of some y′ ∈ S′. Thus ϕ(1⊗ gny) is the image of y′ by the composition
S′ → (S′

q′)∧ → S∧
q which is equal to the image of gny by the map S → S∧

q . Since g
maps to a unit this also implies that ϕ(1⊗ y) has the correct value, i.e., the image
of y by S → S∧

q . □

125. Dimension of fibres

00QC We study the behaviour of dimensions of fibres, using Zariski’s main theorem.
Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 10.1.

Definition 125.1.00QD Suppose that R→ S is of finite type, and let q ⊂ S be a prime
lying over a prime p of R. We define the relative dimension of S/R at q, denoted
dimq(S/R), to be the dimension of Spec(S ⊗R κ(p)) at the point corresponding to
q. We let dim(S/R) be the supremum of dimq(S/R) over all q. This is called the
relative dimension of S/R.

In particular, R→ S is quasi-finite at q if and only if dimq(S/R) = 0. The following
lemma is more or less a reformulation of Zariski’s Main Theorem.

Lemma 125.2.00QE Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists a g ∈ S, g ̸∈ q such that Sg is quasi-
finite over a polynomial algebra R[t1, . . . , tn].

Proof. The ring S = S⊗R κ(p) is of finite type over κ(p). Let q be the prime of S
corresponding to q. By definition of the dimension of a topological space at a point
there exists an open U ⊂ Spec(S) with q ∈ U and dim(U) = n. Since the topology
on Spec(S) is induced from the topology on Spec(S) (see Remark 18.5), we can
find a g ∈ S, g ̸∈ q with image g ∈ S such that D(g) ⊂ U . Thus after replacing S
by Sg we see that dim(S) = n.
Next, choose generators x1, . . . , xN for S as an R-algebra. By Lemma 115.4 there
exist elements y1, . . . , yn in the Z-subalgebra of S generated by x1, . . . , xN such
that the map R[t1, . . . , tn] → S, ti 7→ yi has the property that κ(p)[t1 . . . , tn] → S
is finite. In particular, S is quasi-finite over R[t1, . . . , tn] at q. Hence, by Lemma
123.13 we may replace S by Sg for some g ∈ S, g ̸∈ q such that R[t1, . . . , tn] → S
is quasi-finite. □

Lemma 125.3.0520 Let R → S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. Assume
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(1) R→ S is of finite type,
(2) dimq(S/R) = n, and
(3) trdegκ(p)κ(q) = r.

Then there exist f ∈ R, f ̸∈ p, g ∈ S, g ̸∈ q and a quasi-finite ring map

φ : Rf [x1, . . . , xn] −→ Sg

such that φ−1(qSg) = (p, xr+1, . . . , xn)Rf [xr+1, . . . , xn]

Proof. After replacing S by a principal localization we may assume there exists a
quasi-finite ring map φ : R[t1, . . . , tn]→ S, see Lemma 125.2. Set q′ = φ−1(q). Let
q′ ⊂ κ(p)[t1, . . . , tn] be the prime corresponding to q′. By Lemma 115.6 there exists
a finite ring map κ(p)[x1, . . . , xn]→ κ(p)[t1, . . . , tn] such that the inverse image of
q′ is (xr+1, . . . , xn). Let hi ∈ κ(p)[t1, . . . , tn] be the image of xi. We can find an
element f ∈ R, f ̸∈ p and hi ∈ Rf [t1, . . . , tn] which map to hi in κ(p)[t1, . . . , tn].
Then the ring map

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn]
becomes finite after tensoring with κ(p). In particular, Rf [t1, . . . , tn] is quasi-
finite over Rf [x1, . . . , xn] at the prime q′Rf [t1, . . . , tn]. Hence, by Lemma 123.13
there exists a g ∈ Rf [t1, . . . , tn], g ̸∈ q′Rf [t1, . . . , tn] such that Rf [x1, . . . , xn] →
Rf [t1, . . . , tn, 1/g] is quasi-finite. Thus we see that the composition

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn, 1/g] −→ Sφ(g)

is quasi-finite and we win. □

Lemma 125.4.00QF Let R→ S be a finite type ring map. Let q ⊂ S be a prime lying
over p ⊂ R. If R→ S is quasi-finite at q, then dim(Sq) ≤ dim(Rp).

Proof. If Rp is Noetherian (and hence Sq Noetherian since it is essentially of finite
type over Rp) then this follows immediately from Lemma 112.6 and the definitions.
In the general case, let S′ be the integral closure of Rp in Sp. By Zariski’s Main
Theorem 123.12 we have Sq = S′

q′ for some q′ ⊂ S′ lying over q. By Lemma 112.3 we
have dim(S′) ≤ dim(Rp) and hence a fortiori dim(Sq) = dim(S′

q′) ≤ dim(Rp). □

Lemma 125.5.00QG Let k be a field. Let S be a finite type k-algebra. Suppose there
is a quasi-finite k-algebra map k[t1, . . . , tn] ⊂ S. Then dim(S) ≤ n.

Proof. By Lemma 114.1 the dimension of any local ring of k[t1, . . . , tn] is at most
n. Thus the result follows from Lemma 125.4. □

Lemma 125.6.00QH Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists an open neighbourhood V of q in Spec(S)
such that dimq′(S/R) ≤ n for all q′ ∈ V .

Proof. By Lemma 125.2 we see that we may assume that S is quasi-finite over
a polynomial algebra R[t1, . . . , tn]. Considering the fibres, we reduce to Lemma
125.5. □

In other words, the lemma says that the set of points where the fibre has dimension
≤ n is open in Spec(S). The next lemma says that formation of this open commutes
with base change. If the ring map is of finite presentation then this set is quasi-
compact open (see below).
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Lemma 125.7.00QI Let R → S be a finite type ring map. Let R → R′ be any ring
map. Set S′ = R′ ⊗R S and denote f : Spec(S′)→ Spec(S) the associated map on
spectra. Let n ≥ 0. The inverse image f−1({q ∈ Spec(S) | dimq(S/R) ≤ n}) is
equal to {q′ ∈ Spec(S′) | dimq′(S′/R′) ≤ n}.

Proof. The condition is formulated in terms of dimensions of fibre rings which are
of finite type over a field. Combined with Lemma 116.6 this yields the lemma. □

Lemma 125.8.00QJ Let R → S be a ring homomorphism of finite presentation. Let
n ≥ 0. The set

Vn = {q ∈ Spec(S) | dimq(S/R) ≤ n}
is a quasi-compact open subset of Spec(S).

Proof. It is open by Lemma 125.6. Let S = R[x1, . . . , xn]/(f1, . . . , fm) be a pre-
sentation of S. Let R0 be the Z-subalgebra of R generated by the coefficients of
the polynomials fi. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fm). Then S = R ⊗R0 S0.
By Lemma 125.7 Vn is the inverse image of an open V0,n under the quasi-compact
continuous map Spec(S) → Spec(S0). Since S0 is Noetherian we see that V0,n is
quasi-compact. □

Lemma 125.9.00QK Let R be a valuation ring with residue field k and field of fractions
K. Let S be a domain containing R such that S is of finite type over R. If S ⊗R k
is not the zero ring then

dim(S ⊗R k) = dim(S ⊗R K)

In fact, Spec(S ⊗R k) is equidimensional.

Proof. It suffices to show that dimq(S/k) is equal to dim(S⊗RK) for every prime
q of S containing mRS. Pick such a prime. By Lemma 125.6 the inequality
dimq(S/k) ≥ dim(S ⊗R K) holds. Set n = dimq(S/k). By Lemma 125.2 after
replacing S by Sg for some g ∈ S, g ̸∈ q there exists a quasi-finite ring map
R[t1, . . . , tn]→ S. If dim(S⊗RK) < n, then K[t1, . . . , tn]→ S⊗RK has a nonzero
kernel. Say f =

∑
aIt

i1
1 . . . tinn . After dividing f by a nonzero coefficient of f with

minimal valuation, we may assume f ∈ R[t1, . . . , tn] and some aI does not map to
zero in k. Hence the ring map k[t1, . . . , tn] → S ⊗R k has a nonzero kernel which
implies that dim(S ⊗R k) < n. Contradiction. □

126. Algebras and modules of finite presentation

05N4 In this section we discuss some standard results where the key feature is that the
assumption involves a finite type or finite presentation assumption.

Lemma 126.1.00QP Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = R′ ⊗R S. Then R → S is of finite type if and only if R′ → S′ is of
finite type.

Proof. It is clear that if R → S is of finite type then R′ → S′ is of finite type.
Assume that R′ → S′ is of finite type. Say y1, . . . , ym generate S′ over R′. Write
yj =

∑
i aij ⊗ xji for some aij ∈ R′ and xji ∈ S. Let A ⊂ S be the R-subalgebra

generated by the xij . By flatness we have A′ := R′⊗RA ⊂ S′, and by construction
yj ∈ A′. Hence A′ = S′. By faithful flatness A = S. □
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Lemma 126.2.00QQ Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = R′⊗RS. Then R→ S is of finite presentation if and only if R′ → S′

is of finite presentation.

Proof. It is clear that if R → S is of finite presentation then R′ → S′ is of finite
presentation. Assume that R′ → S′ is of finite presentation. By Lemma 126.1
we see that R → S is of finite type. Write S = R[x1, . . . , xn]/I. By flatness
S′ = R′[x1, . . . , xn]/R′ ⊗ I. Say g1, . . . , gm generate R′ ⊗ I over R′[x1, . . . , xn].
Write gj =

∑
i aij ⊗ fji for some aij ∈ R′ and fji ∈ I. Let J ⊂ I be the ideal

generated by the fij . By flatness we have R′ ⊗R J ⊂ R′ ⊗R I, and both are ideals
over R′[x1, . . . , xn]. By construction gj ∈ R′ ⊗R J . Hence R′ ⊗R J = R′ ⊗R I. By
faithful flatness J = I. □

Lemma 126.3.05N5 Let R be a ring. Let I ⊂ R be an ideal. Let S ⊂ R be a
multiplicative subset. Set R′ = S−1(R/I) = S−1R/S−1I.

(1) For any finite R′-module M ′ there exists a finite R-module M such that
S−1(M/IM) ∼= M ′.

(2) For any finitely presented R′-module M ′ there exists a finitely presented
R-module M such that S−1(M/IM) ∼= M ′.

Proof. Proof of (1). Choose a short exact sequence 0→ K ′ → (R′)⊕n →M ′ → 0.
Let K ⊂ R⊕n be the inverse image of K ′ under the map R⊕n → (R′)⊕n. Then
M = R⊕n/K works.
Proof of (2). Choose a presentation (R′)⊕m → (R′)⊕n → M ′ → 0. Suppose that
the first map is given by the matrix A′ = (a′

ij) and the second map is determined
by generators x′

i ∈ M ′, i = 1, . . . , n. As R′ = S−1(R/I) we can choose s ∈ S and
a matrix A = (aij) with coefficients in R such that a′

ij = aij/s mod S−1I. Let
M be the finitely presented R-module with presentation R⊕m → R⊕n → M → 0
where the first map is given by the matrix A and the second map is determined
by generators xi ∈ M , i = 1, . . . , n. Then the map M → M ′, xi 7→ x′

i induces an
isomorphism S−1(M/IM) ∼= M ′. □

Lemma 126.4.05N6 Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be
an R-module.

(1) If S−1M is a finite S−1R-module then there exists a finite R-module M ′

and a map M ′ →M which induces an isomorphism S−1M ′ → S−1M .
(2) If S−1M is a finitely presented S−1R-module then there exists an R-module

M ′ of finite presentation and a map M ′ → M which induces an isomor-
phism S−1M ′ → S−1M .

Proof. Proof of (1). Let x1, . . . , xn ∈M be elements which generate S−1M as an
S−1R-module. Let M ′ be the R-submodule of M generated by x1, . . . , xn.
Proof of (2). Let x1, . . . , xn ∈ M be elements which generate S−1M as an S−1R-
module. LetK = Ker(R⊕n →M) where the map is given by the rule (a1, . . . , an) 7→∑
aixi. By Lemma 5.3 we see that S−1K is a finite S−1R-module. By (1) we can

find a finite submodule K ′ ⊂ K with S−1K ′ = S−1K. Take M ′ = Coker(K ′ →
R⊕n). □

Lemma 126.5.05GJ Let R be a ring. Let p ⊂ R be a prime ideal. Let M be an
R-module.
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(1) If Mp is a finite Rp-module then there exists a finite R-module M ′ and a
map M ′ →M which induces an isomorphism M ′

p →Mp.
(2) If Mp is a finitely presented Rp-module then there exists an R-module M ′

of finite presentation and a map M ′ → M which induces an isomorphism
M ′

p →Mp.

Proof. This is a special case of Lemma 126.4 □

Lemma 126.6.00QR Let φ : R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Assume

(1) S is of finite presentation over R,
(2) φ induces an isomorphism Rp

∼= Sq.
Then there exist f ∈ R, f ̸∈ p and an Rf -algebra C such that Sf ∼= Rf × C as
Rf -algebras.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). Let ai ∈ Rp be an element mapping
to the image of xi in Sq. Write ai = bi/f for some f ∈ R, f ̸∈ p. After replacing R
by Rf and xi by xi − ai we may assume that S = R[x1, . . . , xn]/(g1, . . . , gm) such
that xi maps to zero in Sq. Then if cj denotes the constant term of gj we conclude
that cj maps to zero in Rp. After another replacement of R we may assume that
the constant coefficients cj of the gj are zero. Thus we obtain an R-algebra map
S → R, xi 7→ 0 whose kernel is the ideal (x1, . . . , xn).

We have the isomorphisms Rp → Sq → Rp and S → R sends xi to zero. Thus we
must have Sq = Rp[x1, . . . , xn]/(x1, . . . , xn) and a fortiori Sq = Sp/(x1, . . . , xn)Sp.
This means that the finitely generated ideal (x1, . . . , xn)Sp is pure in Sp, see Defini-
tion 108.1. Hence (x1, . . . , xn)Sp is generated by an idempotent e in Sp by Lemma
108.5. After replacing R → S by Rf → Sf for some f ∈ R, f ̸∈ p we can find an
idempotent e′ ∈ S mapping to e. Then e′S and (x1, . . . , xn)S are finitely generated
ideals which become equal in Sp. Hence after replacing R → S by Rf → Sf for
some f ∈ R, f ̸∈ p we may assume e′S = (x1, . . . , xn)S. Setting C = e′S finishes
the proof. □

Lemma 126.7.00QS Let R be a ring. Let S, S′ be of finite presentation over R. Let
q ⊂ S and q′ ⊂ S′ be primes. If Sq

∼= S′
q′ as R-algebras, then there exist g ∈ S,

g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such that Sg ∼= S′
g′ as R-algebras.

Proof. Let ψ : Sq → S′
q′ be the isomorphism of the hypothesis of the lemma.

Write S = R[x1, . . . , xn]/(f1, . . . , fr) and S′ = R[y1, . . . , ym]/J . For each i =
1, . . . , n choose a fraction hi/gi with hi, gi ∈ R[y1, . . . , ym] and gi mod J not in
q′ which represents the image of xi under ψ. After replacing S′ by S′

g1...gn
and

R[y1, . . . , ym, ym+1] (mapping ym+1 to 1/(g1 . . . gn)) we may assume that ψ(xi) is
the image of some hi ∈ R[y1, . . . , ym]. Consider the elements fj(h1, . . . , hn) ∈
R[y1, . . . , ym]. Since ψ kills each fj we see that there exists a g ∈ R[y1, . . . , ym],
g mod J ̸∈ q′ such that gfj(h1, . . . , hn) ∈ J for each j = 1, . . . , r. After replacing
S′ by S′

g and R[y1, . . . , ym, ym+1] as before we may assume that fj(h1, . . . , hn) ∈ J .
Thus we obtain a ring map S → S′, xi 7→ hi which induces ψ on local rings. By
Lemma 6.2 the map S → S′ is of finite presentation. By Lemma 126.6 we may
assume that S′ = S × C. Thus localizing S′ at the idempotent corresponding to
the factor C we obtain the result. □
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Lemma 126.8.0G8U Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let S be an
R-algebra such that R/I → S/IS is of finite type. Then R→ S is of finite type.

Proof. Choose s1, . . . , sn ∈ S whose images in S/IS generate S/IS as an algebra
over R/I. By Lemma 20.1 part (11) we see that the R-algebra map R[x1, . . . , xn →
S, xi 7→ si is surjective and we conclude. □

Lemma 126.9.07RD Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let S → S′

be an R-algebra map such that S → S′/IS′ is surjective and such that S′ is of finite
type over R. Then S → S′ is surjective.

Proof. Write S′ = R[x1, . . . , xm]/K for some ideal K. By assumption there exist
gj = xj+

∑
δj,Jx

J ∈ R[x1, . . . , xn] with δj,J ∈ I and with gj mod K ∈ Im(S → S′).
Hence it suffices to show that g1, . . . , gm generate R[x1, . . . , xn]. Let R0 ⊂ R be
a finitely generated Z-subalgebra of R containing at least the δj,J . Then R0 ∩ I
is a nilpotent ideal (by Lemma 32.5). It follows that R0[x1, . . . , xn] is generated
by g1, . . . , gm (because xj 7→ gj defines an automorphism of R0[x1, . . . , xm]; details
omitted). Since R is the union of the subrings R0 we win. □

Lemma 126.10.087P Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Let IS ⊂ q ⊂ S be a prime ideal. Assume that

(1) S → S′ is surjective,
(2) Sq/ISq → S′

q/IS
′
q is an isomorphism,

(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′

q is flat over R.
Then Sg → S′

g is an isomorphism for some g ∈ S, g ̸∈ q.

Proof. Let J = Ker(S → S′). By Lemma 6.2 J is a finitely generated ideal.
Since S′

q is flat over R we see that Jq/IJq ⊂ Sq/ISq (apply Lemma 39.12 to
0 → J → S → S′ → 0). By assumption (2) we see that Jq/IJq is zero. By
Nakayama’s lemma (Lemma 20.1) we see that there exists a g ∈ S, g ̸∈ q such that
Jg = 0. Hence Sg ∼= S′

g as desired. □

Lemma 126.11.07RE Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Assume that

(1) I is locally nilpotent,
(2) S/IS → S′/IS′ is an isomorphism,
(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′ is flat over R.

Then S → S′ is an isomorphism.

Proof. By Lemma 126.9 the map S → S′ is surjective. As I is locally nilpotent, so
are the ideals IS and IS′ (Lemma 32.3). Hence every prime ideal q of S contains
IS and (trivially) Sq/ISq

∼= S′
q/IS

′
q. Thus Lemma 126.10 applies and we see that

Sq → S′
q is an isomorphism for every prime q ⊂ S. It follows that S → S′ is

injective for example by Lemma 23.1. □
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127. Colimits and maps of finite presentation

00QL In this section we prove some preliminary lemmas which will eventually help us
prove result using absolute Noetherian reduction. In Categories, Section 19 we
discuss filtered colimits in general. Here is an example of this very general notion.

Lemma 127.1.0BUF Let R→ A be a ring map. Consider the category I of all diagrams
of R-algebra maps A′ → A with A′ finitely presented over R. Then I is filtered,
and the colimit of the A′ over I is isomorphic to A.

Proof. The category11 I is nonempty as R→ R is an object of it. Consider a pair
of objects A′ → A, A′′ → A of I. Then A′ ⊗R A′′ → A is in I (use Lemmas 6.2
and 14.2). The ring maps A′ → A′ ⊗R A′′ and A′′ → A′ ⊗R A′′ define arrows in I
thereby proving the second defining property of a filtered category, see Categories,
Definition 19.1. Finally, suppose that we have two morphisms σ, τ : A′ → A′′ in
I. If x1, . . . , xr ∈ A′ are generators of A′ as an R-algebra, then we can consider
A′′′ = A′′/(σ(xi) − τ(xi)). This is a finitely presented R-algebra and the given
R-algebra map A′′ → A factors through the surjection ν : A′′ → A′′′. Thus ν is a
morphism in I equalizing σ and τ as desired.
The fact that our index category is cofiltered means that we may compute the value
of B = colimA′→AA

′ in the category of sets (some details omitted; compare with
the discussion in Categories, Section 19). To see that B → A is surjective, for
every a ∈ A we can use R[x] → A, x 7→ a to see that a is in the image of B → A.
Conversely, if b ∈ B is mapped to zero in A, then we can find A′ → A in I and
a′ ∈ A′ which maps to b. Then A′/(a′) → A is in I as well and the map A′ → B
factors as A′ → A′/(a′)→ B which shows that b = 0 as desired. □

Often it is easier to think about colimits over preordered sets. Let (Λ,≥) a pre-
ordered set. A system of rings over Λ is given by a ring Rλ for every λ ∈ Λ, and
a morphism Rλ → Rµ whenever λ ≤ µ. These morphisms have to satisfy the rule
that Rλ → Rµ → Rν is equal to the map Rλ → Rν for all λ ≤ µ ≤ ν. See Cate-
gories, Section 21. We will often assume that (I,≤) is directed, which means that Λ
is nonempty and given λ, µ ∈ Λ there exists a ν ∈ Λ with λ ≤ ν and µ ≤ ν. Recall
that the colimit colimλRλ is sometimes called a “direct limit” in this case (but we
will not use this terminology).
Note that Categories, Lemma 21.5 tells us that colimits over filtered index categories
are the same thing as colimits over directed sets.

Lemma 127.2.00QN Let R → A be a ring map. There exists a directed system Aλ
of R-algebras of finite presentation such that A = colimλAλ. If A is of finite type
over R we may arrange it so that all the transition maps in the system of Aλ are
surjective.

Proof. The first proof is that this follows from Lemma 127.1 and Categories,
Lemma 21.5.
Second proof. Compare with the proof of Lemma 11.3. Consider any finite subset
S ⊂ A, and any finite collection of polynomial relations E among the elements of
S. So each s ∈ S corresponds to xs ∈ A and each e ∈ E consists of a polynomial

11To avoid set theoretical difficulties we consider only A′ → A such that A′ is a quotient of
R[x1, x2, x3, . . .].
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fe ∈ R[Xs; s ∈ S] such that fe(xs) = 0. Let AS,E = R[Xs; s ∈ S]/(fe; e ∈ E) which
is a finitely presented R-algebra. There are canonical maps AS,E → A. If S ⊂ S′

and if the elements of E correspond, via the map R[Xs; s ∈ S]→ R[Xs; s ∈ S′], to
a subset of E′, then there is an obvious map AS,E → AS′,E′ commuting with the
maps to A. Thus, setting Λ equal the set of pairs (S,E) with ordering by inclusion
as above, we get a directed partially ordered set. It is clear that the colimit of this
directed system is A.

For the last statement, suppose A = R[x1, . . . , xn]/I. In this case, consider the
subset Λ′ ⊂ Λ consisting of those systems (S,E) above with S = {x1, . . . , xn}. It is
easy to see that still A = colimλ′∈Λ′ Aλ′ . Moreover, the transition maps are clearly
surjective. □

It turns out that we can characterize ring maps of finite presentation as follows.
This in some sense says that the algebras of finite presentation are the “compact”
objects in the category of R-algebras.

Lemma 127.3.00QO Let φ : R→ S be a ring map. The following are equivalent
(1) φ is of finite presentation,
(2) for every directed system Aλ of R-algebras the map

colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)

is bijective, and
(3) for every directed system Aλ of R-algebras the map

colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)

is surjective.

Proof. Assume (1) and write S = R[x1, . . . , xn]/(f1, . . . , fm). Let A = colimAλ.
Observe that an R-algebra homomorphism S → A or S → Aλ is determined by the
images of x1, . . . , xn. Hence it is clear that colimλ HomR(S,Aλ)→ HomR(S,A) is
injective. To see that it is surjective, let χ : S → A be an R-algebra homomorphism.
Then each xi maps to some element in the image of some Aλi

. We may pick
µ ≥ λi, i = 1, . . . , n and assume χ(xi) is the image of yi ∈ Aµ for i = 1, . . . , n.
Consider zj = fj(y1, . . . , yn) ∈ Aµ. Since χ is a homomorphism the image of zj
in A = colimλAλ is zero. Hence there exists a µj ≥ µ such that zj maps to zero
in Aµj

. Pick ν ≥ µj , j = 1, . . . ,m. Then the images of z1, . . . , zm are zero in Aν .
This exactly means that the yi map to elements y′

i ∈ Aν which satisfy the relations
fj(y′

1, . . . , y
′
n) = 0. Thus we obtain a ring map S → Aν . This shows that (1)

implies (2).

It is clear that (2) implies (3). Assume (3). By Lemma 127.2 we may write S =
colimλ Sλ with Sλ of finite presentation over R. Then the identity map factors as

S → Sλ → S

for some λ. This implies that S is finitely presented over Sλ by Lemma 6.2 part
(4) applied to S → Sλ → S. Applying part (2) of the same lemma to R→ Sλ → S
we conclude that S is of finite presentation over R. □

Using the basic material above we can give a criterion of when an algebra A is a
filtered colimit of given type of algebra as follows.

https://stacks.math.columbia.edu/tag/00QO
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Lemma 127.4.07C3 Let R→ Λ be a ring map. Let E be a set of R-algebras such that
each A ∈ E is of finite presentation over R. Then the following two statements are
equivalent

(1) Λ is a filtered colimit of elements of E, and
(2) for any R algebra map A→ Λ with A of finite presentation over R we can

find a factorization A→ B → Λ with B ∈ E.

Proof. Suppose that I → E , i 7→ Ai is a filtered diagram such that Λ = colimiAi.
Let A→ Λ be an R-algebra map with A of finite presentation over R. Then we get
a factorization A→ Ai → Λ by applying Lemma 127.3. Thus (1) implies (2).
Consider the category I of Lemma 127.1. By Categories, Lemma 19.3 the full
subcategory J consisting of those A→ Λ with A ∈ E is cofinal in I and is a filtered
category. Then Λ is also the colimit over J by Categories, Lemma 17.2. □

But more is true. Namely, given R = colimλRλ we see that the category of finitely
presented R-modules is equivalent to the limit of the category of finitely presented
Rλ-modules. Similarly for the categories of finitely presented R-algebras.

Lemma 127.5.05LI Let A be a ring and let M,N be A-modules. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras.

(1) If M is a finite A-module, and u, u′ : M → N are A-module maps such
that u⊗ 1 = u′ ⊗ 1 : M ⊗A R→ N ⊗A R then for some i we have u⊗ 1 =
u′ ⊗ 1 : M ⊗A Ri → N ⊗A Ri.

(2) If N is a finite A-module and u : M → N is an A-module map such
that u ⊗ 1 : M ⊗A R → N ⊗A R is surjective, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is surjective.

(3) If N is a finitely presented A-module, and v : N ⊗A R→M ⊗A R is an R-
module map, then there exists an i and an Ri-module map vi : N ⊗A Ri →
M ⊗A Ri such that v = vi ⊗ 1.

(4) If M is a finite A-module, N is a finitely presented A-module, and u :
M → N is an A-module map such that u ⊗ 1 : M ⊗A R → N ⊗A R is an
isomorphism, then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an
isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ M be generators.
Since N⊗AR = colimiN⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in M⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : M⊗ARi → N⊗ARi.
To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ N be generators. Since
N ⊗A R = colimiN ⊗A Ri we may pick an i ∈ I and zj ∈ M ⊗A Ri, j = 1, . . . ,m
whose images in N ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : M ⊗A Ri →
N ⊗A Ri is surjective.
To prove (3) let y1, . . . , ym ∈ N be generators. Let K = Ker(A⊕m → N) where
the map is given by the rule (a1, . . . , am) 7→

∑
ajxj . Let k1, . . . , kt be generators

for K. Say ks = (ks1, . . . , ksm). Since M ⊗A R = colimiM ⊗A Ri we may pick an
i ∈ I and zj ∈M ⊗ARi, j = 1, . . . ,m whose images in M ⊗AR equal v(yj⊗1). We
want to use the zj to define the map vi : N ⊗A Ri →M ⊗A Ri. Since K ⊗A Ri →
R⊕m
i → N ⊗A Ri → 0 is a presentation, it suffices to check that ξs =

∑
j ksjzj is

zero in M ⊗A Ri for each s = 1, . . . , t. This may not be the case, but since the
image of ξs in M ⊗AR is zero we see that it will be the case after increasing i a bit.
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To prove (4) assume u⊗1 is an isomorphism, that M is finite, and that N is finitely
presented. Let v : N ⊗A R → M ⊗A R be an inverse to u ⊗ 1. Apply part (3) to
get a map vi : N ⊗A Ri → M ⊗A Ri for some i. Apply part (1) to see that, after
increasing i we have vi ◦ (u⊗ 1) = idM⊗RRi

and (u⊗ 1) ◦ vi = idN⊗RRi
. □

Lemma 127.6.05N7 Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings. Then
the category of finitely presented R-modules is the colimit of the categories of finitely
presented Rλ-modules. More precisely

(1) Given a finitely presented R-module M there exists a λ ∈ Λ and a finitely
presented Rλ-module Mλ such that M ∼= Mλ ⊗Rλ

R.
(2) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and an R-module

map φ : Mλ ⊗Rλ
R → Nλ ⊗Rλ

R, then there exists a µ ≥ λ and an Rµ-
module map φµ : Mλ ⊗Rλ

Rµ → Nλ ⊗Rλ
Rµ such that φ = φµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and R-module maps
φλ, ψλ : Mλ → Nλ such that φ⊗ 1R = ψ⊗ 1R, then φ⊗ 1Rµ

= ψ⊗ 1Rµ
for

some µ ≥ λ.

Proof. To prove (1) choose a presentation R⊕m → R⊕n →M → 0. Suppose that
the first map is given by the matrix A = (aij). We can choose a λ ∈ Λ and a matrix
Aλ = (aλ,ij) with coefficients in Rλ which maps to A in R. Then we simply let
Mλ be the Rλ-module with presentation R⊕m

λ → R⊕n
λ → Mλ → 0 where the first

arrow is given by Aλ.
Parts (2) and (3) follow from Lemma 127.5. □

Lemma 127.7.05N8 Let A be a ring and let B,C be A-algebras. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras.

(1) If B is a finite type A-algebra, and u, u′ : B → C are A-algebra maps
such that u ⊗ 1 = u′ ⊗ 1 : B ⊗A R → C ⊗A R then for some i we have
u⊗ 1 = u′ ⊗ 1 : B ⊗A Ri → C ⊗A Ri.

(2) If C is a finite type A-algebra and u : B → C is an A-algebra map such
that u ⊗ 1 : B ⊗A R → C ⊗A R is surjective, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is surjective.

(3) If C is of finite presentation over A and v : C ⊗A R → B ⊗A R is an R-
algebra map, then there exists an i and an Ri-algebra map vi : C ⊗A Ri →
B ⊗A Ri such that v = vi ⊗ 1.

(4) If B is a finite type A-algebra, C is a finitely presented A-algebra, and
u ⊗ 1 : B ⊗A R → C ⊗A R is an isomorphism, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is an isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ B be generators.
Since B⊗AR = colimiB⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in B⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : B⊗ARi → C⊗ARi.
To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ C be generators. Since
B⊗AR = colimiB⊗ARi we may pick an i ∈ I and zj ∈ B⊗ARi, j = 1, . . . ,m whose
images in C ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : B ⊗A Ri → C ⊗A Ri
is surjective.
To prove (3) let c1, . . . , cm ∈ C be generators. Let K = Ker(A[x1, . . . , xm] → N)
where the map is given by the rule xj 7→

∑
cj . Let f1, . . . , ft be generators for K as

an ideal in A[x1, . . . , xm]. We think of fj = fj(x1, . . . , xm) as a polynomial. Since

https://stacks.math.columbia.edu/tag/05N7
https://stacks.math.columbia.edu/tag/05N8


COMMUTATIVE ALGEBRA 311

B ⊗A R = colimiB ⊗A Ri we may pick an i ∈ I and zj ∈ B ⊗A Ri, j = 1, . . . ,m
whose images in B ⊗A R equal v(cj ⊗ 1). We want to use the zj to define a map
vi : C ⊗A Ri → B ⊗A Ri. Since K ⊗A Ri → Ri[x1, . . . , xm] → C ⊗A Ri → 0 is
a presentation, it suffices to check that ξs = fj(z1, . . . , zm) is zero in B ⊗A Ri for
each s = 1, . . . , t. This may not be the case, but since the image of ξs in B ⊗A R
is zero we see that it will be the case after increasing i a bit.
To prove (4) assume u⊗1 is an isomorphism, that B is a finite type A-algebra, and
that C is a finitely presented A-algebra. Let v : B ⊗A R → C ⊗A R be an inverse
to u⊗ 1. Let vi : C⊗ARi → B⊗ARi be as in part (3). Apply part (1) to see that,
after increasing i we have vi ◦ (u⊗ 1) = idB⊗RRi

and (u⊗ 1) ◦ vi = idC⊗RRi
. □

Lemma 127.8.05N9 Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings. Then
the category of finitely presented R-algebras is the colimit of the categories of finitely
presented Rλ-algebras. More precisely

(1) Given a finitely presented R-algebra A there exists a λ ∈ Λ and a finitely
presented Rλ-algebra Aλ such that A ∼= Aλ ⊗Rλ

R.
(2) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and an R-algebra

map φ : Aλ ⊗Rλ
R → Bλ ⊗Rλ

R, then there exists a µ ≥ λ and an Rµ-
algebra map φµ : Aλ ⊗Rλ

Rµ → Bλ ⊗Rλ
Rµ such that φ = φµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and Rλ-algebra maps
φλ, ψλ : Aλ → Bλ such that φ⊗ 1R = ψ ⊗ 1R, then φ⊗ 1Rµ = ψ ⊗ 1Rµ for
some µ ≥ λ.

Proof. To prove (1) choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm). We can
choose a λ ∈ Λ and elements fλ,j ∈ Rλ[x1, . . . , xn] mapping to fj ∈ R[x1, . . . , xn].
Then we simply let Aλ = Rλ[x1, . . . , xn]/(fλ,1, . . . , fλ,m).
Parts (2) and (3) follow from Lemma 127.7. □

Lemma 127.9.00QT Suppose R → S is a local homomorphism of local rings. There
exists a directed set (Λ,≤), and a system of local homomorphisms Rλ → Sλ of local
rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.

Proof. Denote φ : R → S the ring map. Let m ⊂ R be the maximal ideal of R
and let n ⊂ S be the maximal ideal of S. Let

Λ = {(A,B) | A ⊂ R,B ⊂ S,#A <∞,#B <∞, φ(A) ⊂ B}.
As partial ordering we take the inclusion relation. For each λ = (A,B) ∈ Λ we let
R′
λ be the sub Z-algebra generated by a ∈ A, and we let S′

λ be the sub Z-algebra
generated by b, b ∈ B. Let Rλ be the localization of R′

λ at the prime ideal R′
λ ∩m

and let Sλ be the localization of S′
λ at the prime ideal S′

λ ∩ n. In a picture

B // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO .

The transition maps are clear. We leave the proofs of the other assertions to the
reader. □
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Lemma 127.10.00QU Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite type over R. Then there exists a directed set (Λ,≤),
and a system of local homomorphisms Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ presents Sµ as the localization
of a quotient of Sλ ⊗Rλ

Rµ.

Proof. Denote φ : R→ S the ring map. Let m ⊂ R be the maximal ideal of R and
let n ⊂ S be the maximal ideal of S. Let x1, . . . , xn ∈ S be elements such that S is
a localization of the sub R-algebra of S generated by x1, . . . , xn. In other words, S
is a quotient of a localization of the polynomial ring R[x1, . . . , xn].
Let Λ = {A ⊂ R | #A < ∞} be the set of finite subsets of R. As partial ordering
we take the inclusion relation. For each λ = A ∈ Λ we let R′

λ be the sub Z-algebra
generated by a ∈ A, and we let S′

λ be the sub Z-algebra generated by φ(a), a ∈ A
and the elements x1, . . . , xn. Let Rλ be the localization of R′

λ at the prime ideal
R′
λ ∩m and let Sλ be the localization of S′

λ at the prime ideal S′
λ ∩ n. In a picture

φ(A)⨿ {xi} // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO

It is clear that if A ⊂ B corresponds to λ ≤ µ in Λ, then there are canonical maps
Rλ → Rµ, and Sλ → Sµ and we obtain a system over the directed set Λ.
The assertion that R = colimRλ is clear because all the maps Rλ → R are injective
and any element of R eventually is in the image. The same argument works for
S = colimSλ. Assertions (2), (3) are true by construction. The final assertion
holds because clearly the maps S′

λ ⊗R′
λ
R′
µ → S′

µ are surjective. □

Lemma 127.11.00QV Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation over R. Then there exists a directed set
(Λ,≤), and a system of local homomorphism Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ presents Sµ as the localization
of Sλ ⊗Rλ

Rµ at a prime ideal.

Proof. By assumption we may choose an isomorphism Φ : (R[x1, . . . , xn]/I)q → S
where I ⊂ R[x1, . . . , xn] is a finitely generated ideal, and q ⊂ R[x1, . . . , xn]/I
is a prime. (Note that R ∩ q is equal to the maximal ideal m of R.) We also
choose generators f1, . . . , fm ∈ I for the ideal I. Write R in any way as a colimit
R = colimRλ over a directed set (Λ,≤), with each Rλ local and essentially of
finite type over Z. There exists some λ0 ∈ Λ such that fj is the image of some
fj,λ0 ∈ Rλ0 [x1, . . . , xn]. For all λ ≥ λ0 denote fj,λ ∈ Rλ[x1, . . . , xn] the image of
fj,λ0 . Thus we obtain a system of ring maps

Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ)→ R[x1, . . . , xn]/(f1, . . . , fm)→ S

https://stacks.math.columbia.edu/tag/00QU
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Set qλ the inverse image of q. Set Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ
. We

leave it to the reader to see that this works. □

Remark 127.12.00QW Suppose that R → S is a local homomorphism of local rings,
which is essentially of finite presentation. Take any system (Λ,≤), Rλ → Sλ with
the properties listed in Lemma 127.10. What may happen is that this is the “wrong”
system, namely, it may happen that property (4) of Lemma 127.11 is not satisfied.
Here is an example. Let k be a field. Consider the ring

R = k[[z, y1, y2, . . .]]/(y2
i − zyi+1).

Set S = R/zR. As system take Λ = N and Rn = k[[z, y1, . . . , yn]]/({y2
i −

zyi+1}i≤n−1) and Sn = Rn/(z, y2
n). All the maps Sn ⊗Rn

Rn+1 → Sn+1 are not
localizations (i.e., isomorphisms in this case) since 1 ⊗ y2

n+1 maps to zero. If we
take instead S′

n = Rn/zRn then the maps S′
n⊗Rn Rn+1 → S′

n+1 are isomorphisms.
The moral of this remark is that we do have to be a little careful in choosing the
systems.

Lemma 127.13.00QX Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation over R. Let M be a finitely presented
S-module. Then there exists a directed set (Λ,≤), and a system of local homomor-
phisms Rλ → Sλ of local rings together with Sλ-modules Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R → S. The colimit of the
system Mλ is M .

(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ presents Sµ as the localization
of Sλ ⊗Rλ

Rµ at a prime ideal.
(6) For each λ ≤ µ the map Mλ ⊗Sλ

Sµ →Mµ is an isomorphism.

Proof. As in the proof of Lemma 127.11 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Next, we
may assume that for some λ1 ∈ Λ there exist fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ

Choose a presentation
S⊕s → S⊕t →M → 0

of M over S. Let A ∈ Mat(t × s, S) be the matrix of the presentation. For some
λ2 ∈ Λ, λ2 ≥ λ1 we can find a matrix Aλ2 ∈ Mat(t× s, Sλ2) which maps to A. For
all λ ≥ λ2 we let Mλ = Coker(S⊕s

λ

Aλ−−→ S⊕t
λ ). We leave it to the reader to see that

this works. □

Lemma 127.14.00QY Suppose R → S is a ring map. Then there exists a directed set
(Λ,≤), and a system of ring maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.

Proof. This is the non-local version of Lemma 127.9. Proof is similar and left to
the reader. □

https://stacks.math.columbia.edu/tag/00QW
https://stacks.math.columbia.edu/tag/00QX
https://stacks.math.columbia.edu/tag/00QY


COMMUTATIVE ALGEBRA 314

Lemma 127.15.0BTG Suppose R → S is a ring map. Assume that S is integral over
R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ
such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is finite over Rλ.

Proof. Consider the set Λ of pairs (E,F ) where E ⊂ R is a finite subset, F ⊂ S
is a finite subset, and every element f ∈ F is the root of a monic P (X) ∈ R[X]
whose coefficients are in E. Say (E,F ) ≤ (E′, F ′) if E ⊂ E′ and F ⊂ F ′. Given
λ = (E,F ) ∈ Λ set Rλ ⊂ R equal to the Z-subalgebra of R generated by E and
Sλ ⊂ S equal to the Z-subalgebra generated by F and the image of E in S. It is
clear that R = colimRλ. We have S = colimSλ as every element of S is integral
over S. The ring maps Rλ → Sλ are finite by Lemma 36.5 and the fact that Sλ is
generated over Rλ by the elements of F which are integral over Rλ by our condition
on the pairs (E,F ). The lemma follows. □

Lemma 127.16.00QZ Suppose R → S is a ring map. Assume that S is of finite type
over R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ
such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ presents Sµ as a quotient of
Sλ ⊗Rλ

Rµ.

Proof. This is the non-local version of Lemma 127.10. Proof is similar and left to
the reader. □

Lemma 127.17.00R0 Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Then there exists a directed set (Λ,≤), and a system of ring
maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ is an isomorphism.

Proof. This is the non-local version of Lemma 127.11. Proof is similar and left to
the reader. □

Lemma 127.18.00R1 Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Let M be a finitely presented S-module. Then there exists a
directed set (Λ,≤), and a system of ring maps Rλ → Sλ together with Sλ-modules
Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R → S. The colimit of the
system Mλ is M .

(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ

Rµ → Sµ is an isomorphism.
(6) For each λ ≤ µ the map Mλ ⊗Sλ

Sµ →Mµ is an isomorphism.
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In particular, for every λ ∈ Λ we have
M = Mλ ⊗Sλ

S = Mλ ⊗Rλ
R.

Proof. This is the non-local version of Lemma 127.13. Proof is similar and left to
the reader. □

128. More flatness criteria

00R3 The following lemma is often used in algebraic geometry to show that a finite mor-
phism from a normal surface to a smooth surface is flat. It is a partial converse to
Lemma 112.9 because an injective finite local ring map certainly satisfies condition
(3).

Lemma 128.1.00R4 Let R → S be a local homomorphism of Noetherian local rings.
Assume

(1) R is regular,
(2) S Cohen-Macaulay,
(3) dim(S) = dim(R) + dim(S/mRS).

Then R→ S is flat.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial, because then R
is a field. Assume dim(R) > 0. By (3) this implies that dim(S) > 0. Let q1, . . . , qr
be the minimal primes of S. Note that qi ̸⊃ mRS since

dim(S/qi) = dim(S) > dim(S/mRS)
the first equality by Lemma 104.3 and the inequality by (3). Thus pi = R ∩ qi
is not equal to mR. Pick x ∈ mR, x ̸∈ m2

R, and x ̸∈ pi, see Lemma 15.2. Hence
we see that x is not contained in any of the minimal primes of S. Hence x is a
nonzerodivisor on S by (2), see Lemma 104.2 and S/xS is Cohen-Macaulay with
dim(S/xS) = dim(S)− 1. By (1) and Lemma 106.3 the ring R/xR is regular with
dim(R/xR) = dim(R)− 1. By induction we see that R/xR→ S/xS is flat. Hence
we conclude by Lemma 99.10 and the remark following it. □

Lemma 128.2.07DY Let R→ S be a homomorphism of Noetherian local rings. Assume
that R is a regular local ring and that a regular system of parameters maps to a
regular sequence in S. Then R→ S is flat.

Proof. Suppose that x1, . . . , xd are a system of parameters of R which map to
a regular sequence in S. Note that S/(x1, . . . , xd)S is flat over R/(x1, . . . , xd)
as the latter is a field. Then xd is a nonzerodivisor in S/(x1, . . . , xd−1)S hence
S/(x1, . . . , xd−1)S is flat over R/(x1, . . . , xd−1) by the local criterion of flatness
(see Lemma 99.10 and remarks following). Then xd−1 is a nonzerodivisor in
S/(x1, . . . , xd−2)S hence S/(x1, . . . , xd−2)S is flat over R/(x1, . . . , xd−2) by the lo-
cal criterion of flatness (see Lemma 99.10 and remarks following). Continue till one
reaches the conclusion that S is flat over R. □

The following lemma is the key to proving that results for finitely presented modules
over finitely presented rings over a base ring follow from the corresponding results
for finite modules in the Noetherian case.

Lemma 128.3.00R6 Let R→ S, M , Λ, Rλ → Sλ, Mλ be as in Lemma 127.13. Assume
that M is flat over R. Then for some λ ∈ Λ the module Mλ is flat over Rλ.
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Proof. Pick some λ ∈ Λ and consider
TorRλ

1 (Mλ, Rλ/mλ) = Ker(mλ ⊗Rλ
Mλ →Mλ).

See Remark 75.9. The right hand side shows that this is a finitely generated Sλ-
module (because Sλ is Noetherian and the modules in question are finite). Let
ξ1, . . . , ξn be generators. Because M is flat over R we have that 0 = Ker(mλR ⊗R
M → M). Since ⊗ commutes with colimits we see there exists a λ′ ≥ λ such that
each ξi maps to zero in mλRλ′ ⊗Rλ′ Mλ′ . Hence we see that

TorRλ
1 (Mλ, Rλ/mλ) −→ TorRλ′

1 (Mλ′ , Rλ′/mλRλ′)
is zero. Note that Mλ ⊗Rλ

Rλ/mλ is flat over Rλ/mλ because this last ring is a
field. Hence we may apply Lemma 99.14 to get that Mλ′ is flat over Rλ′ . □

Using the lemma above we can start to reprove the results of Section 99 in the
non-Noetherian case.

Lemma 128.4.046Y Suppose that R → S is a local homomorphism of local rings.
Denote m the maximal ideal of R. Let u : M → N be a map of S-modules. Assume

(1) S is essentially of finite presentation over R,
(2) M , N are finitely presented over S,
(3) N is flat over R, and
(4) u : M/mM → N/mN is injective.

Then u is injective, and N/u(M) is flat over R.

Proof. By Lemma 127.13 and its proof we can find a system Rλ → Sλ of local ring
maps together with maps of Sλ-modules uλ : Mλ → Nλ satisfying the conclusions
(1) – (6) for both N and M of that lemma and such that the colimit of the maps
uλ is u. By Lemma 128.3 we may assume that Nλ is flat over Rλ for all sufficiently
large λ. Denote mλ ⊂ Rλ the maximal ideal and κλ = Rλ/mλ, resp. κ = R/m the
residue fields.
Consider the map

Ψλ : Mλ/mλMλ ⊗κλ
κ −→M/mM.

Since Sλ/mλSλ is essentially of finite type over the field κλ we see that the tensor
product Sλ/mλSλ⊗κλ

κ is essentially of finite type over κ. Hence it is a Noetherian
ring and we conclude the kernel of Ψλ is finitely generated. Since M/mM is the
colimit of the system Mλ/mλMλ and κ is the colimit of the fields κλ there exists a
λ′ > λ such that the kernel of Ψλ is generated by the kernel of

Ψλ,λ′ : Mλ/mλMλ ⊗κλ
κλ′ −→Mλ′/mλ′Mλ′ .

By construction there exists a multiplicative subset W ⊂ Sλ ⊗Rλ
Rλ′ such that

Sλ′ = W−1(Sλ ⊗Rλ
Rλ′) and
W−1(Mλ/mλMλ ⊗κλ

κλ′) = Mλ′/mλ′Mλ′ .

Now suppose that x is an element of the kernel of
Ψλ′ : Mλ′/mλ′Mλ′ ⊗κλ′ κ −→M/mM.

Then for some w ∈W we have wx ∈Mλ/mλMλ ⊗ κ. Hence wx ∈ Ker(Ψλ). Hence
wx is a linear combination of elements in the kernel of Ψλ,λ′ . Hence wx = 0 in
Mλ′/mλ′Mλ′ ⊗κλ′ κ, hence x = 0 because w is invertible in Sλ′ . We conclude that
the kernel of Ψλ′ is zero for all sufficiently large λ′!

https://stacks.math.columbia.edu/tag/046Y
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By the result of the preceding paragraph we may assume that the kernel of Ψλ is
zero for all λ sufficiently large, which implies that the map Mλ/mλMλ → M/mM
is injective. Combined with u being injective this formally implies that also uλ :
Mλ/mλMλ → Nλ/mλNλ is injective. By Lemma 99.1 we conclude that (for all
sufficiently large λ) the map uλ is injective and that Nλ/uλ(Mλ) is flat over Rλ.
The lemma follows. □

Lemma 128.5.046Z Suppose that R→ S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) S is essentially of finite presentation over R,
(2) S is flat over R, and
(3) f ∈ S is a nonzerodivisor in S/mS.

Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 128.4. □

Lemma 128.6.0470 Suppose that R→ S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) R→ S is essentially of finite presentation,
(2) R→ S is flat, and
(3) f1, . . . , fc is a sequence of elements of S such that the images f1, . . . , f c

form a regular sequence in S/mS.
Then f1, . . . , fc is a regular sequence in S and each of the quotients S/(f1, . . . , fi)
is flat over R.

Proof. Induction and Lemma 128.5. □

Here is the version of the local criterion of flatness for the case of local ring maps
which are locally of finite presentation.

Lemma 128.7.0471 Let R→ S be a local homomorphism of local rings. Let I ̸= R be
an ideal in R. Let M be an S-module. Assume

(1) S is essentially of finite presentation over R,
(2) M is of finite presentation over S,
(3) TorR1 (M,R/I) = 0, and
(4) M/IM is flat over R/I.

Then M is flat over R.

Proof. Let Λ, Rλ → Sλ, Mλ be as in Lemma 127.13. Denote Iλ ⊂ Rλ the inverse
image of I. In this case the system R/I → S/IS, M/IM , Rλ → Sλ/IλSλ, and
Mλ/IλMλ satisfies the conclusions of Lemma 127.13 as well. Hence by Lemma
128.3 we may assume (after shrinking the index set Λ) that Mλ/IλMλ is flat for all
λ. Pick some λ and consider

TorRλ
1 (Mλ, Rλ/Iλ) = Ker(Iλ ⊗Rλ

Mλ →Mλ).

See Remark 75.9. The right hand side shows that this is a finitely generated
Sλ-module (because Sλ is Noetherian and the modules in question are finite).
Let ξ1, . . . , ξn be generators. Because TorR1 (M,R/I) = 0 and since ⊗ commutes
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with colimits we see there exists a λ′ ≥ λ such that each ξi maps to zero in
TorRλ′

1 (Mλ′ , Rλ′/Iλ′). The composition of the maps

Rλ′ ⊗Rλ
TorRλ

1 (Mλ, Rλ/Iλ)

surjective by Lemma 99.12
��

TorRλ
1 (Mλ, Rλ′/IλRλ′)

surjective up to localization by Lemma 99.13
��

TorRλ′
1 (Mλ′ , Rλ′/IλRλ′)

surjective by Lemma 99.12
��

TorRλ′
1 (Mλ′ , Rλ′/Iλ′).

is surjective up to a localization by the reasons indicated. The localization is
necessary since Mλ′ is not equal to Mλ⊗Rλ

Rλ′ . Namely, it is equal to Mλ⊗Sλ
Sλ′

and Sλ′ is the localization of Sλ⊗Rλ
Rλ′ whence the statement up to a localization

(or tensoring with Sλ′). Note that Lemma 99.12 applies to the first and third
arrows because Mλ/IλMλ is flat over Rλ/Iλ and because Mλ′/IλMλ′ is flat over
Rλ′/IλRλ′ as it is a base change of the flat module Mλ/IλMλ. The composition
maps the generators ξi to zero as we explained above. We finally conclude that
TorRλ′

1 (Mλ′ , Rλ′/Iλ′) is zero. This implies that Mλ′ is flat over Rλ′ by Lemma
99.10. □

Please compare the lemma below to Lemma 99.15 (the case of Noetherian local
rings) and Lemma 101.8 (the case of a nilpotent ideal in the base).

Lemma 128.8 (Critère de platitude par fibres).00R7 Let R, S, S′ be local rings and
let R→ S → S′ be local ring homomorphisms. Let M be an S′-module. Let m ⊂ R
be the maximal ideal. Assume

(1) The ring maps R→ S and R→ S′ are essentially of finite presentation.
(2) The module M is of finite presentation over S′.
(3) The module M is not zero.
(4) The module M/mM is a flat S/mS-module.
(5) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. As in the proof of Lemma 127.11 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Denote pλ
the maximal ideal of Rλ. Next, we may assume that for some λ1 ∈ Λ there exist
fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fu,λ))qλ

For some λ2 ∈ Λ, λ2 ≥ λ1 there exist gj,λ2 ∈ Rλ2 [x1, . . . , xn, y1, . . . , ym] with images
gj,λ2 ∈ Sλ2 [y1, . . . , ym] such that

S′ = colimλ≥λ2 S
′
λ, with S′

λ = (Sλ[y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′
λ

Note that this also implies that
S′
λ = (Rλ[x1, . . . , xn, y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′

λ
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Choose a presentation
(S′)⊕s → (S′)⊕t →M → 0

of M over S′. Let A ∈ Mat(t× s, S′) be the matrix of the presentation. For some
λ3 ∈ Λ, λ3 ≥ λ2 we can find a matrix Aλ3 ∈ Mat(t× s, Sλ3) which maps to A. For
all λ ≥ λ3 we let Mλ = Coker((S′

λ)⊕s Aλ−−→ (S′
λ)⊕t).

With these choices, we have for each λ3 ≤ λ ≤ µ that Sλ ⊗Rλ
Rµ → Sµ is a

localization, S′
λ ⊗Sλ

Sµ → S′
µ is a localization, and the map Mλ ⊗S′

λ
S′
µ → Mµ is

an isomorphism. This also implies that S′
λ ⊗Rλ

Rµ → S′
µ is a localization. Thus,

since M is flat over R we see by Lemma 128.3 that for all λ big enough the module
Mλ is flat over Rλ. Moreover, note that m = colim pλ, S/mS = colimSλ/pλSλ,
S′/mS′ = colimS′

λ/pλS
′
λ, and M/mM = colimMλ/pλMλ. Also, for each λ3 ≤ λ ≤

µ we see (from the properties listed above) that
S′
λ/pλS

′
λ ⊗Sλ/pλSλ

Sµ/pµSµ −→ S′
µ/pµS

′
µ

is a localization, and the map
Mλ/pλMλ ⊗S′

λ
/pλS′

λ
S′
µ/pµS

′
µ −→Mµ/pµMµ

is an isomorphism. Hence the system (Sλ/pλSλ → S′
λ/pλS

′
λ,Mλ/pλMλ) is a system

as in Lemma 127.13 as well. We may apply Lemma 128.3 again because M/mM
is assumed flat over S/mS and we see that Mλ/pλMλ is flat over Sλ/pλSλ for all
λ big enough. Thus for λ big enough the data Rλ → Sλ → S′

λ,Mλ satisfies the
hypotheses of Lemma 99.15. Pick such a λ. Then S = Sλ⊗Rλ

R is flat over R, and
M = Mλ ⊗Sλ

S is flat over S (since the base change of a flat module is flat). □

The following is an easy consequence of the “critère de platitude par fibres” Lemma
128.8. For more results of this kind see More on Flatness, Section 1.

Lemma 128.9.05UV Let R, S, S′ be local rings and let R → S → S′ be local ring
homomorphisms. Let M be an S′-module. Let m ⊂ R be the maximal ideal. Assume

(1) R→ S′ is essentially of finite presentation,
(2) R→ S is essentially of finite type,
(3) M is of finite presentation over S′,
(4) M is not zero,
(5) M/mM is a flat S/mS-module, and
(6) M is a flat R-module.

Then S is essentially of finite presentation and flat over R and M is a flat S-
module.

Proof. As S is essentially of finite presentation over R we can write S = Cq for
some finite type R-algebra C. Write C = R[x1, . . . , xn]/I. Denote q ⊂ R[x1, . . . , xn]
be the prime ideal corresponding to q. Then we see that S = B/J where B =
R[x1, . . . , xn]q is essentially of finite presentation over R and J = IB. We can find
f1, . . . , fk ∈ J such that the images f i ∈ B/mB generate the image J of J in the
Noetherian ring B/mB. Hence there exist finitely generated ideals J ′ ⊂ J such
that B/J ′ → B/J induces an isomorphism

(B/J ′)⊗R R/m −→ B/J ⊗R R/m = S/mS.

For any J ′ as above we see that Lemma 128.8 applies to the ring maps
R −→ B/J ′ −→ S′

https://stacks.math.columbia.edu/tag/05UV
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and the module M . Hence we conclude that B/J ′ is flat over R for any choice J ′

as above. Now, if J ′ ⊂ J ′ ⊂ J are two finitely generated ideals as above, then we
conclude that B/J ′ → B/J ′′ is a surjective map between flat R-algebras which are
essentially of finite presentation which is an isomorphism modulo m. Hence Lemma
128.4 implies that B/J ′ = B/J ′′, i.e., J ′ = J ′′. Clearly this means that J is finitely
generated, i.e., S is essentially of finite presentation over R. Thus we may apply
Lemma 128.8 to R→ S → S′ and we win. □

Lemma 128.10 (Critère de platitude par fibres: locally nilpotent case).0CEL Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a locally nilpotent
ideal and M an S′-module. Assume

(1) R→ S is of finite type,
(2) R→ S′ is of finite presentation,
(3) M is a finitely presented S′-module,
(4) M/IM is flat as a S/IS-module, and
(5) M is flat as an R-module.

Then M is a flat S-module and Sq is flat and essentially of finite presentation over
R for every q ⊂ S such that M ⊗S κ(q) is nonzero.

Proof. If M⊗S κ(q) is nonzero, then S′⊗S κ(q) is nonzero and hence there exists a
prime q′ ⊂ S′ lying over q (Lemma 18.6). Let p ⊂ R be the image of q in Spec(R).
Then I ⊂ p as I is locally nilpotent hence M/pM is flat over S/pS. Hence we may
apply Lemma 128.9 to Rp → Sq → S′

q′ and Mq′ . We conclude that Mq′ is flat
over S and Sq is flat and essentially of finite presentation over R. Since q′ was an
arbitrary prime of S′ we also see that M is flat over S (Lemma 39.18). □

129. Openness of the flat locus

00R8 We use Lemma 128.3 to reduce to the Noetherian case. The Noetherian case is
handled using the characterization of exact complexes given in Section 102.

Lemma 129.1.00R9 Let k be a field. Let S be a finite type k-algebra. Let f1, . . . , fi be
elements of S. Assume that S is Cohen-Macaulay and equidimensional of dimension
d, and that dimV (f1, . . . , fi) ≤ d − i. Then equality holds and f1, . . . , fi forms a
regular sequence in Sq for every prime q of V (f1, . . . , fi).

Proof. If S is Cohen-Macaulay and equidimensional of dimension d, then we have
dim(Sm) = d for all maximal ideals m of S, see Lemma 114.7. By Proposition
103.4 we see that for all maximal ideals m ∈ V (f1, . . . , fi) the sequence is a regular
sequence in Sm and the local ring Sm/(f1, . . . , fi) is Cohen-Macaulay of dimension
d − i. This actually means that S/(f1, . . . , fi) is Cohen-Macaulay and equidimen-
sional of dimension d− i. □

Lemma 129.2.00RA Let R → S be a finite type ring map. Let d be an integer such
that all fibres S ⊗R κ(p) are Cohen-Macaulay and equidimensional of dimension d.
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Let f1, . . . , fi be elements of S. The set

{q ∈ V (f1, . . . , fi) | f1, . . . , fi are a regular sequence in Sq/pSq where p = R ∩ q}

is open in V (f1, . . . , fi).

Proof. Write S = S/(f1, . . . , fi). Suppose q is an element of the set defined in
the lemma, and p is the corresponding prime of R. We will use relative dimension
as defined in Definition 125.1. First, note that d = dimq(S/R) = dim(Sq/pSq) +
trdegκ(p) κ(q) by Lemma 116.3. Since f1, . . . , fi form a regular sequence in the Noe-
therian local ring Sq/pSq Lemma 60.13 tells us that dim(Sq/pSq) = dim(Sq/pSq)−
i. We conclude that dimq(S/R) = dim(Sq/pSq)+ trdegκ(p) κ(q) = d− i by Lemma
116.3. By Lemma 125.6 we have dimq′(S/R) ≤ d − i for all q′ ∈ V (f1, . . . , fi) =
Spec(S) in a neighbourhood of q. Thus after replacing S by Sg for some g ∈ S,
g ̸∈ q we may assume that the inequality holds for all q′. The result follows from
Lemma 129.1. □

Lemma 129.3.00RB Let R→ S be a ring map. Consider a finite homological complex
of finite free S-modules:

F• : 0→ Sne
φe−→ Sne−1

φe−1−−−→ . . .
φi+1−−−→ Sni

φi−→ Sni−1
φi−1−−−→ . . .

φ1−→ Sn0

For every prime q of S consider the complex F •,q = F•,q⊗R κ(p) where p is inverse
image of q in R. Assume R is Noetherian and there exists an integer d such that
R → S is finite type, flat with fibres S ⊗R κ(p) Cohen-Macaulay of dimension d.
The set

{q ∈ Spec(S) | F •,q is exact}
is open in Spec(S).

Proof. Let q be an element of the set defined in the lemma. We are going to use
Proposition 102.9 to show there exists a g ∈ S, g ̸∈ q such that D(g) is contained
in the set defined in the lemma. In other words, we are going to show that after
replacing S by Sg, the set of the lemma is all of Spec(S). Thus during the proof
we will, finitely often, replace S by such a localization. Recall that Proposition
102.9 characterizes exactness of complexes in terms of ranks of the maps φi and
the ideals I(φi), in case the ring is local. We first address the rank condition. Set
ri = ni − ni+1 + . . .+ (−1)e−ine. Note that ri + ri+1 = ni and note that ri is the
expected rank of φi (in the exact case).

By Lemma 99.5 we see that if F •,q is exact, then the localization F•,q is exact.
In particular the complex F• becomes exact after localizing by an element g ∈ S,
g ̸∈ q. In this case Proposition 102.9 applied to all localizations of S at prime ideals
implies that all (ri + 1)× (ri + 1)-minors of φi are zero. Thus we see that the rank
of φi is at most ri.

Let Ii ⊂ S denote the ideal generated by the ri × ri-minors of the matrix of φi.
By Proposition 102.9 the complex F •,q is exact if and only if for every 1 ≤ i ≤ e
we have either (Ii)q = Sq or (Ii)q contains a Sq/pSq-regular sequence of length i.
Namely, by our choice of ri above and by the bound on the ranks of the φi this is
the only way the conditions of Proposition 102.9 can be satisfied.

If (Ii)q = Sq, then after localizing S at some element g ̸∈ q we may assume that
Ii = S. Clearly, this is an open condition.

https://stacks.math.columbia.edu/tag/00RB
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If (Ii)q ̸= Sq, then we have a sequence f1, . . . , fi ∈ (Ii)q which form a regular
sequence in Sq/pSq. Note that for any prime q′ ⊂ S such that (f1, . . . , fi) ̸⊂ q′ we
have (Ii)q′ = Sq′ . Thus the result follows from Lemma 129.2. □

Theorem 129.4.00RC Let R be a ring. Let R→ S be a ring map of finite presentation.
Let M be a finitely presented S-module. The set

{q ∈ Spec(S) |Mq is flat over R}

is open in Spec(S).

Proof. Let q ∈ Spec(S) be a prime. Let p ⊂ R be the inverse image of q in R.
Note that Mq is flat over R if and only if it is flat over Rp. Let us assume that Mq

is flat over R. We claim that there exists a g ∈ S, g ̸∈ q such that Mg is flat over
R.

We first reduce to the case where R and S are of finite type over Z. Choose a
directed set Λ and a system (Rλ → Sλ,Mλ) as in Lemma 127.18. Set pλ equal to
the inverse image of p in Rλ. Set qλ equal to the inverse image of q in Sλ. Then
the system

((Rλ)pλ
, (Sλ)qλ

, (Mλ)qλ
)

is a system as in Lemma 127.13. Hence by Lemma 128.3 we see that for some λ
the module Mλ is flat over Rλ at the prime qλ. Suppose we can prove our claim for
the system (Rλ → Sλ,Mλ, qλ). In other words, suppose that we can find a g ∈ Sλ,
g ̸∈ qλ such that (Mλ)g is flat over Rλ. By Lemma 127.18 we have M = Mλ⊗Rλ

R
and hence also Mg = (Mλ)g ⊗Rλ

R. Thus by Lemma 39.7 we deduce the claim for
the system (R→ S,M, q).

At this point we may assume that R and S are of finite type over Z. We may write
S as a quotient of a polynomial ring R[x1, . . . , xn]. Of course, we may replace S by
R[x1, . . . , xn] and assume that S is a polynomial ring over R. In particular we see
that R→ S is flat and all fibres rings S ⊗R κ(p) have global dimension n.

Choose a resolution F• of M over S with each Fi finite free, see Lemma 71.1. Let
Kn = Ker(Fn−1 → Fn−2). Note that (Kn)q is flat over R, since each Fi is flat over
R and by assumption on M , see Lemma 39.13. In addition, the sequence

0→ Kn/pKn → Fn−1/pFn−1 → . . .→ F0/pF0 →M/pM → 0

is exact upon localizing at q, because of vanishing of TorRp

i (κ(p),Mq). Since the
global dimension of Sq/pSq is n we conclude that Kn/pKn localized at q is a finite
free module over Sq/pSq. By Lemma 99.4 (Kn)q is free over Sq. In particular,
there exists a g ∈ S, g ̸∈ q such that (Kn)g is finite free over Sg.

By Lemma 129.3 there exists a further localization Sg such that the complex

0→ Kn → Fn−1 → . . .→ F0

is exact on all fibres of R → S. By Lemma 99.5 this implies that the cokernel of
F1 → F0 is flat. This proves the theorem in the Noetherian case. □

https://stacks.math.columbia.edu/tag/00RC
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130. Openness of Cohen-Macaulay loci

00RD In this section we characterize the Cohen-Macaulay property of finite type algebras
in terms of flatness. We then use this to prove the set of points where such an
algebra is Cohen-Macaulay is open.

Lemma 130.1.00RE Let S be a finite type algebra over a field k. Let φ : k[y1, . . . , yd]→
S be a quasi-finite ring map. As subsets of Spec(S) we have

{q | Sq flat over k[y1, . . . , yd]} = {q | Sq CM and dimq(S/k) = d}
For notation see Definition 125.1.

Proof. Let q ⊂ S be a prime. Denote p = k[y1, . . . , yd] ∩ q. Note that always
dim(Sq) ≤ dim(k[y1, . . . , yd]p) by Lemma 125.4 for example. Moreover, the field
extension κ(q)/κ(p) is finite and hence trdegk(κ(p)) = trdegk(κ(q)).
Let q be an element of the left hand side. Then Lemma 112.9 applies and we
conclude that Sq is Cohen-Macaulay and dim(Sq) = dim(k[y1, . . . , yd]p). Combined
with the equality of transcendence degrees above and Lemma 116.3 this implies that
dimq(S/k) = d. Hence q is an element of the right hand side.
Let q be an element of the right hand side. By the equality of transcendence
degrees above, the assumption that dimq(S/k) = d and Lemma 116.3 we conclude
that dim(Sq) = dim(k[y1, . . . , yd]p). Hence Lemma 128.1 applies and we see that q
is an element of the left hand side. □

Lemma 130.2.00RF Let S be a finite type algebra over a field k. The set of primes q
such that Sq is Cohen-Macaulay is open in S.

This lemma is a special case of Lemma 130.4 below, so you can skip straight to the
proof of that lemma if you like.

Proof. Let q ⊂ S be a prime such that Sq is Cohen-Macaulay. We have to show
there exists a g ∈ S, g ̸∈ q such that the ring Sg is Cohen-Macaulay. For any g ∈ S,
g ̸∈ q we may replace S by Sg and q by qSg. Combining this with Lemmas 115.5 and
116.3 we may assume that there exists a finite injective ring map k[y1, . . . , yd]→ S
with d = dim(Sq) + trdegk(κ(q)). Set p = k[y1, . . . , yd] ∩ q. By construction we
see that q is an element of the right hand side of the displayed equality of Lemma
130.1. Hence it is also an element of the left hand side.
By Theorem 129.4 we see that for some g ∈ S, g ̸∈ q the ring Sg is flat over
k[y1, . . . , yd]. Hence by the equality of Lemma 130.1 again we conclude that all
local rings of Sg are Cohen-Macaulay as desired. □

Lemma 130.3.00RG Let k be a field. Let S be a finite type k algebra. The set of
Cohen-Macaulay primes forms a dense open U ⊂ Spec(S).

Proof. The set is open by Lemma 130.2. It contains all minimal primes q ⊂ S
since the local ring at a minimal prime Sq has dimension zero and hence is Cohen-
Macaulay. □

Lemma 130.4.00RH Let R be a ring. Let R → S be of finite presentation and flat.
For any d ≥ 0 the set{

q ∈ Spec(S) such that setting p = R ∩ q the fibre ring
Sq/pSq is Cohen-Macaulay and dimq(S/R) = d

}

https://stacks.math.columbia.edu/tag/00RE
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is open in Spec(S).

Proof. Let q be an element of the set indicated, with p the corresponding prime
of R. We have to find a g ∈ S, g ̸∈ q such that all fibre rings of R→ Sg are Cohen-
Macaulay. During the course of the proof we may (finitely many times) replace S
by Sg for a g ∈ S, g ̸∈ q. Thus by Lemma 125.2 we may assume there is a quasi-
finite ring map R[t1, . . . , td] → S with d = dimq(S/R). Let q′ = R[t1, . . . , td] ∩ q.
By Lemma 130.1 we see that the ring map

R[t1, . . . , td]q′/pR[t1, . . . , td]q′ −→ Sq/pSq

is flat. Hence by the critère de platitude par fibres Lemma 128.8 we see that
R[t1, . . . , td]q′ → Sq is flat. Hence by Theorem 129.4 we see that for some g ∈ S,
g ̸∈ q the ring map R[t1, . . . , td] → Sg is flat. Replacing S by Sg we see that for
every prime r ⊂ S, setting r′ = R[t1, . . . , td] ∩ r and p′ = R ∩ r the local ring map
R[t1, . . . , td]r′ → Sr is flat. Hence also the base change

R[t1, . . . , td]r′/p′R[t1, . . . , td]r′ −→ Sr/p
′Sr

is flat. Hence by Lemma 130.1 applied with k = κ(p′) we see r is in the set of the
lemma as desired. □

Lemma 130.5.00RI Let R be a ring. Let R→ S be flat of finite presentation. The set
of primes q such that the fibre ring Sq ⊗R κ(p), with p = R ∩ q is Cohen-Macaulay
is open and dense in every fibre of Spec(S)→ Spec(R).

Proof. The set, call it W , is open by Lemma 130.4. It is dense in the fibres
because the intersection of W with a fibre is the corresponding set of the fibre to
which Lemma 130.3 applies. □

Lemma 130.6.00RJ Let k be a field. Let S be a finite type k-algebra. Let K/k be a
field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime of S. Let qK ⊂ SK be
a prime of SK lying over q. Then Sq is Cohen-Macaulay if and only if (SK)qK

is
Cohen-Macaulay.

Proof. During the course of the proof we may (finitely many times) replace S
by Sg for any g ∈ S, g ̸∈ q. Hence using Lemma 115.5 we may assume that
dim(S) = dimq(S/k) =: d and find a finite injective map k[x1, . . . , xd] → S. Note
that this also induces a finite injective map K[x1, . . . , xd] → SK by base change.
By Lemma 116.6 we have dimqK

(SK/K) = d. Set p = k[x1, . . . , xd] ∩ q and pK =
K[x1, . . . , xd] ∩ qK . Consider the following commutative diagram of Noetherian
local rings

Sq
// (SK)qK

k[x1, . . . , xd]p //

OO

K[x1, . . . , xd]pK

OO

By Lemma 130.1 we have to show that the left vertical arrow is flat if and only if
the right vertical arrow is flat. Because the bottom arrow is flat this equivalence
holds by Lemma 100.1. □

Lemma 130.7.00RK Let R be a ring. Let R→ S be of finite type. Let R→ R′ be any
ring map. Set S′ = R′ ⊗R S. Denote f : Spec(S′) → Spec(S) the map associated
to the ring map S → S′. Set W equal to the set of primes q such that the fibre

https://stacks.math.columbia.edu/tag/00RI
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ring Sq⊗R κ(p), p = R∩ q is Cohen-Macaulay, and let W ′ denote the analogue for
S′/R′. Then W ′ = f−1(W ).

Proof. Trivial from Lemma 130.6 and the definitions. □

Lemma 130.8.00RL Let R be a ring. Let R → S be a ring map which is (a) flat,
(b) of finite presentation, (c) has Cohen-Macaulay fibres. Then we can write S =
S0 × . . .× Sn as a product of R-algebras Sd such that each Sd satisfies (a), (b), (c)
and has all fibres equidimensional of dimension d.

Proof. For each integer d denote Wd ⊂ Spec(S) the set defined in Lemma 130.4.
Clearly we have Spec(S) =

∐
Wd, and each Wd is open by the lemma we just

quoted. Hence the result follows from Lemma 24.3. □

131. Differentials

00RM In this section we define the module of differentials of a ring map.

Definition 131.1.00RN Let φ : R → S be a ring map and let M be an S-module. A
derivation, or more precisely an R-derivation into M is a map D : S → M which
is additive, annihilates elements of φ(R), and satisfies the Leibniz rule: D(ab) =
aD(b) + bD(a).

Note that D(ra) = rD(a) if r ∈ R and a ∈ S. An equivalent definition is that
an R-derivation is an R-linear map D : S → M which satisfies the Leibniz rule.
The set of all R-derivations forms an S-module: Given two R-derivations D,D′

the sum D + D′ : S → M , a 7→ D(a) + D′(a) is an R-derivation, and given an
R-derivation D and an element c ∈ S the scalar multiple cD : S →M , a 7→ cD(a)
is an R-derivation. We denote this S-module

DerR(S,M).

Also, if α : M → N is an S-module map, then the composition α ◦ D is an R-
derivation into N . In this way the assignment M 7→ DerR(S,M) is a covariant
functor.

Consider the following map of free S-modules⊕
(a,b)∈S2

S[(a, b)]⊕
⊕

(f,g)∈S2
S[(f, g)]⊕

⊕
r∈R

S[r] −→
⊕

a∈S
S[a]

defined by the rules

[(a, b)] 7−→ [a+ b]− [a]− [b], [(f, g)] 7−→ [fg]− f [g]− g[f ], [r] 7−→ [φ(r)]

with obvious notation. Let ΩS/R be the cokernel of this map. There is a map
d : S → ΩS/R which maps a to the class da of [a] in the cokernel. This is an
R-derivation by the relations imposed on ΩS/R, in other words

d(a+ b) = da+ db, d(fg) = fdg + gdf, dφ(r) = 0

where a, b, f, g ∈ S and r ∈ R.

Definition 131.2.07BK The pair (ΩS/R,d) is called the module of Kähler differentials
or the module of differentials of S over R.

https://stacks.math.columbia.edu/tag/00RL
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https://stacks.math.columbia.edu/tag/07BK


COMMUTATIVE ALGEBRA 326

Lemma 131.3.00RO The module of differentials of S over R has the following universal
property. The map

HomS(ΩS/R,M) −→ DerR(S,M), α 7−→ α ◦ d

is an isomorphism of functors.

Proof. By definition an R-derivation is a rule which associates to each a ∈ S an
element D(a) ∈ M . Thus D gives rise to a map [D] :

⊕
S[a] → M . However, the

conditions of being an R-derivation exactly mean that [D] annihilates the image of
the map in the displayed presentation of ΩS/R above. □

Lemma 131.4.00RP Suppose that R→ S is surjective. Then ΩS/R = 0.

Proof. You can see this either because all R-derivations clearly have to be zero,
or because the map in the presentation of ΩS/R is surjective. □

Suppose that

(131.4.1)00RQ

S
φ
// S′

R
ψ //

α

OO

R′

β

OO

is a commutative diagram of rings. In this case there is a natural map of modules
of differentials fitting into the commutative diagram

ΩS/R // ΩS′/R′

S

d

OO

φ // S′

d

OO

To construct the map just use the obvious map between the presentations for ΩS/R
and ΩS′/R′ . Namely,

(131.4.2)0H2F

⊕
S′[(a′, b′)]⊕

⊕
S′[(f ′, g′)]⊕

⊕
S′[r′] //⊕S′[a′]

⊕
S[(a, b)]⊕

⊕
S[(f, g)]⊕

⊕
S[r] //

[(a, b)] 7→ [(φ(a), φ(b))]
[(f, g)] 7→ [(φ(f), φ(g))]

[r] 7→ [ψ(r)]

OO

⊕
S[a]

[a] 7→[φ(a)]

OO

The result is simply that fdg ∈ ΩS/R is mapped to φ(f)dφ(g).

Lemma 131.5.031G Let I be a directed set. Let (Ri → Si, φii′) be a system of ring
maps over I, see Categories, Section 21. Then we have

ΩS/R = colimi ΩSi/Ri
.

where R→ S = colim(Ri → Si).

Proof. This is clear from the defining presentation of ΩS/R and the functoriality
of this described above. □

https://stacks.math.columbia.edu/tag/00RO
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Lemma 131.6.00RR In diagram (131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S. Then ΩS/R → ΩS′/R′ is surjective with kernel generated as an S-
module by the elements da, where a ∈ S is such that φ(a) ∈ β(R′). (This includes
in particular the elements d(i), i ∈ I.)

First proof. Consider the map of presentations (131.4.2). Clearly the right ver-
tical map of free modules is surjective. Thus the map is surjective. Suppose that
some element η of ΩS/R maps to zero in ΩS′/R′ . Write η as the image of

∑
si[ai]

for some si, ai ∈ S. Then we see that
∑
φ(si)[φ(ai)] is the image of an element

θ =
∑

s′
j [a′

j , b
′
j ] +

∑
s′
k[f ′

k, g
′
k] +

∑
s′
l[r′
l]

in the upper left corner of the diagram. Since φ is surjective, the terms s′
j [a′

j , b
′
j ] and

s′
k[f ′

k, g
′
k] are in the image of elements in the lower right corner. Thus, modifying η

and θ by subtracting the images of these elements, we may assume θ =
∑
s′
l[r′
l]. In

other words, we see
∑
φ(si)[φ(ai)] is of the form

∑
s′
l[β(r′

l)]. Next, we may assume
that we have some a′ ∈ S′ such that a′ = φ(ai) for all i and a′ = β(r′

l) for all l.
This is clear from the direct sum decomposition of the upper right corner of the
diagram. Choose a ∈ S with φ(a) = a′. Then we can write ai = a + xi for some
xi ∈ I. Thus we may assume that all ai are equal to a by using the relations that
are allowed. But then we may assume our element is of the form s[a]. We still know
that φ(s)[a′] =

∑
φ(s′

l)[β(r′
l)]. Hence either φ(s) = 0 and we’re done, or a′ = φ(a)

is in the image of β and we’re done as well. □

Second proof. We will use the universal property of modules of differentials given
in Lemma 131.3 without further mention.

In (131.4.1) let R′′ = S ×S′ R′. Then we have following diagram:

S // S // S′

R //

OO

R′′ //

OO

R′

OO

Let M be an S-module. It follows immediately from the definitions that an R-
derivation D : S →M is an R′′-derivation if and only if it annihilates the elements
in the image of R′′ → S. The universal property translates this into the statement
that the natural map ΩS/R → ΩS/R′′ is surjective with kernel generated as an
S-module by the image of R′′.

From the previous paragraph we see that it suffices to show that ΩS/R → ΩS′/R′

is an isomorphism when S → S′ is surjective and R = S ×S′ R′. Let M ′ be an
S′-module. Observe that any R′-derivation D′ : S′ → M ′ gives an R-derivation
by precomposing with S → S′. Conversely, suppose M is an S-module and D :
S → M is an R-derivation. If i ∈ I, then there exist an a ∈ R with α(a) = i
(as R = S ×S′ R′). It follows that D(i) = 0 and hence 0 = D(is) = iD(s) for all
s ∈ S. Thus the image of D is contained in the submodule M ′ ⊂ M of elements
annihilated by I and moreover the induced map S → M ′ factors through an R′-
derivation S′ →M ′. It is an exercise to use the universal property to see that this
means ΩS/R → ΩS′/R′ is an isomorphism; details omitted. □

https://stacks.math.columbia.edu/tag/00RR
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Lemma 131.7.00RS Let A → B → C be ring maps. Then there is a canonical exact
sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of C-modules.

Proof. We get a diagram (131.4.1) by putting R = A, S = C, R′ = B, and
S′ = C. By Lemma 131.6 the map ΩC/A → ΩC/B is surjective, and the kernel is
generated by the elements d(c), where c ∈ C is in the image of B → C. The lemma
follows. □

Lemma 131.8.00RT Let φ : A→ B be a ring map.
(1) If S ⊂ A is a multiplicative subset mapping to invertible elements of B,

then ΩB/A = ΩB/S−1A.
(2) If S ⊂ B is a multiplicative subset then S−1ΩB/A = ΩS−1B/A.

Proof. To show the equality of (1) it is enough to show that any A-derivation
D : B → M annihilates the elements φ(s)−1. This is clear from the Leibniz
rule applied to 1 = φ(s)φ(s)−1. To show (2) note that there is an obvious map
S−1ΩB/A → ΩS−1B/A. To show it is an isomorphism it is enough to show that
there is a A-derivation d′ of S−1B into S−1ΩB/A. To define it we simply set
d′(b/s) = (1/s)db− (1/s2)bds. Details omitted. □

Lemma 131.9.00RU In diagram (131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S, and assume that R′ = R. Then there is a canonical exact sequence
of S′-modules

I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0
The leftmost map is characterized by the rule that f ∈ I maps to df ⊗ 1.

Proof. The middle term is ΩS/R ⊗S S/I. For f ∈ I denote f the image of f in
I/I2. To show that the map f 7→ df ⊗ 1 is well defined we just have to check that
df1f2 ⊗ 1 = 0 if f1, f2 ∈ I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df1 ⊗ f2 = 0. A similar computation show this
map is S′ = S/I-linear.
The map ΩS/R ⊗S S′ → ΩS′/R is the canonical S′-linear map associated to the
S-linear map ΩS/R → ΩS′/R. It is surjective because ΩS/R → ΩS′/R is surjective
by Lemma 131.6.
The composite of the two maps is zero because df maps to zero in ΩS′/R for f ∈ I.
Note that exactness just says that the kernel of ΩS/R → ΩS′/R is generated as an
S-submodule by the submodule IΩS/R together with the elements df , with f ∈ I.
We know by Lemma 131.6 that this kernel is generated by the elements d(a) where
φ(a) = β(r) for some r ∈ R. But then a = α(r) + a− α(r), so d(a) = d(a− α(r)).
And a − α(r) ∈ I since φ(a − α(r)) = φ(a) − φ(α(r)) = β(r) − β(r) = 0. We
conclude the elements df with f ∈ I already generate the kernel as an S-module,
as desired. □

Lemma 131.10.02HP In diagram (131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S, and assume that R′ = R. Moreover, assume that there exists an
R-algebra map S′ → S which is a right inverse to S → S′. Then the exact sequence
of S′-modules of Lemma 131.9 turns into a short exact sequence

0 −→ I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

https://stacks.math.columbia.edu/tag/00RS
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which is even a split short exact sequence.

Proof. Let β : S′ → S be the right inverse to the surjection α : S → S′, so
S = I ⊕ β(S′). Clearly we can use β : ΩS′/R → ΩS/R, to get a right inverse to the
map ΩS/R ⊗S S′ → ΩS′/R. On the other hand, consider the map

D : S −→ I/I2, x 7−→ x− β(α(x))
It is easy to show that D is an R-derivation (omitted). Moreover xD(s) = 0 if x ∈
I, s ∈ S. Hence, by the universal property D induces a map τ : ΩS/R⊗S S′ → I/I2.
We omit the verification that it is a left inverse to d : I/I2 → ΩS/R ⊗S S′. Hence
we win. □

Lemma 131.11.02HQ Let R → S be a ring map. Let I ⊂ S be an ideal. Let n ≥ 1 be
an integer. Set S′ = S/In+1. The map ΩS/R → ΩS′/R induces an isomorphism

ΩS/R ⊗S S/In −→ ΩS′/R ⊗S′ S/In.

Proof. This follows from Lemma 131.9 and the fact that d(In+1) ⊂ InΩS/R by
the Leibniz rule for d. □

Lemma 131.12.00RV Suppose that we have ring maps R → R′ and R → S. Set
S′ = S ⊗R R′, so that we obtain a diagram (131.4.1). Then the canonical map
defined above induces an isomorphism ΩS/R ⊗R R′ = ΩS′/R′ .

Proof. Let d′ : S′ = S ⊗R R′ → ΩS/R ⊗R R′ denote the map d′(
∑
ai ⊗ xi) =∑

d(ai)⊗ xi. It exists because the map S ×R′ → ΩS/R ⊗R R′, (a, x) 7→ da⊗R x is
R-bilinear. This is an R′-derivation, as can be verified by a simple computation. We
will show that (ΩS/R ⊗R R′,d′) satisfies the universal property. Let D : S′ → M ′

be an R′-derivation into an S′-module. The composition S → S′ → M ′ is an R-
derivation, hence we get an S-linear map φD : ΩS/R → M ′. We may tensor this
with R′ and get the map φ′

D : ΩS/R ⊗R R′ →M ′, φ′
D(η ⊗ x) = xφD(η). It is clear

that D = φ′
D ◦ d′. □

The multiplication map S ⊗R S → S is the R-algebra map which maps a⊗ b to ab
in S. It is also an S-algebra map, if we think of S ⊗R S as an S-algebra via either
of the maps S → S ⊗R S.

Lemma 131.13.00RW Let R → S be a ring map. Let J = Ker(S ⊗R S → S) be the
kernel of the multiplication map. There is a canonical isomorphism of S-modules
ΩS/R → J/J2, adb 7→ a⊗ b− ab⊗ 1.

First proof. Apply Lemma 131.10 to the commutative diagram
S ⊗R S // S

S //

OO

S

OO

where the left vertical arrow is a 7→ a⊗ 1. We get the exact sequence 0→ J/J2 →
ΩS⊗RS/S⊗S⊗RSS → ΩS/S → 0. By Lemma 131.4 the term ΩS/S is 0, and we obtain
an isomorphism between the other two terms. We have ΩS⊗RS/S = ΩS/R⊗S (S⊗R
S) by Lemma 131.12 as S → S ⊗R S is the base change of R→ S and hence

ΩS⊗RS/S ⊗S⊗RS S = ΩS/R ⊗S (S ⊗R S)⊗S⊗RS S = ΩS/R
We omit the verification that the map is given by the rule of the lemma. □

https://stacks.math.columbia.edu/tag/02HQ
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Second proof. First we show that the rule adb 7→ a ⊗ b − ab ⊗ 1 is well defined.
In order to do this we have to show that dr and adb + bda − d(ab) map to zero.
The first because r⊗ 1− 1⊗ r = 0 by definition of the tensor product. The second
because
(a⊗ b− ab⊗ 1) + (b⊗ a− ba⊗ 1)− (1⊗ ab− ab⊗ 1) = (a⊗ 1− 1⊗ a)(1⊗ b− b⊗ 1)
is in J2.
We construct a map in the other direction. We may think of S → S⊗RS, a 7→ a⊗1
as the base change of R → S. Hence we have ΩS⊗RS/S = ΩS/R ⊗S (S ⊗R S), by
Lemma 131.12. At this point the sequence of Lemma 131.9 gives a map

J/J2 → ΩS⊗RS/S ⊗S⊗RS S = (ΩS/R ⊗S (S ⊗R S))⊗S⊗RS S = ΩS/R.
We leave it to the reader to see it is the inverse of the map above. □

Lemma 131.14.00RX If S = R[x1, . . . , xn], then ΩS/R is a finite free S-module with
basis dx1, . . . , dxn.

Proof. We first show that dx1, . . . ,dxn generate ΩS/R as an S-module. To prove
this we show that dg can be expressed as a sum

∑
gidxi for any g ∈ R[x1, . . . , xn].

We do this by induction on the (total) degree of g. It is clear if the degree of g is 0,
because then dg = 0. If the degree of g is > 0, then we may write g as c+

∑
gixi with

c ∈ R and deg(gi) < deg(g). By the Leibniz rule we have dg =
∑
gidxi +

∑
xidgi,

and hence we win by induction.
Consider the R-derivation ∂/∂xi : R[x1, . . . , xn] → R[x1, . . . , xn]. (We leave it to
the reader to define this; the defining property being that ∂/∂xi(xj) = δij .) By the
universal property this corresponds to an S-module map li : ΩS/R → R[x1, . . . , xn]
which maps dxi to 1 and dxj to 0 for j ̸= i. Thus it is clear that there are no
S-linear relations among the elements dx1, . . . ,dxn. □

Lemma 131.15.00RY Suppose R→ S is of finite presentation. Then ΩS/R is a finitely
presented S-module.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). Write I = (f1, . . . , fm). According
to Lemma 131.9 there is an exact sequence of S-modules

I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0
The result follows from the fact that I/I2 is a finite S-module (generated by the
images of the fi), and that the middle term is finite free by Lemma 131.14. □

Lemma 131.16.00RZ Suppose R→ S is of finite type. Then ΩS/R is finitely generated
S-module.

Proof. This is very similar to, but easier than the proof of Lemma 131.15. □

132. The de Rham complex

0FKF Let A→ B be a ring map. Denote d : B → ΩB/A the module of differentials with
its universal A-derivation constructed in Section 131. Let ΩiB/A = ∧iB(ΩB/A) for
i ≥ 0 be the ith exterior power as in Section 13. The de Rham complex of B over
A is the complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

with A-linear differentials constructed and described below.

https://stacks.math.columbia.edu/tag/00RX
https://stacks.math.columbia.edu/tag/00RY
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The map d : Ω0
B/A → Ω1

B/A is the universal derivation d : B → ΩB/A. Observe
that this is indeed A-linear.

For p ≥ 1 we claim there is a unique A-linear map d : ΩpB/A → Ωp+1
B/A such that

(132.0.1)0FKG d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp
Recall that ΩB/A is generated as a B-module by the elements db. Thus ΩpB/A is
generated as an A-module by the elements b0db1 ∧ . . .∧ dbp and it follows that the
map d : ΩpB/A → Ωp+1

B/A if it exists is unique.

Construction of d : Ω1
B/A → Ω2

B/A. By Definition 131.2 the elements db freely
generate ΩB/A as a B-module subject to the relations da = 0 for a ∈ A and
d(b′ + b′′) = db′ + db′′ and d(b′b′′) = b′db′′ + b′′db′ for b′, b′′ ∈ B. Hence to show
that the rule ∑

b′
idbi 7−→

∑
db′
i ∧ dbi

is well defined we have to show that the elements

bda, and bd(b′ + b′′)− bdb′ − bdb′′ and bd(b′b′′)− bb′db′′ − bb′′db′

for a ∈ A and b, b′, b′′ ∈ B are mapped to zero. This is clear by direct computation
using the Leibniz rule for d.

Observe that the composition Ω0
B/A → Ω1

B/A → Ω2
B/A is zero as d(d(b)) = d(1db) =

d(1) ∧ d(b) = 0 ∧ db = 0. Here d(1) = 0 as 1 ∈ B is in the image of A → B. We
will use this below.

Construction of d : ΩpB/A → Ωp+1
B/A for p ≥ 2. We will show the A-linear map

γ : Ω1
B/A ⊗A . . .⊗A Ω1

B/A −→ Ωp+1
B/A

defined by the formula

ω1 ⊗ . . .⊗ ωp 7−→
∑

(−1)i+1ω1 ∧ . . . ∧ d(ωi) ∧ . . . ∧ ωp

factors over the natural surjection Ω1
B/A⊗A . . .⊗AΩ1

B/A → ΩpB/A to give the desired
map d : ΩpB/A → Ωp+1

B/A. According to Lemma 13.4 the kernel of Ω1
B/A ⊗A . . . ⊗A

Ω1
B/A → ΩpB/A is generated as an A-module by the elements ω1 ⊗ . . . ⊗ ωp with

ωi = ωj for some i ̸= j and ω1⊗ . . .⊗ fωi⊗ . . .⊗ωp−ω1⊗ . . .⊗ fωj ⊗ . . .⊗ωp for
some f ∈ B. A direct computation shows the first type of element is mapped to 0
by γ, in other words, γ is alternating. To finish we have to show that

γ(ω1 ⊗ . . .⊗ fωi ⊗ . . .⊗ ωp) = γ(ω1 ⊗ . . .⊗ fωj ⊗ . . .⊗ ωp)

for f ∈ B. By A-linearity and the alternating property, it is enough to show this
for p = 2, i = 1, j = 2, ω1 = bdb′ and ω2 = cdc′ for b, b′, c, c′ ∈ B. Thus we need to
show that

d(fb) ∧ db′ ∧ cdc′ − fbdb′ ∧ dc ∧ dc′

= db ∧ db′ ∧ fcdc′ − bdb′ ∧ d(fc) ∧ dc′

in other words that

(cd(fb) + fbdc− fcdb− bd(fc)) ∧ db′ ∧ dc′ = 0.
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This follows from the Leibniz rule. Observe that the value of γ on the element
b0db1 ⊗ db2 ⊗ . . .⊗ dbp is db0 ∧ db1 ∧ . . . ∧ dbp and hence (132.0.1) will be satisfied
for the map d : ΩpB/A → Ωp+1

B/A so obtained.

Finally, since ΩpB/A is additively generated by the elements b0db1 ∧ . . . ∧ dbp and
since d(b0db1 ∧ . . . ∧ dbp) = db0 ∧ . . . ∧ dbp we see in exactly the same manner that
the composition ΩpB/A → Ωp+1

B/A → Ωp+2
B/A is zero for p ≥ 1. Thus the de Rham

complex is indeed a complex.
Given just a ring R we set ΩR = ΩR/Z. This is sometimes called the absolute
module of differentials of R; this makes sense: if ΩR is the module of differentials
where we only assume the Leibniz rule and not the vanishing of d1, then the Leibniz
rule gives d1 = d(1 · 1) = 1d1 + 1d1 = 2d1 and hence d1 = 0 in ΩR. In this case
the absolute de Rham complex of R is the corresponding complex

Ω0
R → Ω1

R → Ω2
R → . . .

where we set ΩiR = ΩiR/Z and so on.
Suppose we have a commutative diagram of rings

B // B′

A //

OO

A′

OO

There is a natural map of de Rham complexes
Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A →
ΩB′/A′ constructed in Section 131, and for p ≥ 2 it is the induced map ΩpB/A =
∧pB(ΩB/A) → ∧pB′(ΩB′/A′) = ΩpB′/A′ . The compatibility with differentials follows
from the characterization of the differentials by the formula (132.0.1).

Lemma 132.1.07HY Let A→ B be a ring map. Let π : ΩB/A → Ω be a surjective B-
module map. Denote d : B → Ω the composition of π with the universal derivation
dB/A : B → ΩB/A. Set Ωi = ∧iB(Ω). Assume that the kernel of π is generated, as
a B-module, by elements ω ∈ ΩB/A such that dB/A(ω) ∈ Ω2

B/A maps to zero in Ω2.
Then there is a de Rham complex

Ω0 → Ω1 → Ω2 → . . .

whose differential is defined by the rule
d : Ωp → Ωp+1, d (f0df1 ∧ . . . ∧ dfp) = df0 ∧ df1 ∧ . . . ∧ dfp

Proof. We will show that there exists a commutative diagram

Ω0
B/A

��

dB/A

// Ω1
B/A

π

��

dB/A

// Ω2
B/A

∧2π
��

dB/A

// . . .

Ω0 d // Ω1 d // Ω2 d // . . .

the description of the map d will follow from the construction of the differentials
dB/A : ΩpB/A → Ωp+1

B/A of the de Rham complex of B over A given above. Since the
left most vertical arrow is an isomorphism we have the first square. Because π is

https://stacks.math.columbia.edu/tag/07HY
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surjective, to get the second square it suffices to show that dB/A maps the kernel
of π into the kernel of ∧2π. We are given that any element of the kernel of π is of
the form

∑
biωi with π(ωi) = 0 and ∧2π(dB/A(ωi)) = 0. By the Leibniz rule for

dB/A we have dB/A(
∑
biωi) =

∑
bidB/A(ωi) +

∑
dB/A(bi) ∧ ωi. Hence this maps

to zero under ∧2π.

For i > 1 we note that ∧iπ is surjective with kernel the image of Ker(π)∧Ωi−1
B/A →

ΩiB/A. For ω1 ∈ Ker(π) and ω2 ∈ Ωi−1
B/A we have

dB/A(ω1 ∧ ω2) = dB/A(ω1) ∧ ω2 − ω1 ∧ dB/A(ω2)

which is in the kernel of ∧i+1π by what we just proved above. Hence we get the
(i+ 1)st square in the diagram above. This concludes the proof. □

133. Finite order differential operators

09CH In this section we introduce differential operators of finite order.

Definition 133.1.09CI Let R→ S be a ring map. Let M , N be S-modules. Let k ≥ 0
be an integer. We inductively define a differential operator D : M → N of order k
to be an R-linear map such that for all g ∈ S the map m 7→ D(gm)− gD(m) is a
differential operator of order k− 1. For the base case k = 0 we define a differential
operator of order 0 to be an S-linear map.

If D : M → N is a differential operator of order k, then for all g ∈ S the map gD
is a differential operator of order k. The sum of two differential operators of order
k is another. Hence the set of all these

Diffk(M,N) = DiffkS/R(M,N)

is an S-module. We have

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

Lemma 133.2.09CJ Let R→ S be a ring map. Let L,M,N be S-modules. If D : L→
M and D′ : M → N are differential operators of order k and k′, then D′ ◦D is a
differential operator of order k + k′.

Proof. Let g ∈ S. Then the map which sends x ∈ L to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. □

Lemma 133.3.09CK Let R → S be a ring map. Let M be an S-module. Let k ≥ 0.
There exists an S-module P kS/R(M) and a canonical isomorphism

DiffkS/R(M,N) = HomS(P kS/R(M), N)

functorial in the S-module N .

Proof. The existence of P kS/R(M) follows from general category theoretic argu-
ments (insert future reference here), but we will also give a construction. Set
F =

⊕
m∈M S[m] where [m] is a symbol indicating the basis element in the sum-

mand corresponding to m. Given any differential operator D : M → N we obtain

https://stacks.math.columbia.edu/tag/09CI
https://stacks.math.columbia.edu/tag/09CJ
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an S-linear map LD : F → N sending [m] to D(m). If D has order 0, then LD
annihilates the elements

[m+m′]− [m]− [m′], g0[m]− [g0m]
where g0 ∈ S and m,m′ ∈M . If D has order 1, then LD annihilates the elements

[m+m′]− [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]
where f ∈ R, g0, g1 ∈ S, and m ∈ M . If D has order k, then LD annihilates the
elements [m+m′]− [m]− [m′], f [m]− [fm], and the elements

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : F → N is an S-linear map annihilating all the elements listed in
the previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus
we see that P kS/R(M) is the quotient of F by the submodule generated by these
elements. □

Definition 133.4.09CL Let R → S be a ring map. Let M be an S-module. The
module P kS/R(M) constructed in Lemma 133.3 is called the module of principal
parts of order k of M .

Note that the inclusions
Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 3.5) to surjections
. . .→ P 2

S/R(M)→ P 1
S/R(M)→ P 0

S/R(M) = M

Example 133.5.09CM Let R→ S be a ring map and let N be an S-module. Observe
that Diff1(S,N) = DerR(S,N)⊕N . Namely, if D : S → N is a differential operator
of order 1 then σD : S → N defined by σD(g) := D(g)− gD(1) is an R-derivation
and D = σD+λD(1) where λx : S → N is the linear map sending g to gx. It follows
that P 1

S/R = ΩS/R ⊕ S by the universal property of ΩS/R.

Lemma 133.6.09CN Let R → S be a ring map. Let M be an S-module. There is a
canonical short exact sequence

0→ ΩS/R ⊗S M → P 1
S/R(M)→M → 0

functorial in M called the sequence of principal parts.

Proof. The map P 1
S/R(M) → M is given above. Let N be an S-module and let

D : M → N be a differential operator of order 1. For m ∈M the map
g 7−→ D(gm)− gD(m)

is an R-derivation S → N by the axioms for differential operators of order 1.
Thus it corresponds to a linear map Dm : ΩS/R → N determined by the rule
adb 7→ aD(bm)− abD(m) (see Lemma 131.3). The map

ΩS/R ×M −→ N, (η,m) 7−→ Dm(η)
is S-bilinear (details omitted) and hence determines an S-linear map

σD : ΩS/R ⊗S M → N

In this way we obtain a map Diff1(M,N) → HomS(ΩS/R ⊗S M,N), D 7→ σD
functorial in N . By the Yoneda lemma this corresponds a map ΩS/R ⊗S M →

https://stacks.math.columbia.edu/tag/09CL
https://stacks.math.columbia.edu/tag/09CM
https://stacks.math.columbia.edu/tag/09CN
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P 1
S/R(M). It is immediate from the construction that this map is functorial in M .

The sequence
ΩS/R ⊗S M → P 1

S/R(M)→M → 0
is exact because for every module N the sequence

0→ HomS(M,N)→ Diff1(M,N)→ HomS(ΩS/R ⊗S M,N)
is exact by inspection.
To see that ΩS/R ⊗S M → P 1

S/R(M) is injective we argue as follows. Choose an
exact sequence

0→M ′ → F →M → 0
with F a free S-module. This induces an exact sequence

0→ Diff1(M,N)→ Diff1(F,N)→ Diff1(M ′, N)
for all N . This proves that in the commutative diagram

0 // ΩS/R ⊗S M ′ //

��

P 1
S/R(M ′) //

��

M ′ //

��

0

0 // ΩS/R ⊗S F //

��

P 1
S/R(F ) //

��

F //

��

0

0 // ΩS/R ⊗S M //

��

P 1
S/R(M) //

��

M //

��

0

0 0 0
the middle column is exact. The left column is exact by right exactness of ΩS/R⊗S
−. By the snake lemma (see Section 4) it suffices to prove exactness on the left for
the free module F . Using that P 1

S/R(−) commutes with direct sums we reduce to
the case M = S. This case is a consequence of the discussion in Example 133.5. □

Remark 133.7.09CP Suppose given a commutative diagram of rings

B // B′

A

OO

// A′

OO

a B-module M , a B′-module M ′, and a B-linear map M → M ′. Then we get a
compatible system of module maps

. . . // P 2
B′/A′(M ′) // P 1

B′/A′(M ′) // P 0
B′/A′(M ′)

. . . // P 2
B/A(M) //

OO

P 1
B/A(M) //

OO

P 0
B/A(M)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules P kB/A(M) in terms
of generators and relations in the proof of Lemma 133.3 but it can also be seen

https://stacks.math.columbia.edu/tag/09CP
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directly from the universal property of these modules. Moreover, these maps are
compatible with the short exact sequences of Lemma 133.6.

Lemma 133.8.0G34 Let A → B be a ring map. The differentials d : ΩiB/A → Ωi+1
B/A

are differential operators of order 1.

Proof. Given b ∈ B we have to show that d ◦ b − b ◦ d is a linear operator. Thus
we have to show that

d ◦ b ◦ b′ − b ◦ d ◦ b′ − b′ ◦ d ◦ b+ b′ ◦ b ◦ d = 0
To see this it suffices to check this on additive generators for ΩiB/A. Thus it suffices
to show that
d(bb′b0db1∧. . .∧dbi)−bd(b′b0db1∧. . .∧dbi)−b′d(bb0db1∧. . .∧dbi)+bb′d(b0db1∧. . .∧dbi)
is zero. This is a pleasant calculation using the Leibniz rule which is left to the
reader. □

Lemma 133.9.0G35 Let A→ B be a ring map. Let gi ∈ B, i ∈ I be a set of generators
for B as an A-algebra. Let M,N be B-modules. Let D : M → N be an A-linear
map. In order to show that D is a differential operator of order k it suffices to show
that D ◦ gi − gi ◦D is a differential operator of order k − 1 for i ∈ I.

Proof. Namely, we claim that the set of elements g ∈ B such that D ◦ g − g ◦D
is a differential operator of order k − 1 is an A-subalgebra of B. This follows from
the relations

D ◦ (g + g′)− (g + g′) ◦D = (D ◦ g − g ◦D) + (D ◦ g′ − g′ ◦D)
and

D ◦ gg′ − gg′ ◦D = (D ◦ g − g ◦D) ◦ g′ + g ◦ (D ◦ g′ − g′ ◦D)
Strictly speaking, to conclude for products we also use Lemma 133.2. □

Lemma 133.10.0G36 Let A→ B be a ring map. Let M,N be B-modules. Let S ⊂ B
be a multiplicative subset. Any differential operator D : M → N of order k extends
uniquely to a differential operator E : S−1M → S−1N of order k.

Proof. By induction on k. If k = 0, then D is B-linear and hence we get the
extension by the functoriality of localization. Given b ∈ B the operator Lb : m 7→
D(bm)− bD(m) has order k − 1. Hence it has a unique extension to a differential
operator Eb : S−1M → S−1N of order k−1 by induction. Moreover, a computation
shows that Lb′b = Lb′◦b+b′◦Lb hence by uniqueness we obtain Eb′b = Eb′◦b+b′◦Eb.
Similarly, we obtain Eb′ ◦ b− b ◦Eb′ = Eb ◦ b′ − b′ ◦Eb. Now for m ∈M and g ∈ S
we set

E(m/g) = (1/g)(D(m)− Eg(m/g))
To show that this is well defined it suffices to show that for g′ ∈ S if we use the
representative g′m/g′g we get the same result. We compute

(1/g′g)(D(g′m)− Eg′g(g′m/gg′)) = (1/gg′)(g′D(m) + Eg′(m)− Eg′g(g′m/gg′))
= (1/g′g)(g′D(m)− g′Eg(m/g))

which is the same as before. It is clear that E is R-linear as D and Eg are R-linear.
Taking g = 1 and using that E1 = 0 we see that E extends D. By Lemma 133.9 it
now suffices to show that E ◦ b− b ◦E for b ∈ B and E ◦ 1/g′ − 1/g′ ◦E for g′ ∈ S
are differential operators of order k − 1 in order to show that E is a differential

https://stacks.math.columbia.edu/tag/0G34
https://stacks.math.columbia.edu/tag/0G35
https://stacks.math.columbia.edu/tag/0G36
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operator of order k. For the first, choose an element m/g in S−1M and observe
that

E(bm/g)− bE(m/g) = (1/g)(D(bm)− bD(m)− Eg(bm/g) + bEg(m/g))
= (1/g)(Lb(m)− Eb(m) + gEb(m/g))
= Eb(m/g)

which is a differential operator of order k − 1. Finally, we have

E(m/g′g)− (1/g′)E(m/g) = (1/g′g)(D(m)− Eg′g(m/g′g))− (1/g′g)(D(m)− Eg(m/g))
= −(1/g′)Eg′(m/g′g)

which also is a differential operator of order k−1 as the composition of linear maps
(multiplication by 1/g′ and signs) and Eg′ . We omit the proof of uniqueness. □

Lemma 133.11.0G37 Let R → A and R → B be ring maps. Let M and M ′ be A-
modules. Let D : M → M ′ be a differential operator of order k with respect to
R→ A. Let N be any B-module. Then the map

D ⊗ idN : M ⊗R N →M ′ ⊗R N

is a differential operator of order k with respect to B → A⊗R B.

Proof. It is clear that D′ = D ⊗ idN is B-linear. By Lemma 133.9 it suffices to
show that

D′ ◦ a⊗ 1− a⊗ 1 ◦D′ = (D ◦ a− a ◦D)⊗ idN
is a differential operator of order k − 1 which follows by induction on k. □

134. The naive cotangent complex

00S0 Let R→ S be a ring map. Denote R[S] the polynomial ring whose variables are the
elements s ∈ S. Let’s denote [s] ∈ R[S] the variable corresponding to s ∈ S. Thus
R[S] is a free R-module on the basis elements [s1] . . . [sn] where s1, . . . , sn ranges
over all unordered sequences of elements of S. There is a canonical surjection

(134.0.1)07BL R[S] −→ S, [s] 7−→ s

whose kernel we denote I ⊂ R[S]. It is a simple observation that I is generated by
the elements [s+ s′]− [s]− [s′], [s][s′]− [ss′] and [r]− r. According to Lemma 131.9
there is a canonical map

(134.0.2)07BM I/I2 −→ ΩR[S]/R ⊗R[S] S

whose cokernel is canonically isomorphic to ΩS/R. Observe that the S-module
ΩR[S]/R ⊗R[S] S is free on the generators d[s].

Definition 134.1.07BN Let R→ S be a ring map. The naive cotangent complex NLS/R
is the chain complex (134.0.2)

NLS/R =
(
I/I2 −→ ΩR[S]/R ⊗R[S] S

)
with I/I2 placed in (homological) degree 1 and ΩR[S]/R⊗R[S] S placed in degree 0.
We will denote H1(LS/R) = H1(NLS/R)12 the homology in degree 1.

12This module is sometimes denoted ΓS/R in the literature.

https://stacks.math.columbia.edu/tag/0G37
https://stacks.math.columbia.edu/tag/07BN
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Before we continue let us say a few words about the actual cotangent complex
(Cotangent, Section 3). Given a ring map R→ S there exists a canonical simplicial
R-algebra P• whose terms are polynomial algebras and which comes equipped with
a canonical homotopy equivalence

P• −→ S

The cotangent complex LS/R of S over R is defined as the chain complex associated
to the simplicial module

ΩP•/R ⊗P• S

The naive cotangent complex as defined above is canonically isomorphic to the
truncation τ≤1LS/R (see Homology, Section 15 and Cotangent, Section 11). In
particular, it is indeed the case that H1(NLS/R) = H1(LS/R) so our definition
is compatible with the one using the cotangent complex. Moreover, H0(LS/R) =
H0(NLS/R) = ΩS/R as we’ve seen above.
Let R→ S be a ring map. A presentation of S over R is a surjection α : P → S of
R-algebras where P is a polynomial algebra (on a set of variables). Often, when S
is of finite type over R we will indicate this by saying: “Let R[x1, . . . , xn] → S be
a presentation of S/R”, or “Let 0→ I → R[x1, . . . , xn]→ S → 0 be a presentation
of S/R” if we want to indicate that I is the kernel of the presentation. Note that
the map R[S] → S used to define the naive cotangent complex is an example of a
presentation.
Note that for every presentation α we obtain a two term chain complex of S-modules

NL(α) : I/I2 −→ ΩP/R ⊗P S.
Here the term I/I2 is placed in degree 1 and the term ΩP/R⊗S is placed in degree
0. The class of f ∈ I in I/I2 is mapped to df ⊗1 in ΩP/R⊗S. The cokernel of this
complex is canonically ΩS/R, see Lemma 131.9. We call the complex NL(α) the
naive cotangent complex associated to the presentation α : P → S of S/R. Note
that if P = R[S] with its canonical surjection onto S, then we recover NLS/R. If
P = R[x1, . . . , xn] then will sometimes use the notation I/I2 →

⊕
i=1,...,n Sdxi to

denote this complex.
Suppose we are given a commutative diagram

(134.1.1)06RQ

S
ϕ
// S′

R //

OO

R′

OO

of rings. Let α : P → S be a presentation of S over R and let α′ : P ′ → S′ be
a presentation of S′ over R′. A morphism of presentations from α : P → S to
α′ : P ′ → S′ is defined to be an R-algebra map

φ : P → P ′

such that ϕ ◦ α = α′ ◦ φ. Note that in this case φ(I) ⊂ I ′, where I = Ker(α)
and I ′ = Ker(α′). Thus φ induces a map of S-modules I/I2 → I ′/(I ′)2 and by
functoriality of differentials also an S-module map ΩP/R⊗S → ΩP ′/R′ ⊗S′. These
maps are compatible with the differentials of NL(α) and NL(α′) and we obtain a
map of naive cotangent complexes

NL(α) −→ NL(α′).
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It is often convenient to consider the induced map NL(α)⊗S S′ → NL(α′).

In the special case that P = R[S] and P ′ = R′[S′] the map ϕ : S → S′ induces a
canonical ring map φ : P → P ′ by the rule [s] 7→ [ϕ(s)]. Hence the construction
above determines canonical(!) maps of chain complexes

NLS/R −→ NLS′/R′ , and NLS/R⊗SS′ −→ NLS′/R′

associated to the diagram (134.1.1). Note that this construction is compatible with
composition: given a commutative diagram

S
ϕ
// S′

ϕ′
// S′′

R //

OO

R′

OO

// R′′

OO

we see that the composition of

NLS/R −→ NLS′/R′ −→ NLS′′/R′′

is the map NLS/R → NLS′′/R′′ given by the outer square.

It turns out that NL(α) is homotopy equivalent to NLS/R and that the maps con-
structed above are well defined up to homotopy (homotopies of maps of complexes
are discussed in Homology, Section 13 but we also spell out the exact meaning of
the statements in the lemma below in its proof).

Lemma 134.2.00S1 Suppose given a diagram (134.1.1). Let α : P → S and α′ : P ′ →
S′ be presentations.

(1) There exists a morphism of presentations from α to α′.
(2) Any two morphisms of presentations induce homotopic morphisms of com-

plexes NL(α)→ NL(α′).
(3) The construction is compatible with compositions of morphisms of presen-

tations (see proof for exact statement).
(4) If R → R′ and S → S′ are isomorphisms, then for any map φ of pre-

sentations from α to α′ the induced map NL(α) → NL(α′) is a homotopy
equivalence and a quasi-isomorphism.

In particular, comparing α to the canonical presentation (134.0.1) we conclude
there is a quasi-isomorphism NL(α) → NLS/R well defined up to homotopy and
compatible with all functorialities (up to homotopy).

Proof. Since P is a polynomial algebra over R we can write P = R[xa, a ∈ A]
for some set A. As α′ is surjective, we can choose for every a ∈ A an element
fa ∈ P ′ such that α′(fa) = ϕ(α(xa)). Let φ : P = R[xa, a ∈ A]→ P ′ be the unique
R-algebra map such that φ(xa) = fa. This gives the morphism in (1).

Let φ and φ′ morphisms of presentations from α to α′. Let I = Ker(α) and
I ′ = Ker(α′). We have to construct the diagonal map h in the diagram

I/I2 d //

φ′
1
��

φ1

��

ΩP/R ⊗P S

φ′
0

��
φ0

��

h

xx
I ′/(I ′)2 d // ΩP ′/R′ ⊗P ′ S′

https://stacks.math.columbia.edu/tag/00S1
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where the vertical maps are induced by φ, φ′ such that

φ1 − φ′
1 = h ◦ d and φ0 − φ′

0 = d ◦ h

Consider the map φ−φ′ : P → P ′. Since both φ and φ′ are compatible with α and
α′ we obtain φ − φ′ : P → I ′. This implies that φ,φ′ : P → P ′ induce the same
P -module structure on I ′/(I ′)2, since φ(p)i′ − φ′(p)i′ = (φ− φ′)(p)i′ ∈ (I ′)2. Also
φ− φ′ is R-linear and

(φ− φ′)(fg) = φ(f)(φ− φ′)(g) + (φ− φ′)(f)φ′(g)

Hence the induced map D : P → I ′/(I ′)2 is a R-derivation. Thus we obtain a
canonical map h : ΩP/R ⊗P S → I ′/(I ′)2 such that D = h ◦ d. A calculation
(omitted) shows that h is the desired homotopy.

Suppose that we have a commutative diagram

S
ϕ
// S′

ϕ′
// S′′

R //

OO

R′

OO

// R′′

OO

and that
(1) α : P → S,
(2) α′ : P ′ → S′, and
(3) α′′ : P ′′ → S′′

are presentations. Suppose that
(1) φ : P → P ′ is a morphism of presentations from α to α′ and
(2) φ′ : P ′ → P ′′ is a morphism of presentations from α′ to α′′.

Then it is immediate that φ′ ◦ φ : P → P ′′ is a morphism of presentations from α
to α′′ and that the induced map NL(α)→ NL(α′′) of naive cotangent complexes is
the composition of the maps NL(α) → NL(α′) and NL(α′) → NL(α′′) induced by
φ and φ′.

In the simple case of complexes with 2 terms a quasi-isomorphism is just a map
that induces an isomorphism on both the cokernel and the kernel of the maps
between the terms. Note that homotopic maps of 2 term complexes (as explained
above) define the same maps on kernel and cokernel. Hence if φ is a map from
a presentation α of S over R to itself, then the induced map NL(α) → NL(α)
is a quasi-isomorphism being homotopic to the identity by part (2). To prove
(4) in full generality, consider a morphism φ′ from α′ to α which exists by (1).
The compositions NL(α)→ NL(α′)→ NL(α) and NL(α′)→ NL(α)→ NL(α′) are
homotopic to the identity maps by (3), hence these maps are homotopy equivalences
by definition. It follows formally that both maps NL(α)→ NL(α′) and NL(α′)→
NL(α) are quasi-isomorphisms. Some details omitted. □

Lemma 134.3.08Q1 Let A → B be a polynomial algebra. Then NLB/A is homotopy
equivalent to the chain complex (0→ ΩB/A) with ΩB/A in degree 0.

Proof. Follows from Lemma 134.2 and the fact that idB : B → B is a presentation
of B over A with zero kernel. □

https://stacks.math.columbia.edu/tag/08Q1
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The following lemma is part of the motivation for introducing the naive cotangent
complex. The cotangent complex extends this to a genuine long exact cohomology
sequence. If B → C is a local complete intersection, then one can extend the
sequence with a zero on the left, see More on Algebra, Lemma 33.6.

Lemma 134.4 (Jacobi-Zariski sequence).00S2 Let A→ B → C be ring maps. Choose
a presentation α : A[xs, s ∈ S] → B with kernel I. Choose a presentation β :
B[yt, t ∈ T ] → C with kernel J . Let γ : A[xs, yt] → C be the induced presentation
of C with kernel K. Then we get a canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. We get the following exact sequence of homology groups

H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules extending the sequence of Lemma 131.7. If TorB1 (ΩB/A, C) = 0 and
TorB2 (ΩB/A, C) = 0, then H1(NLB/A⊗BC) = H1(LB/A)⊗B C.

Proof. The precise definition of the maps is omitted. The exactness of the top row
follows as the dxs, dyt form a basis for the middle module. The map γ factors

A[xs, yt]→ B[yt]→ C

with surjective first arrow and second arrow equal to β. Thus we see that K → J
is surjective. Moreover, the kernel of the first displayed arrow is IA[xs, yt]. Hence
I/I2 ⊗ C surjects onto the kernel of K/K2 → J/J2. Finally, we can use Lemma
134.2 to identify the terms as homology groups of the naive cotangent complexes.

The final assertion is a statement in homological algebra. Recall that NLB/A =
(N−1 → N0) is a two term complex of B-modules with N0 free and cohomology
modules H0 = ΩB/A and H−1 = H1(LB/A). Write M ⊂ N0 for the image of the
differential. If TorB1 (H0, C) = 0, then we have an exact sequence

0→M ⊗B C → N0 ⊗B C → N0 ⊗B C → 0

SinceN0 is free, we also see that TorB2 (H0, C) = TorB1 (M,C). Hence if TorB2 (H0, C) =
0 then we also have an exact sequence

0→ H−1 ⊗B C → N−1 ⊗B C →M ⊗B C → 0

Putting everything together we see that if TorB1 (H0, C) = 0 and TorB2 (H0, C) = 0,
then H−1 ⊗B C is the kernel of N−1 ⊗B C → N0 ⊗B C as desired. □

Remark 134.5.07VC Let A → B and ϕ : B → C be ring maps. Then the compo-
sition NLB/A → NLC/A → NLC/B is homotopy equivalent to zero. Namely, this
composition is the functoriality of the naive cotangent complex for the square

B
ϕ
// C

A //

OO

B

OO

https://stacks.math.columbia.edu/tag/00S2
https://stacks.math.columbia.edu/tag/07VC
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Write J = Ker(B[C]→ C). An explicit homotopy is given by the map ΩA[B]/A⊗A
B → J/J2 which maps the basis element d[b] to the class of [ϕ(b)]− b in J/J2.

Lemma 134.6.07BP Let A→ B be a surjective ring map with kernel I. Then NLB/A
is homotopy equivalent to the chain complex (I/I2 → 0) with I/I2 in degree 1. In
particular H1(LB/A) = I/I2.

Proof. Follows from Lemma 134.2 and the fact that A → B is a presentation of
B over A. □

Lemma 134.7.065V Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is). Denote I = Ker(A → C) and J = Ker(B → C). Then the
sequence

I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
is exact.

Proof. Follows from Lemma 134.4 and the description of the naive cotangent com-
plexes NLC/B and NLC/A in Lemma 134.6. □

Lemma 134.8 (Flat base change).00S4 Let R → S be a ring map. Let α : P → S be
a presentation. Let R → R′ be a flat ring map. Let α′ : P ⊗R R′ → S′ = S ⊗R R′

be the induced presentation. Then NL(α) ⊗R R′ = NL(α) ⊗S S′ = NL(α′). In
particular, the canonical map

NLS/R⊗SS′ −→ NLS⊗RR′/R′

is a homotopy equivalence if R→ R′ is flat.

Proof. This is true because Ker(α′) = R′ ⊗R Ker(α) since R→ R′ is flat. □

Lemma 134.9.07BQ Let Ri → Si be a system of ring maps over the directed set I. Set
R = colimRi and S = colimSi. Then NLS/R = colimNLSi/Ri

.

Proof. Recall that NLS/R is the complex I/I2 →
⊕

s∈S Sd[s] where I ⊂ R[S] is
the kernel of the canonical presentation R[S] → S. Now it is clear that R[S] =
colimRi[Si] and similarly that I = colim Ii where Ii = Ker(Ri[Si] → Si). Hence
the lemma is clear. □

Lemma 134.10.07BR If S ⊂ A is a multiplicative subset of A, then NLS−1A/A is
homotopy equivalent to the zero complex.

Proof. Since A → S−1A is flat we see that NLS−1A/A⊗AS−1A → NLS−1A/S−1A

is a homotopy equivalence by flat base change (Lemma 134.8). Since the source
of the arrow is isomorphic to NLS−1A/A and the target of the arrow is zero (by
Lemma 134.6) we win. □

Lemma 134.11.07BS Let S ⊂ A is a multiplicative subset of A. Let S−1A→ B be a
ring map. Then NLB/A → NLB/S−1A is a homotopy equivalence.

Proof. Choose a presentation α : P → B of B over A. Then β : S−1P → B is a
presentation of B over S−1A. A direct computation shows that we have NL(α) =
NL(β) which proves the lemma as the naive cotangent complex is well defined up
to homotopy by Lemma 134.2. □

https://stacks.math.columbia.edu/tag/07BP
https://stacks.math.columbia.edu/tag/065V
https://stacks.math.columbia.edu/tag/00S4
https://stacks.math.columbia.edu/tag/07BQ
https://stacks.math.columbia.edu/tag/07BR
https://stacks.math.columbia.edu/tag/07BS
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Lemma 134.12.08JZ Let A→ B be a ring map. Let g ∈ B. Suppose α : P → B is a
presentation with kernel I. Then a presentation of Bg over A is the map

β : P [x] −→ Bg

extending α and sending x to 1/g. The kernel J of β is generated by I and the
element fx− 1 where f ∈ P is an element mapped to g ∈ B by α. In this situation
we have

(1) J/J2 = (I/I2)g ⊕Bg(fx− 1),
(2) ΩP [x]/A ⊗P [x] Bg = ΩP/A ⊗P Bg ⊕Bgdx,
(3) NL(β) ∼= NL(α)⊗B Bg ⊕ (Bg

g−→ Bg)
Hence the canonical map NLB/A⊗BBg → NLBg/A is a homotopy equivalence.

Proof. Since P [x]/(I, fx− 1) = B[x]/(gx− 1) = Bg we get the statement about I
and fx− 1 generating J . Consider the commutative diagram

0 // ΩP/A ⊗Bg // ΩP [x]/A ⊗Bg // ΩB[x]/B ⊗Bg // 0

(I/I2)g //

OO

J/J2 //

OO

(gx− 1)/(gx− 1)2 //

OO

0

with exact rows of Lemma 134.4. The Bg-module ΩB[x]/B ⊗Bg is free of rank 1 on
dx. The element dx in the Bg-module ΩP [x]/A⊗Bg provides a splitting for the top
row. The element gx − 1 ∈ (gx − 1)/(gx − 1)2 is mapped to gdx in ΩB[x]/B ⊗ Bg
and hence (gx − 1)/(gx − 1)2 is free of rank 1 over Bg. (This can also be seen
by arguing that gx− 1 is a nonzerodivisor in B[x] because it is a polynomial with
invertible constant term and any nonzerodivisor gives a quasi-regular sequence of
length 1 by Lemma 69.2.)
Let us prove (I/I2)g → J/J2 injective. Consider the P -algebra map

π : P [x]→ (P/I2)f = Pf/I
2
f

sending x to 1/f . Since J is generated by I and fx−1 we see that π(J) ⊂ (I/I2)f =
(I/I2)g. Since this is an ideal of square zero we see that π(J2) = 0. If a ∈ I maps
to an element of J2 in J , then π(a) = 0, which implies that a maps to zero in If/I2

f .
This proves the desired injectivity.
Thus we have a short exact sequence of two term complexes

0→ NL(α)⊗B Bg → NL(β)→ (Bg
g−→ Bg)→ 0

Such a short exact sequence can always be split in the category of complexes. In
our particular case we can take as splittings
J/J2 = (I/I2)g ⊕Bg(fx− 1) and ΩP [x]/A⊗Bg = ΩP/A⊗Bg ⊕Bg(g−2df + dx)
This works because d(fx− 1) = xdf + fdx = g(g−2df + dx) in ΩP [x]/A ⊗Bg. □

Lemma 134.13.00S7 Let A→ B be a ring map. Let S ⊂ B be a multiplicative subset.
The canonical map NLB/A⊗BS−1B → NLS−1B/A is a quasi-isomorphism.

Proof. We have S−1B = colimg∈S Bg where we think of S as a directed set
(ordering by divisibility), see Lemma 9.9. By Lemma 134.12 each of the maps
NLB/A⊗BBg → NLBg/A are quasi-isomorphisms. The lemma follows from Lemma
134.9. □

https://stacks.math.columbia.edu/tag/08JZ
https://stacks.math.columbia.edu/tag/00S7
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Lemma 134.14.00S3 Let R be a ring. Let A1 → A0, and B1 → B0 be two term
complexes. Suppose that there exist morphisms of complexes φ : A• → B• and
ψ : B• → A• such that φ ◦ ψ and ψ ◦ φ are homotopic to the identity maps. Then
A1 ⊕B0 ∼= B1 ⊕A0 as R-modules.

Proof. Choose a map h : A0 → A1 such that
idA1 − ψ1 ◦ φ1 = h ◦ dA and idA0 − ψ0 ◦ φ0 = dA ◦ h.

Similarly, choose a map h′ : B0 → B1 such that
idB1 − φ1 ◦ ψ1 = h′ ◦ dB and idB0 − φ0 ◦ ψ0 = dB ◦ h′.

A trivial computation shows that(
idA1 −h′ ◦ ψ1 + h ◦ ψ0

0 idB0

)
=
(
ψ1 h
−dB φ0

)(
φ1 −h′

dA ψ0

)
This shows that both matrices on the right hand side are invertible and proves the
lemma. □

Lemma 134.15.00S5 Let R → S be a ring map of finite type. For any presentations
α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ S we have

I/I2 ⊕ S⊕m ∼= J/J2 ⊕ S⊕n

as S-modules where I = Ker(α) and J = Ker(β).

Proof. See Lemmas 134.2 and 134.14. □

Lemma 134.16.00S6 Let R → S be a ring map of finite type. Let g ∈ S. For any
presentations α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ Sg we have

(I/I2)g ⊕ S⊕m
g
∼= J/J2 ⊕ S⊕n

g

as Sg-modules where I = Ker(α) and J = Ker(β).

Proof. Let β′ : R[x1, . . . , xn, x] → Sg be the presentation of Lemma 134.12 con-
structed starting with α. Then we know that NL(α)⊗S Sg is homotopy equivalent
to NL(β′). We know that NL(β) and NL(β′) are homotopy equivalent by Lemma
134.2. We conclude that NL(α) ⊗S Sg is homotopy equivalent to NL(β). Finally,
we apply Lemma 134.15. □

135. Local complete intersections

00S8 The property of being a local complete intersection is an intrinsic property of a
Noetherian local ring. This will be discussed in Divided Power Algebra, Section 8.
However, for the moment we just define this property for finite type algebras over
a field.

Definition 135.1.00S9 Let k be a field. Let S be a finite type k-algebra.
(1) We say that S is a global complete intersection over k if there exists a

presentation S = k[x1, . . . , xn]/(f1, . . . , fc) such that dim(S) = n− c.
(2) We say that S is a local complete intersection over k if there exists a covering

Spec(S) =
⋃
D(gi) such that each of the rings Sgi

is a global complete
intersection over k.

We will also use the convention that the zero ring is a global complete intersection
over k.
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Suppose S is a global complete intersection S = k[x1, . . . , xn]/(f1, . . . , fc) as in Defi-
nition 135.1. For a maximal ideal m ⊂ k[x1, . . . , xn] we have dim(k[x1, . . . , xn]m) =
n (Lemma 114.1). If (f1, . . . , fc) ⊂ m, then we conclude that dim(Sm) ≥ n − c
by Lemma 60.13. Since dim(S) = n − c by Definition 135.1 we conclude that
dim(Sm) = n − c for all maximal ideals of S and that Spec(S) is equidimensional
(Topology, Definition 10.5) of dimension n− c, see Lemma 114.5. We will often use
this without further mention.

Lemma 135.2.00SA Let k be a field. Let S be a finite type k-algebra. Let g ∈ S.
(1) If S is a global complete intersection so is Sg.
(2) If S is a local complete intersection so is Sg.

Proof. The second statement follows immediately from the first. Proof of the first
statement. If Sg is the zero ring, then it is true. Assume Sg is nonzero. Write S =
k[x1, . . . , xn]/(f1, . . . , fc) with n−c = dim(S) as in Definition 135.1. By the remarks
following the definition dim(Sg) = n−c. Let g′ ∈ k[x1, . . . , xn] be an element whose
residue class corresponds to g. Then Sg = k[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1g

′ −
1) as desired. □

Lemma 135.3.00SB Let k be a field. Let S be a finite type k-algebra. If S is a local
complete intersection, then S is a Cohen-Macaulay ring.

Proof. Choose a maximal prime m of S. We have to show that Sm is Cohen-
Macaulay. By assumption we may assume S = k[x1, . . . , xn]/(f1, . . . , fc) with
dim(S) = n − c. Let m′ ⊂ k[x1, . . . , xn] be the maximal ideal corresponding to
m. According to Proposition 114.2 the local ring k[x1, . . . , xn]m′ is regular local
of dimension n. In particular it is Cohen-Macaulay by Lemma 106.3. By Lemma
60.13 applied c times the local ring Sm = k[x1, . . . , xn]m′/(f1, . . . , fc) has dimension
≥ n− c. By assumption dim(Sm) ≤ n− c. Thus we get equality. This implies that
f1, . . . , fc is a regular sequence in k[x1, . . . , xn]m′ and that Sm is Cohen-Macaulay,
see Proposition 103.4. □

The following is the technical key to the rest of the material in this section. An
important feature of this lemma is that we may choose any presentation for the
ring S, but that condition (1) does not depend on this choice.

Lemma 135.4.00SC Let k be a field. Let S be a finite type k-algebra. Let q be a
prime of S. Choose any presentation S = k[x1, . . . , xn]/I. Let q′ be the prime
of k[x1, . . . , xn] corresponding to q. Set c = height(q′) − height(q), in other words
dimq(S) = n− c (see Lemma 116.4). The following are equivalent

(1) There exists a g ∈ S, g ̸∈ q such that Sg is a global complete intersection
over k.

(2) The ideal Iq′ ⊂ k[x1, . . . , xn]q′ can be generated by c elements.
(3) The conormal module (I/I2)q can be generated by c elements over Sq.
(4) The conormal module (I/I2)q is a free Sq-module of rank c.
(5) The ideal Iq′ can be generated by a regular sequence in the regular local ring

k[x1, . . . , xn]q′ .
In this case any c elements of Iq′ which generate Iq′/q′Iq′ form a regular sequence
in the local ring k[x1, . . . , xn]q′ .

Proof. Set R = k[x1, . . . , xn]q′ . This is a Cohen-Macaulay local ring of dimension
height(q′), see for example Lemma 135.3. Moreover, R = R/IR = R/Iq′ = Sq is
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a quotient of dimension height(q). Let f1, . . . , fc ∈ Iq′ be elements which generate
(I/I2)q. By Lemma 20.1 we see that f1, . . . , fc generate Iq′ . Since the dimensions
work out, we conclude by Proposition 103.4 that f1, . . . , fc is a regular sequence in
R. By Lemma 69.2 we see that (I/I2)q is free. These arguments show that (2),
(3), (4) are equivalent and that they imply the last statement of the lemma, and
therefore they imply (5).
If (5) holds, say Iq′ is generated by a regular sequence of length e, then height(q) =
dim(Sq) = dim(k[x1, . . . , xn]q′)−e = height(q′)−e by dimension theory, see Section
60. We conclude that e = c. Thus (5) implies (2).
We continue with the notation introduced in the first paragraph. For each fi we
may find di ∈ k[x1, . . . , xn], di ̸∈ q′ such that f ′

i = difi ∈ k[x1, . . . , xn]. Then
it is still true that Iq′ = (f ′

1, . . . , f
′
c)R. Hence there exists a g′ ∈ k[x1, . . . , xn],

g′ ̸∈ q′ such that Ig′ = (f ′
1, . . . , f

′
c). Moreover, pick g′′ ∈ k[x1, . . . , xn], g′′ ̸∈ q′ such

that dim(Sg′′) = dimq Spec(S). By Lemma 116.4 this dimension is equal to n− c.
Finally, set g equal to the image of g′g′′ in S. Then we see that

Sg ∼= k[x1, . . . , xn, xn+1]/(f ′
1, . . . , f

′
c, xn+1g

′g′′ − 1)
and by our choice of g′′ this ring has dimension n − c. Therefore it is a global
complete intersection. Thus each of (2), (3), and (4) implies (1).
Assume (1). Let Sg ∼= k[y1, . . . , ym]/(f1, . . . , ft) be a presentation of Sg as a global
complete intersection. Write J = (f1, . . . , ft). Let q′′ ⊂ k[y1, . . . , ym] be the prime
corresponding to qSg. Note that t = m − dim(Sg) = height(q′′) − height(q),
see Lemma 116.4 for the last equality. As seen in the proof of Lemma 135.3
(and also above) the elements f1, . . . , ft form a regular sequence in the local ring
k[y1, . . . , ym]q′′ . By Lemma 69.2 we see that (J/J2)q is free of rank t. By Lemma
134.16 we have

J/J2 ⊕ Sng ∼= (I/I2)g ⊕ Smg
Thus (I/I2)q is free of rank t + n −m = m − dim(Sg) + n −m = n − dim(Sg) =
height(q′)− height(q) = c. Thus we obtain (4). □

The result of Lemma 135.4 suggests the following definition.

Definition 135.5.00SD Let k be a field. Let S be a local k-algebra essentially of finite
type over k. We say S is a complete intersection (over k) if there exists a local
k-algebra R and elements f1, . . . , fc ∈ mR such that

(1) R is essentially of finite type over k,
(2) R is a regular local ring,
(3) f1, . . . , fc form a regular sequence in R, and
(4) S ∼= R/(f1, . . . , fc) as k-algebras.

By the Cohen structure theorem (see Theorem 160.8) any complete Noetherian local
ring may be written as the quotient of some regular complete local ring. Hence we
may use the definition above to define the notion of a complete intersection ring for
any complete Noetherian local ring. We will discuss this in Divided Power Algebra,
Section 8. In the meantime the following lemma shows that such a definition makes
sense.

Lemma 135.6.00SE Let A→ B → C be surjective local ring homomorphisms. Assume
A and B are regular local rings. The following are equivalent
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(1) Ker(A→ C) is generated by a regular sequence,
(2) Ker(A→ C) is generated by dim(A)− dim(C) elements,
(3) Ker(B → C) is generated by a regular sequence, and
(4) Ker(B → C) is generated by dim(B)− dim(C) elements.

Proof. A regular local ring is Cohen-Macaulay, see Lemma 106.3. Hence the equiv-
alences (1) ⇔ (2) and (3) ⇔ (4), see Proposition 103.4. By Lemma 106.4 the ideal
Ker(A → B) can be generated by dim(A) − dim(B) elements. Hence we see that
(4) implies (2).

It remains to show that (1) implies (4). We do this by induction on dim(A) −
dim(B). The case dim(A) − dim(B) = 0 is trivial. Assume dim(A) > dim(B).
Write I = Ker(A → C) and J = Ker(A → B). Note that J ⊂ I. Our assumption
is that the minimal number of generators of I is dim(A)− dim(C). Let m ⊂ A be
the maximal ideal. Consider the maps

J/mJ → I/mI → m/m2

By Lemma 106.4 and its proof the composition is injective. Take any element x ∈ J
which is not zero in J/mJ . By the above and Nakayama’s lemma x is an element
of a minimal set of generators of I. Hence we may replace A by A/xA and I by
I/xA which decreases both dim(A) and the minimal number of generators of I by
1. Thus we win. □

Lemma 135.7.00SF Let k be a field. Let S be a local k-algebra essentially of finite
type over k. The following are equivalent:

(1) S is a complete intersection over k,
(2) for any surjection R → S with R a regular local ring essentially of finite

presentation over k the ideal Ker(R → S) can be generated by a regular
sequence,

(3) for some surjection R → S with R a regular local ring essentially of finite
presentation over k the ideal Ker(R → S) can be generated by dim(R) −
dim(S) elements,

(4) there exists a global complete intersection A over k and a prime a of A such
that S ∼= Aa, and

(5) there exists a local complete intersection A over k and a prime a of A such
that S ∼= Aa.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that
(4) implies (5). Let us show that (3) implies (4). Thus we assume there exists
a surjection R → S with R a regular local ring essentially of finite presentation
over k such that the ideal Ker(R → S) can be generated by dim(R) − dim(S)
elements. We may write R = (k[x1, . . . , xn]/J)q for some J ⊂ k[x1, . . . , xn] and
some prime q ⊂ k[x1, . . . , xn] with J ⊂ q. Let I ⊂ k[x1, . . . , xn] be the kernel of
the map k[x1, . . . , xn] → S so that S ∼= (k[x1, . . . , xn]/I)q. By assumption (I/J)q
is generated by dim(R)− dim(S) elements. We conclude that Iq can be generated
by dim(k[x1, . . . , xn]q)−dim(S) elements by Lemma 135.6. From Lemma 135.4 we
see that for some g ∈ k[x1, . . . , xn], g ̸∈ q the algebra (k[x1, . . . , xn]/I)g is a global
complete intersection and S is isomorphic to a local ring of it.

To finish the proof of the lemma we have to show that (5) implies (2). Assume (5)
and let π : R→ S be a surjection with R a regular local k-algebra essentially of finite
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type over k. By assumption we have S = Aa for some local complete intersection A
over k. Choose a presentation R = (k[y1, . . . , ym]/J)q with J ⊂ q ⊂ k[y1, . . . , ym].
We may and do assume that J is the kernel of the map k[y1, . . . , ym] → R. Let
I ⊂ k[y1, . . . , ym] be the kernel of the map k[y1, . . . , ym] → S = Aa. Then J ⊂ I
and (I/J)q is the kernel of the surjection π : R→ S. So S = (k[y1, . . . , ym]/I)q.
By Lemma 126.7 we see that there exist g ∈ A, g ̸∈ a and g′ ∈ k[y1, . . . , ym], g′ ̸∈ q
such that Ag ∼= (k[y1, . . . , ym]/I)g′ . After replacing A by Ag and k[y1, . . . , ym] by
k[y1, . . . , ym+1] we may assume that A ∼= k[y1, . . . , ym]/I. Consider the surjective
maps of local rings

k[y1, . . . , ym]q → R→ S.

We have to show that the kernel of R→ S is generated by a regular sequence. By
Lemma 135.4 we know that k[y1, . . . , ym]q → Aa = S has this property (as A is a
local complete intersection over k). We win by Lemma 135.6. □

Lemma 135.8.00SG Let k be a field. Let S be a finite type k-algebra. Let q be a prime
of S. The following are equivalent:

(1) The local ring Sq is a complete intersection ring (Definition 135.5).
(2) There exists a g ∈ S, g ̸∈ q such that Sg is a local complete intersection

over k.
(3) There exists a g ∈ S, g ̸∈ q such that Sg is a global complete intersection

over k.
(4) For any presentation S = k[x1, . . . , xn]/I with q′ ⊂ k[x1, . . . , xn] corre-

sponding to q any of the equivalent conditions (1) – (5) of Lemma 135.4
hold.

Proof. This is a combination of Lemmas 135.4 and 135.7 and the definitions. □

Lemma 135.9.00SH Let k be a field. Let S be a finite type k-algebra. The following
are equivalent:

(1) The ring S is a local complete intersection over k.
(2) All local rings of S are complete intersection rings over k.
(3) All localizations of S at maximal ideals are complete intersection rings over

k.

Proof. This follows from Lemma 135.8, the fact that Spec(S) is quasi-compact
and the definitions. □

The following lemma says that being a complete intersection is preserved under
change of base field (in a strong sense).

Lemma 135.10.00SI Let K/k be a field extension. Let S be a finite type algebra over
k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime of S.
Then Sq is a complete intersection over k (Definition 135.5) if and only if (SK)qK

is a complete intersection over K.

Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation
SK = K[x1, . . . , xn]/IK where IK = K ⊗k I. Let q′

K ⊂ K[x1, . . . , xn], resp.
q′ ⊂ k[x1, . . . , xn] be the corresponding prime. We will show that the equiva-
lent conditions of Lemma 135.4 hold for the pair (S = k[x1, . . . , xn]/I, q) if and
only if they hold for the pair (SK = K[x1, . . . , xn]/IK , qK). The lemma will follow
from this (see Lemma 135.8).
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By Lemma 116.6 we have dimq S = dimqK
SK . Hence the integer c occurring

in Lemma 135.4 is the same for the pair (S = k[x1, . . . , xn]/I, q) as for the pair
(SK = K[x1, . . . , xn]/IK , qK). On the other hand we have

I ⊗k[x1,...,xn] κ(q′)⊗κ(q′) κ(q′
K) = I ⊗k[x1,...,xn] κ(q′

K)
= I ⊗k[x1,...,xn] K[x1, . . . , xn]⊗K[x1,...,xn] κ(q′

K)
= (K ⊗k I)⊗K[x1,...,xn] κ(q′

K)
= IK ⊗K[x1,...,xn] κ(q′

K).

Therefore, dimκ(q′) I ⊗k[x1,...,xn] κ(q′) = dimκ(q′
K

) IK ⊗K[x1,...,xn] κ(q′
K). Thus it

follows from Nakayama’s Lemma 20.1 that the minimal number of generators of
Iq′ is the same as the minimal number of generators of (IK)q′

K
. Thus the lemma

follows from characterization (2) of Lemma 135.4. □

Lemma 135.11.00SJ Let k → K be a field extension. Let S be a finite type k-algebra.
Then S is a local complete intersection over k if and only if S ⊗k K is a local
complete intersection over K.

Proof. This follows from a combination of Lemmas 135.9 and 135.10. But we also
give a different proof here (based on the same principles).

Set S′ = S ⊗k K. Let α : k[x1, . . . , xn] → S be a presentation with kernel I. Let
α′ : K[x1, . . . , xn]→ S′ be the induced presentation with kernel I ′.

Suppose that S is a local complete intersection. Pick a prime q ⊂ S′. Denote q′ the
corresponding prime of K[x1, . . . , xn], p the corresponding prime of S, and p′ the
corresponding prime of k[x1, . . . , xn]. Consider the following diagram of Noetherian
local rings

S′
q K[x1, . . . , xn]q′oo

Sp

OO

k[x1, . . . , xn]p′

OO

oo

By Lemma 135.4 we know that Sp is cut out by some regular sequence f1, . . . , fc
in k[x1, . . . , xn]p′ . Since the right vertical arrow is flat we see that the images of
f1, . . . , fc form a regular sequence inK[x1, . . . , xn]q′ . Because tensoring withK over
k is an exact functor we have S′

q = K[x1, . . . , xn]q′/(f1, . . . , fc). Hence by Lemma
135.4 again we see that S′ is a local complete intersection in a neighbourhood of q.
Since q was arbitrary we see that S′ is a local complete intersection over K.

Suppose that S′ is a local complete intersection. Pick a maximal ideal m of S. Let
m′ denote the corresponding maximal ideal of k[x1, . . . , xn]. Denote κ = κ(m) the
residue field. By Remark 18.5 the primes of S′ lying over m correspond to primes
in K ⊗k κ. By the Hilbert-Nullstellensatz Theorem 34.1 we have [κ : k] < ∞.
Hence K ⊗k κ is finite nonzero over K. Hence K ⊗k κ has a finite number > 0
of primes which are all maximal, each of which has a residue field finite over K
(see Section 53). Hence there are finitely many > 0 prime ideals n ⊂ S′ lying over
m, each of which is maximal and has a residue field which is finite over K. Pick
one, say n ⊂ S′, and let n′ ⊂ K[x1, . . . , xn] denote the corresponding prime ideal of
K[x1, . . . , xn]. Note that since V (mS′) is finite, we see that n is an isolated closed
point of it, and we deduce that mS′

n is an ideal of definition of S′
n. This implies that
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dim(Sm) = dim(S′
n) for example by Lemma 112.7. (This can also be seen using

Lemma 116.6.) Consider the corresponding diagram of Noetherian local rings

S′
n K[x1, . . . , xn]n′oo

Sm

OO

k[x1, . . . , xn]m′

OO

oo

According to Lemma 134.8 we have NL(α)⊗S S′ = NL(α′), in particular I ′/(I ′)2 =
I/I2⊗S S′. Thus (I/I2)m⊗Sm

κ and (I ′/(I ′)2)n⊗S′
n
κ(n) have the same dimension.

Since (I ′/(I ′)2)n is free of rank n−dimS′
n we deduce that (I/I2)m can be generated

by n − dimS′
n = n − dimSm elements. By Lemma 135.4 we see that S is a local

complete intersection in a neighbourhood of m. Since m was any maximal ideal we
conclude that S is a local complete intersection. □

We end with a lemma which we will later use to prove that given ring maps T →
A→ B where B is syntomic over T , and B is syntomic over A, then A is syntomic
over T .

Lemma 135.12.02JP Let
B Soo

A

OO

Roo

OO

be a commutative square of local rings. Assume
(1) R and S = S/mRS are regular local rings,
(2) A = R/I and B = S/J for some ideals I, J ,
(3) J ⊂ S and J = J/mR ∩ J ⊂ S are generated by regular sequences, and
(4) A→ B and R→ S are flat.

Then I is generated by a regular sequence.

Proof. Set B = B/mRB = B/mAB so that B = S/J . Let f1, . . . , fc ∈ J be
elements such that f1, . . . , f c ∈ J form a regular sequence generating J . Note that
c = dim(S) − dim(B), see Lemma 135.6. By Lemma 99.3 the ring S/(f1, . . . , fc)
is flat over R. Hence S/(f1, . . . , fc) + IS is flat over A. The map S/(f1, . . . , fc) +
IS → B is therefore a surjection of finite S/IS-modules flat over A which is an
isomorphism modulo mA, and hence an isomorphism by Lemma 99.1. In other
words, J = (f1, . . . , fc) + IS.
By Lemma 135.6 again the ideal J is generated by a regular sequence of c =
dim(S) − dim(B) elements. Hence J/mSJ is a vector space of dimension c. By
the description of J above there exist g1, . . . , gc−c ∈ I such that J is generated
by f1, . . . , fc, g1, . . . , gc−c (use Nakayama’s Lemma 20.1). Consider the ring A′ =
R/(g1, . . . , gc−c) and the surjection A′ → A. We see from the above that B =
S/(f1, . . . , fc, g1, . . . , gc−c) is flat over A′ (as S/(f1, . . . , fc) is flat over R). Hence
A′ → B is injective (as it is faithfully flat, see Lemma 39.17). Since this map
factors through A we get A′ = A. Note that dim(B) = dim(A) + dim(B), and
dim(S) = dim(R) + dim(S), see Lemma 112.7. Hence c − c = dim(R) − dim(A)
by elementary algebra. Thus I = (g1, . . . , gc−c) is generated by a regular sequence
according to Lemma 135.6. □
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136. Syntomic morphisms

00SK Syntomic ring maps are flat finitely presented ring maps all of whose fibers are local
complete intersections. We discuss general local complete intersection ring maps in
More on Algebra, Section 33.

Definition 136.1.00SL A ring map R → S is called syntomic, or we say S is a flat
local complete intersection over R if it is flat, of finite presentation, and if all of its
fibre rings S ⊗R κ(p) are local complete intersections, see Definition 135.1.

Clearly, an algebra over a field is syntomic over the field if and only if it is a local
complete intersection. Here is a pleasing feature of this definition.

Lemma 136.2.00SM Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = R′ ⊗R S. Then R → S is syntomic if and only if R′ → S′ is
syntomic.

Proof. By Lemma 126.2 and Lemma 39.8 this holds for the property of being flat
and for the property of being of finite presentation. The map Spec(R′)→ Spec(R)
is surjective, see Lemma 39.16. Thus it suffices to show given primes p′ ⊂ R′ lying
over p ⊂ R that S⊗R κ(p) is a local complete intersection if and only if S′⊗R′ κ(p′)
is a local complete intersection. Note that S′ ⊗R′ κ(p′) = S ⊗R κ(p) ⊗κ(p) κ(p′).
Thus Lemma 135.11 applies. □

Lemma 136.3.00SN Any base change of a syntomic map is syntomic.

Proof. This is true for being flat, for being of finite presentation, and for having
local complete intersections as fibres by Lemmas 39.7, 6.2 and 135.11. □

Lemma 136.4.00SO Let R → S be a ring map. Suppose we have g1, . . . gm ∈ S
which generate the unit ideal such that each R→ Sgi

is syntomic. Then R→ S is
syntomic.

Proof. This is true for being flat and for being of finite presentation by Lem-
mas 39.18 and 23.3. The property of having fibre rings which are local complete
intersections is local on S by its very definition, see Definition 135.1. □

Definition 136.5.00SP Let R → S be a ring map. We say that R → S is a relative
global complete intersection if there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fc)
and every nonempty fibre of Spec(S)→ Spec(R) has dimension n− c. We will say
“let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete intersection” to
indicate this situation.

The following lemma is occasionally useful to find global presentations.

Lemma 136.6.07CF Let S be a finitely presented R-algebra which has a presentation
S = R[x1, . . . , xn]/I such that I/I2 is free over S. Then S has a presentation
S = R[y1, . . . , ym]/(f1, . . . , fc) such that (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis
given by the classes of f1, . . . , fc.

Proof. Note that I is a finitely generated ideal by Lemma 6.3. Let f1, . . . , fc ∈ I
be elements which map to a basis of I/I2. By Nakayama’s lemma (Lemma 20.1)
there exists a g ∈ 1 + I such that

g · I ⊂ (f1, . . . , fc)
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and Ig ∼= (f1, . . . , fc)g. Hence we see that
S ∼= R[x1, . . . , xn]/(f1, . . . , fc)[1/g] ∼= R[x1, . . . , xn, xn+1]/(f1, . . . , fc, gxn+1 − 1)

as desired. It follows that f1, . . . , fc, gxn+1− 1 form a basis for (f1, . . . , fc, gxn+1−
1)/(f1, . . . , fc, gxn+1 − 1)2 for example by applying Lemma 134.12. □

Example 136.7.00SQ Let n,m ≥ 1 be integers. Consider the ring map
R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

In other words, this is the unique ring map of polynomial rings as indicated such
that the polynomial factorization
xn+m+a1x

n+m−1 + . . .+an+m = (xn+ b1x
n−1 + . . .+ bn)(xm+ c1x

m−1 + . . .+ cm)
holds. Note that S is generated by n+m elements over R (namely, bi, cj) and that
there are n + m equations (namely ak = ak(bi, cj)). In order to show that S is a
relative global complete intersection over R it suffices to prove that all fibres have
dimension 0.
To prove this, let R → k be a ring map into a field k. Say ai maps to αi ∈ k.
Consider the fibre ring Sk = k ⊗R S. Let k → K be a field extension. A k-algebra
map of Sk → K is the same thing as finding β1, . . . , βn, γ1, . . . , γm ∈ K such that
xn+m+α1x

n+m−1 + . . .+αn+m = (xn+β1x
n−1 + . . .+βn)(xm+γ1x

m−1 + . . .+γm).
Hence we see there are at most finitely many choices of such n+m-tuples in K. This
proves that all fibres have finitely many closed points (use Hilbert’s Nullstellensatz
to see they all correspond to solutions in k for example) and hence that R → S is
a relative global complete intersection.
Another way to argue this is to show Z[a1, . . . , an+m]→ Z[b1, . . . , bn, c1, . . . , cm] is
actually also a finite ring map. Namely, by Lemma 38.5 each of bi, cj is integral
over R, and hence R→ S is finite by Lemma 36.4.

Example 136.8.00SR Consider the ring map
R = Z[a1, . . . , an] −→ S = Z[α1, . . . , αn]

a1 7−→ α1 + . . .+ αn

. . . . . . . . .

an 7−→ α1 . . . αn

In other words this is the unique ring map of polynomial rings as indicated such
that

xn + a1x
n−1 + . . .+ an =

∏n

i=1
(x+ αi)

holds in Z[αi, x]. Another way to say this is that ai maps to the ith elementary sym-
metric function in α1, . . . , αn. Note that S is generated by n elements over R subject
to n equations. Hence to show that S is a relative global complete intersection over
R we have to show that the fibre rings S⊗R κ(p) have dimension 0. This follows as
in Example 136.7 because the ring map Z[a1, . . . , an] → Z[α1, . . . , αn] is actually
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finite since each αi ∈ S satisfies the monic equation xn − a1x
n−1 + . . . + (−1)nan

over R.

Lemma 136.9.00SS Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete
intersection (Definition 136.5)

(1) For any R→ R′ the base change R′⊗R S = R′[x1, . . . , xn]/(f1, . . . , fc) is a
relative global complete intersection.

(2) For any g ∈ S which is the image of h ∈ R[x1, . . . , xn] the ring Sg =
R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1) is a relative global complete in-
tersection.

(3) If R → S factors as R → Rf → S for some f ∈ R. Then the ring
S = Rf [x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection
over Rf .

Proof. By Lemma 116.5 the fibres of a base change have the same dimension
as the fibres of the original map. Moreover R′ ⊗R R[x1, . . . , xn]/(f1, . . . , fc) =
R′[x1, . . . , xn]/(f1, . . . , fc). Thus (1) follows. The proof of (2) is that the localiza-
tion at one element can be described as Sg ∼= S[xn+1]/(gxn+1 − 1). Assertion (3)
follows from (1) since under the assumptions of (3) we have Rf ⊗R S ∼= S. □

Lemma 136.10.00ST Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc). We will
find h ∈ R[x1, . . . , xn] which maps to g ∈ S such that

Sg = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1)

is a relative global complete intersection with a presentation as in Definition 136.5
in each of the following cases:

(1) Let I ⊂ R be an ideal. If the fibres of Spec(S/IS) → Spec(R/I) have
dimension n − c, then we can find (h, g) as above such that g maps to
1 ∈ S/IS.

(2) Let p ⊂ R be a prime. If dim(S ⊗R κ(p)) = n − c, then we can find (h, g)
as above such that g maps to a unit of S ⊗R κ(p).

(3) Let q ⊂ S be a prime lying over p ⊂ R. If dimq(S/R) = n− c, then we can
find (h, g) as above such that g ̸∈ q.

Proof. Ad (1). By Lemma 125.6 there exists an open subset W ⊂ Spec(S) con-
taining V (IS) such that all fibres of W → Spec(R) have dimension ≤ n − c. Say
W = Spec(S) \ V (J). Then V (J) ∩ V (IS) = ∅ hence we can find a g ∈ J which
maps to 1 ∈ S/IS. Let h ∈ R[x1, . . . , xn] be any preimage of g.

Ad (2). By Lemma 125.6 there exists an open subset W ⊂ Spec(S) containing
Spec(S ⊗R κ(p)) such that all fibres of W → Spec(R) have dimension ≤ n− c. Say
W = Spec(S) \ V (J). Then V (J · S ⊗R κ(p)) = ∅. Hence we can find a g ∈ J
which maps to a unit in S ⊗R κ(p) (details omitted). Let h ∈ R[x1, . . . , xn] be any
preimage of g.

Ad (3). By Lemma 125.6 there exists a g ∈ S, g ̸∈ q such that all nonempty fibres
of R → Sg have dimension ≤ n − c. Let h ∈ R[x1, . . . , xn] be any element that
maps to g. □

The following lemma says we can do absolute Noetherian approximation for relative
global complete intersections.
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Lemma 136.11.00SU Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a rel-
ative global complete intersection (Definition 136.5). There exist a finite type Z-
subalgebra R0 ⊂ R such that fi ∈ R0[x1, . . . , xn] and such that

S0 = R0[x1, . . . , xn]/(f1, . . . , fc)
is a relative global complete intersection.

Proof. Let R0 ⊂ R be the Z-algebra of R generated by all the coefficients of the
polynomials f1, . . . , fc. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fc). Clearly, S = R⊗R0S0.
Pick a prime q ⊂ S and denote p ⊂ R, q0 ⊂ S0, and p0 ⊂ R0 the primes it lies
over. Because dim(S ⊗R κ(p)) = n − c we also have dim(S0 ⊗R0 κ(p0)) = n − c,
see Lemma 116.5. By Lemma 125.6 there exists a g ∈ S0, g ̸∈ q0 such that all
nonempty fibres of R0 → (S0)g have dimension ≤ n − c. As q was arbitrary and
Spec(S) quasi-compact, we can find finitely many g1, . . . , gm ∈ S0 such that (a) for
j = 1, . . . ,m the nonempty fibres of R0 → (S0)gj

have dimension ≤ n − c and (b)
the image of Spec(S) → Spec(S0) is contained in D(g1) ∪ . . . ∪ D(gm). In other
words, the images of g1, . . . , gm in S = R ⊗R0 S0 generate the unit ideal. After
increasing R0 we may assume that g1, . . . , gm generate the unit ideal in S0. By (a)
the nonempty fibres of R0 → S0 all have dimension ≤ n− c and we conclude. □

Lemma 136.12.00SV Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection (Definition 136.5). For every prime q of S, let q′ denote
the corresponding prime of R[x1, . . . , xn]. Then

(1) f1, . . . , fc is a regular sequence in the local ring R[x1, . . . , xn]q′ ,
(2) each of the rings R[x1, . . . , xn]q′/(f1, . . . , fi) is flat over R, and
(3) the S-module (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis given by the ele-

ments fi mod (f1, . . . , fc)2.

Proof. By Lemma 69.2 part (3) follows from part (1).
Assume R is Noetherian. Let p = R∩ q′. By Lemma 135.4 for example we see that
f1, . . . , fc form a regular sequence in the local ring R[x1, . . . , xn]q′ ⊗R κ(p). More-
over, the local ringR[x1, . . . , xn]q′ is flat overRp. SinceR, and henceR[x1, . . . , xn]q′

is Noetherian we see from Lemma 99.3 that (1) and (2) hold.
Let R be general. Write R = colimλ∈Λ Rλ as the filtered colimit of finite type
Z-subalgebras (compare with Section 127). We may assume that f1, . . . , fc ∈
Rλ[x1, . . . , xn] for all λ. Let R0 ⊂ R be as in Lemma 136.11. Then we may
assume R0 ⊂ Rλ for all λ. It follows that Sλ = Rλ[x1, . . . , xn]/(f1, . . . , fc) is a rel-
ative global complete intersection (as base change of S0 via R0 → Rλ, see Lemma
136.9). Denote pλ, qλ, q′

λ the prime of Rλ, Sλ, Rλ[x1, . . . , xn] induced by p, q, q′.
With this notation, we have (1) and (2) for each λ. Since

R[x1, . . . , xn]q′/(f1, . . . , fi) = colimRλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

we deduce flatness in (2) over R from Lemma 39.6. Since we have

R[x1, . . . , xn]q′/(f1, . . . , fi)
fi+1−−−→ R[x1, . . . , xn]q′/(f1, . . . , fi)

= colim
(
Rλ[x1, . . . , xn]q′

λ
/(f1, . . . , fi)

fi+1−−−→ Rλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

)
and since filtered colimits are exact (Lemma 8.8) we conclude that we have (1). □

Lemma 136.13.00SW A relative global complete intersection is syntomic, i.e., flat.
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Proof. Let R→ S be a relative global complete intersection. The fibres are global
complete intersections, and S is of finite presentation over R. Thus the only thing
to prove is that R→ S is flat. This is true by (2) of Lemma 136.12. □

Lemma 136.14.03HS Suppose that A is a ring, and P (x) = xn+b1x
n−1+. . .+bn ∈ A[x]

is a monic polynomial over A. Then there exists a syntomic, finite locally free,
faithfully flat ring extension A ⊂ A′ such that P (x) =

∏
i=1,...,n(x− βi) for certain

βi ∈ A′.

Proof. Take A′ = A⊗R S, where R and S are as in Example 136.8, where R→ A
maps ai to bi, and let βi = −1 ⊗ αi. Observe that R → S is syntomic (Lemma
136.13), R → S is finite by construction, and R is Noetherian (so any finite R-
module is finitely presented). Hence S is finite locally free as an R-module by
Lemma 78.2. We omit the verification that Spec(S)→ Spec(R) is surjective, which
shows that S is faithfully flat over R (Lemma 39.16). These properties are inherited
by the base change A→ A′; some details omitted. □

Lemma 136.15.00SY Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. The following are equivalent:

(1) There exists an element g ∈ S, g ̸∈ q such that R→ Sg is syntomic.
(2) There exists an element g ∈ S, g ̸∈ q such that Sg is a relative global

complete intersection over R.
(3) There exists an element g ∈ S, g ̸∈ q, such that R → Sg is of finite

presentation, the local ring map Rp → Sq is flat, and the local ring Sq/pSq

is a complete intersection ring over κ(p) (see Definition 135.5).

Proof. The implication (1) ⇒ (3) is Lemma 135.8. The implication (2) ⇒ (1) is
Lemma 136.13. It remains to show that (3) implies (2).
Assume (3). After replacing S by Sg for some g ∈ S, g ̸∈ q we may assume
S is finitely presented over R. Choose a presentation S = R[x1, . . . , xn]/I. Let
q′ ⊂ R[x1, . . . , xn] be the prime corresponding to q. Write κ(p) = k. Note that
S ⊗R k = k[x1, . . . , xn]/I where I ⊂ k[x1, . . . , xn] is the ideal generated by the
image of I. Let q′ ⊂ k[x1, . . . , xn] be the prime ideal generated by the image of
q′. By Lemma 135.8 the equivalent conditions of Lemma 135.4 hold for I and q′.
Say the dimension of Iq′/q′Iq′ over κ(q′) is c. Pick f1, . . . , fc ∈ I mapping to a
basis of this vector space. The images f j ∈ I generate Iq′ (by Lemma 135.4). Set
S′ = R[x1, . . . , xn]/(f1, . . . , fc). Let J be the kernel of the surjection S′ → S. Since
S is of finite presentation J is a finitely generated ideal (Lemma 6.2). Consider the
short exact sequence

0→ J → S′ → S → 0
As Sq is flat over R we see that Jq′ ⊗R k → S′

q′ ⊗R k is injective (Lemma 39.12).
However, by construction S′

q′ ⊗R k maps isomorphically to Sq ⊗R k. Hence we
conclude that Jq′ ⊗R k = Jq′/pJq′ = 0. By Nakayama’s lemma (Lemma 20.1) we
conclude that there exists a g ∈ R[x1, . . . , xn], g ̸∈ q′ such that Jg = 0. In other
words S′

g
∼= Sg. After further localizing we see that S′ (and hence S) becomes a

relative global complete intersection by Lemma 136.10 as desired. □

Lemma 136.16.07BT Let R be a ring. Let S = R[x1, . . . , xn]/I for some finitely
generated ideal I. If g ∈ S is such that Sg is syntomic over R, then (I/I2)g is a
finite projective Sg-module.
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Proof. By Lemma 136.15 there exist finitely many elements g1, . . . , gm ∈ S which
generate the unit ideal in Sg such that each Sggj is a relative global complete
intersection over R. Since it suffices to prove that (I/I2)ggj is finite projective, see
Lemma 78.2, we may assume that Sg is a relative global complete intersection. In
this case the result follows from Lemmas 134.16 and 136.12. □

Lemma 136.17.00SZ Let R→ S, S → S′ be ring maps.
(1) If R→ S and S → S′ are syntomic, then R→ S′ is syntomic.
(2) If R→ S and S → S′ are relative global complete intersections, then R→

S′ is a relative global complete intersection.

Proof. Proof of (2). Say R → S and S → S′ are relative global complete in-
tersections and we have presentations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ =
S[y1, . . . , ym]/(h1, . . . , hd) as in Definition 136.5. Then

S′ ∼= R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, h
′
1, . . . , h

′
d)

for some lifts h′
j ∈ R[x1, . . . , xn, y1, . . . , ym] of the hj . Hence it suffices to bound the

dimensions of the fibre rings. Thus we may assume R = k is a field. In this case we
see that we have a ring, namely S, which is of finite type over k and equidimensional
of dimension n− c, and a finite type ring map S → S′ all of whose nonempty fibre
rings are equidimensional of dimension m− d. Then, by Lemma 112.6 for example
applied to localizations at maximal ideals of S′, we see that dim(S′) ≤ n−c+m−d
as desired.

We will reduce part (1) to part (2). Assume R→ S and S → S′ are syntomic. Let
q′ ⊂ S be a prime ideal lying over q ⊂ S. By Lemma 136.15 there exists a g′ ∈ S′,
g′ ̸∈ q′ such that S → S′

g′ is a relative global complete intersection. Similarly, we
find g ∈ S, g ̸∈ q such that R → Sg is a relative global complete intersection. By
Lemma 136.9 the ring map Sg → Sgg′ is a relative global complete intersection.
By part (2) we see that R → Sgg′ is a relative global complete intersection and
gg′ ̸∈ q′. Since q′ was arbitrary combining Lemmas 136.15 and 136.4 we see that
R → S′ is syntomic (this also uses that the spectrum of S′ is quasi-compact, see
Lemma 17.8). □

The following lemma will be improved later, see Smoothing Ring Maps, Proposition
3.2.

Lemma 136.18.00T0 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be
a syntomic map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some relative global complete intersection Si
over R.

Proof. By Lemma 136.15 we find a collection of elements gi ∈ S which generate
the unit ideal of S such that each Sgi

is a relative global complete intersection
over R/I. Hence we may assume that S is a relative global complete intersec-
tion. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c) as in Definition 136.5. Choose
f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set S = R[x1, . . . , xn]/(f1, . . . , fc).
Note that S/IS ∼= S. By Lemma 136.10 we can find g ∈ S mapping to 1 in S such
that Sg is a relative global complete intersection over R. Since S ∼= Sg/ISg this
finishes the proof. □
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137. Smooth ring maps

00T1 Let us motivate the definition of a smooth ring map by an example. Suppose R is
a ring and S = R[x, y]/(f) for some nonzero f ∈ R[x, y]. In this case there is an
exact sequence

S → Sdx⊕ Sdy → ΩS/R → 0
where the first arrow maps 1 to ∂f

∂xdx + ∂f
∂ydy see Section 134. We conclude that

ΩS/R is locally free of rank 1 if the partial derivatives of f generate the unit ideal
in S. In this case S is smooth of relative dimension 1 over R. But it can happen
that ΩS/R is locally free of rank 2 namely if both partial derivatives of f are zero.
For example if for a prime p we have p = 0 in R and f = xp+yp then this happens.
Here R→ S is a relative global complete intersection of relative dimension 1 which
is not smooth. Hence, in order to check that a ring map is smooth it is not sufficient
to check whether the module of differentials is free. The correct condition is the
following.

Definition 137.1.00T2 A ring map R → S is smooth if it is of finite presentation
and the naive cotangent complex NLS/R is quasi-isomorphic to a finite projective
S-module placed in degree 0.

In particular, if R → S is smooth then the module ΩS/R is a finite projective
S-module. Moreover, by Lemma 137.2 the naive cotangent complex of any presen-
tation has the same structure. Thus, for a surjection α : R[x1, . . . , xn] → S with
kernel I the map

I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S

is a split injection. In other words
⊕n

i=1 Sdxi ∼= I/I2 ⊕ ΩS/R as S-modules. This
implies that I/I2 is a finite projective S-module too!

Lemma 137.2.05GK Let R→ S be a ring map of finite presentation. If for some pre-
sentation α of S over R the naive cotangent complex NL(α) is quasi-isomorphic to
a finite projective S-module placed in degree 0, then this holds for any presentation.

Proof. Immediate from Lemma 134.2. □

Lemma 137.3.00T3 Let R→ S be a smooth ring map. Any localization Sg is smooth
over R. If f ∈ R maps to an invertible element of S, then Rf → S is smooth.

Proof. By Lemma 134.13 the naive cotangent complex for Sg over R is the base
change of the naive cotangent complex of S over R. The assumption is that the
naive cotangent complex of S/R is ΩS/R and that this is a finite projective S-
module. Hence so is its base change. Thus Sg is smooth over R.
The second assertion follows in the same way from Lemma 134.11. □

Lemma 137.4.00T4 Let R→ S be a smooth ring map. Let R→ R′ be any ring map.
Then the base change R′ → S′ = R′ ⊗R S is smooth.

Proof. Let α : R[x1, . . . , xn] → S be a presentation with kernel I. Let α′ :
R′[x1, . . . , xn] → R′ ⊗R S be the induced presentation. Let I ′ = Ker(α′). Since
0→ I → R[x1, . . . , xn]→ S → 0 is exact, the sequence R′⊗R I → R′[x1, . . . , xn]→
R′ ⊗R S → 0 is exact. Thus R′ ⊗R I → I ′ is surjective. By Definition 137.1 there
is a short exact sequence

0→ I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

https://stacks.math.columbia.edu/tag/00T2
https://stacks.math.columbia.edu/tag/05GK
https://stacks.math.columbia.edu/tag/00T3
https://stacks.math.columbia.edu/tag/00T4


COMMUTATIVE ALGEBRA 358

and the S-module ΩS/R is finite projective. In particular I/I2 is a direct summand
of ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S. Consider the commutative diagram

R′ ⊗R (I/I2) //

��

R′ ⊗R (ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S)

��
I ′/(I ′)2 // ΩR′[x1,...,xn]/R′ ⊗R′[x1,...,xn] (R′ ⊗R S)

Since the right vertical map is an isomorphism we see that the left vertical map is
injective and surjective by what was said above. Thus we conclude that NL(α′) is
quasi-isomorphic to ΩS′/R′ ∼= S′ ⊗S ΩS/R. And this is finite projective since it is
the base change of a finite projective module. □

Lemma 137.5.00T5 Let k be a field. Let S be a smooth k-algebra. Then S is a local
complete intersection.

Proof. By Lemmas 137.4 and 135.11 it suffices to prove this when k is algebraically
closed. Choose a presentation α : k[x1, . . . , xn]→ S with kernel I. Let m be a max-
imal ideal of S, and let m′ ⊃ I be the corresponding maximal ideal of k[x1, . . . , xn].
We will show that condition (5) of Lemma 135.4 holds (with m instead of q). We
may write m′ = (x1 − a1, . . . , xn − an) for some ai ∈ k, because k is algebraically
closed, see Theorem 34.1. By our assumption that k → S is smooth the S-module
map d : I/I2 →

⊕n
i=1 Sdxi is a split injection. Hence the corresponding map

I/m′I →
⊕
κ(m′)dxi is injective. Say dimκ(m′)(I/m′I) = c and pick f1, . . . , fc ∈ I

which map to a κ(m′)-basis of I/m′I. By Nakayama’s Lemma 20.1 we see that
f1, . . . , fc generate Im′ over k[x1, . . . , xn]m′ . Consider the commutative diagram

I //

��

I/I2 //

��

I/m′I

��
Ωk[x1,...,xn]/k //⊕Sdxi

dxi 7→xi−ai // m′/(m′)2

(proof commutativity omitted). The middle vertical map is the one defining the
naive cotangent complex of α. Note that the right lower horizontal arrow induces
an isomorphism

⊕
κ(m′)dxi → m′/(m′)2. Hence our generators f1, . . . , fc of Im′

map to a collection of elements in k[x1, . . . , xn]m′ whose classes in m′/(m′)2 are
linearly independent over κ(m′). Therefore they form a regular sequence in the
ring k[x1, . . . , xn]m′ by Lemma 106.3. This verifies condition (5) of Lemma 135.4
hence Sg is a global complete intersection over k for some g ∈ S, g ̸∈ m. As this
works for any maximal ideal of S we conclude that S is a local complete intersection
over k. □

Definition 137.6.00T6 Let R be a ring. Given integers n ≥ c ≥ 0 and f1, . . . , fc ∈
R[x1, . . . , xn] we say

S = R[x1, . . . , xn]/(f1, . . . , fc)
is a standard smooth algebra over R if the polynomial

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc
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maps to an invertible element in S.

Lemma 137.7.00T7 Let S = R[x1, . . . , xn]/(f1, . . . , fc) = R[x1, . . . , xn]/I be a stan-
dard smooth algebra. Then

(1) the ring map R→ S is smooth,
(2) the S-module ΩS/R is free on dxc+1, . . . , dxn,
(3) the S-module I/I2 is free on the classes of f1, . . . , fc,
(4) for any g ∈ S the ring map R→ Sg is standard smooth,
(5) for any ring map R→ R′ the base change R′ → R′⊗RS is standard smooth,
(6) if f ∈ R maps to an invertible element in S, then Rf → S is standard

smooth, and
(7) the ring S is a relative global complete intersection over R.

Proof. Consider the naive cotangent complex of the given presentation

(f1, . . . , fc)/(f1, . . . , fc)2 −→
⊕n

i=1
Sdxi

Let us compose this map with the projection onto the first c direct summands
of the direct sum. According to the definition of a standard smooth algebra
the classes fi mod (f1, . . . , fc)2 map to a basis of

⊕c
i=1 Sdxi. We conclude that

(f1, . . . , fc)/(f1, . . . , fc)2 is free of rank c with a basis given by the elements fi mod
(f1, . . . , fc)2, and that the homology in degree 0, i.e., ΩS/R, of the naive cotangent
complex is a free S-module with basis the images of dxc+j , j = 1, . . . , n − c. In
particular, this proves R→ S is smooth.

The proofs of (4) and (6) are omitted. But see the example below and the proof of
Lemma 136.9.

Let φ : R → R′ be any ring map. Denote S′ = R′[x1, . . . , xn]/(fφ1 , . . . , fφc ) where
fφ is the polynomial obtained from f ∈ R[x1, . . . , xn] by applying φ to all the
coefficients. Then S′ ∼= R′⊗R S. Moreover, the determinant of Definition 137.6 for
S′/R′ is equal to gφ. Its image in S′ is therefore the image of g via R[x1, . . . , xn]→
S → S′ and hence invertible. This proves (5).

To prove (7) it suffices to show that S ⊗R κ(p) has dimension n − c for every
prime p ⊂ R. By (5) it suffices to prove that any standard smooth algebra
k[x1, . . . , xn]/(f1, . . . , fc) over a field k has dimension n− c. We already know that
k[x1, . . . , xn]/(f1, . . . , fc) is a local complete intersection by Lemma 137.5. Hence,
since I/I2 is free of rank c we see that k[x1, . . . , xn]/(f1, . . . , fc) has dimension n−c,
by Lemma 135.4 for example. □

Example 137.8.00T8 Let R be a ring. Let f1, . . . , fc ∈ R[x1, . . . , xn]. Let

h = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc

 .

Set S = R[x1, . . . , xn+1]/(f1, . . . , fc, xn+1h− 1). This is an example of a standard
smooth algebra, except that the presentation is wrong and the variables should be
in the following order: x1, . . . , xc, xn+1, xc+1, . . . , xn.

Lemma 137.9.00T9 A composition of standard smooth ring maps is standard smooth.

https://stacks.math.columbia.edu/tag/00T7
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Proof. Suppose that R→ S and S → S′ are standard smooth. We choose presen-
tations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ = S[y1, . . . , ym]/(g1, . . . , gd). Choose
elements g′

j ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to the gj . In this way we see
S′ = R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, g

′
1, . . . , g

′
d). To show that S′ is standard

smooth it suffices to verify that the determinant

det


∂f1/∂x1 . . . ∂fc/∂x1 ∂g1/∂x1 . . . ∂gd/∂x1
. . . . . . . . . . . . . . . . . .

∂f1/∂xc . . . ∂fc/∂xc ∂g1/∂xc . . . ∂gd/∂xc
0 . . . 0 ∂g1/∂y1 . . . ∂gd/∂y1
. . . . . . . . . . . . . . . . . .
0 . . . 0 ∂g1/∂yd . . . ∂gd/∂yd


is invertible in S′. This is clear since it is the product of the two determinants
which were assumed to be invertible by hypothesis. □

Lemma 137.10.00TA Let R→ S be a smooth ring map. There exists an open covering
of Spec(S) by standard opens D(g) such that each Sg is standard smooth over R.
In particular R→ S is syntomic.
Proof. Choose a presentation α : R[x1, . . . , xn]→ S with kernel I = (f1, . . . , fm).
For every subset E ⊂ {1, . . . ,m} consider the open subset UE where the classes
fe, e ∈ E freely generate the finite projective S-module I/I2, see Lemma 79.4. We
may cover Spec(S) by standard opens D(g) each completely contained in one of
the opens UE . For such a g we look at the presentation

β : R[x1, . . . , xn, xn+1] −→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we use Lemma 134.12 to see that
J/J2 ∼= (I/I2)g ⊕ Sg is free. We may and do replace S by Sg. Then using Lemma
136.6 we may assume we have a presentation α : R[x1, . . . , xn] → S with kernel
I = (f1, . . . , fc) such that I/I2 is free on the classes of f1, . . . , fc.
Using the presentation α obtained at the end of the previous paragraph, we more
or less repeat this argument with the basis elements dx1, . . . ,dxn of ΩR[x1,...,xn]/R.
Namely, for any subset E ⊂ {1, . . . , n} of cardinality c we may consider the open
subset UE of Spec(S) where the differential of NL(α) composed with the projection

S⊕c ∼= I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S −→
⊕

i∈E
Sdxi

is an isomorphism. Again we may find a covering of Spec(S) by (finitely many)
standard opensD(g) such that eachD(g) is completely contained in one of the opens
UE . By renumbering, we may assume E = {1, . . . , c}. For a g with D(g) ⊂ UE we
look at the presentation

β : R[x1, . . . , xn, xn+1]→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we conclude from Lemma 134.12 that
J = (f1, . . . , fc, fxn+1 − 1) where α(f) = g and that the composition

J/J2 −→ ΩR[x1,...,xn+1]/R ⊗R[x1,...,xn+1] Sg −→
⊕c

i=1
Sgdxi ⊕ Sgdxn+1

is an isomorphism. Reordering the coordinates as x1, . . . , xc, xn+1, xc+1, . . . , xn we
conclude that Sg is standard smooth over R as desired.
This finishes the proof as standard smooth algebras are syntomic (Lemmas 137.7
and 136.13) and being syntomic over R is local on S (Lemma 136.4). □

https://stacks.math.columbia.edu/tag/00TA
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Definition 137.11.00TB Let R → S be a ring map. Let q be a prime of S. We say
R→ S is smooth at q if there exists a g ∈ S, g ̸∈ q such that R→ Sg is smooth.

For ring maps of finite presentation we can characterize this as follows.

Lemma 137.12.07BU Let R→ S be of finite presentation. Let q be a prime of S. The
following are equivalent

(1) R→ S is smooth at q,
(2) H1(LS/R)q = 0 and ΩS/R,q is a finite free Sq-module,
(3) H1(LS/R)q = 0 and ΩS/R,q is a projective Sq-module, and
(4) H1(LS/R)q = 0 and ΩS/R,q is a flat Sq-module.

Proof. We will use without further mention that formation of the naive cotangent
complex commutes with localization, see Section 134, especially Lemma 134.13.
Note that ΩS/R is a finitely presented S-module, see Lemma 131.15. Hence (2),
(3), and (4) are equivalent by Lemma 78.2. It is clear that (1) implies the equivalent
conditions (2), (3), and (4). Assume (2) holds. Writing Sq as the colimit of principal
localizations we see from Lemma 127.6 that we can find a g ∈ S, g ̸∈ q such that
(ΩS/R)g is finite free. Choose a presentation α : R[x1, . . . , xn] → S with kernel I.
We may work with NL(α) instead of NLS/R, see Lemma 134.2. The surjection

ΩR[x1,...,xn]/R ⊗R S → ΩS/R → 0
has a right inverse after inverting g because (ΩS/R)g is projective. Hence the image
of d : (I/I2)g → ΩR[x1,...,xn]/R⊗R Sg is a direct summand and this map has a right
inverse too. We conclude that H1(LS/R)g is a quotient of (I/I2)g. In particular
H1(LS/R)g is a finite Sg-module. Thus the vanishing of H1(LS/R)q implies the
vanishing of H1(LS/R)gg′ for some g′ ∈ S, g′ ̸∈ q. Then R → Sgg′ is smooth by
definition. □

Lemma 137.13.00TC Let R → S be a ring map. Then R → S is smooth if and only
if R→ S is smooth at every prime q of S.

Proof. The direct implication is trivial. Suppose that R → S is smooth at every
prime q of S. Since Spec(S) is quasi-compact, see Lemma 17.8, there exists a finite
covering Spec(S) =

⋃
D(gi) such that each Sgi

is smooth. By Lemma 23.3 this
implies that S is of finite presentation over R. According to Lemma 134.13 we see
that NLS/R⊗SSgi is quasi-isomorphic to a finite projective Sgi-module. By Lemma
78.2 this implies that NLS/R is quasi-isomorphic to a finite projective S-module. □

Lemma 137.14.00TD A composition of smooth ring maps is smooth.

Proof. You can prove this in many different ways. One way is to use the snake
lemma (Lemma 4.1), the Jacobi-Zariski sequence (Lemma 134.4), combined with
the characterization of projective modules as being direct summands of free modules
(Lemma 77.2). Another proof can be obtained by combining Lemmas 137.10, 137.9
and 137.13. □

Lemma 137.15.0GIF Let R be a ring. Let S = S′ × S′′ be a product of R-algebras.
Then S is smooth over R if and only if both S′ and S′′ are smooth over R.

Proof. Omitted. Hints: By Lemma 137.13 we can check smoothness one prime at
a time. Since Spec(S) is the disjoint union of Spec(S′) and Spec(S′′) by Lemma
21.2 we find that smoothness of R → S at q corresponds to either smoothness of

https://stacks.math.columbia.edu/tag/00TB
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R→ S′ at the corresponding prime or smoothness of R→ S′′ at the corresponding
prime. □

Lemma 137.16.00TE Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection. Let q ⊂ S be a prime. Then R → S is smooth at
q if and only if there exists a subset I ⊂ {1, . . . , n} of cardinality c such that the
polynomial

gI = det(∂fj/∂xi)j=1,...,c, i∈I .

does not map to an element of q.

Proof. By Lemma 136.12 we see that the naive cotangent complex associated to
the given presentation of S is the complex⊕c

j=1
S · fj −→

⊕n

i=1
S · dxi, fj 7−→

∑ ∂fj
∂xi

dxi.

The maximal minors of the matrix giving the map are exactly the polynomials gI .

Assume gI maps to g ∈ S, with g ̸∈ q. Then the algebra Sg is smooth over
R. Namely, its naive cotangent complex is quasi-isomorphic to the complex above
localized at g, see Lemma 134.13. And by construction it is quasi-isomorphic to a
free rank n− c module in degree 0.

Conversely, suppose that all gI end up in q. In this case the complex above tensored
with κ(q) does not have maximal rank, and hence there is no localization by an
element g ∈ S, g ̸∈ q where this map becomes a split injection. By Lemma 134.13
again there is no such localization which is smooth over R. □

Lemma 137.17.00TF Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. Assume

(1) there exists a g ∈ S, g ̸∈ q such that R→ Sg is of finite presentation,
(2) the local ring homomorphism Rp → Sq is flat,
(3) the fibre S ⊗R κ(p) is smooth over κ(p) at the prime corresponding to q.

Then R→ S is smooth at q.

Proof. By Lemmas 136.15 and 137.5 we see that there exists a g ∈ S such
that Sg is a relative global complete intersection. Replacing S by Sg we may
assume S = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection.
For any subset I ⊂ {1, . . . , n} of cardinality c consider the polynomial gI =
det(∂fj/∂xi)j=1,...,c,i∈I of Lemma 137.16. Note that the image gI of gI in the
polynomial ring κ(p)[x1, . . . , xn] is the determinant of the partial derivatives of the
images f j of the fj in the ring κ(p)[x1, . . . , xn]. Thus the lemma follows by applying
Lemma 137.16 both to R→ S and to κ(p)→ S ⊗R κ(p). □

Note that the sets U, V in the following lemma are open by definition.

Lemma 137.18.00TG Let R → S be a ring map of finite presentation. Let R → R′

be a flat ring map. Denote S′ = R′ ⊗R S the base change. Let U ⊂ Spec(S) be
the set of primes at which R → S is smooth. Let V ⊂ Spec(S′) the set of primes
at which R′ → S′ is smooth. Then V is the inverse image of U under the map
f : Spec(S′)→ Spec(S).
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Proof. By Lemma 134.8 we see thatNLS/R⊗SS′ is homotopy equivalent toNLS′/R′ .
This already implies that f−1(U) ⊂ V .
Let q′ ⊂ S′ be a prime lying over q ⊂ S. Assume q′ ∈ V . We have to show that
q ∈ U . Since S → S′ is flat, we see that Sq → S′

q′ is faithfully flat (Lemma 39.17).
Thus the vanishing of H1(LS′/R′)q′ implies the vanishing of H1(LS/R)q. By Lemma
78.6 applied to the Sq-module (ΩS/R)q and the map Sq → S′

q′ we see that (ΩS/R)q
is projective. Hence R→ S is smooth at q by Lemma 137.12. □

Lemma 137.19.02UQ Let K/k be a field extension. Let S be a finite type algebra over
k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime of S.
Then S is smooth over k at q if and only if SK is smooth at qK over K.

Proof. This is a special case of Lemma 137.18. □

Lemma 137.20.04B1 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be a
smooth ring map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some (standard) smooth ring Si over R.

Proof. By Lemma 137.10 we find a collection of elements gi ∈ S which generate the
unit ideal of S such that each Sgi

is standard smooth over R/I. Hence we may as-
sume that S is standard smooth overR/I. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c)
as in Definition 137.6. Choose f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set
S = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1∆ − 1) where ∆ = det(∂fj

∂xi
)i,j=1,...,c as in

Example 137.8. This proves the lemma. □

138. Formally smooth maps

00TH In this section we define formally smooth ring maps. It will turn out that a ring map
of finite presentation is formally smooth if and only if it is smooth, see Proposition
138.13.

Definition 138.1.00TI Let R→ S be a ring map. We say S is formally smooth over
R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, a dotted arrow exists which makes the
diagram commute.

Lemma 138.2.00TJ Let R → S be a formally smooth ring map. Let R → R′ be any
ring map. Then the base change S′ = R′ ⊗R S is formally smooth over R′.

Proof. Let a solid diagram

S //

))

R′ ⊗R S //

$$

A/I

R

OO

// R′ //

OO

A

OO

as in Definition 138.1 be given. By assumption the longer dotted arrow exists. By
the universal property of tensor product we obtain the shorter dotted arrow. □
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Lemma 138.3.031H A composition of formally smooth ring maps is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) □

Lemma 138.4.00TK A polynomial ring over R is formally smooth over R.

Proof. Suppose we have a diagram as in Definition 138.1 with S = R[xj ; j ∈ J ].
Then there exists a dotted arrow simply by choosing lifts aj ∈ A of the elements in
A/I to which the elements xj map to under the top horizontal arrow. □

Lemma 138.5.00TL Let R → S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if there exists an R-algebra map σ : S → P/J2 which
is a right inverse to the surjection P/J2 → S.

Proof. Assume R→ S is formally smooth. Consider the commutative diagram

S //

!!

P/J

R //

OO

P/J2

OO

By assumption the dotted arrow exists. This proves that σ exists.

Conversely, suppose we have a σ as in the lemma. Let a solid diagram

S //

!!

A/I

R //

OO

A

OO

as in Definition 138.1 be given. Because P is formally smooth by Lemma 138.4,
there exists an R-algebra homomorphism ψ : P → A which lifts the map P →
S → A/I. Clearly ψ(J) ⊂ I and since I2 = 0 we conclude that ψ(J2) = 0.
Hence ψ factors as ψ : P/J2 → A. The desired dotted arrow is the composition
ψ ◦ σ : S → A. □

Remark 138.6.00TM Lemma 138.5 holds more generally whenever P is formally
smooth over R.

Lemma 138.7.031I Let R → S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if the sequence

0→ J/J2 → ΩP/R ⊗P S → ΩS/R → 0

of Lemma 131.9 is a split exact sequence.

Proof. Assume S is formally smooth over R. By Lemma 138.5 this means there
exists an R-algebra map S → P/J2 which is a right inverse to the canonical map
P/J2 → S. By Lemma 131.11 we have ΩP/R ⊗P S = Ω(P/J2)/R ⊗P/J2 S. By
Lemma 131.10 the sequence is split.
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Assume the exact sequence of the lemma is split exact. Choose a splitting σ :
ΩS/R → ΩP/R ⊗P S. For each λ ∈ S choose xλ ∈ P which maps to λ. Next, for
each λ ∈ S choose fλ ∈ J such that

dfλ = dxλ − σ(dλ)
in the middle term of the exact sequence. We claim that s : λ 7→ xλ − fλ mod J2

is an R-algebra homomorphism s : S → P/J2. To prove this we will repeatedly
use that if h ∈ J and dh = 0 in ΩP/R ⊗R S, then h ∈ J2. Let λ, µ ∈ S. Then
σ(dλ+ dµ− d(λ+ µ)) = 0. This implies

d(xλ + xµ − xλ+µ − fλ − fµ + fλ+µ) = 0
which means that xλ +xµ−xλ+µ− fλ− fµ + fλ+µ ∈ J2, which in turn means that
s(λ) + s(µ) = s(λ+ µ). Similarly, we have σ(λdµ+ µdλ− dλµ) = 0 which implies
that

µ(dxλ − dfλ) + λ(dxµ − dfµ)− dxλµ + dfλµ = 0
in the middle term of the exact sequence. Moreover we have

d(xλxµ) = xλdxµ + xµdxλ = λdxµ + µdxλ
in the middle term again. Combined these equations mean that xλxµ−xλµ−µfλ−
λfµ + fλµ ∈ J2, hence (xλ − fλ)(xµ − fµ)− (xλµ − fλµ) ∈ J2 as fλfµ ∈ J2, which
means that s(λ)s(µ) = s(λµ). If λ ∈ R, then dλ = 0 and we see that dfλ = dxλ,
hence λ− xλ + fλ ∈ J2 and hence s(λ) = λ as desired. At this point we can apply
Lemma 138.5 to conclude that S/R is formally smooth. □

Proposition 138.8.031J Let R → S be a ring map. Consider a formally smooth
R-algebra P and a surjection P → S with kernel J . The following are equivalent

(1) S is formally smooth over R,
(2) for some P → S as above there exists a section to P/J2 → S,
(3) for all P → S as above there exists a section to P/J2 → S,
(4) for some P → S as above the sequence 0→ J/J2 → ΩP/R⊗S → ΩS/R → 0

is split exact,
(5) for all P → S as above the sequence 0 → J/J2 → ΩP/R ⊗ S → ΩS/R → 0

is split exact, and
(6) the naive cotangent complex NLS/R is quasi-isomorphic to a projective S-

module placed in degree 0.

Proof. It is clear that (1) implies (3) implies (2), see first part of the proof of
Lemma 138.5. It is also true that (3) implies (5) implies (4) and that (2) implies
(4), see first part of the proof of Lemma 138.7. Finally, Lemma 138.7 applied to
the canonical surjection R[S]→ S (134.0.1) shows that (1) implies (6).
Assume (4) and let’s prove (6). Consider the sequence of Lemma 134.4 associated
to the ring maps R → P → S. By the implication (1) ⇒ (6) proved above we
see that NLP/R⊗RS is quasi-isomorphic to ΩP/R ⊗P S placed in degree 0. Hence
H1(NLP/R⊗PS) = 0. Since P → S is surjective we see that NLS/P is homotopy
equivalent to J/J2 placed in degree 1 (Lemma 134.6). Thus we obtain the exact
sequence 0 → H1(LS/R) → J/J2 → ΩP/R ⊗P S → ΩS/R → 0. By assumption we
see that H1(LS/R) = 0 and that ΩS/R is a projective S-module. Thus (6) follows.
Finally, let’s prove that (6) implies (1). The assumption means that the complex
J/J2 → ΩP/R⊗S where P = R[S] and P → S is the canonical surjection (134.0.1)
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is quasi-isomorphic to a projective S-module placed in degree 0. Hence Lemma
138.7 shows that S is formally smooth over R. □

Lemma 138.9.031K Let A → B → C be ring maps. Assume B → C is formally
smooth. Then the sequence

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0
of Lemma 131.7 is a split short exact sequence.

Proof. Follows from Proposition 138.8 and Lemma 134.4. □

Lemma 138.10.06A6 Let A → B → C be ring maps with A → C formally smooth
and B → C surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0
of Lemma 131.9 is split exact.

Proof. Follows from Proposition 138.8, Lemma 134.4, and Lemma 131.9. □

Lemma 138.11.06A7 Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is) and A → B formally smooth. Denote I = Ker(A → C) and
J = Ker(B → C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
of Lemma 134.7 is split exact.

Proof. Since A → B is formally smooth there exists a ring map σ : B → A/I2

whose composition with A → B equals the quotient map A → A/I2. Then σ
induces a map J/J2 → I/I2 which is inverse to the map I/I2 → J/J2. □

Lemma 138.12.031L Let R→ S be a ring map. Let I ⊂ R be an ideal. Assume
(1) I2 = 0,
(2) R→ S is flat, and
(3) R/I → S/IS is formally smooth.

Then R→ S is formally smooth.

Proof. Assume (1), (2) and (3). Let P = R[{xt}t∈T ] → S be a surjection of R-
algebras with kernel J . Thus 0 → J → P → S → 0 is a short exact sequence of
flat R-modules. This implies that I ⊗R S = IS, I ⊗R P = IP and I ⊗R J = IJ as
well as J ∩ IP = IJ . We will use throughout the proof that

Ω(S/IS)/(R/I) = ΩS/R ⊗S (S/IS) = ΩS/R ⊗R R/I = ΩS/R/IΩS/R
and similarly for P (see Lemma 131.12). By Lemma 138.7 the sequence
(138.12.1)031M 0→ J/(IJ + J2)→ ΩP/R ⊗P S/IS → ΩS/R ⊗S S/IS → 0
is split exact. Of course the middle term is

⊕
t∈T S/ISdxt. Choose a splitting

σ : ΩP/R ⊗P S/IS → J/(IJ + J2). For each t ∈ T choose an element ft ∈ J which
maps to σ(dxt) in J/(IJ + J2). This determines a unique S-module map

σ̃ : ΩP/R ⊗R S =
⊕

Sdxt −→ J/J2

with the property that σ̃(dxt) = ft. As σ is a section to d the difference
∆ = idJ/J2 − σ̃ ◦ d
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is a self map J/J2 → J/J2 whose image is contained in (IJ+J2)/J2. In particular
∆((IJ + J2)/J2) = 0 because I2 = 0. This means that ∆ factors as

J/J2 → J/(IJ + J2) ∆−→ (IJ + J2)/J2 → J/J2

where ∆ is a S/IS-module map. Using again that the sequence (138.12.1) is split,
we can find a S/IS-module map δ : ΩP/R⊗P S/IS → (IJ + J2)/J2 such that δ ◦ d
is equal to ∆. In the same manner as above the map δ determines an S-module
map δ : ΩP/R ⊗P S → J/J2. After replacing σ̃ by σ̃ + δ a simple computation
shows that ∆ = 0. In other words σ̃ is a section of J/J2 → ΩP/R⊗P S. By Lemma
138.7 we conclude that R→ S is formally smooth. □

Proposition 138.13.00TN Let R→ S be a ring map. The following are equivalent
(1) R→ S is of finite presentation and formally smooth,
(2) R→ S is smooth.

Proof. Follows from Proposition 138.8 and Definition 137.1. (Note that ΩS/R
is a finitely presented S-module if R → S is of finite presentation, see Lemma
131.15.) □

Lemma 138.14.00TP Let R → S be a smooth ring map. Then there exists a subring
R0 ⊂ R of finite type over Z and a smooth ring map R0 → S0 such that S ∼=
R⊗R0 S0.

Proof. We are going to use that smooth is equivalent to finite presentation and
formally smooth, see Proposition 138.13. Write S = R[x1, . . . , xn]/(f1, . . . , fm)
and denote I = (f1, . . . , fm). Choose a right inverse σ : S → R[x1, . . . , xn]/I2

to the projection to S as in Lemma 138.5. Choose hi ∈ R[x1, . . . , xn] such that
σ(xi mod I) = hi mod I2. Since xi − hi ∈ I, there exist bij ∈ R[x1, . . . , xn] such
that

xi − hi =
∑

j
bijfj

The fact that σ is an R-algebra homomorphism R[x1, . . . , xn]/I → R[x1, . . . , xn]/I2

is equivalent to the condition that

fj(h1, . . . , hn) =
∑

j1j2
aj1j2fj1fj2

for certain akl ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated over Z by all
the coefficients of the polynomials fj , hi, akl, bij . Set S0 = R0[x1, . . . , xn]/(f1, . . . , fm),
with I0 = (f1, . . . , fm). Since the second displayed equation holds in R0[x1, . . . , xn]
we can let σ0 : S0 → R0[x1, . . . , xn]/I2

0 be the R0-algebra map defined by the rule
xi 7→ hi mod I2

0 . Since the first displayed equation holds in R0[x1, . . . , xn] we see
that σ0 is a right inverse to the projection R0[x1, . . . , xn]/I2

0 → R0[x1, . . . , xn]/I0 =
S0. Thus by Lemma 138.5 the ring S0 is formally smooth over R0. □

Lemma 138.15.0CAQ Let A = colimAi be a filtered colimit of rings. Let A → B be
a smooth ring map. There exists an i and a smooth ring map Ai → Bi such that
B = Bi ⊗Ai

A.

Proof. Follows from Lemma 138.14 since R0 → A will factor through Ai for some
i by Lemma 127.3. □
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Lemma 138.16.06CM Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = S ⊗R R′. Then R→ S is formally smooth if and only if R′ → S′ is
formally smooth.
Proof. If R→ S is formally smooth, then R′ → S′ is formally smooth by Lemma
138.2. To prove the converse, assume R′ → S′ is formally smooth. Note that
N ⊗R R′ = N ⊗S S′ for any S-module N . In particular S → S′ is faithfully flat
also. Choose a polynomial ring P = R[{xi}i∈I ] and a surjection of R-algebras
P → S with kernel J . Note that P ′ = P ⊗R R′ is a polynomial algebra over R′.
Since R→ R′ is flat the kernel J ′ of the surjection P ′ → S′ is J ⊗R R′. Hence the
split exact sequence (see Lemma 138.7)

0→ J ′/(J ′)2 → ΩP ′/R′ ⊗P ′ S′ → ΩS′/R′ → 0
is the base change via S → S′ of the corresponding sequence

J/J2 → ΩP/R ⊗P S → ΩS/R → 0
see Lemma 131.9. As S → S′ is faithfully flat we conclude two things: (1) this
sequence (without ′) is exact too, and (2) ΩS/R is a projective S-module. Namely,
ΩS′/R′ is projective as a direct sum of the free module ΩP ′/R′ ⊗P ′ S′ and ΩS/R ⊗S
S′ = ΩS′/R′ by what we said above. Thus (2) follows by descent of projectivity
through faithfully flat ring maps, see Theorem 95.6. Hence the sequence 0 →
J/J2 → ΩP/R ⊗P S → ΩS/R → 0 is exact also and we win by applying Lemma
138.7 once more. □

It turns out that smooth ring maps satisfy the following strong lifting property.
Lemma 138.17.07K4 Let R → S be a smooth ring map. Given a commutative solid
diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is a locally nilpotent ideal, a dotted arrow exists which makes the
diagram commute.
Proof. By Lemma 138.14 we can extend the diagram to a commutative diagram

S0 // S //

  

A/I

R0 //

OO

R //

OO

A

OO

with R0 → S0 smooth, R0 of finite type over Z, and S = S0⊗R0R. Let x1, . . . , xn ∈
S0 be generators of S0 over R0. Let a1, . . . , an be elements of A which map to the
same elements in A/I as the elements x1, . . . , xn. Denote A0 ⊂ A the subring
generated by the image of R0 and the elements a1, . . . , an. Set I0 = A0 ∩ I. Then
A0/I0 ⊂ A/I and S0 → A/I maps into A0/I0. Thus it suffices to find the dotted
arrow in the diagram

S0 //

""

A0/I0

R0 //

OO

A0

OO
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The ring A0 is of finite type over Z by construction. Hence A0 is Noetherian,
whence I0 is nilpotent, see Lemma 32.5. Say In0 = 0. By Proposition 138.13 we can
successively lift the R0-algebra map S0 → A0/I0 to S0 → A0/I

2
0 , S0 → A0/I

3
0 , . . .,

and finally S0 → A0/I
n
0 = A0. □

139. Smoothness and differentials

05D4 Some results on differentials and smooth ring maps.

Lemma 139.1.04B2 Given ring maps A → B → C with B → C smooth, then the
sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Lemma 131.7 is exact.

Proof. This follows from the more general Lemma 138.9 because a smooth ring
map is formally smooth, see Proposition 138.13. But it also follows directly from
Lemma 134.4 since H1(LC/B) = 0 is part of the definition of smoothness of B →
C. □

Lemma 139.2.06A8 Let A → B → C be ring maps with A → C smooth and B → C
surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0
of Lemma 131.9 is split exact.

Proof. This follows from the more general Lemma 138.10 because a smooth ring
map is formally smooth, see Proposition 138.13. □

Lemma 139.3.06A9 Let A→ B → C be ring maps. Assume A→ C is surjective (so
also B → C is) and A → B smooth. Denote I = Ker(A → C) and J = Ker(B →
C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
of Lemma 134.7 is exact.

Proof. This follows from the more general Lemma 138.11 because a smooth ring
map is formally smooth, see Proposition 138.13. □

Lemma 139.4.05D5 Let φ : R → S be a smooth ring map. Let σ : S → R be a left
inverse to φ. Set I = Ker(σ). Then

(1) I/I2 is a finite locally free R-module, and
(2) if I/I2 is free, then S∧ ∼= R[[t1, . . . , td]] as R-algebras, where S∧ is the

I-adic completion of S.

Proof. By Lemma 131.10 applied to R→ S → R we see that I/I2 = ΩS/R⊗S,σR.
Since by definition of a smooth morphism the module ΩS/R is finite locally free
over S we deduce that (1) holds. If I/I2 is free, then choose f1, . . . , fd ∈ I whose
images in I/I2 form an R-basis. Consider the R-algebra map defined by

Ψ : R[[x1, . . . , xd]] −→ S∧, xi 7−→ fi.

Denote P = R[[x1, . . . , xd]] and J = (x1, . . . , xd) ⊂ P . We write Ψn : P/Jn → S/In

for the induced map of quotient rings. Note that S/I2 = φ(R) ⊕ I/I2. Thus Ψ2
is an isomorphism. Denote σ2 : S/I2 → P/J2 the inverse of Ψ2. We will prove by
induction on n that for all n > 2 there exists an inverse σn : S/In → P/Jn of Ψn.
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Namely, as S is formally smooth over R (by Proposition 138.13) we see that in the
solid diagram

S //

σn−1 ""

P/Jn

��
P/Jn−1

of R-algebras we can fill in the dotted arrow by some R-algebra map τ : S → P/Jn

making the diagram commute. This induces an R-algebra map τ : S/In → P/Jn

which is equal to σn−1 modulo Jn−1. By construction the map Ψn is surjective and
now τ ◦Ψn is an R-algebra endomorphism of P/Jn which maps xi to xi + δi,n with
δi,n ∈ Jn−1/Jn. It follows that Ψn is an isomorphism and hence it has an inverse
σn. This proves the lemma. □

140. Smooth algebras over fields

00TQ Warning: The following two lemmas do not hold over nonperfect fields in general.

Lemma 140.1.00TR Let k be an algebraically closed field. Let S be a finite type k-
algebra. Let m ⊂ S be a maximal ideal. Then

dimκ(m) ΩS/k ⊗S κ(m) = dimκ(m) m/m
2.

Proof. Consider the exact sequence

m/m2 → ΩS/k ⊗S κ(m)→ Ωκ(m)/k → 0

of Lemma 131.9. We would like to show that the first map is an isomorphism. Since
k is algebraically closed the composition k → κ(m) is an isomorphism by Theorem
34.1. So the surjection S → κ(m) splits as a map of k-algebras, and Lemma 131.10
shows that the sequence above is exact on the left. Since Ωκ(m)/k = 0, we win. □

Lemma 140.2.00TS Let k be an algebraically closed field. Let S be a finite type k-
algebra. Let m ⊂ S be a maximal ideal. The following are equivalent:

(1) The ring Sm is a regular local ring.
(2) We have dimκ(m) ΩS/k ⊗S κ(m) ≤ dim(Sm).
(3) We have dimκ(m) ΩS/k ⊗S κ(m) = dim(Sm).
(4) There exists a g ∈ S, g ̸∈ m such that Sg is smooth over k. In other words

S/k is smooth at m.

Proof. Note that (1), (2) and (3) are equivalent by Lemma 140.1 and Definition
110.7.

Assume that S is smooth at m. By Lemma 137.10 we see that Sg is standard smooth
over k for a suitable g ∈ S, g ̸∈ m. Hence by Lemma 137.7 we see that ΩSg/k is
free of rank dim(Sg). Hence by Lemma 140.1 we see that dim(Sm) = dim(m/m2)
in other words Sm is regular.

Conversely, suppose that Sm is regular. Let d = dim(Sm) = dimm/m2. Choose a
presentation S = k[x1, . . . , xn]/I such that xi maps to an element of m for all i. In
other words, m′′ = (x1, . . . , xn) is the corresponding maximal ideal of k[x1, . . . , xn].
Note that we have a short exact sequence

I/m′′I → m′′/(m′′)2 → m/(m)2 → 0
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Pick c = n − d elements f1, . . . , fc ∈ I such that their images in m′′/(m′′)2 span
the kernel of the map to m/m2. This is clearly possible. Denote J = (f1, . . . , fc).
So J ⊂ I. Denote S′ = k[x1, . . . , xn]/J so there is a surjection S′ → S. Denote
m′ = m′′S′ the corresponding maximal ideal of S′. Hence we have

k[x1, . . . , xn] // S′ // S

m′′

OO

// m′ //

OO

m

OO

By our choice of J the exact sequence
J/m′′J → m′′/(m′′)2 → m′/(m′)2 → 0

shows that dim(m′/(m′)2) = d. Since S′
m′ surjects onto Sm we see that dim(Sm′) ≥

d. Hence by the discussion preceding Definition 60.10 we conclude that S′
m′ is

regular of dimension d as well. Because S′ was cut out by c = n − d equations
we conclude that there exists a g′ ∈ S′, g′ ̸∈ m′ such that S′

g′ is a global complete
intersection over k, see Lemma 135.4. Also the map S′

m′ → Sm is a surjection of
Noetherian local domains of the same dimension and hence an isomorphism. Hence
S′ → S is surjective with finitely generated kernel and becomes an isomorphism
after localizing at m′. Thus we can find g′ ∈ S′, g ̸∈ m′ such that S′

g′ → Sg′

is an isomorphism. All in all we conclude that after replacing S by a principal
localization we may assume that S is a global complete intersection.
At this point we may write S = k[x1, . . . , xn]/(f1, . . . , fc) with dimS = n − c.
Recall that the naive cotangent complex of this algebra is given by⊕

S · fj →
⊕

S · dxi
see Lemma 136.12. By Lemma 137.16 in order to show that S is smooth at m we
have to show that one of the c×c minors gI of the matrix “A” giving the map above
does not vanish at m. By Lemma 140.1 the matrix A mod m has rank c. Thus we
win. □

Lemma 140.3.00TT Let k be any field. Let S be a finite type k-algebra. Let X =
Spec(S). Let q ⊂ S be a prime corresponding to x ∈ X. The following are equiva-
lent:

(1) The k-algebra S is smooth at q over k.
(2) We have dimκ(q) ΩS/k ⊗S κ(q) ≤ dimxX.
(3) We have dimκ(q) ΩS/k ⊗S κ(q) = dimxX.

Moreover, in this case the local ring Sq is regular.

Proof. If S is smooth at q over k, then there exists a g ∈ S, g ̸∈ q such that Sg is
standard smooth over k, see Lemma 137.10. A standard smooth algebra over k has
a module of differentials which is free of rank equal to the dimension, see Lemma
137.7 (use that a relative global complete intersection over a field has dimension
equal to the number of variables minus the number of equations). Thus we see that
(1) implies (3). To finish the proof of the lemma it suffices to show that (2) implies
(1) and that it implies that Sq is regular.
Assume (2). By Nakayama’s Lemma 20.1 we see that ΩS/k,q can be generated by
≤ dimxX elements. We may replace S by Sg for some g ∈ S, g ̸∈ q such that
ΩS/k is generated by at most dimxX elements. Let K/k be an algebraically closed
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field extension such that there exists a k-algebra map ψ : κ(q) → K. Consider
SK = K ⊗k S. Let m ⊂ SK be the maximal ideal corresponding to the surjection

SK = K ⊗k S // K ⊗k κ(q) idK⊗ψ// K.

Note that m∩S = q, in other words m lies over q. By Lemma 116.6 the dimension of
XK = Spec(SK) at the point corresponding to m is dimxX. By Lemma 114.6 this
is equal to dim((SK)m). By Lemma 131.12 the module of differentials of SK over K
is the base change of ΩS/k, hence also generated by at most dimxX = dim((SK)m)
elements. By Lemma 140.2 we see that SK is smooth at m over K. By Lemma
137.18 this implies that S is smooth at q over k. This proves (1). Moreover, we
know by Lemma 140.2 that the local ring (SK)m is regular. Since Sq → (SK)m is
flat we conclude from Lemma 110.9 that Sq is regular. □

The following lemma can be significantly generalized (in several different ways).

Lemma 140.4.00TU Let k be a field. Let R be a Noetherian local ring containing k.
Assume that the residue field κ = R/m is a finitely generated separable extension
of k. Then the map

d : m/m2 −→ ΩR/k ⊗R κ(m)
is injective.

Proof. We may replace R by R/m2. Hence we may assume that m2 = 0. By
assumption we may write κ = k(x1, . . . , xr, y) where x1, . . . , xr is a transcendence
basis of κ over k and y is separable algebraic over k(x1, . . . , xr). Say its minimal
equation is P (y) = 0 with P (T ) = T d +

∑
i<d aiT

i, with ai ∈ k(x1, . . . , xr) and
P ′(y) ̸= 0. Choose any lifts xi ∈ R of the elements xi ∈ κ. This gives a commutative
diagram

R // κ

k(x1, . . . , xr)
φ

ee OO

of k-algebras. We want to extend the left upwards arrow φ to a k-algebra map from
κ to R. To do this choose any y ∈ R lifting y. To see that it defines a k-algebra
map defined on κ ∼= k(x1, . . . , xr)[T ]/(P ) all we have to show is that we may choose
y such that Pφ(y) = 0. If not then we compute for δ ∈ m that

P (y + δ) = P (y) + P ′(y)δ
because m2 = 0. Since P ′(y)δ = P ′(y)δ we see that we can adjust our choice as
desired. This shows that R ∼= κ⊕m as k-algebras! Now either a direct computation
of Ωκ⊕m/k or an application of Lemma 131.10 finishes the proof. □

Lemma 140.5.00TV Let k be a field. Let S be a finite type k-algebra. Let q ⊂ S be a
prime. Assume κ(q) is separable over k. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The ring Sq is regular.

Proof. Denote R = Sq and denote its maximal by m and its residue field κ. By
Lemma 140.4 and 131.9 we see that there is a short exact sequence

0→ m/m2 → ΩR/k ⊗R κ→ Ωκ/k → 0
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Note that ΩR/k = ΩS/k,q, see Lemma 131.8. Moreover, since κ is separable over k
we have dimκ Ωκ/k = trdegk(κ). Hence we get

dimκ ΩR/k ⊗R κ = dimκm/m
2 + trdegk(κ) ≥ dimR+ trdegk(κ) = dimq S

(see Lemma 116.3 for the last equality) with equality if and only if R is regular.
Thus we win by applying Lemma 140.3. □

Lemma 140.6.00TW Let R → S be a Q-algebra map. Let f ∈ S be such that ΩS/R =
Sdf ⊕ C for some S-submodule C. Then

(1) f is not nilpotent, and
(2) if S is a Noetherian local ring, then f is a nonzerodivisor in S.

Proof. For a ∈ S write d(a) = θ(a)df + c(a) for some θ(a) ∈ S and c(a) ∈ C.
Consider the R-derivation S → S, a 7→ θ(a). Note that θ(f) = 1.
If fn = 0 with n > 1 minimal, then 0 = θ(fn) = nfn−1 contradicting the minimal-
ity of n. We conclude that f is not nilpotent.
Suppose fa = 0. If f is a unit then a = 0 and we win. Assume f is not a unit. Then
0 = θ(fa) = fθ(a)+a by the Leibniz rule and hence a ∈ (f). By induction suppose
we have shown fa = 0 ⇒ a ∈ (fn). Then writing a = fnb we get 0 = θ(fn+1b) =
(n+ 1)fnb+ fn+1θ(b). Hence a = fnb = −fn+1θ(b)/(n+ 1) ∈ (fn+1). Since in the
Noetherian local ring S we have

⋂
(fn) = 0, see Lemma 51.4 we win. □

The following is probably quite useless in applications.

Lemma 140.7.00TX Let k be a field of characteristic 0. Let S be a finite type k-algebra.
Let q ⊂ S be a prime. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The Sq-module ΩS/k,q is (finite) free.
(3) The ring Sq is regular.

Proof. In characteristic zero any field extension is separable and hence the equiv-
alence of (1) and (3) follows from Lemma 140.5. Also (1) implies (2) by definition
of smooth algebras. Assume that ΩS/k,q is free over Sq. We are going to use the
notation and observations made in the proof of Lemma 140.5. So R = Sq with
maximal ideal m and residue field κ. Our goal is to prove R is regular.
If m/m2 = 0, then m = 0 and R ∼= κ. Hence R is regular and we win.
If m/m2 ̸= 0, then choose any f ∈ m whose image in m/m2 is not zero. By
Lemma 140.4 we see that df has nonzero image in ΩR/k/mΩR/k. By assumption
ΩR/k = ΩS/k,q is finite free and hence by Nakayama’s Lemma 20.1 we see that
df generates a direct summand. We apply Lemma 140.6 to deduce that f is a
nonzerodivisor in R. Furthermore, by Lemma 131.9 we get an exact sequence

(f)/(f2)→ ΩR/k ⊗R R/fR→ Ω(R/fR)/k → 0
This implies that Ω(R/fR)/k is finite free as well. Hence by induction we see that
R/fR is a regular local ring. Since f ∈ m was a nonzerodivisor we conclude that
R is regular, see Lemma 106.7. □

Example 140.8.00TY Lemma 140.7 does not hold in characteristic p > 0. The standard
examples are the ring maps

Fp −→ Fp[x]/(xp)
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whose module of differentials is free but is clearly not smooth, and the ring map
(p > 2)

Fp(t)→ Fp(t)[x, y]/(xp + y2 + α)
which is not smooth at the prime q = (y, xp + α) but is regular.

Using the material above we can characterize smoothness at the generic point in
terms of field extensions.

Lemma 140.9.07ND Let R → S be an injective finite type ring map with R and S
domains. Then R → S is smooth at q = (0) if and only if the induced extension
L/K of fraction fields is separable.

Proof. Assume R→ S is smooth at (0). We may replace S by Sg for some nonzero
g ∈ S and assume that R → S is smooth. Then K → S ⊗R K is smooth (Lemma
137.4). Moreover, for any field extension K ′/K the ring map K ′ → S ⊗R K ′ is
smooth as well. Hence S ⊗R K ′ is a regular ring by Lemma 140.3, in particular
reduced. It follows that S ⊗R K is a geometrically reduced over K. Hence L is
geometrically reduced over K, see Lemma 43.3. Hence L/K is separable by Lemma
44.2.

Conversely, assume that L/K is separable. We may assume R → S is of finite
presentation, see Lemma 30.1. It suffices to prove that K → S ⊗R K is smooth at
(0), see Lemma 137.18. This follows from Lemma 140.5, the fact that a field is a
regular ring, and the assumption that L/K is separable. □

141. Smooth ring maps in the Noetherian case

02HR
Definition 141.1.02HS Let φ : B′ → B be a ring map. We say φ is a small extension
if B′ and B are local Artinian rings, φ is surjective and I = Ker(φ) has length 1 as
a B′-module.

Clearly this means that I2 = 0 and that I = (x) for some x ∈ B′ such that m′x = 0
where m′ ⊂ B′ is the maximal ideal.

Lemma 141.2.02HT Let R → S be a ring map. Let q be a prime ideal of S lying
over p ⊂ R. Assume R is Noetherian and R → S of finite type. The following are
equivalent:

(1) R→ S is smooth at q,
(2) for every surjection of local R-algebras (B′,m′)→ (B,m) with Ker(B′ → B)

having square zero and every solid commutative diagram

S //

  

B

R //

OO

B′

OO

such that q = S ∩ m there exists a dotted arrow making the diagram com-
mute,

(3) same as in (2) but with B′ → B ranging over small extensions, and
(4) same as in (2) but with B′ → B ranging over small extensions such that in

addition S → B induces an isomorphism κ(q) ∼= κ(m).

https://stacks.math.columbia.edu/tag/07ND
https://stacks.math.columbia.edu/tag/02HS
https://stacks.math.columbia.edu/tag/02HT
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Proof. Assume (1). This means there exists a g ∈ S, g ̸∈ q such that R → Sg is
smooth. By Proposition 138.13 we know that R → Sg is formally smooth. Note
that given any diagram as in (2) the map S → B factors automatically through Sq

and a fortiori through Sg. The formal smoothness of Sg over R gives us a morphism
Sg → B′ fitting into a similar diagram with Sg at the upper left corner. Composing
with S → Sg gives the desired arrow. In other words, we have shown that (1)
implies (2).

Clearly (2) implies (3) and (3) implies (4).

Assume (4). We are going to show that (1) holds, thereby finishing the proof of
the lemma. Choose a presentation S = R[x1, . . . , xn]/(f1, . . . , fm). This is possible
as S is of finite type over R and therefore of finite presentation (see Lemma 31.4).
Set I = (f1, . . . , fm). Consider the naive cotangent complex

d : I/I2 −→
⊕n

j=1
Sdxj

of this presentation (see Section 134). It suffices to show that when we localize this
complex at q then the map becomes a split injection, see Lemma 137.12. Denote
S′ = R[x1, . . . , xn]/I2. By Lemma 131.11 we have

S ⊗S′ ΩS′/R = S ⊗R[x1,...,xn] ΩR[x1,...,xn]/R =
⊕m

j=1
Sdxj .

Thus the map
d : I/I2 −→ S ⊗S′ ΩS′/R

is the same as the map in the naive cotangent complex above. In particular the truth
of the assertion we are trying to prove depends only on the three rings R→ S′ → S.
Let q′ ⊂ R[x1, . . . , xn] be the prime ideal corresponding to q. Since localization
commutes with taking modules of differentials (Lemma 131.8) we see that it suffices
to show that the map

(141.2.1)02HU d : Iq′/I2
q′ −→ Sq ⊗S′

q′
ΩS′

q′/R

coming from R→ S′
q′ → Sq is a split injection.

Let N ∈ N be an integer. Consider the ring

B′
N = S′

q′/(q′)NS′
q′ = (S′/(q′)NS′)q′

and its quotient BN = B′
N/IB

′
N . Note that BN ∼= Sq/q

NSq. Observe that B′
N

is an Artinian local ring since it is the quotient of a local Noetherian ring by a
power of its maximal ideal. Consider a filtration of the kernel IN of B′

N → BN by
B′
N -submodules

0 ⊂ JN,1 ⊂ JN,2 ⊂ . . . ⊂ JN,n(N) = IN

such that each successive quotient JN,i/JN,i−1 has length 1. (As B′
N is Artinian

such a filtration exists.) This gives a sequence of small extensions

B′
N → B′

N/JN,1 → B′
N/JN,2 → . . .→ B′

N/JN,n(N) = B′
N/IN = BN = Sq/q

NSq
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Applying condition (4) successively to these small extensions starting with the map
S → BN we see there exists a commutative diagram

S //

  

BN

R //

OO

B′
N

OO

Clearly the ring map S → B′
N factors as S → Sq → B′

N where Sq → B′
N is a local

homomorphism of local rings. Moreover, since the maximal ideal of B′
N to the

Nth power is zero we conclude that Sq → B′
N factors through Sq/(q)NSq = BN .

In other words we have shown that for all N ∈ N the surjection of R-algebras
B′
N → BN has a splitting.

Consider the presentation
IN → BN ⊗B′

N
ΩB′

N
/R → ΩBN/R → 0

coming from the surjection B′
N → BN with kernel IN (see Lemma 131.9). By the

above the R-algebra map B′
N → BN has a right inverse. Hence by Lemma 131.10

we see that the sequence above is split exact! Thus for every N the map
IN −→ BN ⊗B′

N
ΩB′

N
/R

is a split injection. The rest of the proof is gotten by unwinding what this means
exactly. Note that

IN = Iq′/(I2
q′ + (q′)N ∩ Iq′)

By Artin-Rees (Lemma 51.2) we find a c ≥ 0 such that

Sq/q
N−cSq ⊗Sq

IN = Sq/q
N−cSq ⊗Sq

Iq′/I2
q′

for all N ≥ c (these tensor product are just a fancy way of dividing by qN−c). We
may of course assume c ≥ 1. By Lemma 131.11 we see that

S′
q′/(q′)N−cS′

q′ ⊗S′
q′

ΩB′
N
/R = S′

q′/(q′)N−cS′
q′ ⊗S′

q′
ΩS′

q′/R

we can further tensor this by BN = Sq/q
N to see that

Sq/q
N−cSq ⊗S′

q′
ΩB′

N
/R = Sq/q

N−cSq ⊗S′
q′

ΩS′
q′/R

.

Since a split injection remains a split injection after tensoring with anything we see
that

Sq/q
N−cSq ⊗Sq

(141.2.1) = Sq/q
N−cSq ⊗Sq/qNSq

(IN −→ BN ⊗B′
N

ΩB′
N
/R)

is a split injection for all N ≥ c. By Lemma 74.1 we see that (141.2.1) is a split
injection. This finishes the proof. □

142. Overview of results on smooth ring maps

00TZ Here is a list of results on smooth ring maps that we proved in the preceding
sections. For more precise statements and definitions please consult the references
given.

(1) A ring map R → S is smooth if it is of finite presentation and the naive
cotangent complex of S/R is quasi-isomorphic to a finite projective S-
module in degree 0, see Definition 137.1.
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(2) If S is smooth over R, then ΩS/R is a finite projective S-module, see dis-
cussion following Definition 137.1.

(3) The property of being smooth is local on S, see Lemma 137.13.
(4) The property of being smooth is stable under base change, see Lemma

137.4.
(5) The property of being smooth is stable under composition, see Lemma

137.14.
(6) A smooth ring map is syntomic, in particular flat, see Lemma 137.10.
(7) A finitely presented, flat ring map with smooth fibre rings is smooth, see

Lemma 137.17.
(8) A finitely presented ring map R→ S is smooth if and only if it is formally

smooth, see Proposition 138.13.
(9) If R → S is a finite type ring map with R Noetherian then to check that

R→ S is smooth it suffices to check the lifting property of formal smooth-
ness along small extensions of Artinian local rings, see Lemma 141.2.

(10) A smooth ring map R → S is the base change of a smooth ring map
R0 → S0 with R0 of finite type over Z, see Lemma 138.14.

(11) Formation of the set of points where a ring map is smooth commutes with
flat base change, see Lemma 137.18.

(12) If S is of finite type over an algebraically closed field k, and m ⊂ S a
maximal ideal, then the following are equivalent
(a) S is smooth over k in a neighbourhood of m,
(b) Sm is a regular local ring,
(c) dim(Sm) = dimκ(m) ΩS/k ⊗S κ(m).

see Lemma 140.2.
(13) If S is of finite type over a field k, and q ⊂ S a prime ideal, then the

following are equivalent
(a) S is smooth over k in a neighbourhood of q,
(b) dimq(S/k) = dimκ(q) ΩS/k ⊗S κ(q).
see Lemma 140.3.

(14) If S is smooth over a field, then all its local rings are regular, see Lemma
140.3.

(15) If S is of finite type over a field k, q ⊂ S a prime ideal, the field extension
κ(q)/k is separable and Sq is regular, then S is smooth over k at q, see
Lemma 140.5.

(16) If S is of finite type over a field k, if k has characteristic 0, if q ⊂ S a prime
ideal, and if ΩS/k,q is free, then S is smooth over k at q, see Lemma 140.7.

Some of these results were proved using the notion of a standard smooth ring
map, see Definition 137.6. This is the analogue of what a relative global complete
intersection map is for the case of syntomic morphisms. It is also the easiest way
to make examples.

143. Étale ring maps

00U0 An étale ring map is a smooth ring map whose relative dimension is equal to zero.
This is the same as the following slightly more direct definition.

Definition 143.1.00U1 Let R → S be a ring map. We say R → S is étale if it is of
finite presentation and the naive cotangent complex NLS/R is quasi-isomorphic to

https://stacks.math.columbia.edu/tag/00U1
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zero. Given a prime q of S we say that R→ S is étale at q if there exists a g ∈ S,
g ̸∈ q such that R→ Sg is étale.

In particular we see that ΩS/R = 0 if S is étale over R. If R → S is smooth, then
R → S is étale if and only if ΩS/R = 0. From our results on smooth ring maps
we automatically get a whole host of results for étale maps. We summarize these
in Lemma 143.3 below. But before we do so we prove that any étale ring map is
standard smooth.

Lemma 143.2.00U9 Any étale ring map is standard smooth. More precisely, if R→ S
is étale, then there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fn) such that
the image of det(∂fj/∂xi) is invertible in S.

Proof. Let R → S be étale. Choose a presentation S = R[x1, . . . , xn]/I. As
R→ S is étale we know that

d : I/I2 −→
⊕

i=1,...,n
Sdxi

is an isomorphism, in particular I/I2 is a free S-module. Thus by Lemma 136.6 we
may assume (after possibly changing the presentation), that I = (f1, . . . , fc) such
that the classes fi mod I2 form a basis of I/I2. It follows immediately from the fact
that the displayed map above is an isomorphism that c = n and that det(∂fj/∂xi)
is invertible in S. □

Lemma 143.3.00U2 Results on étale ring maps.
(1) The ring map R→ Rf is étale for any ring R and any f ∈ R.
(2) Compositions of étale ring maps are étale.
(3) A base change of an étale ring map is étale.
(4) The property of being étale is local: Given a ring map R→ S and elements

g1, . . . , gm ∈ S which generate the unit ideal such that R→ Sgj
is étale for

j = 1, . . . ,m then R→ S is étale.
(5) Given R → S of finite presentation, and a flat ring map R → R′, set

S′ = R′ ⊗R S. The set of primes where R′ → S′ is étale is the inverse
image via Spec(S′)→ Spec(S) of the set of primes where R→ S is étale.

(6) An étale ring map is syntomic, in particular flat.
(7) If S is finite type over a field k, then S is étale over k if and only if

ΩS/k = 0.
(8) Any étale ring map R→ S is the base change of an étale ring map R0 → S0

with R0 of finite type over Z.
(9) Let A = colimAi be a filtered colimit of rings. Let A→ B be an étale ring

map. Then there exists an étale ring map Ai → Bi for some i such that
B ∼= A⊗Ai Bi.

(10) Let A be a ring. Let S be a multiplicative subset of A. Let S−1A → B′ be
étale. Then there exists an étale ring map A→ B such that B′ ∼= S−1B.

(11) Let A be a ring. Let B = B′ × B′′ be a product of A-algebras. Then B is
étale over A if and only if both B′ and B′′ are étale over A.

Proof. In each case we use the corresponding result for smooth ring maps with a
small argument added to show that ΩS/R is zero.

Proof of (1). The ring map R→ Rf is smooth and ΩRf/R = 0.

https://stacks.math.columbia.edu/tag/00U9
https://stacks.math.columbia.edu/tag/00U2
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Proof of (2). The composition A → C of smooth maps A → B and B → C is
smooth, see Lemma 137.14. By Lemma 131.7 we see that ΩC/A is zero as both
ΩC/B and ΩB/A are zero.

Proof of (3). Let R→ S be étale and R→ R′ be arbitrary. Then R′ → S′ = R′⊗RS
is smooth, see Lemma 137.4. Since ΩS′/R′ = S′ ⊗S ΩS/R by Lemma 131.12 we
conclude that ΩS′/R′ = 0. Hence R′ → S′ is étale.

Proof of (4). Assume the hypotheses of (4). By Lemma 137.13 we see that R→ S
is smooth. We are also given that ΩSgi

/R = (ΩS/R)gi
= 0 for all i. Then ΩS/R = 0,

see Lemma 23.2.

Proof of (5). The result for smooth maps is Lemma 137.18. In the proof of that
lemma we used that NLS/R⊗SS′ is homotopy equivalent to NLS′/R′ . This reduces
us to showing that if M is a finitely presented S-module the set of primes q′ of S′

such that (M ⊗S S′)q′ = 0 is the inverse image of the set of primes q of S such that
Mq = 0. This follows from Lemma 40.6.

Proof of (6). Follows directly from the corresponding result for smooth ring maps
(Lemma 137.10).

Proof of (7). Follows from Lemma 140.3 and the definitions.

Proof of (8). Lemma 138.14 gives the result for smooth ring maps. The resulting
smooth ring map R0 → S0 satisfies the hypotheses of Lemma 130.8, and hence we
may replace S0 by the factor of relative dimension 0 over R0.

Proof of (9). Follows from (8) since R0 → A will factor through Ai for some i by
Lemma 127.3.

Proof of (10). Follows from (9), (1), and (2) since S−1A is a filtered colimit of
principal localizations of A.

Proof of (11). Use Lemma 137.15 to see the result for smoothness and then use
that ΩB/A is zero if and only if both ΩB′/A and ΩB′′/A are zero. □

Next we work out in more detail what it means to be étale over a field.

Lemma 143.4.00U3 Let k be a field. A ring map k → S is étale if and only if S is
isomorphic as a k-algebra to a finite product of finite separable extensions of k.

Proof. We are going to use without further mention: if S = S1× . . .×Sn is a finite
product of k-algebras, then S is étale over k if and only if each Si is étale over k.
See Lemma 143.3 part (11).

If k′/k is a finite separable field extension then we can write k′ = k(α) ∼= k[x]/(f).
Here f is the minimal polynomial of the element α. Since k′ is separable over k we
have gcd(f, f ′) = 1. This implies that d : k′ · f → k′ · dx is an isomorphism. Hence
k → k′ is étale. Thus if S is a finite product of finite separable extensions of k,
then S is étale over k.

Conversely, suppose that k → S is étale. Then S is smooth over k and ΩS/k = 0.
By Lemma 140.3 we see that dimm Spec(S) = 0 for every maximal ideal m of S.
Thus dim(S) = 0. By Proposition 60.7 we find that S is a finite product of Artinian
local rings. By the already used Lemma 140.3 these local rings are fields. Hence
we may assume S = k′ is a field. By the Hilbert Nullstellensatz (Theorem 34.1) we

https://stacks.math.columbia.edu/tag/00U3
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see that the extension k′/k is finite. The smoothness of k → k′ implies by Lemma
140.9 that k′/k is a separable extension and the proof is complete. □

Lemma 143.5.00U4 Let R → S be a ring map. Let q ⊂ S be a prime lying over p in
R. If S/R is étale at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. First we may replace S by Sg for some g ∈ S, g ̸∈ q and assume that
R→ S is étale. Then the lemma follows from Lemma 143.4 by unwinding the fact
that S ⊗R κ(p) is étale over κ(p). □

Lemma 143.6.00U5 An étale ring map is quasi-finite.

Proof. Let R → S be an étale ring map. By definition R → S is of finite type.
For any prime p ⊂ R the fibre ring S ⊗R κ(p) is étale over κ(p) and hence a finite
products of fields finite separable over κ(p), in particular finite over κ(p). Thus
R→ S is quasi-finite by Lemma 122.4. □

Lemma 143.7.00U6 Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite presentation,
(2) Rp → Sq is flat
(3) pSq is the maximal ideal of the local ring Sq, and
(4) the field extension κ(q)/κ(p) is finite separable,

then R→ S is étale at q.

Proof. Apply Lemma 122.2 to find a g ∈ S, g ̸∈ q such that q is the only prime
of Sg lying over p. We may and do replace S by Sg. Then S ⊗R κ(p) has a
unique prime, hence is a local ring, hence is equal to Sq/pSq

∼= κ(q). By Lemma
137.17 there exists a g ∈ S, g ̸∈ q such that R → Sg is smooth. Replace S by
Sg again we may assume that R → S is smooth. By Lemma 137.10 we may even
assume that R → S is standard smooth, say S = R[x1, . . . , xn]/(f1, . . . , fc). Since
S ⊗R κ(p) = κ(q) has dimension 0 we conclude that n = c, i.e., R→ S is étale. □

Here is a completely new phenomenon.

Lemma 143.8.00U7 Let R→ S and R→ S′ be étale. Then any R-algebra map S′ → S
is étale.

Proof. First of all we note that S′ → S is of finite presentation by Lemma 6.2.
Let q ⊂ S be a prime ideal lying over the primes q′ ⊂ S′ and p ⊂ R. By Lemma
143.5 the ring map S′

q′/pS′
q′ → Sq/pSq is a map of finite separable extensions of

κ(p). In particular it is flat. Hence by Lemma 128.8 we see that S′
q′ → Sq is flat.

Thus S′ → S is flat. Moreover, the above also shows that q′Sq is the maximal ideal
of Sq and that the residue field extension of S′

q′ → Sq is finite separable. Hence
from Lemma 143.7 we conclude that S′ → S is étale at q. Since being étale is local
(see Lemma 143.3) we win. □

Lemma 143.9.00U8 Let φ : R → S be a ring map. If R → S is surjective, flat and
finitely presented then there exist an idempotent e ∈ R such that S = Re.

https://stacks.math.columbia.edu/tag/00U4
https://stacks.math.columbia.edu/tag/00U5
https://stacks.math.columbia.edu/tag/00U6
https://stacks.math.columbia.edu/tag/00U7
https://stacks.math.columbia.edu/tag/00U8
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First proof. Let I be the kernel of φ. We have that I is finitely generated by
Lemma 6.3 since φ is of finite presentation. Moreover, since S is flat over R,
tensoring the exact sequence 0 → I → R → S → 0 over R with S gives I/I2 = 0.
Now we conclude by Lemma 21.5. □

Second proof. Since Spec(S)→ Spec(R) is a homeomorphism onto a closed sub-
set (see Lemma 17.7) and is open (see Proposition 41.8) we see that the image
is D(e) for some idempotent e ∈ R (see Lemma 21.3). Thus Re → S induces a
bijection on spectra. Now this map induces an isomorphism on all local rings for
example by Lemmas 78.5 and 20.1. Then it follows that Re → S is also injective,
for example see Lemma 23.1. □

Lemma 143.10.04D1 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be an
étale ring map. Then there exists an étale ring map R→ S such that S ∼= S/IS as
R/I-algebras.

Proof. By Lemma 143.2 we can write S = (R/I)[x1, . . . , xn]/(f1, . . . , fn) as in Def-
inition 137.6 with ∆ = det( ∂fi

∂xj
)i,j=1,...,n invertible in S. Just take some lifts fi and

set S = R[x1, . . . , xn, xn+1]/(f1, . . . , fn, xn+1∆−1) where ∆ = det( ∂fi

∂xj
)i,j=1,...,n as

in Example 137.8. This proves the lemma. □

Lemma 143.11.05YT Consider a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

with exact rows where B′ → B and A′ → A are surjective ring maps whose kernels
are ideals of square zero. If A → B is étale, and J = I ⊗A B, then A′ → B′ is
étale.

Proof. By Lemma 143.10 there exists an étale ring map A′ → C such that C/IC =
B. Then A′ → C is formally smooth (by Proposition 138.13) hence we get an A′-
algebra map φ : C → B′. Since A′ → C is flat we have I⊗AB = I⊗AC/IC = IC.
Hence the assumption that J = I ⊗A B implies that φ induces an isomorphism
IC → J and an isomorphism C/IC → B′/IB′, whence φ is an isomorphism. □

Example 143.12.00UA Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]
a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

of Example 136.7. Write symbolically

S = R[b1, . . . , cm]/({ak(bi, cj)− ak}k=1,...,n+m)

https://stacks.math.columbia.edu/tag/04D1
https://stacks.math.columbia.edu/tag/05YT
https://stacks.math.columbia.edu/tag/00UA
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where for example a1(bi, cj) = b1 + c1. The matrix of partial derivatives is

1 c1 . . . cm 0 . . . . . . 0
0 1 c1 . . . cm 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 c1 c2 . . . cm
1 b1 . . . bn−1 bn 0 . . . 0
0 1 b1 . . . bn−1 bn . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 1 b1 . . . bn


The determinant ∆ of this matrix is better known as the resultant of the polynomials
g = xn + b1x

n−1 + . . .+ bn and h = xm + c1x
m−1 + . . .+ cm, and the matrix above

is known as the Sylvester matrix associated to g, h. In a formula ∆ = Resx(g, h).
The Sylvester matrix is the transpose of the matrix of the linear map

S[x]<m ⊕ S[x]<n −→ S[x]<n+m

a⊕ b 7−→ ag + bh

Let q ⊂ S be any prime. By the above the following are equivalent:
(1) R→ S is étale at q,
(2) ∆ = Resx(g, h) ̸∈ q,
(3) the images g, h ∈ κ(q)[x] of the polynomials g, h are relatively prime in

κ(q)[x].
The equivalence of (2) and (3) holds because the image of the Sylvester matrix in
Mat(n + m,κ(q)) has a kernel if and only if the polynomials g, h have a factor in
common. We conclude that the ring map

R −→ S[ 1
∆] = S[ 1

Resx(g, h) ]

is étale.

Lemma 143.13.00UH Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let p be
a prime of R. Let f mod p = gh be a factorization of the image of f in κ(p)[x]. If
gcd(g, h) = 1, then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p, and
(3) a factorization f = gh in R′[x]

such that
(1) κ(p) = κ(p′),
(2) g = g mod p′, h = h mod p′, and
(3) the polynomials g, h generate the unit ideal in R′[x].

Proof. Suppose g = b0x
n + b1x

n−1 + . . .+ bn, and h = c0x
m + c1x

m−1 + . . .+ cm
with b0, c0 ∈ κ(p) nonzero. After localizing R at some element of R not contained
in p we may assume b0 is the image of an invertible element b0 ∈ R. Replacing
g by g/b0 and h by b0h we reduce to the case where g, h are monic (verification
omitted). Say g = xn + b1x

n−1 + . . .+ bn, and h = xm + c1x
m−1 + . . .+ cm. Write

f = xn+m + a1x
n+m−1 + . . .+ an+m. Consider the fibre product

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm]

https://stacks.math.columbia.edu/tag/00UH
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where the map Z[ak]→ Z[bi, cj ] is as in Examples 136.7 and 143.12. By construc-
tion there is an R-algebra map

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm] −→ κ(p)

which maps bi to bi and cj to cj . Denote p′ ⊂ R′ the kernel of this map. Since
by assumption the polynomials g, h are relatively prime we see that the element
∆ = Resx(g, h) ∈ Z[bi, cj ] (see Example 143.12) does not map to zero in κ(p) under
the displayed map. We conclude that R→ R′ is étale at p′. In fact a solution to the
problem posed in the lemma is the ring map R→ R′[1/∆] and the prime p′R′[1/∆].
Because Resx(f, g) is invertible in this ring the Sylvester matrix is invertible over
R′[1/∆] and hence 1 = ag + bh for some a, b ∈ R′[1/∆][x] see Example 143.12. □

144. Local structure of étale ring maps

0G1A Lemma 143.2 tells us that it does not really make sense to define a standard étale
morphism to be a standard smooth morphism of relative dimension 0. As a model
for an étale morphism we take the example given by a finite separable extension
k′/k of fields. Namely, we can always find an element α ∈ k′ such that k′ = k(α)
and such that the minimal polynomial f(x) ∈ k[x] of α has derivative f ′ which is
relatively prime to f .

Definition 144.1.00UB Let R be a ring. Let g, f ∈ R[x]. Assume that f is monic and
the derivative f ′ is invertible in the localization R[x]g/(f). In this case the ring
map R→ R[x]g/(f) is said to be standard étale.

In Proposition 144.4 we show that every étale ring map is locally standard étale.

Lemma 144.2.00UC Let R→ R[x]g/(f) be standard étale.
(1) The ring map R→ R[x]g/(f) is étale.
(2) For any ring map R→ R′ the base change R′ → R′[x]g/(f) of the standard

étale ring map R→ R[x]g/(f) is standard étale.
(3) Any principal localization of R[x]g/(f) is standard étale over R.
(4) A composition of standard étale maps is not standard étale in general.

Proof. Omitted. Here is an example for (4). The ring map F2 → F22 is standard
étale. The ring map F22 → F22 × F22 × F22 × F22 is standard étale. But the ring
map F2 → F22 × F22 × F22 × F22 is not standard étale. □

Standard étale morphisms are a convenient way to produce étale maps. Here is an
example.

Lemma 144.3.00UD Let R be a ring. Let p be a prime of R. Let L/κ(p) be a finite
separable field extension. There exists an étale ring map R → R′ together with
a prime p′ lying over p such that the field extension κ(p′)/κ(p) is isomorphic to
κ(p) ⊂ L.

Proof. By the theorem of the primitive element we may write L = κ(p)[α]. Let
f ∈ κ(p)[x] denote the minimal polynomial for α (in particular this is monic). After
replacing α by cα for some c ∈ R, c ̸∈ p we may assume all the coefficients of f
are in the image of R → κ(p) (verification omitted). Thus we can find a monic
polynomial f ∈ R[x] which maps to f in κ(p)[x]. Since κ(p) ⊂ L is separable, we

https://stacks.math.columbia.edu/tag/00UB
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see that gcd(f, f ′) = 1. Hence there is an element γ ∈ L such that f ′(α)γ = 1.
Thus we get a R-algebra map

R[x, 1/f ′]/(f) −→ L

x 7−→ α

1/f ′ 7−→ γ

The left hand side is a standard étale algebra R′ over R and the kernel of the ring
map gives the desired prime. □

Proposition 144.4.00UE Let R→ S be a ring map. Let q ⊂ S be a prime. If R→ S
is étale at q, then there exists a g ∈ S, g ̸∈ q such that R→ Sg is standard étale.
Proof. The following proof is a little roundabout and there may be ways to shorten
it.
Step 1. By Definition 143.1 there exists a g ∈ S, g ̸∈ q such that R → Sg is étale.
Thus we may assume that S is étale over R.
Step 2. By Lemma 143.3 there exists an étale ring map R0 → S0 with R0 of finite
type over Z, and a ring map R0 → R such that R = R⊗R0 S0. Denote q0 the prime
of S0 corresponding to q. If we show the result for (R0 → S0, q0) then the result
follows for (R→ S, q) by base change. Hence we may assume that R is Noetherian.
Step 3. Note that R→ S is quasi-finite by Lemma 143.6. By Lemma 123.14 there
exists a finite ring map R → S′, an R-algebra map S′ → S, an element g′ ∈ S′

such that g′ ̸∈ q such that S′ → S induces an isomorphism S′
g′
∼= Sg′ . (Note

that of course S′ is not étale over R in general.) Thus we may assume that (a)
R is Noetherian, (b) R → S is finite and (c) R → S is étale at q (but no longer
necessarily étale at all primes).
Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma 53.2)
and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 60.7. One of the factors, say A1, is the local ring Sq/pSq which is
isomorphic to κ(q), see Lemma 143.5. The other factors correspond to the other
primes, say q2, . . . , qn of S lying over p.
Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(q)/κ(p) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to
t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

https://stacks.math.columbia.edu/tag/00UE
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By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α ̸= 0.
Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is
the only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 41.11
(we have going up for S′ → S by Lemma 36.22 since S′ → S is finite as R → S
is finite). It follows that S′

q′ → Sq is finite and injective as the localization of the
finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′
q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma 143.5.
Hence a fortiori Sq/q

′Sq = κ(q). Since
κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map

S′
q′ → Sq is surjective. In other words, S′

q′
∼= Sq.

Step 7. By Lemma 126.7 there exist g ∈ S, g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such that
S′
g′
∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is étale over R at q, and (d)
S = R[x]/I.
Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p)[x]. After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is
the image of some h ∈ I ⊂ R[x]. (The problem is that we do not know if we may
choose h monic.) Also, as in Step 4 we know that S ⊗R κ(p) = A1 × . . .×An with
A1 = κ(q) a finite separable extension of κ(p) and A2, . . . , An local. This implies
that

h = h1h
e2
2 . . . h

en

n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(hei

i ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).
Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1
1 h

d2
2 . . . h

dn

n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en

n +klhld1
1 h

ld2
2 . . . h

ldn

n = h1(he2
2 . . . h

en

n +klhld1−1
1 h

ld2
2 . . . h

ldn

n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).
Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
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is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g = df
dx = w

dh1

dx + h1
dw
dx ,

w is prime to h1 and h1 is separable.
Step 11. We conclude that φ : R[x]/(f)→ S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 144.2) and φ(g) ̸∈ q. Pick
an element g′ ∈ R[x]/(f) such that also φ(g′) ̸∈ q and Sφ(g′) is étale over R (which
exists since S is étale over R at q). Then the ring map R[x]gg′/(f) → Sφ(gg′) is a
surjective map of étale algebras over R. Hence it is étale by Lemma 143.8. Hence
it is a localization by Lemma 143.9. Thus a localization of S at an element not in
q is isomorphic to a localization of a standard étale algebra over R which is what
we wanted to show. □

The following two lemmas say that the étale topology is coarser than the topology
generated by Zariski coverings and finite flat morphisms. They should be skipped
on a first reading.

Lemma 144.5.00UF Let R → S be a standard étale morphism. There exists a ring
map R→ S′ with the following properties

(1) R → S′ is finite, finitely presented, and flat (in other words S′ is finite
projective as an R-module),

(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q ⊂ S, lying over p ⊂ R and every prime q′ ⊂ S′ lying over

p there exists a g′ ∈ S′, g′ ̸∈ q′ such that the ring map R → S′
g′ factors

through a map φ : S → S′
g′ with φ−1(q′S′

g′) = q.

Proof. Let S = R[x]g/(f) be a presentation of S as in Definition 144.1. Write
f = xn + a1x

n−1 + . . . + an with ai ∈ R. By Lemma 136.14 there exists a finite
locally free and faithfully flat ring map R→ S′ such that f =

∏
(x−αi) for certain

αi ∈ S′. Hence R → S′ satisfies conditions (1), (2). Let q ⊂ R[x]/(f) be a prime
ideal with g ̸∈ q (i.e., it corresponds to a prime of S). Let p = R∩ q and let q′ ⊂ S′

be a prime lying over p. Note that there are n maps of R-algebras
φi : R[x]/(f) −→ S′

x 7−→ αi

To finish the proof we have to show that for some i we have (a) the image of φi(g)
in κ(q′) is not zero, and (b) φ−1

i (q′) = q. Because then we can just take g′ = φi(g),
and φ = φi for that i.
Let f denote the image of f in κ(p)[x]. Note that as a point of Spec(κ(p)[x]/(f))
the prime q corresponds to an irreducible factor f1 of f . Moreover, g ̸∈ q means
that f1 does not divide the image g of g in κ(p)[x]. Denote α1, . . . , αn the images
of α1, . . . , αn in κ(q′). Note that the polynomial f splits completely in κ(q′)[x],
namely

f =
∏

i
(x− αi)

Moreover φi(g) reduces to g(αi). It follows we may pick i such that f1(αi) = 0 and
g(αi) ̸= 0. For this i properties (a) and (b) hold. Some details omitted. □

https://stacks.math.columbia.edu/tag/00UF
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Lemma 144.6.00UG Let R→ S be a ring map. Assume that
(1) R→ S is étale, and
(2) Spec(S)→ Spec(R) is surjective.

Then there exists a ring map R→ S′ such that
(1) R → S′ is finite, finitely presented, and flat (in other words it is finite

projective as an R-module),
(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q′ ⊂ S′ there exists a g′ ∈ S′, g′ ̸∈ q′ such that the ring

map R→ S′
g′ factors as R→ S → S′

g′ .

Proof. By Proposition 144.4 and the quasi-compactness of Spec(S) (see Lemma
17.8) we can find g1, . . . , gn ∈ S generating the unit ideal of S such that each R→
Sgi

is standard étale. If we prove the lemma for the ring map R →
∏
i=1,...,n Sgi

then the lemma follows for the ring map R → S. Hence we may assume that
S =

∏
i=1,...,n Si is a finite product of standard étale morphisms.

For each i choose a ring map R → S′
i as in Lemma 144.5 adapted to the standard

étale morphism R → Si. Set S′ = S′
1 ⊗R . . . ⊗R S′

n; we will use the R-algebra
maps S′

i → S′ without further mention below. We claim this works. Properties
(1) and (2) are immediate. For property (3) suppose that q′ ⊂ S′ is a prime.
Denote p its image in Spec(R). Choose i ∈ {1, . . . , n} such that p is in the image
of Spec(Si) → Spec(R); this is possible by assumption. Set q′

i ⊂ S′
i the image of

q′ in the spectrum of S′
i. By construction of S′

i there exists a g′
i ∈ S′

i such that
R→ (S′

i)g′
i

factors as R→ Si → (S′
i)g′

i
. Hence also R→ S′

g′
i

factors as

R→ Si → (S′
i)g′

i
→ S′

g′
i

as desired. □

145. Étale local structure of quasi-finite ring maps

0G1B The following lemmas say roughly that after an étale extension a quasi-finite ring
map becomes finite. To help interpret the results recall that the locus where a finite
type ring map is quasi-finite is open (see Lemma 123.13) and that formation of this
locus commutes with arbitrary base change (see Lemma 122.8).

Lemma 145.1.00UI Let R→ S′ → S be ring maps. Let p ⊂ R be a prime. Let g ∈ S′

be an element. Assume
(1) R→ S′ is integral,
(2) R→ S is finite type,
(3) S′

g
∼= Sg, and

(4) g invertible in S′ ⊗R κ(p).
Then there exists a f ∈ R, f ̸∈ p such that Rf → Sf is finite.

Proof. By assumption the image T of V (g) ⊂ Spec(S′) under the morphism
Spec(S′) → Spec(R) does not contain p. By Section 41 especially, Lemma 41.6
we see T is closed. Pick f ∈ R, f ̸∈ p such that T ∩D(f) = ∅. Then we see that
g becomes invertible in S′

f . Hence S′
f
∼= Sf . Thus Sf is both of finite type and

integral over Rf , hence finite. □

Lemma 145.2.00UJ Let R → S be a ring map. Let q ⊂ S be a prime lying over the
prime p ⊂ R. Assume R→ S finite type and quasi-finite at q. Then there exists

https://stacks.math.columbia.edu/tag/00UG
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(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties
(1) κ(p) = κ(p′),
(2) R′ → A is finite,
(3) A has exactly one prime r lying over p′, and
(4) r lies over q.

Proof. Let S′ ⊂ S be the integral closure of R in S. Let q′ = S′ ∩ q. By Zariski’s
Main Theorem 123.12 there exists a g ∈ S′, g ̸∈ q′ such that S′

g
∼= Sg. Consider

the fibre rings F = S ⊗R κ(p) and F ′ = S′ ⊗R κ(p). Denote q′ the prime of F ′

corresponding to q′. Since F ′ is integral over κ(p) we see that q′ is a closed point
of Spec(F ′), see Lemma 36.19. Note that q defines an isolated closed point q of
Spec(F ) (see Definition 122.3). Since S′

g
∼= Sg we have F ′

g
∼= Fg, so q and q′ have

isomorphic open neighbourhoods in Spec(F ) and Spec(F ′). We conclude the set
{q′} ⊂ Spec(F ′) is open. Combined with q′ being closed (shown above) we conclude
that q′ defines an isolated closed point of Spec(F ′) as well.

An additional small remark is that under the map Spec(F ) → Spec(F ′) the point
q is the only point mapping to q′. This follows from the discussion above.

By Lemma 24.3 we may write F ′ = F ′
1 × F ′

2 with Spec(F ′
1) = {q′}. Since F ′ =

S′⊗R κ(p), there exists an s′ ∈ S′ which maps to the element (r, 0) ∈ F ′
1×F ′

2 = F ′

for some r ∈ R, r ̸∈ p. In fact, what we will use about s′ is that it is an element of
S′, not contained in q′, and contained in any other prime lying over p.

Let f(x) ∈ R[x] be a monic polynomial such that f(s′) = 0. Denote f ∈ κ(p)[x]
the image. We can factor it as f = xeh where h(0) ̸= 0. After replacing f by xf
if necessary, we may assume e ≥ 1. By Lemma 143.13 we can find an étale ring
extension R→ R′, a prime p′ lying over p, and a factorization f = hi in R′[x] such
that κ(p) = κ(p′), h = h mod p′, xe = i mod p′, and we can write ah + bi = 1 in
R′[x] (for suitable a, b).

Consider the elements h(s′), i(s′) ∈ R′⊗R S′. By construction we have h(s′)i(s′) =
f(s′) = 0. On the other hand they generate the unit ideal since a(s′)h(s′) +
b(s′)i(s′) = 1. Thus we see that R′⊗RS′ is the product of the localizations at these
elements:

R′ ⊗R S′ = (R′ ⊗R S′)i(s′) × (R′ ⊗R S′)h(s′) = S′
1 × S′

2

Moreover this product decomposition is compatible with the product decomposition
we found for the fibre ring F ′; this comes from our choices of s′, i, h which guarantee
that q′ is the only prime of F ′ which does not contain the image of i(s′) in F ′. Here
we use that the fibre ring of R′ ⊗R S′ over R′ at p′ is the same as F ′ due to the
fact that κ(p) = κ(p′). It follows that S′

1 has exactly one prime, say r′, lying over
p′ and that this prime lies over q′. Hence the element g ∈ S′ maps to an element
of S′

1 not contained in r′.

The base change R′ ⊗R S inherits a similar product decomposition

R′ ⊗R S = (R′ ⊗R S)i(s′) × (R′ ⊗R S)h(s′) = S1 × S2
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It follows from the above that S1 has exactly one prime, say r, lying over p′ (consider
the fibre ring as above), and that this prime lies over q.
Now we may apply Lemma 145.1 to the ring maps R′ → S′

1 → S1, the prime p′

and the element g to see that after replacing R′ by a principal localization we can
assume that S1 is finite over R′ as desired. □

Lemma 145.3.00UK Let R→ S be a ring map. Let p ⊂ R be a prime. Assume R→ S
finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) we have κ(p) = κ(p′),
(2) each Ai is finite over R′,
(3) each Ai has exactly one prime ri lying over p′, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As F is of
finite type over κ(p) it is Noetherian and hence Spec(F ) has finitely many isolated
closed points. If there are no isolated closed points, i.e., no primes q of S over p
such that S/R is quasi-finite at q, then the lemma holds. If there exists at least
one such prime q, then we may apply Lemma 145.2. This gives a diagram

S // R′ ⊗R S A1 ×B′

R //

OO

R′

OO 88

as in said lemma. Since the residue fields at p and p′ are the same, the fibre rings of
S/R and (A1×B′)/R′ are the same. Hence, by induction on the number of isolated
closed points of the fibre we may assume that the lemma holds for R′ → B′ and p′.
Thus we get an étale ring map R′ → R′′, a prime p′′ ⊂ R′′ and a decomposition

R′′ ⊗R′ B′ = A2 × . . .×An ×B
We omit the verification that the ring map R→ R′′, the prime p′′ and the resulting
decomposition

R′′ ⊗R S = (R′′ ⊗R′ A1)×A2 × . . .×An ×B
is a solution to the problem posed in the lemma. □

Lemma 145.4.00UL Let R→ S be a ring map. Let p ⊂ R be a prime. Assume R→ S
finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) each Ai is finite over R′,
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(2) each Ai has exactly one prime ri lying over p′,
(3) the finite field extensions κ(ri)/κ(p′) are purely inseparable, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. The strategy of the proof is to make two étale ring extensions: first we
control the residue fields, then we apply Lemma 145.3.
Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As in the proof of
Lemma 145.3 there are finitely may primes, say q1, . . . , qn of S lying over R at which
the ring map R → S is quasi-finite. Let κ(p) ⊂ Li ⊂ κ(qi) be the subfield such
that κ(p) ⊂ Li is separable, and the field extension κ(qi)/Li is purely inseparable.
Let L/κ(p) be a finite Galois extension into which Li embeds for i = 1, . . . , n. By
Lemma 144.3 we can find an étale ring extension R → R′ together with a prime
p′ lying over p such that the field extension κ(p′)/κ(p) is isomorphic to κ(p) ⊂ L.
Thus the fibre ring of R′ ⊗R S at p′ is isomorphic to F ⊗κ(p) L. The primes lying
over qi correspond to primes of κ(qi) ⊗κ(p) L which is a product of fields purely
inseparable over L by our choice of L and elementary field theory. These are also
the only primes over p′ at which R′ → R′ ⊗R S is quasi-finite, by Lemma 122.8.
Hence after replacing R by R′, p by p′, and S by R′ ⊗R S we may assume that for
all primes q lying over p for which S/R is quasi-finite the field extensions κ(q)/κ(p)
are purely inseparable.
Next apply Lemma 145.3. The result is what we want since the field extensions do
not change under this étale ring extension. □

146. Local homomorphisms

053J Some lemmas which don’t have a natural section to go into. The first lemma says,
loosely speaking, that an étale map of local rings is an isomorphism modulo all
powers of a nonunit principal ideal.

Lemma 146.1.0GSD [Lin82, Lemma on
page 321], [Ces22,
Lemma 4.1.5]

Let (R,mR) → (S,mS) be a local homomorphism of local rings.
Assume S is the localization of an étale ring extension of R and that κ(mR) →
κ(mS) is an isomorphism. Then there exists an t ∈ mR such that R/tnR→ S/tnS
is an isomorphsm for all n ≥ 1.

Proof. Write S = Tq for some étale R-algebra T and prime ideal q ⊂ T lying
over mR. By Proposition 144.4 we may assume R → T is standard étale. Write
T = R[x]g/(f) as in Definition 144.1. By our assumption on residue fields, we may
choose a ∈ R such that x and a have the same image in κ(q) = κ(mS) = κ(mR).
Then after replacing x by x − a we may assume that q is generated by x and mR
in T . In particular t = f(0) ∈ mR. We will show that t = f(0) works.
Write f = xd +

∑
i=1,...,d−1 aix

i + t. Since R→ T is standard étale we find that a1
is a unit in R: the derivative of f is invertible in T in particular is not contained in
q. Let h = a1 + a2x+ . . .+ ad−1x

d−2 + xd−1 ∈ R[x] so that f = t+ xh in R[x]. We
see that h ̸∈ q and hence we may replace T by R[x]hg/(f). After this replacement
we see that

T/tT = (R/tR)[x]hg/(f) = (R/tR)[x]hg/(xh) = (R/tR)[x]hg/(x)
is a quotient of R/tR. By Lemma 126.9 we conclude that R/tnR → T/tnT is
surjective for all n ≥ 1. On the other hand, we know that the flat local ring map
R/tnR → S/tnS factors through R/tnR → T/tnT for all n, hence these maps are

https://stacks.math.columbia.edu/tag/0GSD
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also injective (a flat local homomorphism of local rings is faithfully flat and hence
injective, see Lemmas 39.17 and 82.11). As S is the localization of T we see that
S/tnS is the localization of T/tnT = R/tnR at a prime lying over the maximal
ideal, but this ring is already local and the proof is complete. □

Lemma 146.2.053K Let (R,mR) → (S,mS) be a local homomorphism of local rings.
Assume S is the localization of an étale ring extension of R. Then there exists
a finite, finitely presented, faithfully flat ring map R → S′ such that for every
maximal ideal m′ of S′ there is a factorization

R→ S → S′
m′ .

of the ring map R→ S′
m′ .

Proof. Write S = Tq for some étale R-algebra T . By Proposition 144.4 we may
assume T is standard étale. Apply Lemma 144.5 to the ring map R → T to get
R→ S′. Then in particular for every maximal ideal m′ of S′ we get a factorization
φ : T → S′

g′ for some g′ ̸∈ m′ such that q = φ−1(m′S′
g′). Thus φ induces the desired

local ring map S → S′
m′ . □

147. Integral closure and smooth base change

03GC
Lemma 147.1.03GD Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let R→ B
be a ring map. If h ∈ B[x]/(f) is integral over R, then the element f ′h can be
written as f ′h =

∑
i bix

i with bi ∈ B integral over R.

Proof. Say he + r1h
e−1 + . . . + re = 0 in the ring B[x]/(f) with ri ∈ R. There

exists a finite free ring extension B ⊂ B′ such that f = (x − α1) . . . (x − αd) for
some αi ∈ B′, see Lemma 136.14. Note that each αi is integral over R. We may
represent h = h0 + h1x + . . . + hd−1x

d−1 with hi ∈ B. Then it is a universal fact
that

f ′h =
∑

i=1,...,d
h(αi)(x− α1) . . . ̂(x− αi) . . . (x− αd)

as elements of B′[x]/(f). You prove this by evaluating both sides at the points αi
over the ring Buniv = Z[αi, hj ] (some details omitted). By our assumption that h
satisfies he + r1h

e−1 + . . .+ re = 0 in the ring B[x]/(f) we see that
h(αi)e + r1h(αi)e−1 + . . .+ re = 0

in B′. Hence h(αi) is integral over R. Using the formula above we see that f ′h ≡∑
j=0,...,d−1 b

′
jx
j in B′[x]/(f) with b′

j ∈ B′ integral over R. However, since f ′h ∈
B[x]/(f) and since 1, x, . . . , xd−1 is a B′-basis for B′[x]/(f) we see that b′

j ∈ B as
desired. □

Lemma 147.2.03GE Let R → S be an étale ring map. Let R → B be any ring map.
Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S ⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. The map S ⊗R A→ A′ is injective because A ⊂ B and R→ S is flat. We
are going to use repeatedly that taking integral closure commutes with localization,
see Lemma 36.11. Hence we may localize on S, by Lemma 23.2 (the criterion for
checking whether an S-module map is an isomorphism). Thus we may assume
that S = R[x]g/(f) = (R[x]/(f))g is standard étale over R, see Proposition 144.4.
Applying localization one more time we see that A′ is (A′′)g where A′′ is the integral
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closure of R[x]/(f) in B[x]/(f). Suppose that a ∈ A′′. It suffices to show that a
is in S ⊗R A. By Lemma 147.1 we see that f ′a =

∑
aix

i with ai ∈ A. Since
f ′ is invertible in S (by definition of a standard étale ring map) we conclude that
a ∈ S ⊗R A as desired. □

Example 147.3.03GF Let p be a prime number. The ring extension

R = Z[1/p] ⊂ R′ = Z[1/p][x]/(xp−1 + . . .+ x+ 1)
has the following property: For d < p there exist elements α0, . . . , αd−1 ∈ R′ such
that ∏

0≤i<j<d
(αi − αj)

is a unit in R′. Namely, take αi equal to the class of xi in R′ for i = 0, . . . , p − 1.
Then we have

T p − 1 =
∏

i=0,...,p−1
(T − αi)

in R′[T ]. Namely, the ring Q[x]/(xp−1 + . . . + x + 1) is a field because the cyclo-
tomic polynomial xp−1 + . . . + x + 1 is irreducible over Q and the αi are pairwise
distinct roots of T p − 1, whence the equality. Taking derivatives on both sides and
substituting T = αi we obtain

pαp−1
i = (αi − α1) . . . ̂(αi − αi) . . . (αi − α1)

and we see this is invertible in R′.

Lemma 147.4.03GG Let R → S be a smooth ring map. Let R → B be any ring map.
Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S ⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. Arguing as in the proof of Lemma 147.2 we may localize on S. Hence we
may assume that R → S is a standard smooth ring map, see Lemma 137.10. By
definition of a standard smooth ring map we see that S is étale over a polynomial
ring R[x1, . . . , xn]. Since we have seen the result in the case of an étale ring exten-
sion (Lemma 147.2) this reduces us to the case where S = R[x]. Thus we have to
show

f =
∑

bix
i integral over R[x]⇔ each bi integral over R.

The implication from right to left holds because the set of elements in B[x] integral
over R[x] is a ring (Lemma 36.7) and contains x.
Suppose that f ∈ B[x] is integral over R[x], and assume that f =

∑
i<d bix

i has
degree < d. Since integral closure and localization commute, it suffices to show
there exist distinct primes p, q such that each bi is integral both over R[1/p] and
over R[1/q]. Hence, we can find a finite free ring extension R ⊂ R′ such that
R′ contains α1, . . . , αd with the property that

∏
i<j(αi − αj) is a unit in R′, see

Example 147.3. In this case we have the universal equality

f =
∑
i

f(αi)
(x− α1) . . . ̂(x− αi) . . . (x− αd)

(αi − α1) . . . ̂(αi − αi) . . . (αi − αd)
.

OK, and the elements f(αi) are integral over R′ since (R′ ⊗R B)[x] → R′ ⊗R B,
h 7→ h(αi) is a ring map. Hence we see that the coefficients of f in (R′ ⊗R B)[x]
are integral over R′. Since R′ is finite over R (hence integral over R) we see that
they are integral over R also, as desired. □

https://stacks.math.columbia.edu/tag/03GF
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Lemma 147.5.0CBF Let R→ S and R→ B be ring maps. Let A ⊂ B be the integral
closure of R in B. Let A′ ⊂ S ⊗R B be the integral closure of S in S ⊗R B. If S
is a filtered colimit of smooth R-algebras, then the canonical map S ⊗R A → A′ is
an isomorphism.

Proof. This follows from the straightforward fact that taking tensor products and
taking integral closures commutes with filtered colimits and Lemma 147.4. □

148. Formally unramified maps

00UM It turns out to be logically more efficient to define the notion of a formally unram-
ified map before introducing the notion of a formally étale one.

Definition 148.1.00UN Let R → S be a ring map. We say S is formally unramified
over R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow
making the diagram commute.

Lemma 148.2.00UO Let R→ S be a ring map. The following are equivalent:
(1) R→ S is formally unramified,
(2) the module of differentials ΩS/R is zero.

Proof. Let J = Ker(S ⊗R S → S) be the kernel of the multiplication map. Let
Auniv = S ⊗R S/J2. Recall that Iuniv = J/J2 is isomorphic to ΩS/R, see Lemma
131.13. Moreover, the two R-algebra maps σ1, σ2 : S → Auniv, σ1(s) = s ⊗
1 mod J2, and σ2(s) = 1 ⊗ s mod J2 differ by the universal derivation d : S →
ΩS/R = Iuniv.
Assume R → S formally unramified. Then we see that σ1 = σ2. Hence d(s) = 0
for all s ∈ S. Hence ΩS/R = 0.
Assume that ΩS/R = 0. Let A, I,R → A,S → A/I be a solid diagram as in
Definition 148.1. Let τ1, τ2 : S → A be two dotted arrows making the diagram
commute. Consider the R-algebra map Auniv → A defined by the rule s1 ⊗ s2 7→
τ1(s1)τ2(s2). We omit the verification that this is well defined. Since Auniv ∼= S as
Iuniv = ΩS/R = 0 we conclude that τ1 = τ2. □

Lemma 148.3.04E8 Let R→ S be a ring map. The following are equivalent:
(1) R→ S is formally unramified,
(2) R→ Sq is formally unramified for all primes q of S, and
(3) Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Lemma 148.2 that (1) is equivalent to ΩS/R = 0. Similarly,
by Lemma 131.8 we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for all q.
Hence the equivalence follows from Lemma 23.1. □

Lemma 148.4.04E9 Let A→ B be a formally unramified ring map.
(1) For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.

https://stacks.math.columbia.edu/tag/0CBF
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(2) For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.

Proof. Follows from Lemma 148.3. (You can also deduce it from Lemma 148.2
combined with Lemma 131.8.) □

Lemma 148.5.07QE Let R be a ring. Let I be a directed set. Let (Si, φii′) be a system
of R-algebras over I. If each R → Si is formally unramified, then S = colimi∈I Si
is formally unramified over R

Proof. Consider a diagram as in Definition 148.1. By assumption there exists at
most one R-algebra map Si → A lifting the compositions Si → S → A/I. Since
every element of S is in the image of one of the maps Si → S we see that there is
at most one map S → A fitting into the diagram. □

149. Conormal modules and universal thickenings

04EA It turns out that one can define the first infinitesimal neighbourhood not just for
a closed immersion of schemes, but already for any formally unramified morphism.
This is based on the following algebraic fact.

Lemma 149.1.04EB Let R → S be a formally unramified ring map. There exists a
surjection of R-algebras S′ → S whose kernel is an ideal of square zero with the
following universal property: Given any commutative diagram

S
a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A
such that S′ → A→ A/I is equal to S′ → S → A/I.

Proof. Choose a set of generators zi ∈ S, i ∈ I for S as an R-algebra. Let
P = R[{xi}i∈I ] denote the polynomial ring on generators xi, i ∈ I. Consider the
R-algebra map P → S which maps xi to zi. Let J = Ker(P → S). Consider the
map

d : J/J2 −→ ΩP/R ⊗P S
see Lemma 131.9. This is surjective since ΩS/R = 0 by assumption, see Lemma
148.2. Note that ΩP/R is free on dxi, and hence the module ΩP/R⊗P S is free over
S. Thus we may choose a splitting of the surjection above and write

J/J2 = K ⊕ ΩP/R ⊗P S

Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the
decomposition above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0

and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

https://stacks.math.columbia.edu/tag/07QE
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is a diagram as above. In fact we claim that this is an initial object in the category
of diagrams. Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose an
R-algebra map β : P → A such that

S
1
// S

a
// A/I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that β(J ′) = 0, in other words it may
not be true that β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I
and since β(J) ⊂ I and I2 = 0 we have β(J2) = 0. Thus the “obstruction” to finding
a morphism from (J/J ′ ⊂ S′, 1, R → S′) to (I ⊂ A, a, b) is the corresponding S-
linear map β : J ′/J2 → I. The choice in picking β lies in the choice of β(xi). A
different choice of β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I. In
this case, for g ∈ J ′, we obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.

Since the map d|J′/J2 : J ′/J2 → ΩP/R⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism
by construction, we see that there is a unique choice of δi ∈ I such that β′(g) = 0
for all g ∈ J ′. (Namely, δi is −β(g) where g ∈ J ′/J2 is the unique element with
∂g
∂xj

= 1 if i = j and 0 else.) The uniqueness of the solution implies the uniqueness
required in the lemma. □

In the situation of Lemma 149.1 the R-algebra map S′ → S is unique up to unique
isomorphism.

Definition 149.2.04EC Let R→ S be a formally unramified ring map.
(1) The universal first order thickening of S over R is the surjection of R-

algebras S′ → S of Lemma 149.1.
(2) The conormal module of R → S is the kernel I of the universal first order

thickening S′ → S, seen as an S-module.
We often denote the conormal module CS/R in this situation.

Lemma 149.3.04ED Let I ⊂ R be an ideal of a ring. The universal first order thick-
ening of R/I over R is the surjection R/I2 → R/I. The conormal module of R/I
over R is C(R/I)/R = I/I2.

Proof. Omitted. □

Lemma 149.4.04EE Let A → B be a formally unramified ring map. Let φ : B′ → B
be the universal first order thickening of B over A.

(1) Let S ⊂ A be a multiplicative subset. Then S−1B′ → S−1B is the univer-
sal first order thickening of S−1B over S−1A. In particular S−1CB/A =
CS−1B/S−1A.

(2) Let S ⊂ B be a multiplicative subset. Then S′ = φ−1(S) is a multiplicative
subset in B′ and (S′)−1B′ → S−1B is the universal first order thickening
of S−1B over A. In particular S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Lemma 148.4.
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Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the
universal first order thickening of S−1B over S−1A. Note that S−1B′ → S−1B is
a surjection of S−1A-algebras whose kernel has square zero. Hence by definition
we obtain a map (S−1B)′ → S−1B′ compatible with the maps towards S−1B.
Consider any commutative diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S in D is mapped to invertible elements of D, and hence we obtain a
compatible map S−1B′ → D. Applying this to D = (S−1B)′ we see that we get a
map S−1B′ → (S−1B)′. We omit the verification that this map is inverse to the
map described above.
With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal
first order thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection
of A-algebras whose kernel has square zero. Hence by definition we obtain a map
(S−1B)′ → (S′)−1B′ compatible with the maps towards S−1B. Consider any
commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S′ in D is mapped to invertible elements of D, and hence we obtain a
compatible map (S′)−1B′ → D. Applying this to D = (S−1B)′ we see that we get
a map (S′)−1B′ → (S−1B)′. We omit the verification that this map is inverse to
the map described above. □

Lemma 149.5.04EF Let R → A → B be ring maps. Assume A → B formally
unramified. Let B′ → B be the universal first order thickening of B over A. Then
B′ is formally unramified over A, and the canonical map ΩA/R⊗AB → ΩB′/R⊗B′B
is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma 149.1
although in principle it should be possible to deduce these results formally from
the definition. Namely, we choose a presentation B = P/J , where P = A[xi] is a
polynomial ring over A. Next, we choose elements fi ∈ J such that dfi = dxi ⊗ 1
in ΩP/A⊗P B. Having made these choices we have B′ = P/J ′ with J ′ = (fi) + J2,
see proof of Lemma 149.1.
Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0
see Lemma 131.9. By construction the classes of the fi ∈ J ′ map to elements of the
module ΩP/A ⊗P B′ which generate it modulo J ′/J2 by construction. Since J ′/J2

https://stacks.math.columbia.edu/tag/04EF


COMMUTATIVE ALGEBRA 397

is a nilpotent ideal, we see that these elements generate the module altogether
(by Nakayama’s Lemma 20.1). This proves that ΩB′/A = 0 and hence that B′ is
formally unramified over A, see Lemma 148.2.
Since P is a polynomial ring over A we have ΩP/R = ΩA/R ⊗A P ⊕

⊕
Pdxi. We

are going to use this decomposition. Consider the following exact sequence
J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see Lemma 131.9. We may tensor this with B and obtain the exact sequence
J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates
the submodule J2/(J ′)2. In terms of the direct sum decomposition ΩP/R ⊗P B =
ΩA/R ⊗A B ⊕

⊕
Bdxi given we see that the submodule (fi)/(J ′)2 ⊗B′ B maps

isomorphically onto the summand
⊕
Bdxi. Hence what is left of this exact sequence

is an isomorphism ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. □

150. Formally étale maps

00UP
Definition 150.1.00UQ Let R→ S be a ring map. We say S is formally étale over R
if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making
the diagram commute.

Clearly a ring map is formally étale if and only if it is both formally smooth and
formally unramified.

Lemma 150.2.00UR Let R → S be a ring map of finite presentation. The following
are equivalent:

(1) R→ S is formally étale,
(2) R→ S is étale.

Proof. Assume that R → S is formally étale. Then R → S is smooth by Propo-
sition 138.13. By Lemma 148.2 we have ΩS/R = 0. Hence R → S is étale by
definition.
Assume that R → S is étale. Then R → S is formally smooth by Proposition
138.13. By Lemma 148.2 it is formally unramified. Hence R → S is formally
étale. □

Lemma 150.3.031N Let R be a ring. Let I be a directed set. Let (Si, φii′) be a system
of R-algebras over I. If each R → Si is formally étale, then S = colimi∈I Si is
formally étale over R

Proof. Consider a diagram as in Definition 150.1. By assumption we get unique
R-algebra maps Si → A lifting the compositions Si → S → A/I. Hence these are
compatible with the transition maps φii′ and define a lift S → A. This proves
existence. The uniqueness is clear by restricting to each Si. □

https://stacks.math.columbia.edu/tag/00UQ
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Lemma 150.4.04EG Let R be a ring. Let S ⊂ R be any multiplicative subset. Then
the ring map R→ S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that
given a ring map φ : R → A such that φ(f) mod I is invertible for all f ∈ S we
have also that φ(f) is invertible in A for all f ∈ S. This is true because A∗ is the
inverse image of (A/I)∗ under the canonical map A→ A/I. □

Lemma 150.5.0H1D Let R → S be a ring map. Let J ⊂ S be an ideal such that
R → S/J is surjective; let I ⊂ R be the kernel. If R → S is formally étale, then⊕
In/In+1 →

⊕
Jn/Jn+1 is an isomorphism of graded rings.

Proof. Using the lifting property inductively we find dotted arrows

S //

$$

S/J = R/I

R //

OO

R/I2

OO
S //

!!

R/I2

R //

OO

R/I3

OO
S //

!!

R/I3

R //

OO

R/I4

OO

The corresponding maps S/Jn → R/In are isomorphisms since the compositions
S/Jn → R/In → S/Jn are (inductively) the identity by the uniqueness in the
lifting property of formally étale ring maps. □

151. Unramified ring maps

00US The definition of a G-unramified ring map is the one from EGA. The definition of
an unramified ring map is the one from [Ray70].

Definition 151.1.00UT Let R→ S be a ring map.
(1) We say R→ S is unramified if R→ S is of finite type and ΩS/R = 0.
(2) We say R → S is G-unramified if R → S is of finite presentation and

ΩS/R = 0.
(3) Given a prime q of S we say that S is unramified at q if there exists a g ∈ S,

g ̸∈ q such that R→ Sg is unramified.
(4) Given a prime q of S we say that S is G-unramified at q if there exists a

g ∈ S, g ̸∈ q such that R→ Sg is G-unramified.

Of course a G-unramified map is unramified.

Lemma 151.2.00UU Let R→ S be a ring map. The following are equivalent
(1) R→ S is formally unramified and of finite type, and
(2) R→ S is unramified.

Moreover, also the following are equivalent
(1) R→ S is formally unramified and of finite presentation, and
(2) R→ S is G-unramified.

Proof. Follows from Lemma 148.2 and the definitions. □

Lemma 151.3.00UV Properties of unramified and G-unramified ring maps.
(1) The base change of an unramified ring map is unramified. The base change

of a G-unramified ring map is G-unramified.
(2) The composition of unramified ring maps is unramified. The composition

of G-unramified ring maps is G-unramified.

https://stacks.math.columbia.edu/tag/04EG
https://stacks.math.columbia.edu/tag/0H1D
https://stacks.math.columbia.edu/tag/00UT
https://stacks.math.columbia.edu/tag/00UU
https://stacks.math.columbia.edu/tag/00UV
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(3) Any principal localization R→ Rf is G-unramified and unramified.
(4) If I ⊂ R is an ideal, then R → R/I is unramified. If I ⊂ R is a finitely

generated ideal, then R→ R/I is G-unramified.
(5) An étale ring map is G-unramified and unramified.
(6) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

(ΩS/R)q = 0, then R→ S is unramified (resp. G-unramified) at q.
(7) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

ΩS/R ⊗S κ(q) = 0, then R→ S is unramified (resp. G-unramified) at q.
(8) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime lying

over p ⊂ R and (ΩS⊗Rκ(p)/κ(p))q = 0, then R → S is unramified (resp.
G-unramified) at q.

(9) If R→ S is of finite type (resp. presentation), q ⊂ S is a prime lying over
p ⊂ R and (ΩS⊗Rκ(p)/κ(p)) ⊗S⊗Rκ(p) κ(q) = 0, then R → S is unramified
(resp. G-unramified) at q.

(10) If R → S is a ring map, g1, . . . , gm ∈ S generate the unit ideal and R →
Sgj

is unramified (resp. G-unramified) for j = 1, . . . ,m, then R → S is
unramified (resp. G-unramified).

(11) If R → S is a ring map which is unramified (resp. G-unramified) at every
prime of S, then R→ S is unramified (resp. G-unramified).

(12) If R→ S is G-unramified, then there exists a finite type Z-algebra R0 and
a G-unramified ring map R0 → S0 and a ring map R0 → R such that
S = R⊗R0 S0.

(13) If R→ S is unramified, then there exists a finite type Z-algebra R0 and an
unramified ring map R0 → S0 and a ring map R0 → R such that S is a
quotient of R⊗R0 S0.

Proof. We prove each point, in order.
Ad (1). Follows from Lemmas 131.12 and 14.2.
Ad (2). Follows from Lemmas 131.7 and 14.2.
Ad (3). Follows by direct computation of ΩRf/R which we omit.

Ad (4). We have Ω(R/I)/R = 0, see Lemma 131.4, and the ring map R→ R/I is of
finite type. If I is a finitely generated ideal then R→ R/I is of finite presentation.
Ad (5). See discussion following Definition 143.1.
Ad (6). In this case ΩS/R is a finite S-module (see Lemma 131.16) and hence there
exists a g ∈ S, g ̸∈ q such that (ΩS/R)g = 0. By Lemma 131.8 this means that
ΩSg/R = 0 and hence R→ Sg is unramified as desired.

Ad (7). Use Nakayama’s lemma (Lemma 20.1) to see that the condition is equivalent
to the condition of (6).
Ad (8) and (9). These are equivalent in the same manner that (6) and (7) are
equivalent. Moreover ΩS⊗Rκ(p)/κ(p) = ΩS/R ⊗S (S ⊗R κ(p)) by Lemma 131.12.
Hence we see that (9) is equivalent to (7) since the κ(q) vector spaces in both are
canonically isomorphic.
Ad (10). Follows from Lemmas 23.2 and 131.8.
Ad (11). Follows from (6) and (7) and the fact that the spectrum of S is quasi-
compact.
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Ad (12). Write S = R[x1, . . . , xn]/(g1, . . . , gm). As ΩS/R = 0 we can write

dxi =
∑

hijdgj +
∑

aijkgjdxk
in ΩR[x1,...,xn]/R for some hij , aijk ∈ R[x1, . . . , xn]. Choose a finitely generated Z-
subalgebra R0 ⊂ R containing all the coefficients of the polynomials gi, hij , aijk.
Set S0 = R0[x1, . . . , xn]/(g1, . . . , gm). This works.
Ad (13). Write S = R[x1, . . . , xn]/I. As ΩS/R = 0 we can write

dxi =
∑

hijdgij +
∑

g′
ikdxk

in ΩR[x1,...,xn]/R for some hij ∈ R[x1, . . . , xn] and gij , g
′
ik ∈ I. Choose a finitely

generated Z-subalgebra R0 ⊂ R containing all the coefficients of the polynomials
gij , hij , g

′
ik. Set S0 = R0[x1, . . . , xn]/(gij , g′

ik). This works. □

Lemma 151.4.02FL Let R → S be a ring map. If R → S is unramified, then there
exists an idempotent e ∈ S⊗R S such that S⊗R S → S is isomorphic to S⊗R S →
(S ⊗R S)e.
Proof. Let J = Ker(S ⊗R S → S). By assumption J/J2 = 0, see Lemma 131.13.
Since S is of finite type over R we see that J is finitely generated, namely by
xi ⊗ 1− 1⊗ xi, where xi generate S over R. We win by Lemma 21.5. □

Lemma 151.5.00UW Let R → S be a ring map. Let q ⊂ S be a prime lying over p in
R. If S/R is unramified at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. We may first replace S by Sg for some g ∈ S, g ̸∈ q and assume that
R → S is unramified. The base change S ⊗R κ(p) is unramified over κ(p) by
Lemma 151.3. By Lemma 140.3 it is smooth hence étale over κ(p). Hence we see
that S ⊗R κ(p) = (R \ p)−1S/pS is a product of finite separable field extensions of
κ(p) by Lemma 143.4. This implies the lemma. □

Lemma 151.6.02UR Let R → S be a finite type ring map. Let q be a prime of S.
If R → S is unramified at q then R → S is quasi-finite at q. In particular, an
unramified ring map is quasi-finite.
Proof. An unramified ring map is of finite type. Thus it is clear that the second
statement follows from the first. To see the first statement apply the characteriza-
tion of Lemma 122.2 part (2) using Lemma 151.5. □

Lemma 151.7.02FM Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite type,
(2) pSq is the maximal ideal of the local ring Sq, and
(3) the field extension κ(q)/κ(p) is finite separable,

then R→ S is unramified at q.
Proof. By Lemma 151.3 (8) it suffices to show that ΩS⊗Rκ(p)/κ(p) is zero when
localized at q. Hence we may replace S by S ⊗R κ(p) and R by κ(p). In other
words, we may assume that R = k is a field and S is a finite type k-algebra. In this
case the hypotheses imply that Sq

∼= κ(q). Thus (ΩS/k)q = ΩSq/k = Ωκ(q)/k is zero
as desired (the first equality is Lemma 131.8). □

https://stacks.math.columbia.edu/tag/02FL
https://stacks.math.columbia.edu/tag/00UW
https://stacks.math.columbia.edu/tag/02UR
https://stacks.math.columbia.edu/tag/02FM
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Lemma 151.8.08WD Let R→ S be a ring map. The following are equivalent
(1) R→ S is étale,
(2) R→ S is flat and G-unramified, and
(3) R→ S is flat, unramified, and of finite presentation.

Proof. Parts (2) and (3) are equivalent by definition. The implication (1) ⇒ (3)
follows from the fact that étale ring maps are of finite presentation, Lemma 143.3
(flatness of étale maps), and Lemma 151.3 (étale maps are unramified). Conversely,
the characterization of étale ring maps in Lemma 143.7 and the structure of unram-
ified ring maps in Lemma 151.5 shows that (3) implies (1). (This uses that R→ S
is étale if R→ S is étale at every prime q ⊂ S, see Lemma 143.3.) □

Lemma 151.9.0G1C Let k be a field. Let
φ : k[x1, . . . , xn]→ A, xi 7−→ ai

be a finite type ring map. Then φ is étale if and only if we have the following two
conditions: (a) the local rings of A at maximal ideals have dimension n, and (b)
the elements d(a1), . . . , d(an) generate ΩA/k as an A-module.

Proof. Assume (a) and (b). Condition (b) implies that ΩA/k[x1,...,xn] = 0 and
hence φ is unramified. Thus it suffices to prove that φ is flat, see Lemma 151.8.
Let m ⊂ A be a maximal ideal. Set X = Spec(A) and denote x ∈ X the closed
point corresponding to m. Then dim(Am) is dimxX, see Lemma 114.6. Thus by
Lemma 140.3 we see that if (a) and (b) hold, then Am is a regular local ring for
every maximal ideal m. Then k[x1, . . . , xn]φ−1(m) → Am is flat by Lemma 128.1
(and the fact that a regular local ring is CM, see Lemma 106.3). Thus φ is flat by
Lemma 39.18.
Assume φ is étale. Then ΩA/k[x1,...,xn] = 0 and hence (b) holds. On the other hand,
étale ring maps are flat (Lemma 143.3) and quasi-finite (Lemma 143.6). Hence for
every maximal ideal m of A we my apply Lemma 112.7 to k[x1, . . . , xn]φ−1(m) → Am

to see that dim(Am) = n and hence (a) holds. □

152. Local structure of unramified ring maps

0G1D An unramified morphism is locally (in a suitable sense) the composition of a closed
immersion and an étale morphism. The algebraic underpinnings of this fact are
discussed in this section.

Proposition 152.1.0395 Let R→ S be a ring map. Let q ⊂ S be a prime. If R→ S
is unramified at q, then there exist

(1) a g ∈ S, g ̸∈ q,
(2) a standard étale ring map R→ S′, and
(3) a surjective R-algebra map S′ → Sg.

Proof. This proof is the “same” as the proof of Proposition 144.4. The proof is a
little roundabout and there may be ways to shorten it.
Step 1. By Definition 151.1 there exists a g ∈ S, g ̸∈ q such that R → Sg is
unramified. Thus we may assume that S is unramified over R.
Step 2. By Lemma 151.3 there exists an unramified ring map R0 → S0 with
R0 of finite type over Z, and a ring map R0 → R such that S is a quotient of
R⊗R0 S0. Denote q0 the prime of S0 corresponding to q. If we show the result for

https://stacks.math.columbia.edu/tag/08WD
https://stacks.math.columbia.edu/tag/0G1C
https://stacks.math.columbia.edu/tag/0395
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(R0 → S0, q0) then the result follows for (R→ S, q) by base change. Hence we may
assume that R is Noetherian.

Step 3. Note that R→ S is quasi-finite by Lemma 151.6. By Lemma 123.14 there
exists a finite ring map R → S′, an R-algebra map S′ → S, an element g′ ∈ S′

such that g′ ̸∈ q such that S′ → S induces an isomorphism S′
g′
∼= Sg′ . (Note that

S′ may not be unramified over R.) Thus we may assume that (a) R is Noetherian,
(b) R → S is finite and (c) R → S is unramified at q (but no longer necessarily
unramified at all primes).

Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma 53.2)
and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 60.7. One of the factors, say A1, is the local ring Sq/pSq which is
isomorphic to κ(q), see Lemma 151.5. The other factors correspond to the other
primes, say q2, . . . , qn of S lying over p.

Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(q)/κ(p) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to
t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α ̸= 0.

Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is
the only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 41.11
(we have going up for S′ → S by Lemma 36.22 since S′ → S is finite as R → S
is finite). It follows that S′

q′ → Sq is finite and injective as the localization of the
finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′
q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma 151.5.
Hence a fortiori Sq/q

′Sq = κ(q). Since

κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map

S′
q′ → Sq is surjective. In other words, S′

q′
∼= Sq.
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Step 7. By Lemma 126.7 there exist g ∈ S, g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such that
S′
g′
∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is unramified over R at q, and
(d) S = R[x]/I.
Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p). After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is the
image of some h ∈ R[x]. (The problem is that we do not know if we may choose h
monic.) Also, as in Step 4 we know that S⊗R κ(p) = A1× . . .×An with A1 = κ(q)
a finite separable extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en

n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(hei

i ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).
Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1
1 h

d2
2 . . . h

dn

n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en

n +klhld1
1 h

ld2
2 . . . h

ldn

n = h1(he2
2 . . . h

en

n +klhld1−1
1 h

ld2
2 . . . h

ldn

n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).
Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g = df
dx = w

dh1

dx + h1
dw
dx ,

w is prime to h1 and h1 is separable.
Step 11. We conclude that φ : R[x]/(f)→ S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 144.2) and φ(g) ̸∈ q. Thus
the map (R[x]/(f))g → Sφ(g) is the desired surjection. □

Lemma 152.2.00UX Let R→ S be a ring map. Let q be a prime of S lying over p ⊂ R.
Assume that R→ S is of finite type and unramified at q. Then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A×B

https://stacks.math.columbia.edu/tag/00UX
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with the following properties
(1) R′ → A is surjective, and
(2) p′A is a prime of A lying over p′ and over q.

Proof. We may replace (R→ S, p, q) with any base change (R′ → R′ ⊗R S, p′, q′)
by an étale ring map R→ R′ with a prime p′ lying over p, and a choice of q′ lying
over both q and p′. Note also that given R→ R′ and p′ a suitable q′ can always be
found.

The assumption that R → S is of finite type means that we may apply Lemma
145.4. Thus we may assume that S = A1× . . .×An×B, that each R→ Ai is finite
with exactly one prime ri lying over p such that κ(p) ⊂ κ(ri) is purely inseparable
and that R → B is not quasi-finite at any prime lying over p. Then clearly q = ri
for some i, since an unramified morphism is quasi-finite (see Lemma 151.6). Say
q = r1. By Lemma 151.5 we see that κ(r1)/κ(p) is separable hence the trivial field
extension, and that p(A1)r1 is the maximal ideal. Also, by Lemma 41.11 (which
applies to R → A1 because a finite ring map satisfies going up by Lemma 36.22)
we have (A1)r1 = (A1)p. It follows from Nakayama’s Lemma 20.1 that the map of
local rings Rp → (A1)p = (A1)r1 is surjective. Since A1 is finite over R we see that
there exists a f ∈ R, f ̸∈ p such that Rf → (A1)f is surjective. After replacing R
by Rf we win. □

Lemma 152.3.00UY Let R → S be a ring map. Let p be a prime of R. If R → S is
unramified then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B

with the following properties
(1) R′ → Ai is surjective,
(2) p′Ai is a prime of Ai lying over p′, and
(3) there is no prime of B lying over p′.

Proof. We may apply Lemma 145.4. Thus, after an étale base change, we may
assume that S = A1 × . . . × An × B, that each R → Ai is finite with exactly one
prime ri lying over p such that κ(p) ⊂ κ(ri) is purely inseparable, and that R→ B
is not quasi-finite at any prime lying over p. Since R → S is quasi-finite (see
Lemma 151.6) we see there is no prime of B lying over p. By Lemma 151.5 we see
that κ(ri)/κ(p) is separable hence the trivial field extension, and that p(Ai)ri

is the
maximal ideal. Also, by Lemma 41.11 (which applies to R → Ai because a finite
ring map satisfies going up by Lemma 36.22) we have (Ai)ri = (Ai)p. It follows
from Nakayama’s Lemma 20.1 that the map of local rings Rp → (Ai)p = (Ai)ri is
surjective. Since Ai is finite over R we see that there exists a f ∈ R, f ̸∈ p such
that Rf → (Ai)f is surjective. After replacing R by Rf we win. □

153. Henselian local rings

04GE In this section we discuss a bit the notion of a henselian local ring. Let (R,m, κ) be
a local ring. For a ∈ R we denote a the image of a in κ. For a polynomial f ∈ R[T ]

https://stacks.math.columbia.edu/tag/00UY
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we often denote f the image of f in κ[T ]. Given a polynomial f ∈ R[T ] we denote
f ′ the derivative of f with respect to T . Note that f ′ = f ′.

Definition 153.1.04GF Let (R,m, κ) be a local ring.
(1) We say R is henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ

of f such that f ′(a0) ̸= 0 there exists an a ∈ R such that f(a) = 0 and
a0 = a.

(2) We say R is strictly henselian if R is henselian and its residue field is
separably algebraically closed.

Note that the condition f ′(a0) ̸= 0 is equivalent to the condition that a0 is a simple
root of the polynomial f . In fact, it implies that the lift a ∈ R, if it exists, is unique.

Lemma 153.2.06RR Let (R,m, κ) be a local ring. Let f ∈ R[T ]. Let a, b ∈ R such that
f(a) = f(b) = 0, a = b mod m, and f ′(a) ̸∈ m. Then a = b.

Proof. Write f(x+y)−f(x) = f ′(x)y+g(x, y)y2 in R[x, y] (this is possible as one
sees by expanding f(x+ y); details omitted). Then we see that 0 = f(b)− f(a) =
f(a+(b−a))−f(a) = f ′(a)(b−a)+ c(b−a)2 for some c ∈ R. By assumption f ′(a)
is a unit in R. Hence (b − a)(1 + f ′(a)−1c(b − a)) = 0. By assumption b − a ∈ m,
hence 1 + f ′(a)−1c(b− a) is a unit in R. Hence b− a = 0 in R. □

Here is the characterization of henselian local rings.

Lemma 153.3.04GG Let (R,m, κ) be a local ring. The following are equivalent
(1) R is henselian,
(2) for every f ∈ R[T ] and every root a0 ∈ κ of f such that f ′(a0) ̸= 0 there

exists an a ∈ R such that f(a) = 0 and a0 = a,
(3) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1

there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,
(4) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1

there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(5) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1 there
exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(6) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1 there
exists a factorization f = gh in R[T ] such that g0 = g and h0 = h and
moreover degT (g) = degT (g0),

(7) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a retraction τ : S → R of R→ S,

(8) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a unique retraction τ : S → R of R→ S such that q = τ−1(m),

(9) any finite R-algebra is a product of local rings,
(10) any finite R-algebra is a finite product of local rings,
(11) any finite type R-algebra S can be written as A×B with R→ A finite and

R→ B not quasi-finite at any prime lying over m,
(12) any finite type R-algebra S can be written as A×B with R→ A finite such

that each irreducible component of Spec(B ⊗R κ) has dimension ≥ 1, and
(13) any quasi-finite R-algebra S can be written as S = A×B with R→ A finite

such that B ⊗R κ = 0.

https://stacks.math.columbia.edu/tag/04GF
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Proof. Here is a list of the easier implications:
(1) 2⇒1 because in (2) we consider all polynomials and in (1) only monic ones,
(2) 5⇒3 because in (5) we consider all polynomials and in (3) only monic ones,
(3) 6⇒4 because in (6) we consider all polynomials and in (4) only monic ones,
(4) 4⇒3 is obvious,
(5) 6⇒5 is obvious,
(6) 8⇒7 is obvious,
(7) 10⇒9 is obvious,
(8) 11⇔12 by definition of being quasi-finite at a prime,
(9) 11⇒13 by definition of being quasi-finite,

Proof of 1⇒8. Assume (1). Let R→ S be étale, and let q ⊂ S be a prime ideal such
that κ(q) ∼= κ. By Proposition 144.4 we can find a g ∈ S, g ̸∈ q such that R → Sg
is standard étale. After replacing S by Sg we may assume that S = R[t]g/(f) is
standard étale (details omitted). Since the prime q has residue field κ it corresponds
to a root a0 of f which is not a root of g. By definition of a standard étale algebra
this also means that f ′(a0) ̸= 0. Since also f is monic by definition of a standard
étale algebra again we may use that R is henselian to conclude that there exists an
a ∈ R with a0 = a such that f(a) = 0. This implies that g(a) is a unit of R and we
obtain the desired map τ : S = R[t]g/(f)→ R by the rule t 7→ a. By construction
τ−1(m) = q. By Lemma 153.2 the map τ is unique. This proves (8) holds.

Proof of 7⇒8. (This is really unimportant and should be skipped.) Assume (7)
holds and assume R→ S is étale. Let q1, . . . , qr be the other primes of S lying over
m. Then we can find a g ∈ S, g ̸∈ q and g ∈ qi for i = 1, . . . , r. Namely, we can argue
that

⋂r
i=1 qi ̸⊂ q since otherwise qi ⊂ q for some i, but this cannot happen as the

fiber of an étale morphism is discrete (use Lemma 143.4 for example). Apply (7) to
the étale ring map R→ Sg and the prime qSg. This gives a retraction τg : Sg → R
such that the composition τ : S → Sg → R has the property τ−1(m) = q. Details
omitted.

Proof of 8⇒11. Assume (8) and let R→ S be a finite type ring map. Apply Lemma
145.3. We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying over m with
κ = κ(m′) such that R′⊗RS = A′×B′ with A′ finite over R′ and B′ not quasi-finite
over R′ at any prime lying over m′. Apply (8) to get a retraction τ : R′ → R with
m = τ−1(m′). Then use that

S = (S ⊗R R′)⊗R′,τ R = (A′ ×B′)⊗R′,τ R = (A′ ⊗R′,τ R)× (B′ ⊗R′,τ R)

which gives a decomposition as in (11).

Proof of 8⇒10. Assume (8) and let R → S be a finite ring map. Apply Lemma
145.3. We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying over m with
κ = κ(m′) such that R′ ⊗R S = A′

1 × . . . × A′
n × B′ with A′

i finite over R′ having
exactly one prime over m′ and B′ not quasi-finite over R′ at any prime lying over
m′. Apply (8) to get a retraction τ : R′ → R with m′ = τ−1(m). Then we obtain

S = (S ⊗R R′)⊗R′,τ R

= (A′
1 × . . .×A′

n ×B′)⊗R′,τ R

= (A′
1 ⊗R′,τ R)× . . .× (A′

1 ⊗R′,τ R)× (B′ ⊗R′,τ R)
= A1 × . . .×An ×B
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The factor B is finite over R but R→ B is not quasi-finite at any prime lying over
m. Hence B = 0. The factors Ai are finite R-algebras having exactly one prime
lying over m, hence they are local rings. This proves that S is a finite product of
local rings.
Proof of 9⇒10. This holds because if S is finite over the local ring R, then it has at
most finitely many maximal ideals. Namely, by going up for R → S the maximal
ideals of S all lie over m, and S/mS is Artinian hence has finitely many primes.
Proof of 10⇒1. Assume (10). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ
a simple root of f . Then S = R[T ]/(f) is a finite R-algebra. Applying (10)
we get S = A1 × . . . × Ar is a finite product of local R-algebras. In particular
we see that S/mS =

∏
Ai/mAi is the decomposition of κ[T ]/(f) as a product

of local rings. This means that one of the factors, say A1/mA1 is the quotient
κ[T ]/(f)→ κ[T ]/(T − a0). Since A1 is a summand of the finite free R-module S it
is a finite free R-module itself. As A1/mA1 is a κ-vector space of dimension 1 we see
that A1 ∼= R as an R-module. Clearly this means that R→ A1 is an isomorphism.
Let a ∈ R be the image of T under the map R[T ]→ S → A1 → R. Then f(a) = 0
and a = a0 as desired.
Proof of 13⇒1. Assume (13). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ a
simple root of f . Then S1 = R[T ]/(f) is a finite R-algebra. Let g ∈ R[T ] be any
element such that g = f/(T − a0). Then S = (S1)g is a quasi-finite R-algebra such
that S⊗Rκ ∼= κ[T ]g/(f) ∼= κ[T ]/(T−a0) ∼= κ. Applying (13) to S we get S = A×B
with A finite over R and B⊗Rκ = 0. In particular we see that κ ∼= S/mS = A/mA.
Since A is a summand of the flat R-algebra S we see that it is finite flat, hence
free over R. As A/mA is a κ-vector space of dimension 1 we see that A ∼= R as an
R-module. Clearly this means that R → A is an isomorphism. Let a ∈ R be the
image of T under the map R[T ] → S → A → R. Then f(a) = 0 and a = a0 as
desired.
Proof of 8⇒2. Assume (8). Let f ∈ R[T ] be any polynomial and let a0 ∈ κ be a
simple root. Then the algebra S = R[T ]f ′/(f) is étale over R. Let q ⊂ S be the
prime generated by m and T − b where b ∈ R is any element such that b = a0.
Apply (8) to S and q to get τ : S → R. Then the image τ(T ) = a ∈ R works in
(2).
At this point we see that (1), (2), (7), (8), (9), (10), (11), (12), (13) are all equiva-
lent. The weakest assertion of (3), (4), (5) and (6) is (3) and the strongest is (6).
Hence we still have to prove that (3) implies (1) and (1) implies (6).
Proof of 3⇒1. Assume (3). Let f ∈ R[T ] be monic and let a0 ∈ κ be a simple root of
f . This gives a factorization f = (T−a0)h0 with h0(a0) ̸= 0, so gcd(T−a0, h0) = 1.
Apply (3) to get a factorization f = gh with g = T − a0 and h = h0. Set S =
R[T ]/(f) which is a finite free R-algebra. We will write g, h also for the images of
g and h in S. Then gS+hS = S by Nakayama’s Lemma 20.1 as the equality holds
modulo m. Since gh = f = 0 in S this also implies that gS ∩ hS = 0. Hence by
the Chinese Remainder theorem we obtain S = S/(g) × S/(h). This implies that
A = S/(g) is a summand of a finite free R-module, hence finite free. Moreover, the
rank of A is 1 as A/mA = κ[T ]/(T −a0). Thus the map R→ A is an isomorphism.
Setting a ∈ R equal to the image of T under the maps R[T ] → S → A → R gives
an element of R with f(a) = 0 and a = a0.
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Proof of 1⇒6. Assume (1) or equivalently all of (1), (2), (7), (8), (9), (10), (11), (12),
(13). Let f ∈ R[T ] be a polynomial. Suppose that f = g0h0 is a factorization with
gcd(g0, h0) = 1. We may and do assume that g0 is monic. Consider S = R[T ]/(f).
Because we have the factorization we see that the coefficients of f generate the unit
ideal in R. This implies that S has finite fibres over R, hence is quasi-finite over
R. It also implies that S is flat over R by Lemma 128.5. Combining (13) and (10)
we may write S = A1 × . . .×An ×B where each Ai is local and finite over R, and
B ⊗R κ = 0. After reordering the factors A1, . . . , An we may assume that
κ[T ]/(g0) = A1/mA1 × . . .×Ar/mAr, κ[T ]/(h0) = Ar+1/mAr+1 × . . .×An/mAn
as quotients of κ[T ]. The finite flat R-algebra A = A1 × . . . × Ar is free as an R-
module, see Lemma 78.5. Its rank is degT (g0). Let g ∈ R[T ] be the characteristic
polynomial of the R-linear operator T : A → A. Then g is a monic polynomial of
degree degT (g) = degT (g0) and moreover g = g0. By Cayley-Hamilton (Lemma
16.1) we see that g(TA) = 0 where TA indicates the image of T in A. Hence
we obtain a well defined surjective map R[T ]/(g) → A which is an isomorphism
by Nakayama’s Lemma 20.1. The map R[T ] → A factors through R[T ]/(f) by
construction hence we may write f = gh for some h. This finishes the proof. □

Lemma 153.4.04GH Let (R,m, κ) be a henselian local ring.
(1) If R → S is a finite ring map then S is a finite product of henselian local

rings each finite over R.
(2) If R → S is a finite ring map and S is local, then S is a henselian local

ring and R→ S is a (finite) local ring map.
(3) If R → S is a finite type ring map, and q is a prime of S lying over m at

which R→ S is quasi-finite, then Sq is henselian and finite over R.
(4) If R → S is quasi-finite then Sq is henselian and finite over R for every

prime q lying over m.
Proof. Part (2) implies part (1) since S as in part (1) is a finite product of its
localizations at the primes lying over m by Lemma 153.3 part (10). Part (2) also
follows from Lemma 153.3 part (10) since any finite S-algebra is also a finite R-
algebra (of course any finite ring map between local rings is local).
Let R → S and q be as in (3). Write S = A × B with A finite over R and B not
quasi-finite over R at any prime lying over m, see Lemma 153.3 part (11). Hence
Sq is a localization of A at a maximal ideal and we deduce (3) from (1). Part (4)
follows from part (3). □

Lemma 153.5.04GJ Let (R,m, κ) be a henselian local ring. Any finite type R-algebra
S can be written as S = A1 × . . . × An × B with Ai local and finite over R and
R→ B not quasi-finite at any prime of B lying over m.
Proof. This is a combination of parts (11) and (10) of Lemma 153.3. □

Lemma 153.6.06DD Let (R,m, κ) be a strictly henselian local ring. Any finite type
R-algebra S can be written as S = A1× . . .×An×B with Ai local and finite over R
and κ ⊂ κ(mAi

) finite purely inseparable and R→ B not quasi-finite at any prime
of B lying over m.
Proof. First write S = A1 × . . .×An ×B as in Lemma 153.5. The field extension
κ(mAi

)/κ is finite and κ is separably algebraically closed, hence it is finite purely
inseparable. □

https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/04GJ
https://stacks.math.columbia.edu/tag/06DD
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Lemma 153.7.04GK Let (R,m, κ) be a henselian local ring. The category of finite étale
ring extensions R → S is equivalent to the category of finite étale algebras κ → S
via the functor S 7→ S/mS.
Proof. Denote C → D the functor of categories of the statement. Suppose that
R→ S is finite étale. Then we may write

S = A1 × . . .×An
with Ai local and finite étale over S, use either Lemma 153.5 or Lemma 153.3 part
(10). In particular Ai/mAi is a finite separable field extension of κ, see Lemma
143.5. Thus we see that every object of C and D decomposes canonically into
irreducible pieces which correspond via the given functor. Next, suppose that S1,
S2 are finite étale over R such that κ1 = S1/mS1 and κ2 = S2/mS2 are fields (finite
separable over κ). Then S1 ⊗R S2 is finite étale over R and we may write

S1 ⊗R S2 = A1 × . . .×An
as before. Then we see that HomR(S1, S2) is identified with the set of indices
i ∈ {1, . . . , n} such that S2 → Ai is an isomorphism. To see this use that given
any R-algebra map φ : S1 → S2 the map φ× 1 : S1 ⊗R S2 → S2 is surjective, and
hence is equal to projection onto one of the factors Ai. But in exactly the same
way we see that Homκ(κ1, κ2) is identified with the set of indices i ∈ {1, . . . , n}
such that κ2 → Ai/mAi is an isomorphism. By the discussion above these sets of
indices match, and we conclude that our functor is fully faithful. Finally, let κ′/κ
be a finite separable field extension. By Lemma 144.3 there exists an étale ring
map R → S and a prime q of S lying over m such that κ ⊂ κ(q) is isomorphic to
the given extension. By part (1) we may write S = A1× . . .×An×B. Since R→ S
is quasi-finite we see that there exists no prime of B over m. Hence Sq is equal to
Ai for some i. Hence R → Ai is finite étale and produces the given residue field
extension. Thus the functor is essentially surjective and we win. □

Lemma 153.8.04GL Let (R,m, κ) be a strictly henselian local ring. Let R → S be an
unramified ring map. Then

S = A1 × . . .×An ×B
with each R→ Ai surjective and no prime of B lying over m.
Proof. First write S = A1 × . . . × An × B as in Lemma 153.5. Now we see
that R → Ai is finite unramified and Ai local. Hence the maximal ideal of Ai is
mAi and its residue field Ai/mAi is a finite separable extension of κ, see Lemma
151.5. However, the condition that R is strictly henselian means that κ is separably
algebraically closed, so κ = Ai/mAi. By Nakayama’s Lemma 20.1 we conclude that
R→ Ai is surjective as desired. □

Lemma 153.9.04GM Let (R,m, κ) be a complete local ring, see Definition 160.1. Then
R is henselian.
Proof. Let f ∈ R[T ] be monic. Denote fn ∈ R/mn+1[T ] the image. Denote f ′

n

the derivative of fn with respect to T . Let a0 ∈ κ be a simple root of f0. We lift
this to a solution of f over R inductively as follows: Suppose given an ∈ R/mn+1

such that an mod m = a0 and fn(an) = 0. Pick any element b ∈ R/mn+2 such that
an = b mod mn+1. Then fn+1(b) ∈ mn+1/mn+2. Set

an+1 = b− fn+1(b)/f ′
n+1(b)

https://stacks.math.columbia.edu/tag/04GK
https://stacks.math.columbia.edu/tag/04GL
https://stacks.math.columbia.edu/tag/04GM
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(Newton’s method). This makes sense as f ′
n+1(b) ∈ R/mn+2 is invertible by the

condition on a0. Then we compute fn+1(an+1) = fn+1(b)−fn+1(b) = 0 in R/mn+2.
Since the system of elements an ∈ R/mn+1 so constructed is compatible we get an
element a ∈ limR/mn = R (here we use that R is complete). Moreover, f(a) = 0
since it maps to zero in each R/mn. Finally a = a0 and we win. □

Lemma 153.10.06RS Let (R,m) be a local ring of dimension 0. Then R is henselian.

Proof. Let R→ S be a finite ring map. By Lemma 153.3 it suffices to show that S
is a product of local rings. By Lemma 36.21 S has finitely many primes m1, . . . ,mr
which all lie over m. There are no inclusions among these primes, see Lemma 36.20,
hence they are all maximal. Every element of m1 ∩ . . .∩mr is nilpotent by Lemma
17.2. It follows S is the product of the localizations of S at the primes mi by Lemma
53.5. □

The following lemma will be the key to the uniqueness and functorial properties of
henselization and strict henselization.

Lemma 153.11.08HQ Let R→ S be a ring map with S henselian local. Given
(1) an étale ring map R→ A,
(2) a prime q of A lying over p = R ∩mS,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS) and f mod q = τ .

Proof. Consider A⊗R S. This is an étale algebra over S, see Lemma 143.3. More-
over, the kernel

q′ = Ker(A⊗R S → κ(q)⊗κ(p) κ(mS)→ κ(mS))
of the map using the map given in (3) is a prime ideal lying over mS with residue
field equal to the residue field of S. Hence by Lemma 153.3 there exists a unique
splitting τ : A ⊗R S → S with τ−1(mS) = q′. Set f equal to the composition
A→ A⊗R S → S. □

Lemma 153.12.04GX Let φ : R→ S be a local homomorphism of strictly henselian local
rings. Let P1, . . . , Pn ∈ R[x1, . . . , xn] be polynomials such that R[x1, . . . , xn]/(P1, . . . , Pn)
is étale over R. Then the map

Rn −→ Sn, (h1, . . . , hn) 7−→ (φ(h1), . . . , φ(hn))
induces a bijection between

{(r1, . . . , rn) ∈ Rn | Pi(r1, . . . , rn) = 0, i = 1, . . . , n}
and

{(s1, . . . , sn) ∈ Sn | Pφi (s2, . . . , sn) = 0, i = 1, . . . , n}
where Pφi ∈ S[x1, . . . , xn] are the images of the Pi under φ.

Proof. The first solution set is canonically isomorphic to the set
HomR(R[x1, . . . , xn]/(P1, . . . , Pn), R).

As R is henselian the map R → R/mR induces a bijection between this set and
the set of solutions in the residue field R/mR, see Lemma 153.3. The same is true
for S. Now since R[x1, . . . , xn]/(P1, . . . , Pn) is étale over R and R/mR is separably
algebraically closed we see that R/mR[x1, . . . , xn]/(P 1, . . . , Pn) is a finite product

https://stacks.math.columbia.edu/tag/06RS
https://stacks.math.columbia.edu/tag/08HQ
https://stacks.math.columbia.edu/tag/04GX
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of copies of R/mR where P i is the image of Pi in R/mR[x1, . . . , xn]. Hence the
tensor product
R/mR[x1, . . . , xn]/(P 1, . . . , Pn)⊗R/mR

S/mS = S/mS [x1, . . . , xn]/(Pφ1 , . . . , P
φ

n)
is also a finite product of copies of S/mS with the same index set. This proves the
lemma. □

Lemma 153.13.05D6 Let R be a henselian local ring. Any countably generated Mittag-
Leffler module over R is a direct sum of finitely presented R-modules.

Proof. Let M be a countably generated and Mittag-Leffler R-module. We claim
that for any element x ∈ M there exists a direct sum decomposition M = N ⊕K
with x ∈ N , the module N finitely presented, and K Mittag-Leffler.
Suppose the claim is true. Choose generators x1, x2, x3, . . . of M . By the claim we
can inductively find direct sum decompositions

M = N1 ⊕N2 ⊕ . . .⊕Nn ⊕Kn

with Ni finitely presented, x1, . . . , xn ∈ N1 ⊕ . . . ⊕ Nn, and Kn Mittag-Leffler.
Repeating ad infinitum we see that M =

⊕
Ni.

We still have to prove the claim. Let x ∈ M . By Lemma 92.2 there exists an
endomorphism α : M →M such that α factors through a finitely presented module,
and α(x) = x. Say α factors as

M
π // P

i // M

Set a = π ◦ α ◦ i : P → P , so i ◦ a ◦ π = α3. By Lemma 16.2 there exists a monic
polynomial P ∈ R[T ] such that P (a) = 0. Note that this implies formally that
α2P (α) = 0. Hence we may think of M as a module over R[T ]/(T 2P ). Assume
that x ̸= 0. Then α(x) = x implies that 0 = α2P (α)x = P (1)x hence P (1) = 0 in
R/I where I = {r ∈ R | rx = 0} is the annihilator of x. As x ̸= 0 we see I ⊂ mR,
hence 1 is a root of P = P mod mR ∈ R/mR[T ]. As R is henselian we can find a
factorization

T 2P = (T 2Q1)Q2

for some Q1, Q2 ∈ R[T ] with Q2 = (T − 1)e mod mRR[T ] and Q1(1) ̸= 0 mod mR,
see Lemma 153.3. Let N = Im(α2Q1(α) : M →M) and K = Im(Q2(α) : M →M).
As T 2Q1 and Q2 generate the unit ideal of R[T ] we get a direct sum decomposition
M = N ⊕ K. Moreover, Q2 acts as zero on N and T 2Q1 acts as zero on K.
Note that N is a quotient of P hence is finitely generated. Also x ∈ N because
α2Q1(α)x = Q1(1)x and Q1(1) is a unit in R. By Lemma 89.10 the modules N and
K are Mittag-Leffler. Finally, the finitely generated module N is finitely presented
as a finitely generated Mittag-Leffler module is finitely presented, see Example 91.1
part (1). □

154. Filtered colimits of étale ring maps

0BSG This section is a precursor to the section on ind-étale ring maps (Pro-étale Coho-
mology, Section 7). The material will also be useful to prove uniqueness properties
of the henselization and strict henselization of a local ring.

Lemma 154.1.0BSH Let R → A and R → R′ be ring maps. If A is a filtered colimit
of étale ring maps, then so is R′ → R′ ⊗R A.

https://stacks.math.columbia.edu/tag/05D6
https://stacks.math.columbia.edu/tag/0BSH
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Proof. This is true because colimits commute with tensor products and étale ring
maps are preserved under base change (Lemma 143.3). □

Lemma 154.2.0BSI Let A → B → C be ring maps. If A → B is a filtered colimit of
étale ring maps and B → C is a filtered colimit of étale ring maps, then A→ C is
a filtered colimit of étale ring maps.

Proof. We will use the criterion of Lemma 127.4. Let A→ P → C be a factoriza-
tion of A→ C with P of finite presentation over A. Write B = colimi∈I Bi where I
is a directed set and where Bi is an étale A-algebra. Write C = colimj∈J Cj where
J is a directed set and where Cj is an étale B-algebra. We can factor P → C
as P → Cj → C for some j by Lemma 127.3. By Lemma 143.3 we can find an
i ∈ I and an étale ring map Bi → C ′

j such that Cj = B ⊗Bi
C ′
j . Then Cj =

colimi′≥iBi′⊗Bi
C ′
j and again we see that P → Cj factors as P → Bi′⊗Bi

C ′
j → C.

As A→ C ′ = Bi′ ⊗Bi
C ′
j is étale as compositions and tensor products of étale ring

maps are étale. Hence we have factored P → C as P → C ′ → C with C ′ étale over
A and the criterion of Lemma 127.4 applies. □

Lemma 154.3.0BSJ Let R be a ring. Let A = colimAi be a filtered colimit of R-
algebras such that each Ai is a filtered colimit of étale R-algebras. Then A is a
filtered colimit of étale R-algebras.

Proof. Write Ai = colimj∈Ji
Aj where Ji is a directed set and Aj is an étale R-

algebra. For each i ≤ i′ and j ∈ Ji there exists an j′ ∈ Ji′ and an R-algebra map
φjj′ : Aj → Aj′ making the diagram

Ai // Ai′

Aj

OO

φjj′
// Aj′

OO

commute. This is true because R → Aj is of finite presentation so that Lemma
127.3 applies. Let J be the category with objects

∐
i∈I Ji and morphisms triples

(j, j′, φjj′) as above (and obvious composition law). Then J is a filtered category
and A = colimJ Aj . Details omitted. □

Lemma 154.4.0GIM Let I be a directed set. Let i 7→ (Ri → Ai) be a system of arrows
of rings over I. Set R = colimRi and A = colimAi. If each Ai is a filtered colimit
of étale Ri-algebras, then A is a filtered colimit of étale R-algebras.

Proof. This is true because A = A⊗RR = colimAi⊗Ri R and hence we can apply
Lemma 154.3 because R → Ai ⊗Ri R is a filtered colimit of étale ring maps by
Lemma 154.1. □

Lemma 154.5.08HS Let R be a ring. Let A→ B be an R-algebra homomorphism. If
A and B are filtered colimits of étale R-algebras, then B is a filtered colimit of étale
A-algebras.

Proof. Write A = colimAi and B = colimBj as filtered colimits with Ai and Bj
étale over R. For each i we can find a j such that Ai → B factors through Bj ,
see Lemma 127.3. The factorization Ai → Bj is étale by Lemma 143.8. Since
A→ A⊗Ai

Bj is étale (Lemma 143.3) it suffices to prove that B = colimA⊗Ai
Bj

where the colimit is over pairs (i, j) and factorizations Ai → Bj → B of Ai → B

https://stacks.math.columbia.edu/tag/0BSI
https://stacks.math.columbia.edu/tag/0BSJ
https://stacks.math.columbia.edu/tag/0GIM
https://stacks.math.columbia.edu/tag/08HS
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(this is a directed system; details omitted). This is clear because colimits commute
with tensor products and hence colimA⊗Ai Bj = A⊗A B = B. □

Lemma 154.6.08HR Let R→ S be a ring map with S henselian local. Given
(1) an R-algebra A which is a filtered colimit of étale R-algebras,
(2) a prime q of A lying over p = R ∩mS,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS) and f mod q = τ .

Proof. Write A = colimAi as a filtered colimit of étale R-algebras. Set qi = Ai∩q.
We obtain fi : Ai → S by applying Lemma 153.11. Set f = colim fi. □

Lemma 154.7.08HT Let R be a ring. Given a commutative diagram of ring maps

S // K

R

OO

// S′

OO

where S, S′ are henselian local, S, S′ are filtered colimits of étale R-algebras, K is
a field and the arrows S → K and S′ → K identify K with the residue field of both
S and S′. Then there exists an unique R-algebra isomorphism S → S′ compatible
with the maps to K.

Proof. Follows immediately from Lemma 154.6. □

The following lemma is not strictly speaking about colimits of étale ring maps.

Lemma 154.8.04GI A filtered colimit of (strictly) henselian local rings along local
homomorphisms is (strictly) henselian.

Proof. Categories, Lemma 21.5 says that this is really just a question about a
colimit of (strictly) henselian local rings over a directed set. Let (Ri, φii′) be such
a system with each φii′ local. Then R = colimiRi is local, and its residue field κ is
colim κi (argument omitted). It is easy to see that colim κi is separably algebraically
closed if each κi is so; thus it suffices to prove R is henselian if each Ri is henselian.
Suppose that f ∈ R[T ] is monic and that a0 ∈ κ is a simple root of f . Then for
some large enough i there exists an fi ∈ Ri[T ] mapping to f and an a0,i ∈ κi
mapping to a0. Since fi(a0,i) ∈ κi, resp. f ′

i(a0,i) ∈ κi maps to 0 = f(a0) ∈ κ, resp.
0 ̸= f ′(a0) ∈ κ we conclude that a0,i is a simple root of fi. As Ri is henselian we
can find ai ∈ Ri such that fi(ai) = 0 and a0,i = ai. Then the image a ∈ R of ai is
the desired solution. Thus R is henselian. □

155. Henselization and strict henselization

0BSK In this section we construct the henselization. We encourage the reader to keep in
mind the uniqueness already proved in Lemma 154.7 and the functorial behaviour
pointed out in Lemma 154.6 while reading this material.

Lemma 155.1.04GN Let (R,m, κ) be a local ring. There exists a local ring map R→ Rh

with the following properties
(1) Rh is henselian,
(2) Rh is a filtered colimit of étale R-algebras,

https://stacks.math.columbia.edu/tag/08HR
https://stacks.math.columbia.edu/tag/08HT
https://stacks.math.columbia.edu/tag/04GI
https://stacks.math.columbia.edu/tag/04GN
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(3) mRh is the maximal ideal of Rh, and
(4) κ = Rh/mRh.

Proof. Consider the category of pairs (S, q) where R→ S is an étale ring map, and
q is a prime of S lying over m with κ = κ(q). A morphism of pairs (S, q)→ (S′, q′)
is given by an R-algebra map φ : S → S′ such that φ−1(q′) = q. We set

Rh = colim(S,q) S.

Let us show that the category of pairs is filtered, see Categories, Definition 19.1.
The category contains the pair (R,m) and hence is not empty, which proves part (1)
of Categories, Definition 19.1. For any pair (S, q) the prime ideal q is maximal with
residue field κ since the composition κ→ S/q→ κ(q) is an isomorphism. Suppose
that (S, q) and (S′, q′) are two objects. Set S′′ = S ⊗R S′ and q′′ = qS′′ + q′S′′.
Then S′′/q′′ = S/q ⊗R S′/q′ = κ by what we said above. Moreover, R → S′′ is
étale by Lemma 143.3. This proves part (2) of Categories, Definition 19.1. Next,
suppose that φ,ψ : (S, q) → (S′, q′) are two morphisms of pairs. Then φ, ψ, and
S′ ⊗R S′ → S′ are étale ring maps by Lemma 143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

with prime ideal

q′′ = (q′ ⊗ S′ + S′ ⊗ q′)⊗ S′ + (S′ ⊗φ,S,ψ S′)⊗ q′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. Moreover, the canonical map S′ → S′′ (using
the right most factor for example) equalizes φ and ψ. This proves part (3) of
Categories, Definition 19.1. Hence we conclude that Rh consists of triples (S, q, f)
with f ∈ S, and two such triples (S, q, f), (S′, q′, f ′) define the same element of Rh if
and only if there exists a pair (S′′, q′′) and morphisms of pairs φ : (S, q)→ (S′′, q′′)
and φ′ : (S′, q′)→ (S′′, q′′) such that φ(f) = φ′(f ′).

Suppose that x ∈ Rh. Represent x by a triple (S, q, f). Let q1, . . . , qr be the other
primes of S lying over m. Then q ̸⊂ qi as we have seen above that q is maximal.
Thus, since q is a prime ideal, we can find a g ∈ S, g ̸∈ q and g ∈ qi for i = 1, . . . , r.
Consider the morphism of pairs (S, q)→ (Sg, qSg). In this way we see that we may
always assume that x is given by a triple (S, q, f) where q is the only prime of S
lying over m, i.e.,

√
mS = q. But since R → S is étale, we have mSq = qSq, see

Lemma 143.5. Hence we actually get that mS = q.

Suppose that x ̸∈ mRh. Represent x by a triple (S, q, f) with mS = q. Then
f ̸∈ mS, i.e., f ̸∈ q. Hence (S, q)→ (Sf , qSf ) is a morphism of pairs such that the
image of f becomes invertible. Hence x is invertible with inverse represented by
the triple (Sf , qSf , 1/f). We conclude that Rh is a local ring with maximal ideal
mRh. The residue field is κ since we can define Rh/mRh → κ by mapping a triple
(S, q, f) to the residue class of f modulo q.

We still have to show that Rh is henselian. Namely, suppose that P ∈ Rh[T ] is a
monic polynomial and a0 ∈ κ is a simple root of the reduction P ∈ κ[T ]. Then we
can find a pair (S, q) such that P is the image of a monic polynomial Q ∈ S[T ]. Set
S′ = S[T ]/(Q) and let q′ ⊂ S′ be the maximal ideal q′ = qS′ + (T − a′)S′ where
a′ ∈ S is any element lifting a0. By construction S → S′ is étale at q′ and κ = κ(q′).
Pick g ∈ S′, g ̸∈ q′ such that S′′ = S′

g is étale over S. Then (S, q) → (S′′, q′S′′) is
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a morphism of pairs. Now that triple (S′′, q′S′′, class of T ) determines an element
a ∈ Rh with the properties P (a) = 0, and a = a0 as desired. □

Lemma 155.2.04GP Let (R,m, κ) be a local ring. Let κ ⊂ κsep be a separable algebraic
closure. There exists a commutative diagram

κ // κ // κsep

R //

OO

Rh //

OO

Rsh

OO

with the following properties
(1) the map Rh → Rsh is local
(2) Rsh is strictly henselian,
(3) Rsh is a filtered colimit of étale R-algebras,
(4) mRsh is the maximal ideal of Rsh, and
(5) κsep = Rsh/mRsh.

Proof. This is proved by exactly the same proof as used for Lemma 155.1. The
only difference is that, instead of pairs, one uses triples (S, q, α) where R→ S étale,
q is a prime of S lying over m, and α : κ(q) → κsep is an embedding of extensions
of κ. □

Definition 155.3.04GQ Let (R,m, κ) be a local ring.
(1) The local ring map R → Rh constructed in Lemma 155.1 is called the

henselization of R.
(2) Given a separable algebraic closure κ ⊂ κsep the local ring map R → Rsh

constructed in Lemma 155.2 is called the strict henselization of R with
respect to κ ⊂ κsep.

(3) A local ring map R → Rsh is called a strict henselization of R if it is
isomorphic to one of the local ring maps constructed in Lemma 155.2

The maps R→ Rh → Rsh are flat local ring homomorphisms. By Lemma 154.7 the
R-algebras Rh and Rsh are well defined up to unique isomorphism by the conditions
that they are henselian local, filtered colimits of étale R-algebras with residue field κ
and κsep. In the rest of this section we mostly just discuss functoriality of the (strict)
henselizations. We will discuss more intricate results concerning the relationship
between R and its henselization in More on Algebra, Section 45.

Remark 155.4.0BSL We can also construct Rsh from Rh. Namely, for any finite sep-
arable subextension κsep/κ′/κ there exists a unique (up to unique isomorphism)
finite étale local ring extension Rh ⊂ Rh(κ′) whose residue field extension repro-
duces the given extension, see Lemma 153.7. Hence we can set

Rsh =
⋃

κ⊂κ′⊂κsep
Rh(κ′)

The arrows in this system, compatible with the arrows on the level of residue fields,
exist by Lemma 153.7. This will produce a henselian local ring by Lemma 154.8
since each of the rings Rh(κ′) is henselian by Lemma 153.4. By construction the
residue field extension induced by Rh → Rsh is the field extension κsep/κ. Hence
Rsh so constructed is strictly henselian. By Lemma 154.2 the R-algebra Rsh is a
colimit of étale R-algebras. Hence the uniqueness of Lemma 154.7 shows that Rsh
is the strict henselization.

https://stacks.math.columbia.edu/tag/04GP
https://stacks.math.columbia.edu/tag/04GQ
https://stacks.math.columbia.edu/tag/0BSL
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Lemma 155.5.04GR Let R → S be a local map of local rings. Let S → Sh be the
henselization. Let R → A be an étale ring map and let q be a prime of A lying
over mR such that R/mR ∼= κ(q). Then there exists a unique morphism of rings
f : A→ Sh fitting into the commutative diagram

A
f
// Sh

R

OO

// S

OO

such that f−1(mSh) = q.

Proof. This is a special case of Lemma 153.11. □

Lemma 155.6.04GS Let R→ S be a local map of local rings. Let R→ Rh and S → Sh

be the henselizations. There exists a unique local ring map Rh → Sh fitting into
the commutative diagram

Rh
f
// Sh

R

OO

// S

OO

Proof. Follows immediately from Lemma 154.6. □

Here is a slightly different construction of the henselization.

Lemma 155.7.04GV Let R be a ring. Let p ⊂ R be a prime ideal. Consider the
category of pairs (S, q) where R → S is étale and q is a prime lying over p such
that κ(p) = κ(q). This category is filtered and

(Rp)h = colim(S,q) S = colim(S,q) Sq

canonically.

Proof. A morphism of pairs (S, q) → (S′, q′) is given by an R-algebra map φ :
S → S′ such that φ−1(q′) = q. Let us show that the category of pairs is filtered,
see Categories, Definition 19.1. The category contains the pair (R, p) and hence
is not empty, which proves part (1) of Categories, Definition 19.1. Suppose that
(S, q) and (S′, q′) are two pairs. Note that q, resp. q′ correspond to primes of the
fibre rings S ⊗ κ(p), resp. S′ ⊗ κ(p) with residue fields κ(p), hence they correspond
to maximal ideals of S ⊗ κ(p), resp. S′ ⊗ κ(p). Set S′′ = S ⊗R S′. By the above
there exists a unique prime q′′ ⊂ S′′ lying over q and over q′ whose residue field
is κ(p). The ring map R → S′′ is étale by Lemma 143.3. This proves part (2)
of Categories, Definition 19.1. Next, suppose that φ,ψ : (S, q) → (S′, q′) are two
morphisms of pairs. Then φ, ψ, and S′ ⊗R S′ → S′ are étale ring maps by Lemma
143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗φ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′

where F ′, F are the fibre rings of S′ and S. Since φ and ψ are morphisms of pairs
the map F ′ → κ(p) corresponding to p′ extends to a map F ′′ → κ(p) and in turn

https://stacks.math.columbia.edu/tag/04GR
https://stacks.math.columbia.edu/tag/04GS
https://stacks.math.columbia.edu/tag/04GV
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corresponds to a prime ideal q′′ ⊂ S′′ whose residue field is κ(p). The canonical
map S′ → S′′ (using the right most factor for example) is a morphism of pairs
(S′, q′) → (S′′, q′′) which equalizes φ and ψ. This proves part (3) of Categories,
Definition 19.1. Hence we conclude that the category is filtered.

Recall that in the proof of Lemma 155.1 we constructed (Rp)h as the corresponding
colimit but starting with Rp and its maximal ideal pRp. Now, given any pair (S, q)
for (R, p) we obtain a pair (Sp, qSp) for (Rp, pRp). Moreover, in this situation

Sp = colimf∈R,f ̸∈p Sf .

Hence in order to show the equalities of the lemma, it suffices to show that any
pair (Sloc, qloc) for (Rp, pRp) is of the form (Sp, qSp) for some pair (S, q) over (R, p)
(some details omitted). This follows from Lemma 143.3. □

Lemma 155.8.08HU Let R→ S be a ring map. Let q ⊂ S be a prime lying over p ⊂ R.
Let R → Rh and S → Sh be the henselizations of Rp and Sq. The local ring map
Rh → Sh of Lemma 155.6 identifies Sh with the henselization of Rh ⊗R S at the
unique prime lying over mh and q.

Proof. By Lemma 155.7 we see that Rh, resp. Sh are filtered colimits of étale R,
resp. S-algebras. Hence we see that Rh⊗R S is a filtered colimit of étale S-algebras
Ai (Lemma 143.3). By Lemma 154.5 we see that Sh is a filtered colimit of étale
Rh ⊗R S-algebras. Since moreover Sh is a henselian local ring with residue field
equal to κ(q), the statement follows from the uniqueness result of Lemma 154.7. □

Lemma 155.9.04GT Let φ : R → S be a local map of local rings. Let S/mS ⊂ κsep

be a separable algebraic closure. Let S → Ssh be the strict henselization of S with
respect to S/mS ⊂ κsep. Let R→ A be an étale ring map and let q be a prime of A
lying over mR. Given any commutative diagram

κ(q)
ϕ
// κsep

R/mR
φ //

OO

S/mS

OO

there exists a unique morphism of rings f : A → Ssh fitting into the commutative
diagram

A
f
// Ssh

R

OO

φ // S

OO

such that f−1(mSh) = q and the induced map κ(q)→ κsep is the given one.

Proof. This is a special case of Lemma 153.11. □

Lemma 155.10.04GU Let R → S be a local map of local rings. Choose separable
algebraic closures R/mR ⊂ κsep1 and S/mS ⊂ κsep2 . Let R → Rsh and S → Ssh be

https://stacks.math.columbia.edu/tag/08HU
https://stacks.math.columbia.edu/tag/04GT
https://stacks.math.columbia.edu/tag/04GU
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the corresponding strict henselizations. Given any commutative diagram

κsep1 ϕ
// κsep2

R/mR
φ //

OO

S/mS

OO

There exists a unique local ring map Rsh → Ssh fitting into the commutative dia-
gram

Rsh
f
// Ssh

R

OO

// S

OO

and inducing ϕ on the residue fields of Rsh and Ssh.

Proof. Follows immediately from Lemma 154.6. □

Lemma 155.11.04GW Let R be a ring. Let p ⊂ R be a prime ideal. Let κ(p) ⊂ κsep be
a separable algebraic closure. Consider the category of triples (S, q, ϕ) where R→ S
is étale, q is a prime lying over p, and ϕ : κ(q)→ κsep is a κ(p)-algebra map. This
category is filtered and

(Rp)sh = colim(S,q,ϕ) S = colim(S,q,ϕ) Sq

canonically.

Proof. A morphism of triples (S, q, ϕ)→ (S′, q′, ϕ′) is given by an R-algebra map
φ : S → S′ such that φ−1(q′) = q and such that ϕ′ ◦ φ = ϕ. Let us show that the
category of pairs is filtered, see Categories, Definition 19.1. The category contains
the triple (R, p, κ(p) ⊂ κsep) and hence is not empty, which proves part (1) of
Categories, Definition 19.1. Suppose that (S, q, ϕ) and (S′, q′, ϕ′) are two triples.
Note that q, resp. q′ correspond to primes of the fibre rings S⊗κ(p), resp. S′⊗κ(p)
with residue fields finite separable over κ(p) and ϕ, resp. ϕ′ correspond to maps
into κsep. Hence this data corresponds to κ(p)-algebra maps

ϕ : S ⊗R κ(p) −→ κsep, ϕ′ : S′ ⊗R κ(p) −→ κsep.

Set S′′ = S ⊗R S′. Combining the maps the above we get a unique κ(p)-algebra
map

ϕ′′ = ϕ⊗ ϕ′ : S′′ ⊗R κ(p) −→ κsep

whose kernel corresponds to a prime q′′ ⊂ S′′ lying over q and over q′, and whose
residue field maps via ϕ′′ to the compositum of ϕ(κ(q)) and ϕ′(κ(q′)) in κsep. The
ring map R→ S′′ is étale by Lemma 143.3. Hence (S′′, q′′, ϕ′′) is a triple dominating
both (S, q, ϕ) and (S′, q′, ϕ′). This proves part (2) of Categories, Definition 19.1.
Next, suppose that φ,ψ : (S, q, ϕ) → (S′, q′, ϕ′) are two morphisms of pairs. Then
φ, ψ, and S′ ⊗R S′ → S′ are étale ring maps by Lemma 143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗φ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′

https://stacks.math.columbia.edu/tag/04GW
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where F ′, F are the fibre rings of S′ and S. Since φ and ψ are morphisms of triples
the map ϕ′ : F ′ → κsep extends to a map ϕ′′ : F ′′ → κsep which in turn corresponds
to a prime ideal q′′ ⊂ S′′. The canonical map S′ → S′′ (using the right most factor
for example) is a morphism of triples (S′, q′, ϕ′) → (S′′, q′′, ϕ′′) which equalizes φ
and ψ. This proves part (3) of Categories, Definition 19.1. Hence we conclude that
the category is filtered.
We still have to show that the colimit Rcolim of the system is equal to the strict
henselization of Rp with respect to κsep. To see this note that the system of triples
(S, q, ϕ) contains as a subsystem the pairs (S, q) of Lemma 155.7. Hence Rcolim
contains Rhp by the result of that lemma. Moreover, it is clear that Rhp ⊂ Rcolim
is a directed colimit of étale ring extensions. It follows that Rcolim is henselian by
Lemmas 153.4 and 154.8. Finally, by Lemma 144.3 we see that the residue field
of Rcolim is equal to κsep. Hence we conclude that Rcolim is strictly henselian and
hence equals the strict henselization of Rp as desired. Some details omitted. □

Lemma 155.12.08HV Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Choose separable algebraic closures κ(p) ⊂ κsep1 and κ(q) ⊂ κsep2 . Let
Rsh and Ssh be the corresponding strict henselizations of Rp and Sq. Given any
commutative diagram

κsep1 ϕ
// κsep2

κ(p) φ //

OO

κ(q)

OO

The local ring map Rsh → Ssh of Lemma 155.10 identifies Ssh with the strict
henselization of Rsh⊗RS at a prime lying over q and the maximal ideal msh ⊂ Rsh.

Proof. The proof is identical to the proof of Lemma 155.8 except that it uses
Lemma 155.11 instead of Lemma 155.7. □

Lemma 155.13.0C2Z Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R such that κ(p) → κ(q) is an isomorphism. Choose a separable algebraic
closure κsep of κ(p) = κ(q). Then

(Sq)sh = (Sq)h ⊗(Rp)h (Rp)sh

Proof. This follows from the alternative construction of the strict henselization of
a local ring in Remark 155.4 and the fact that the residue fields are equal. Some
details omitted. □

156. Henselization and quasi-finite ring maps

0GIN In this section we prove some results concerning the functorial maps between (strict)
henselizations for quasi-finite ring maps.

Lemma 156.1.05WP Let R→ S be a ring map. Let q be a prime of S lying over p in
R. Assume R→ S is quasi-finite at q. The commutative diagram

Rhp // Shq

Rp

OO

// Sq

OO

https://stacks.math.columbia.edu/tag/08HV
https://stacks.math.columbia.edu/tag/0C2Z
https://stacks.math.columbia.edu/tag/05WP
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of Lemma 155.6 identifies Shq with the localization of Rhp ⊗Rp
Sq at the prime gen-

erated by q. Moreover, the ring map Rhp → Shq is finite.

Proof. Note that Rhp ⊗R S is quasi-finite over Rhp at the prime ideal corresponding
to q, see Lemma 122.6. Hence the localization S′ of Rhp ⊗Rp

Sq is henselian and
finite over Rhp , see Lemma 153.4. As a localization S′ is a filtered colimit of étale
Rhp⊗Rp

Sq-algebras. By Lemma 155.8 we see that Shq is the henselization of Rhp⊗Rp

Sq. Thus S′ = Shq by the uniqueness result of Lemma 154.7. □

Lemma 156.2.05WQ Let R be a local ring with henselization Rh. Let I ⊂ mR. Then
Rh/IRh is the henselization of R/I.

Proof. This is a special case of Lemma 156.1. □

Lemma 156.3.05WR Let R → S be a ring map. Let q be a prime of S lying over p
in R. Assume R → S is quasi-finite at q. Let κsep2 /κ(q) be a separable algebraic
closure and denote κsep1 ⊂ κsep2 the subfield of elements separable algebraic over κ(q)
(Fields, Lemma 14.6). The commutative diagram

Rshp // Sshq

Rp

OO

// Sq

OO

of Lemma 155.10 identifies Sshq with the localization of Rshp ⊗Rp
Sq at the prime

ideal which is the kernel of the map
Rshp ⊗Rp

Sq −→ κsep1 ⊗κ(p) κ(q) −→ κsep2

Moreover, the ring map Rshp → Sshq is a finite local homomorphism of local rings
whose residue field extension is the extension κsep2 /κsep1 which is both finite and
purely inseparable.

Proof. Since R → S is quasi-finite at q we see that the extension κ(q)/κ(p) is
finite, see Definition 122.3 and Lemma 122.2. Hence κsep1 is a separable algebraic
closure of κ(p) (small detail omitted). In particular Lemma 155.10 does really apply.
Next, the compositum of κ(p) and κsep1 in κsep2 is separably algebraically closed and
hence equal to κsep2 . We conclude that κsep2 /κsep1 is finite. By construction the
extension κsep2 /κsep1 is purely inseparable. The ring map Rshp → Sshq is indeed
local and induces the residue field extension κsep2 /κsep1 which is indeed finite purely
inseparable.
Note that Rshp ⊗R S is quasi-finite over Rshp at the prime ideal q′ given in the
statement of the lemma, see Lemma 122.6. Hence the localization S′ of Rshp ⊗Rp

Sq

at q′ is henselian and finite over Rshp , see Lemma 153.4. Note that the residue field
of S′ is κsep2 as the map κsep1 ⊗κ(p) κ(q)→ κsep2 is surjective by the discussion in the
previous paragraph. Furthermore, as a localization S′ is a filtered colimit of étale
Rshp ⊗Rp

Sq-algebras. By Lemma 155.12 we see that Sshq is the strict henselization
of Rshp ⊗Rp

Sq at q′. Thus S′ = Sshq by the uniqueness result of Lemma 154.7. □

Lemma 156.4.05WS Let R be a local ring with strict henselization Rsh. Let I ⊂ mR.
Then Rsh/IRsh is a strict henselization of R/I.

https://stacks.math.columbia.edu/tag/05WQ
https://stacks.math.columbia.edu/tag/05WR
https://stacks.math.columbia.edu/tag/05WS
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Proof. This is a special case of Lemma 156.3. □

Lemma 156.5.092Y Let A→ B and A→ C be local homomorphisms of local rings. If
A→ C is integral and either κ(mC)/κ(mA) or κ(mB)/κ(mA) is purely inseparable,
then D = B ⊗A C is a local ring and B → D and C → D are local.

Proof. Any maximal ideal of D lies over the maximal ideal of B by going up for
the integral ring map B → D (Lemma 36.22). Now D/mBD = κ(mB) ⊗A C =
κ(mB)⊗κ(mA) C/mAC. The spectrum of C/mAC consists of a single point, namely
mC . Thus the spectrum of D/mBD is the same as the spectrum of κ(mB)⊗κ(mA)
κ(mC) which is a single point by our assumption that either κ(mC)/κ(mA) or
κ(mB)/κ(mA) is purely inseparable. This proves that D is local and that the ring
maps B → D and C → D are local. □

Lemma 156.6.0GIP Let A → B and A → C be ring maps. Let κ be a separably
algebraically closed field and let B ⊗A C → κ be a ring homomorphism. Denote

Bsh // (B ⊗A C)sh

Ash

OO

// Csh

OO

the corresponding maps of strict henselizations (see proof). If
(1) A→ B is quasi-finite at the prime pB = Ker(B → κ), or
(2) B is a filtered colimit of quasi-finite A-algebras, or
(3) BpB

is a filtered colimit of quasi-finite algebras over ApA
, or

(4) B is integral over A,
then Bsh ⊗Ash Csh → (B ⊗A C)sh is an isomorphism.

Proof. Write D = B ⊗A C. Denote pA = Ker(A → κ) and similarly for pB , pC ,
and pD. Denote κA ⊂ κ the separable algebraic closure of κ(pA) in κ and similarly
for κB , κC , and κD. Denote Ash the strict henselization of ApA

constructed using
the separable algebraic closure κA/κ(pA). Similarly for Bsh, Csh, and Dsh. We
obtain the commutative diagram of the lemma from the functoriality of Lemma
155.10.

Consider the map

c : Bsh ⊗Ash Csh → Dsh = (B ⊗A C)sh

we obtain from the commutative diagram. If A → B is quasi-finite at pB =
Ker(B → κ), then the ring map C → D is quasi-finite at pD by Lemma 122.6.
Hence by Lemma 156.3 (and Lemma 36.13) the ring map c is a homomorphism of
finite Csh-algebras and

Bsh = (B ⊗A Ash)q and Dsh = (D ⊗C Csh)r = (B ⊗A Csh)r
for some primes q and r. Since

Bsh ⊗Ash Csh = (B ⊗A Ash)q ⊗Ash Csh = a localization of B ⊗A Csh

we conclude that source and target of c are both localizations of B ⊗A Csh (com-
patibly with the map). Hence it suffices to show that Bsh ⊗Ash Csh is local (small
detail omitted). This follows from Lemma 156.5 and the fact that Ash → Bsh is
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finite with purely inseparable residue field extension by the already used Lemma
156.3. This proves case (1) of the lemma.
In case (2) write B = colimBi as a filtered colimit of quasi-finite A-algebras. We
correspondingly get D = colimDi with Di = Bi ⊗A C. Observe that Bsh =
colimBshi . Namely, the ring colimBshi is a strictly henselian local ring by Lemma
154.8. Also colimBshi is a filtered colimit of étale B-algebras by Lemma 154.4.
Finally, the residue field of colimBshi is a separable algebraic closure of κ(pB)
(details omitted). Hence we conclude that Bsh = colimBshi , see discussion following
Definition 155.3. Similarly, we have Dsh = colimDsh

i . Then we conclude by case
(1) because

Dsh = colimDsh
i = colimBshi ⊗Ash Csh = Bsh ⊗Ash Csh

since filtered colimit commute with tensor products.
Case (3). We may replace A, B, C by their localizations at pA, pB , and pC . Thus
(3) follows from (2).
Since an integral ring map is a filtered colimit of finite ring maps, we see that (4)
follows from (2) as well. □

157. Serre’s criterion for normality

031O We introduce the following properties of Noetherian rings.

Definition 157.1.031P Let R be a Noetherian ring. Let k ≥ 0 be an integer.
(1) We say R has property (Rk) if for every prime p of height ≤ k the local

ring Rp is regular. We also say that R is regular in codimension ≤ k.
(2) We say R has property (Sk) if for every prime p the local ring Rp has depth

at least min{k, dim(Rp)}.
(3) Let M be a finite R-module. We say M has property (Sk) if for every prime

p the module Mp has depth at least min{k, dim(Supp(Mp))}.

Any Noetherian ring has property (S0) and so does any finite module over it.
Our convention that the depth of the zero module is ∞ (see Section 72) and the
dimension of the empty set is −∞ (see Topology, Section 10) guarantees that the
zero module has property (Sk) for all k.

Lemma 157.2.031Q Let R be a Noetherian ring. Let M be a finite R-module. The
following are equivalent:

(1) M has no embedded associated prime, and
(2) M has property (S1).

Proof. Let p be an embedded associated prime of M . Then there exists an-
other associated prime q of M such that p ⊃ q. In particular this implies that
dim(Supp(Mp)) ≥ 1 (since q is in the support as well). On the other hand
pRp is associated to Mp (Lemma 63.15) and hence depth(Mp) = 0 (see Lemma
63.18). In other words (S1) does not hold. Conversely, if (S1) does not hold then
there exists a prime p such that dim(Supp(Mp)) ≥ 1 and depth(Mp) = 0. Since
depth(Mp) = 0, we see that p ∈ Ass(M) by the two Lemmas 63.15 and 63.18.
Since dim(Supp(Mp)) ≥ 1, there is a prime q ∈ Supp(M) with q ⊂ p, q ̸= p. We
can take such a q that is minimal in Supp(M). Then by Proposition 63.6 we have
q ∈ Ass(M) and hence p is an embedded associated prime. □
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Lemma 157.3.031R Let R be a Noetherian ring. The following are equivalent:
(1) R is reduced, and
(2) R has properties (R0) and (S1).

Proof. Suppose that R is reduced. Then Rp is a field for every minimal prime p
of R, according to Lemma 25.1. Hence we have (R0). Let p be a prime of height
≥ 1. Then A = Rp is a reduced local ring of dimension ≥ 1. Hence its maximal
ideal m is not an associated prime since this would mean there exists an x ∈ m with
annihilator m so x2 = 0. Hence the depth of A = Rp is at least one, by Lemma
63.9. This shows that (S1) holds.

Conversely, assume that R satisfies (R0) and (S1). If p is a minimal prime of R,
then Rp is a field by (R0), and hence is reduced. If p is not minimal, then we see
that Rp has depth ≥ 1 by (S1) and we conclude there exists an element t ∈ pRp

such that Rp → Rp[1/t] is injective. Now Rp[1/t] is contained in the product of its
localizations at prime ideals, see Lemma 23.1. This implies that Rp is a subring of
a product of localizations of R at p ⊃ q with t ̸∈ q. Since these primes have smaller
height by induction on the height we conclude that R is reduced. □

Lemma 157.4 (Serre’s criterion for normality).031S [DG67, IV,
Theorem 5.8.6]

Let R be a Noetherian ring. The
following are equivalent:

(1) R is a normal ring, and
(2) R has properties (R1) and (S2).

Proof. Proof of (1)⇒ (2). Assume R is normal, i.e., all localizations Rp at primes
are normal domains. In particular we see that R has (R0) and (S1) by Lemma 157.3.
Hence it suffices to show that a local Noetherian normal domain R of dimension d
has depth ≥ min(2, d) and is regular if d = 1. The assertion if d = 1 follows from
Lemma 119.7.

Let R be a local Noetherian normal domain with maximal ideal m and dimension
d ≥ 2. Apply Lemma 119.2 to R. It is clear that R does not fall into cases (1) or
(2) of the lemma. Let R→ R′ as in (4) of the lemma. Since R is a domain we have
R ⊂ R′. Since m is not an associated prime of R′ there exists an x ∈ m which is
a nonzerodivisor on R′. Then Rx = R′

x so R and R′ are domains with the same
fraction field. But finiteness of R ⊂ R′ implies every element of R′ is integral over
R (Lemma 36.3) and we conclude that R = R′ as R is normal. This means (4)
does not happen. Thus we get the remaining possibility (3), i.e., depth(R) ≥ 2 as
desired.

Proof of (2)⇒ (1). Assume R satisfies (R1) and (S2). By Lemma 157.3 we conclude
that R is reduced. Hence it suffices to show that if R is a reduced local Noetherian
ring of dimension d satisfying (S2) and (R1) then R is a normal domain. If d = 0,
the result is clear. If d = 1, then the result follows from Lemma 119.7.

Let R be a reduced local Noetherian ring with maximal ideal m and dimension
d ≥ 2 which satisfies (R1) and (S2). By Lemma 37.16 it suffices to show that R is
integrally closed in its total ring of fractions Q(R). Pick x ∈ Q(R) which is integral
over R. Then R′ = R[x] is a finite ring extension of R (Lemma 36.5). Because
dim(Rp) < d for every nonmaximal prime p ⊂ R we have Rp = R′

p by induction.
Hence the support of R′/R is {m}. It follows that R′/R is annihilated by a power of
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m (Lemma 62.4). By Lemma 119.2 this contradicts the assumption that the depth
of R is ≥ 2 = min(2, d) and the proof is complete. □

Lemma 157.5.0567 A regular ring is normal.

Proof. Let R be a regular ring. By Lemma 157.4 it suffices to prove that R is (R1)
and (S2). As a regular local ring is Cohen-Macaulay, see Lemma 106.3, it is clear
that R is (S2). Property (R1) is immediate. □

Lemma 157.6.031T Let R be a Noetherian normal domain with fraction field K. Then
(1) for any nonzero a ∈ R the quotient R/aR has no embedded primes, and all

its associated primes have height 1
(2)

R =
⋂

height(p)=1
Rp

(3) For any nonzero x ∈ K the quotient R/(R ∩ xR) has no embedded primes,
and all its associates primes have height 1.

Proof. By Lemma 157.4 we see that R has (S2). Hence for any nonzero element
a ∈ R we see that R/aR has (S1) (use Lemma 72.6 for example) Hence R/aR has
no embedded primes (Lemma 157.2). We conclude the associated primes of R/aR
are exactly the minimal primes p over (a), which have height 1 as a is not zero
(Lemma 60.11). This proves (1).
Thus, given b ∈ R we have b ∈ aR if and only if b ∈ aRp for every minimal prime
p over (a) (see Lemma 63.19). These primes all have height 1 as seen above so
b/a ∈ R if and only if b/a ∈ Rp for all height 1 primes. Hence (2) holds.
For (3) write x = a/b. Let p1, . . . , pr be the minimal primes over (ab). These all
have height 1 by the above. Then we see that R∩xR =

⋂
i=1,...,r(R∩xRpi

) by part
(2) of the lemma. Hence R/(R∩xR) is a submodule of

⊕
R/(R∩xRpi

). As Rpi
is

a discrete valuation ring (by property (R1) for the Noetherian normal domain R,
see Lemma 157.4) we have xRpi

= pei
i Rpi

for some ei ∈ Z. Hence the direct sum
is equal to

⊕
ei>0 R/p

(ei)
i , see Definition 64.1. By Lemma 64.2 the only associated

prime of the module R/p(n) is p. Hence the set of associate primes of R/(R ∩ xR)
is a subset of {pi} and there are no inclusion relations among them. This proves
(3). □

158. Formal smoothness of fields

031U In this section we show that field extensions are formally smooth if and only if
they are separable. However, we first prove finitely generated field extensions are
separable algebraic if and only if they are formally unramified.

Lemma 158.1.090W Let K/k be a finitely generated field extension. The following are
equivalent

(1) K is a finite separable field extension of k,
(2) ΩK/k = 0,
(3) K is formally unramified over k,
(4) K is unramified over k,
(5) K is formally étale over k,
(6) K is étale over k.
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Proof. The equivalence of (2) and (3) is Lemma 148.2. By Lemma 143.4 we see
that (1) is equivalent to (6). Property (6) implies (5) and (4) which both in turn
imply (3) (Lemmas 150.2, 151.3, and 151.2). Thus it suffices to show that (2) implies
(1). Choose a finitely generated k-subalgebra A ⊂ K such that K is the fraction
field of the domain A. Set S = A \ {0}. Since 0 = ΩK/k = S−1ΩA/k (Lemma
131.8) and since ΩA/k is finitely generated (Lemma 131.16), we can replace A by
a localization Af to reduce to the case that ΩA/k = 0 (details omitted). Then A
is unramified over k, hence K/k is finite separable for example by Lemma 151.5
applied with q = (0). □

Lemma 158.2.031W Let k be a perfect field of characteristic p > 0. Let K/k be an
extension. Let a ∈ K. Then da = 0 in ΩK/k if and only if a is a pth power.

Proof. By Lemma 131.5 we see that there exists a subfield k ⊂ L ⊂ K such that
L/k is a finitely generated field extension and such that da is zero in ΩL/k. Hence
we may assume that K is a finitely generated field extension of k.

Choose a transcendence basis x1, . . . , xr ∈ K such that K is finite separable over
k(x1, . . . , xr). This is possible by the definitions, see Definitions 45.1 and 42.1. We
remark that the result holds for the purely transcendental subfield k(x1, . . . , xr) ⊂
K. Namely,

Ωk(x1,...,xr)/k =
⊕r

i=1
k(x1, . . . , xr)dxi

and any rational function all of whose partial derivatives are zero is a pth power.
Moreover, we also have

ΩK/k =
⊕r

i=1
Kdxi

since k(x1, . . . , xr) ⊂ K is finite separable (computation omitted). Suppose a ∈ K
is an element such that da = 0 in the module of differentials. By our choice of xi we
see that the minimal polynomial P (T ) ∈ k(x1, . . . , xr)[T ] of a is separable. Write

P (T ) = T d +
∑d

i=1
aiT

d−i

and hence
0 = dP (a) =

∑d

i=1
ad−idai

in ΩK/k. By the description of ΩK/k above and the fact that P was the minimal
polynomial of a, we see that this implies dai = 0. Hence ai = bpi for each i.
Therefore by Fields, Lemma 28.2 we see that a is a pth power. □

Lemma 158.3.07DZ Let k be a field of characteristic p > 0. Let a1, . . . , an ∈ k be
elements such that da1, . . . , dan are linearly independent in Ωk/Fp

. Then the field
extension k(a1/p

1 , . . . , a
1/p
n ) has degree pn over k.

Proof. By induction on n. If n = 1 the result is Lemma 158.2. For the induction
step, suppose that k(a1/p

1 , . . . , a
1/p
n−1) has degree pn−1 over k. We have to show that

an does not map to a pth power in k(a1/p
1 , . . . , a

1/p
n−1). If it does then we can write

an =
(∑

I=(i1,...,in−1), 0≤ij≤p−1
λIa

i1/p
1 . . . a

in−1/p
n−1

)p
=
∑

I=(i1,...,in−1), 0≤ij≤p−1
λpIa

i1
1 . . . a

in−1
n−1

https://stacks.math.columbia.edu/tag/031W
https://stacks.math.columbia.edu/tag/07DZ


COMMUTATIVE ALGEBRA 426

Applying d we see that dan is linearly dependent on dai, i < n. This is a contra-
diction. □

Lemma 158.4.031X Let k be a field of characteristic p > 0. The following are equiv-
alent:

(1) the field extension K/k is separable (see Definition 42.1), and
(2) the map K ⊗k Ωk/Fp

→ ΩK/Fp
is injective.

Proof. Write K as a directed colimit K = colimiKi of finitely generated field
extensions Ki/k. By definition K is separable if and only if each Ki is separable
over k, and by Lemma 131.5 we see that K ⊗k Ωk/Fp

→ ΩK/Fp
is injective if and

only if each Ki ⊗k Ωk/Fp
→ ΩKi/Fp

is injective. Hence we may assume that K/k
is a finitely generated field extension.

Assume K/k is a finitely generated field extension which is separable. Choose
x1, . . . , xr+1 ∈ K as in Lemma 42.3. In this case there exists an irreducible polyno-
mial G(X1, . . . , Xr+1) ∈ k[X1, . . . , Xr+1] such that G(x1, . . . , xr+1) = 0 and such
that ∂G/∂Xr+1 is not identically zero. Moreover K is the field of fractions of the
domain. S = K[X1, . . . , Xr+1]/(G). Write

G =
∑

aIX
I , XI = Xi1

1 . . . X
ir+1
r+1 .

Using the presentation of S above we see that

ΩS/Fp
=

S ⊗k Ωk ⊕
⊕

i=1,...,r+1 SdXi

⟨
∑
XIdaI +

∑
∂G/∂XidXi⟩

Since ΩK/Fp
is the localization of the S-module ΩS/Fp

(see Lemma 131.8) we con-
clude that

ΩK/Fp
=
K ⊗k Ωk ⊕

⊕
i=1,...,r+1 KdXi

⟨
∑
XIdaI +

∑
∂G/∂XidXi⟩

Now, since the polynomial ∂G/∂Xr+1 is not identically zero we conclude that the
map K ⊗k Ωk/Fp

→ ΩS/Fp
is injective as desired.

Assume K/k is a finitely generated field extension and that K ⊗k Ωk/Fp
→ ΩK/Fp

is injective. (This part of the proof is the same as the argument proving Lemma
44.2.) Let x1, . . . , xr be a transcendence basis of K over k such that the degree
of inseparability of the finite extension k(x1, . . . , xr) ⊂ K is minimal. If K is
separable over k(x1, . . . , xr) then we win. Assume this is not the case to get a
contradiction. Then there exists an element α ∈ K which is not separable over
k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be its minimal polynomial. Because α
is not separable actually P is a polynomial in T p. Clear denominators to get an
irreducible polynomial

G(X1, . . . , Xr, T ) =
∑

aI,iX
IT i ∈ k[X1, . . . , Xr, T ]

such that G(x1, . . . , xr, α) = 0 in L. Note that this means k[X1, . . . , Xr, T ]/(G) ⊂
L. We may assume that for some pair (I0, i0) the coefficient aI0,i0 = 1. We claim
that dG/dXi is not identically zero for at least one i. Namely, if this is not the
case, then G is actually a polynomial in Xp

1 , . . . , X
p
r , T

p. Then this means that∑
(I,i)̸=(I0,i0)

xIαidaI,i
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is zero in ΩK/Fp
. Note that there is no k-linear relation among the elements

{xIαi | aI,i ̸= 0 and (I, i) ̸= (I0, i0)}
of K. Hence the assumption that K ⊗k Ωk/Fp

→ ΩK/Fp
is injective this implies

that daI,i = 0 in Ωk/Fp
for all (I, i). By Lemma 158.2 we see that each aI,i is a

pth power, which implies that G is a pth power contradicting the irreducibility of
G. Thus, after renumbering, we may assume that dG/dX1 is not zero. Then we
see that x1 is separably algebraic over k(x2, . . . , xr, α), and that x2, . . . , xr, α is a
transcendence basis of L over k. This means that the degree of inseparability of
the finite extension k(x2, . . . , xr, α) ⊂ L is less than the degree of inseparability of
the finite extension k(x1, . . . , xr) ⊂ L, which is a contradiction. □

Lemma 158.5.031Y Let K/k be an extension of fields. If K is formally smooth over
k, then K is a separable extension of k.

Proof. Assume K is formally smooth over k. By Lemma 138.9 we see that K ⊗k
Ωk/Z → ΩK/Z is injective. Hence K is separable over k by Lemma 158.4. □

Lemma 158.6.031Z Let K/k be an extension of fields. Then K is formally smooth
over k if and only if H1(LK/k) = 0.

Proof. This follows from Proposition 138.8 and the fact that a vector spaces is
free (hence projective). □

Lemma 158.7.0320 Let K/k be an extension of fields.
(1) If K is purely transcendental over k, then K is formally smooth over k.
(2) If K is separable algebraic over k, then K is formally smooth over k.
(3) If K is separable over k, then K is formally smooth over k.

Proof. For (1) write K = k(xj ; j ∈ J). Suppose that A is a k-algebra, and I ⊂ A
is an ideal of square zero. Let φ : K → A/I be a k-algebra map. Let aj ∈ A be an
element such that aj mod I = φ(xj). Then it is easy to see that there is a unique
k-algebra map K → A which maps xj to aj and which reduces to φ mod I. Hence
k ⊂ K is formally smooth.
In case (2) we see that k ⊂ K is a colimit of étale ring extensions. An étale ring
map is formally étale (Lemma 150.2). Hence this case follows from Lemma 150.3
and the trivial observation that a formally étale ring map is formally smooth.
In case (3), write K = colimKi as the filtered colimit of its finitely generated
sub k-extensions. By Definition 42.1 each Ki is separable algebraic over a purely
transcendental extension of k. Hence Ki/k is formally smooth by cases (1) and (2)
and Lemma 138.3. Thus H1(LKi/k) = 0 by Lemma 158.6. Hence H1(LK/k) = 0 by
Lemma 134.9. Hence K/k is formally smooth by Lemma 158.6 again. □

Lemma 158.8.0321 Let k be a field.
(1) If the characteristic of k is zero, then any extension field of k is formally

smooth over k.
(2) If the characteristic of k is p > 0, then K/k is formally smooth if and only

if it is a separable field extension.

Proof. Combine Lemmas 158.5 and 158.7. □

Here we put together all the different characterizations of separable field extensions.
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Proposition 158.9.0322 Let K/k be a field extension. If the characteristic of k is
zero then

(1) K is separable over k,
(2) K is geometrically reduced over k,
(3) K is formally smooth over k,
(4) H1(LK/k) = 0, and
(5) the map K ⊗k Ωk/Z → ΩK/Z is injective.

If the characteristic of k is p > 0, then the following are equivalent:
(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced,
(3) K is geometrically reduced over k,
(4) the map K ⊗k Ωk/Fp

→ ΩK/Fp
is injective,

(5) H1(LK/k) = 0, and
(6) K is formally smooth over k.

Proof. This is a combination of Lemmas 44.2, 158.8 158.5, and 158.4. □

Here is yet another characterization of finitely generated separable field extensions.

Lemma 158.10.037X Let K/k be a finitely generated field extension. Then K is
separable over k if and only if K is the localization of a smooth k-algebra.

Proof. Choose a finite type k-algebra R which is a domain whose fraction field is
K. Lemma 140.9 says that k → R is smooth at (0) if and only if K/k is separable.
This proves the lemma. □

Lemma 158.11.07BV Let K/k be a field extension. Then K is a filtered colimit of
global complete intersection algebras over k. If K/k is separable, then K is a filtered
colimit of smooth algebras over k.

Proof. Suppose that E ⊂ K is a finite subset. It suffices to show that there exists
a k subalgebra A ⊂ K which contains E and which is a global complete inter-
section (resp. smooth) over k. The separable/smooth case follows from Lemma
158.10. In general let L ⊂ K be the subfield generated by E. Pick a transcen-
dence basis x1, . . . , xd ∈ L over k. The extension L/k(x1, . . . , xd) is finite. Say L =
k(x1, . . . , xd)[y1, . . . , yr]. Pick inductively polynomials Pi ∈ k(x1, . . . , xd)[Y1, . . . , Yr]
such that Pi = Pi(Y1, . . . , Yi) is monic in Yi over k(x1, . . . , xd)[Y1, . . . , Yi−1] and
maps to the minimum polynomial of yi in k(x1, . . . , xd)[y1, . . . , yi−1][Yi]. Then it is
clear that P1, . . . , Pr is a regular sequence in k(x1, . . . , xr)[Y1, . . . , Yr] and that L =
k(x1, . . . , xr)[Y1, . . . , Yr]/(P1, . . . , Pr). If h ∈ k[x1, . . . , xd] is a polynomial such that
Pi ∈ k[x1, . . . , xd, 1/h, Y1, . . . , Yr], then we see that P1, . . . , Pr is a regular sequence
in k[x1, . . . , xd, 1/h, Y1, . . . , Yr] and A = k[x1, . . . , xd, 1/h, Y1, . . . , Yr]/(P1, . . . , Pr)
is a global complete intersection. After adjusting our choice of h we may assume
E ⊂ A and we win. □

159. Constructing flat ring maps

03C2 The following lemma is occasionally useful.

Lemma 159.1.03C3 Let (R,m, k) be a local ring. Let K/k be a field extension. There
exists a local ring (R′,m′, k′), a flat local ring map R → R′ such that m′ = mR′

and such that k′ is isomorphic to K as an extension of k.
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Proof. Suppose that k′ = k(α) is a monogenic extension of k. Then k′ is the
residue field of a flat local extension R ⊂ R′ as in the lemma. Namely, if α is
transcendental over k, then we let R′ be the localization of R[x] at the prime
mR[x]. If α is algebraic with minimal polynomial T d +

∑
λiT

d−i, then we let
R′ = R[T ]/(T d +

∑
λiT

d−i).
Consider the collection of triples (k′, R → R′, ϕ), where k ⊂ k′ ⊂ K is a subfield,
R→ R′ is a local ring map as in the lemma, and ϕ : R′ → k′ induces an isomorphism
R′/mR′ ∼= k′ of k-extensions. These form a “big” category C with morphisms
(k1, R1, ϕ1)→ (k2, R2, ϕ2) given by ring maps ψ : R1 → R2 such that

R1

ψ

��

ϕ1

// k1 // K

R2
ϕ2 // k2 // K

commutes. This implies that k1 ⊂ k2.
Suppose that I is a directed set, and ((Ri, ki, ϕi), ψii′) is a system over I, see
Categories, Section 21. In this case we can consider

R′ = colimi∈I Ri

This is a local ring with maximal ideal mR′, and residue field k′ =
⋃
i∈I ki. More-

over, the ring map R→ R′ is flat as it is a colimit of flat maps (and tensor products
commute with directed colimits). Hence we see that (R′, k′, ϕ′) is an “upper bound”
for the system.
An almost trivial application of Zorn’s Lemma would finish the proof if C was a set,
but it isn’t. (Actually, you can make this work by finding a reasonable bound on
the cardinals of the local rings occurring.) To get around this problem we choose a
well ordering on K. For x ∈ K we let K(x) be the subfield of K generated by all
elements of K which are≤ x. By transfinite recursion on x ∈ K we will produce ring
maps R ⊂ R(x) as in the lemma with residue field extension K(x)/k. Moreover, by
construction we will have that R(x) will contain R(y) for all y ≤ x. Namely, if x
has a predecessor x′, then K(x) = K(x′)[x] and hence we can let R(x′) ⊂ R(x) be
the local ring extension constructed in the first paragraph of the proof. If x does
not have a predecessor, then we first set R′(x) = colimx′<xR(x′) as in the third
paragraph of the proof. The residue field of R′(x) is K ′(x) =

⋃
x′<xK(x′). Since

K(x) = K ′(x)[x] we see that we can use the construction of the first paragraph of
the proof to produce R′(x) ⊂ R(x). This finishes the proof of the lemma. □

Lemma 159.2.09E0 Let (R,m, k) be a local ring. If k ⊂ K is a separable algebraic
extension, then there exists a directed set I and a system of finite étale extensions
R ⊂ Ri, i ∈ I of local rings such that R′ = colimRi has residue field K (as
extension of k).

Proof. Let R ⊂ R′ be the extension constructed in the proof of Lemma 159.1. By
construction R′ = colimα∈ARα where A is a well-ordered set and the transition
maps Rα → Rα+1 are finite étale and Rα = colimβ<αRβ if α is not a successor.
We will prove the result by transfinite induction.
Suppose the result holds for Rα, i.e., Rα = colimRi with Ri finite étale over
R. Since Rα → Rα+1 is finite étale there exists an i and a finite étale extension

https://stacks.math.columbia.edu/tag/09E0
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Ri → Ri,1 such that Rα+1 = Rα ⊗Ri
Ri,1. Thus Rα+1 = colimi′≥iRi′ ⊗Ri

Ri,1 and
the result holds for α+ 1. Suppose α is not a successor and the result holds for Rβ
for all β < α. Since every finite subset E ⊂ Rα is contained in Rβ for some β < α
and we see that E is contained in a finite étale subextension by assumption. Thus
the result holds for Rα. □

Lemma 159.3.07NE Let R be a ring. Let p ⊂ R be a prime and let L/κ(p) be a finite
extension of fields. Then there exists a finite free ring map R→ S such that q = pS
is prime and κ(q)/κ(p) is isomorphic to the given extension L/κ(p).

Proof. By induction of the degree of κ(p) ⊂ L. If the degree is 1, then we take
R = S. In general, if there exists a sub extension κ(p) ⊂ L′ ⊂ L then we win
by induction on the degree (by first constructing R ⊂ S′ corresponding to L′/κ(p)
and then construction S′ ⊂ S corresponding to L/L′). Thus we may assume that
L ⊃ κ(p) is generated by a single element α ∈ L. Let Xd +

∑
i<d aiX

i be the
minimal polynomial of α over κ(p), so ai ∈ κ(p). We may write ai as the image of
fi/g for some fi, g ∈ R and g ̸∈ p. After replacing α by gα (and correspondingly
replacing ai by gd−iai) we may assume that ai is the image of some fi ∈ R. Then
we simply take S = R[x]/(xd +

∑
fix

i). □

Lemma 159.4.0GIL Let A be a ring. Let κ = max(|A|,ℵ0). Then every flat A-algebra
B is the filtered colimit of its flat A-subalgebras B′ ⊂ B of cardinality |B′| ≤ κ.
(Observe that B′ is faithfully flat over A if B is faithfully flat over A.)

Proof. If B has cardinality ≤ κ then this is true. Let E ⊂ B be an A-subalgebra
with |E| ≤ κ. We will show that E is contained in a flat A-subalgebra B′ with
|B′| ≤ κ. The lemma follows because (a) every finite subset of B is contained in
an A-subalgebra of cardinality at most κ and (b) every pair of A-subalgebras of B
of cardinality at most κ is contained in an A-subalgebra of cardinality at most κ.
Details omitted.

We will inductively construct a sequence of A-subalgebras

E = E0 ⊂ E1 ⊂ E2 ⊂ . . .

each having cardinality ≤ κ and we will show that B′ =
⋃
Ek is flat over A to

finish the proof.

The construction is as follows. Set E0 = E. Given Ek for k ≥ 0 we consider the
set Sk of relations between elements of Ek with coefficients in A. Thus an element
s ∈ Sk is given by an integer n ≥ 1 and a1, . . . , an ∈ A, and e1, . . . , en ∈ Ek such
that

∑
aiei = 0 in Ek. The flatness of A → B implies by Lemma 39.11 that for

every s = (n, a1, . . . , an, e1, . . . , en) ∈ Sk we may choose

(ms, bs,1, . . . , bs,ms
, as,11, . . . , as,nms

)

where ms ≥ 0 is an integer, bs,j ∈ B, as,ij ∈ A, and

ei =
∑

j
as,ijbs,j ,∀i, and 0 =

∑
i
aias,ij ,∀j.

Given these choicse, we let Ek+1 ⊂ B be the A-subalgebra generated by
(1) Ek and
(2) the elements bs,1, . . . , bs,ms

for every s ∈ Sk.

https://stacks.math.columbia.edu/tag/07NE
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Some set theory (omitted) shows that Ek+1 has at most cardinality κ (this uses
that we inductively know |Ek| ≤ κ and consequently the cardinality of Sk is also
at most κ).

To show that B′ =
⋃
Ek is flat over A we consider a relation

∑
i=1,...,n aib

′
i = 0 in

B′ with coefficients in A. Choose k large enough so that b′
i ∈ Ek for i = 1, . . . , n.

Then (n, a1, . . . , an, b
′
1, . . . , b

′
n) ∈ Sk and hence we see that the relation is trivial in

Ek+1 and a fortiori in B′. Thus A→ B′ is flat by Lemma 39.11. □

160. The Cohen structure theorem

0323 Here is a fundamental notion in commutative algebra.

Definition 160.1.0324 Let (R,m) be a local ring. We say R is a complete local ring
if the canonical map

R −→ limnR/m
n

to the completion of R with respect to m is an isomorphism13.

Note that an Artinian local ring R is a complete local ring because mnR = 0 for
some n > 0. In this section we mostly focus on Noetherian complete local rings.

Lemma 160.2.0325 Let R be a Noetherian complete local ring. Any quotient of R is
also a Noetherian complete local ring. Given a finite ring map R→ S, then S is a
product of Noetherian complete local rings.

Proof. The ring S is Noetherian by Lemma 31.1. As an R-module S is complete
by Lemma 97.1. Hence S is the product of the completions at its maximal ideals
by Lemma 97.8. □

Lemma 160.3.032B Let (R,m) be a complete local ring. If m is a finitely generated
ideal then R is Noetherian.

Proof. See Lemma 97.5. □

Definition 160.4.0326 Let (R,m) be a complete local ring. A subring Λ ⊂ R is called
a coefficient ring if the following conditions hold:

(1) Λ is a complete local ring with maximal ideal Λ ∩m,
(2) the residue field of Λ maps isomorphically to the residue field of R, and
(3) Λ ∩m = pΛ, where p is the characteristic of the residue field of R.

Let us make some remarks on this definition. We split the discussion into the
following cases:

(1) The local ring R contains a field. This happens if either Q ⊂ R, or pR = 0
where p is the characteristic of R/m. In this case a coefficient ring Λ is a
field contained in R which maps isomorphically to R/m.

(2) The characteristic of R/m is p > 0 but no power of p is zero in R. In this
case Λ is a complete discrete valuation ring with uniformizer p and residue
field R/m.

13This includes the condition that
⋂

mn = (0); in some texts this may be indicated by saying
that R is complete and separated. Warning: It can happen that the completion limn R/mn of a
local ring is non-complete, see Examples, Lemma 7.1. This does not happen when m is finitely
generated, see Lemma 96.3 in which case the completion is Noetherian, see Lemma 97.5.

https://stacks.math.columbia.edu/tag/0324
https://stacks.math.columbia.edu/tag/0325
https://stacks.math.columbia.edu/tag/032B
https://stacks.math.columbia.edu/tag/0326


COMMUTATIVE ALGEBRA 432

(3) The characteristic of R/m is p > 0, and for some n > 1 we have pn−1 ̸= 0,
pn = 0 in R. In this case Λ is an Artinian local ring whose maximal ideal
is generated by p and which has residue field R/m.

The complete discrete valuation rings with uniformizer p above play a special role
and we baptize them as follows.

Definition 160.5.0327 A Cohen ring is a complete discrete valuation ring with uni-
formizer p a prime number.

Lemma 160.6.0328 Let p be a prime number. Let k be a field of characteristic p.
There exists a Cohen ring Λ with Λ/pΛ ∼= k.

Proof. First note that the p-adic integers Zp form a Cohen ring for Fp. Let k be
an arbitrary field of characteristic p. Let Zp → R be a flat local ring map such
that mR = pR and R/pR = k, see Lemma 159.1. By Lemma 97.5 the completion
Λ = R∧ is Noetherian. It is a complete Noetherian local ring with maximal ideal
(p) as Λ/pΛ = R/pR is a field (use Lemma 96.3). Since Zp → R → Λ is flat (by
Lemma 97.2) we see that p is a nonzerodivisor in Λ. Hence Λ has dimension ≥ 1
(Lemma 60.13) and we conclude that Λ is regular of dimension 1, i.e., a discrete
valuation ring by Lemma 119.7. We conclude Λ is a Cohen ring for k. □

Lemma 160.7.0329 Let p > 0 be a prime. Let Λ be a Cohen ring with residue field of
characteristic p. For every n ≥ 1 the ring map

Z/pnZ→ Λ/pnΛ
is formally smooth.

Proof. If n = 1, this follows from Proposition 158.9. For general n we argue
by induction on n. Namely, if Z/pnZ → Λ/pnΛ is formally smooth, then we
can apply Lemma 138.12 to the ring map Z/pn+1Z → Λ/pn+1Λ and the ideal
I = (pn) ⊂ Z/pn+1Z. □

Theorem 160.8 (Cohen structure theorem).032A Let (R,m) be a complete local ring.
(1) R has a coefficient ring (see Definition 160.4),
(2) if m is a finitely generated ideal, then R is isomorphic to a quotient

Λ[[x1, . . . , xn]]/I
where Λ is either a field or a Cohen ring.

Proof. Let us prove a coefficient ring exists. First we prove this in case the charac-
teristic of the residue field κ is zero. Namely, in this case we will prove by induction
on n > 0 that there exists a section

φn : κ −→ R/mn

to the canonical map R/mn → κ = R/m. This is trivial for n = 1. If n > 1, let
φn−1 be given. The field extension κ/Q is formally smooth by Proposition 158.9.
Hence we can find the dotted arrow in the following diagram

R/mn−1 R/mnoo

κ

φn−1

OO 99

Qoo

OO
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This proves the induction step. Putting these maps together

limn φn : κ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

Next, we prove the existence of a coefficient ring in the case where the characteristic
of the residue field κ is p > 0. Namely, choose a Cohen ring Λ with κ = Λ/pΛ, see
Lemma 160.6. In this case we will prove by induction on n > 0 that there exists a
map

φn : Λ/pnΛ −→ R/mn

whose composition with the reduction map R/mn → κ produces the given isomor-
phism Λ/pΛ = κ. This is trivial for n = 1. If n > 1, let φn−1 be given. The ring
map Z/pnZ→ Λ/pnΛ is formally smooth by Lemma 160.7. Hence we can find the
dotted arrow in the following diagram

R/mn−1 R/mnoo

Λ/pnΛ

φn−1

OO 99

Z/pnZoo

OO

This proves the induction step. Putting these maps together

limn φn : Λ = limn Λ/pnΛ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

The final statement of the theorem follows readily. Namely, if y1, . . . , yn are gen-
erators of the ideal m, then we can use the map Λ → R just constructed to get a
map

Λ[[x1, . . . , xn]] −→ R, xi 7−→ yi.

Since both sides are (x1, . . . , xn)-adically complete this map is surjective by Lemma
96.1 as it is surjective modulo (x1, . . . , xn) by construction. □

Remark 160.9.032C If k is a field then the power series ring k[[X1, . . . , Xd]] is a
Noetherian complete local regular ring of dimension d. If Λ is a Cohen ring then
Λ[[X1, . . . , Xd]] is a complete local Noetherian regular ring of dimension d + 1.
Hence the Cohen structure theorem implies that any Noetherian complete local
ring is a quotient of a regular local ring. In particular we see that a Noetherian
complete local ring is universally catenary, see Lemma 105.9 and Lemma 106.3.

Lemma 160.10.0C0S Let (R,m) be a Noetherian complete local ring. Assume R is
regular.

(1) If R contains either Fp or Q, then R is isomorphic to a power series ring
over its residue field.

(2) If k is a field and k → R is a ring map inducing an isomorphism k → R/m,
then R is isomorphic as a k-algebra to a power series ring over k.

Proof. In case (1), by the Cohen structure theorem (Theorem 160.8) there exists
a coefficient ring which must be a field mapping isomorphically to the residue field.
Thus it suffices to prove (2). In case (2) we pick f1, . . . , fd ∈ m which map to a
basis of m/m2 and we consider the continuous k-algebra map k[[x1, . . . , xd]] → R
sending xi to fi. As both source and target are (x1, . . . , xd)-adically complete, this
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map is surjective by Lemma 96.1. On the other hand, it has to be injective because
otherwise the dimension of R would be < d by Lemma 60.13. □

Lemma 160.11.032D Let (R,m) be a Noetherian complete local domain. Then there
exists a R0 ⊂ R with the following properties

(1) R0 is a regular complete local ring,
(2) R0 ⊂ R is finite and induces an isomorphism on residue fields,
(3) R0 is either isomorphic to k[[X1, . . . , Xd]] where k is a field or Λ[[X1, . . . , Xd]]

where Λ is a Cohen ring.

Proof. Let Λ be a coefficient ring of R. Since R is a domain we see that either Λ
is a field or Λ is a Cohen ring.
Case I: Λ = k is a field. Let d = dim(R). Choose x1, . . . , xd ∈ m which generate
an ideal of definition I ⊂ R. (See Section 60.) By Lemma 96.9 we see that R is I-
adically complete as well. Consider the map R0 = k[[X1, . . . , Xd]]→ R which maps
Xi to xi. Note that R0 is complete with respect to the ideal I0 = (X1, . . . , Xd),
and that R/I0R ∼= R/IR is finite over k = R0/I0 (because dim(R/I) = 0, see
Section 60.) Hence we conclude that R0 → R is finite by Lemma 96.12. Since
dim(R) = dim(R0) this implies that R0 → R is injective (see Lemma 112.3), and
the lemma is proved.
Case II: Λ is a Cohen ring. Let d + 1 = dim(R). Let p > 0 be the characteristic
of the residue field k. As R is a domain we see that p is a nonzerodivisor in R.
Hence dim(R/pR) = d, see Lemma 60.13. Choose x1, . . . , xd ∈ R which generate
an ideal of definition in R/pR. Then I = (p, x1, . . . , xd) is an ideal of definition
of R. By Lemma 96.9 we see that R is I-adically complete as well. Consider the
map R0 = Λ[[X1, . . . , Xd]] → R which maps Xi to xi. Note that R0 is complete
with respect to the ideal I0 = (p,X1, . . . , Xd), and that R/I0R ∼= R/IR is finite
over k = R0/I0 (because dim(R/I) = 0, see Section 60.) Hence we conclude that
R0 → R is finite by Lemma 96.12. Since dim(R) = dim(R0) this implies that
R0 → R is injective (see Lemma 112.3), and the lemma is proved. □

161. Japanese rings

0BI1 In this section we begin to discuss finiteness of integral closure.

Definition 161.1.032F [DG67, Chapter 0,
Definition 23.1.1]

Let R be a domain with field of fractions K.
(1) We say R is N-1 if the integral closure of R in K is a finite R-module.
(2) We say R is N-2 or Japanese if for any finite extension L/K of fields the

integral closure of R in L is finite over R.

The main interest in these notions is for Noetherian rings, but here is a non-
Noetherian example.

Example 161.2.0350 Let k be a field. The domain R = k[x1, x2, x3, . . .] is N-2, but
not Noetherian. The reason is the following. Suppose that R ⊂ L and the field L is
a finite extension of the fraction field of R. Then there exists an integer n such that
L comes from a finite extension L0/k(x1, . . . , xn) by adjoining the (transcendental)
elements xn+1, xn+2, etc. Let S0 be the integral closure of k[x1, . . . , xn] in L0. By
Proposition 162.16 below it is true that S0 is finite over k[x1, . . . , xn]. Moreover,
the integral closure of R in L is S = S0[xn+1, xn+2, . . .] (use Lemma 37.8) and hence
finite over R. The same argument works for R = Z[x1, x2, x3, . . .].
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Lemma 161.3.032G Let R be a domain. If R is N-1 then so is any localization of R.
Same for N-2.

Proof. These statements hold because taking integral closure commutes with lo-
calization, see Lemma 36.11. □

Lemma 161.4.032H Let R be a domain. Let f1, . . . , fn ∈ R generate the unit ideal. If
each domain Rfi

is N-1 then so is R. Same for N-2.

Proof. Assume Rfi
is N-2 (or N-1). Let L be a finite extension of the fraction field

of R (equal to the fraction field in the N-1 case). Let S be the integral closure of
R in L. By Lemma 36.11 we see that Sfi is the integral closure of Rfi in L. Hence
Sfi is finite over Rfi by assumption. Thus S is finite over R by Lemma 23.2. □

Lemma 161.5.032I Let R be a domain. Let R ⊂ S be a quasi-finite extension of
domains (for example finite). Assume R is N-2 and Noetherian. Then S is N-2.

Proof. Let L/K be the induced extension of fraction fields. Note that this is a
finite field extension (for example by Lemma 122.2 (2) applied to the fibre S⊗RK,
and the definition of a quasi-finite ring map). Let S′ be the integral closure of R in
S. Then S′ is contained in the integral closure of R in L which is finite over R by
assumption. As R is Noetherian this implies S′ is finite over R. By Lemma 123.14
there exist elements g1, . . . , gn ∈ S′ such that S′

gi

∼= Sgi
and such that g1, . . . , gn

generate the unit ideal in S. Hence it suffices to show that S′ is N-2 by Lemmas
161.3 and 161.4. Thus we have reduced to the case where S is finite over R.

Assume R ⊂ S with hypotheses as in the lemma and moreover that S is finite over
R. Let M be a finite field extension of the fraction field of S. Then M is also a
finite field extension of K and we conclude that the integral closure T of R in M
is finite over R. By Lemma 36.16 we see that T is also the integral closure of S in
M and we win by Lemma 36.15. □

Lemma 161.6.032J Let R be a Noetherian domain. If R[z, z−1] is N-1, then so is R.

Proof. Let R′ be the integral closure of R in its field of fractions K. Let S′ be the
integral closure of R[z, z−1] in its field of fractions. Clearly R′ ⊂ S′. Since K[z, z−1]
is a normal domain we see that S′ ⊂ K[z, z−1]. Suppose that f1, . . . , fn ∈ S′

generate S′ as R[z, z−1]-module. Say fi =
∑
aijz

j (finite sum), with aij ∈ K. For
any x ∈ R′ we can write

x =
∑

hifi

with hi ∈ R[z, z−1]. Thus we see that R′ is contained in the finite R-submodule∑
Raij ⊂ K. Since R is Noetherian we conclude that R′ is a finite R-module. □

Lemma 161.7.032K Let R be a Noetherian domain, and let R ⊂ S be a finite extension
of domains. If S is N-1, then so is R. If S is N-2, then so is R.

Proof. Omitted. (Hint: Integral closures of R in extension fields are contained in
integral closures of S in extension fields.) □

Lemma 161.8.032L Let R be a Noetherian normal domain with fraction field K. Let
L/K be a finite separable field extension. Then the integral closure of R in L is
finite over R.
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Proof. Consider the trace pairing (Fields, Definition 20.6)
L× L −→ K, (x, y) 7−→ ⟨x, y⟩ := TraceL/K(xy).

Since L/K is separable this is nondegenerate (Fields, Lemma 20.7). Moreover,
if x ∈ L is integral over R, then TraceL/K(x) is in R. This is true because the
minimal polynomial of x over K has coefficients in R (Lemma 38.6) and because
TraceL/K(x) is an integer multiple of one of these coefficients (Fields, Lemma 20.3).
Pick x1, . . . , xn ∈ L which are integral over R and which form a K-basis of L. Then
the integral closure S ⊂ L is contained in the R-module

M = {y ∈ L | ⟨xi, y⟩ ∈ R, i = 1, . . . , n}
By linear algebra we see that M ∼= R⊕n as an R-module. Hence S ⊂ R⊕n is a
finitely generated R-module as R is Noetherian. □

Example 161.9.03B7 Lemma 161.8 does not work if the ring is not Noetherian. For
example consider the action of G = {+1,−1} on A = C[x1, x2, x3, . . .] where −1
acts by mapping xi to −xi. The invariant ring R = AG is the C-algebra generated
by all xixj . Hence R ⊂ A is not finite. But R is a normal domain with fraction
field K = LG the G-invariants in the fraction field L of A. And clearly A is the
integral closure of R in L.

The following lemma can sometimes be used as a substitute for Lemma 161.8 in
case of purely inseparable extensions.

Lemma 161.10.0AE0 Let R be a Noetherian normal domain with fraction field K of
characteristic p > 0. Let a ∈ K be an element such that there exists a derivation
D : R→ R with D(a) ̸= 0. Then the integral closure of R in L = K[x]/(xp − a) is
finite over R.

Proof. After replacing x by fx and a by fpa for some f ∈ R we may assume
a ∈ R. Hence also D(a) ∈ R. We will show by induction on i ≤ p− 1 that if

y = a0 + a1x+ . . .+ aix
i, aj ∈ K

is integral over R, then D(a)iaj ∈ R. Thus the integral closure is contained in the
finite R-module with basis D(a)−p+1xj , j = 0, . . . , p − 1. Since R is Noetherian
this proves the lemma.
If i = 0, then y = a0 is integral over R if and only if a0 ∈ R and the statement is
true. Suppose the statement holds for some i < p− 1 and suppose that

y = a0 + a1x+ . . .+ ai+1x
i+1, aj ∈ K

is integral over R. Then
yp = ap0 + ap1a+ . . .+ api+1a

i+1

is an element of R (as it is in K and integral over R). Applying D we obtain

(ap1 + 2ap2a+ . . .+ (i+ 1)api+1a
i)D(a)

is in R. Hence it follows that
D(a)a1 + 2D(a)a2x+ . . .+ (i+ 1)D(a)ai+1x

i

is integral over R. By induction we find D(a)i+1aj ∈ R for j = 1, . . . , i+ 1. (Here
we use that 1, . . . , i + 1 are invertible.) Hence D(a)i+1a0 is also in R because it
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is the difference of y and
∑
j>0 D(a)i+1ajx

j which are integral over R (since x is
integral over R as a ∈ R). □

Lemma 161.11.032M A Noetherian domain whose fraction field has characteristic zero
is N-1 if and only if it is N-2 (i.e., Japanese).

Proof. This is clear from Lemma 161.8 since every field extension in characteristic
zero is separable. □

Lemma 161.12.032N Let R be a Noetherian domain with fraction field K of char-
acteristic p > 0. Then R is N-2 if and only if for every finite purely inseparable
extension L/K the integral closure of R in L is finite over R.

Proof. Assume the integral closure of R in every finite purely inseparable field
extension of K is finite. Let L/K be any finite extension. We have to show the
integral closure of R in L is finite over R. Choose a finite normal field extension
M/K containing L. As R is Noetherian it suffices to show that the integral closure
of R in M is finite over R. By Fields, Lemma 27.3 there exists a subextension
M/Minsep/K such thatMinsep/K is purely inseparable, andM/Minsep is separable.
By assumption the integral closure R′ of R in Minsep is finite over R. By Lemma
161.8 the integral closure R′′ of R′ in M is finite over R′. Then R′′ is finite over R
by Lemma 7.3. Since R′′ is also the integral closure of R in M (see Lemma 36.16)
we win. □

Lemma 161.13.032O Let R be a Noetherian domain. If R is N-1 then R[x] is N-1. If
R is N-2 then R[x] is N-2.

Proof. Assume R is N-1. Let R′ be the integral closure of R which is finite over
R. Hence also R′[x] is finite over R[x]. The ring R′[x] is normal (see Lemma 37.8),
hence N-1. This proves the first assertion.
For the second assertion, by Lemma 161.7 it suffices to show that R′[x] is N-2. In
other words we may and do assume that R is a normal N-2 domain. In characteristic
zero we are done by Lemma 161.11. In characteristic p > 0 we have to show that
the integral closure of R[x] is finite in any finite purely inseparable extension of
L/K(x) where K is the fraction field of R. There exists a finite purely inseparable
field extension L′/K and q = pe such that L ⊂ L′(x1/q); some details omitted. As
R[x] is Noetherian it suffices to show that the integral closure of R[x] in L′(x1/q)
is finite over R[x]. And this integral closure is equal to R′[x1/q] with R ⊂ R′ ⊂ L′

the integral closure of R in L′. Since R is N-2 we see that R′ is finite over R and
hence R′[x1/q] is finite over R[x]. □

Lemma 161.14.0332 Let R be a Noetherian domain. If there exists an f ∈ R such
that Rf is normal then

U = {p ∈ Spec(R) | Rp is normal}
is open in Spec(R).

Proof. It is clear that the standard open D(f) is contained in U . By Serre’s
criterion Lemma 157.4 we see that p ̸∈ U implies that for some q ⊂ p we have
either

(1) Case I: depth(Rq) < 2 and dim(Rq) ≥ 2, and
(2) Case II: Rq is not regular and dim(Rq) = 1.
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This in particular also means that Rq is not normal, and hence f ∈ q. In case I we
see that depth(Rq) = depth(Rq/fRq) + 1. Hence such a prime q is the same thing
as an embedded associated prime of R/fR. In case II q is an associated prime of
R/fR of height 1. Thus there is a finite set E of such primes q (see Lemma 63.5)
and

Spec(R) \ U =
⋃

q∈E
V (q)

as desired. □

Lemma 161.15.0333 Let R be a Noetherian domain. Then R is N-1 if and only if the
following two conditions hold

(1) there exists a nonzero f ∈ R such that Rf is normal, and
(2) for every maximal ideal m ⊂ R the local ring Rm is N-1.

Proof. First assume R is N-1. Let R′ be the integral closure of R in its field of
fractions K. By assumption we can find x1, . . . , xn in R′ which generate R′ as an
R-module. Since R′ ⊂ K we can find fi ∈ R nonzero such that fixi ∈ R. Then
Rf ∼= R′

f where f = f1 . . . fn. Hence Rf is normal and we have (1). Part (2) follows
from Lemma 161.3.

Assume (1) and (2). Let K be the fraction field of R. Suppose that R ⊂ R′ ⊂ K
is a finite extension of R contained in K. Note that Rf = R′

f since Rf is already
normal. Hence by Lemma 161.14 the set of primes p′ ∈ Spec(R′) with R′

p′ non-
normal is closed in Spec(R′). Since Spec(R′)→ Spec(R) is closed the image of this
set is closed in Spec(R). For such a ring R′ denote ZR′ ⊂ Spec(R) this image.

Pick a maximal ideal m ⊂ R. Let Rm ⊂ R′
m be the integral closure of the local ring

in K. By assumption this is a finite ring extension. By Lemma 36.11 we can find
finitely many elements x1, . . . , xn ∈ K integral over R such that R′

m is generated
by x1, . . . , xn over Rm. Let R′ = R[x1, . . . , xn] ⊂ K. With this choice it is clear
that m ̸∈ ZR′ .

As Spec(R) is quasi-compact, the above shows that we can find a finite collection
R ⊂ R′

i ⊂ K such that
⋂
ZR′

i
= ∅. Let R′ be the subring of K generated by all of

these. It is finite over R. Also ZR′ = ∅. Namely, every prime p′ lies over a prime
p′
i such that (R′

i)p′
i

is normal. This implies that R′
p′ = (R′

i)p′
i

is normal too. Hence
R′ is normal, in other words R′ is the integral closure of R in K. □

Lemma 161.16 (Tate).032P [DG67, Theorem
23.1.3]

Let R be a ring. Let x ∈ R. Assume
(1) R is a normal Noetherian domain,
(2) R/xR is a domain and N-2,
(3) R ∼= limnR/x

nR is complete with respect to x.
Then R is N-2.

Proof. We may assume x ̸= 0 since otherwise the lemma is trivial. Let K be the
fraction field of R. If the characteristic of K is zero the lemma follows from (1),
see Lemma 161.11. Hence we may assume that the characteristic of K is p > 0,
and we may apply Lemma 161.12. Thus given L/K a finite purely inseparable field
extension we have to show that the integral closure S of R in L is finite over R.

Let q be a power of p such that Lq ⊂ K. By enlarging L if necessary we may
assume there exists an element y ∈ L such that yq = x. Since R → S induces a
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homeomorphism of spectra (see Lemma 46.7) there is a unique prime ideal q ⊂ S
lying over the prime ideal p = xR. It is clear that

q = {f ∈ S | fq ∈ p} = yS

since yq = x. Observe that Rp is a discrete valuation ring by Lemma 119.7. Then
Sq is Noetherian by Krull-Akizuki (Lemma 119.12). Whereupon we conclude Sq

is a discrete valuation ring by Lemma 119.7 once again. By Lemma 119.10 we see
that κ(q)/κ(p) is a finite field extension. Hence the integral closure S′ ⊂ κ(q) of
R/xR is finite over R/xR by assumption (2). Since S/yS ⊂ S′ this implies that
S/yS is finite over R. Note that S/ynS has a finite filtration whose subquotients
are the modules yiS/yi+1S ∼= S/yS. Hence we see that each S/ynS is finite over
R. In particular S/xS is finite over R. Also, it is clear that

⋂
xnS = (0) since

an element in the intersection has qth power contained in
⋂
xnR = (0) (Lemma

51.4). Thus we may apply Lemma 96.12 to conclude that S is finite over R, and
we win. □

Lemma 161.17.032Q Let R be a ring. If R is Noetherian, a domain, and N-2, then
so is R[[x]].

Proof. Observe that R[[x]] is Noetherian by Lemma 31.2. Let R′ ⊃ R be the
integral closure of R in its fraction field. Because R is N-2 this is finite over R.
Hence R′[[x]] is finite over R[[x]]. By Lemma 37.9 we see that R′[[x]] is a normal
domain. Apply Lemma 161.16 to the element x ∈ R′[[x]] to see that R′[[x]] is N-2.
Then Lemma 161.7 shows that R[[x]] is N-2. □

162. Nagata rings

032E Here is the definition.

Definition 162.1.032R Let R be a ring.
(1) We say R is universally Japanese if for any finite type ring map R → S

with S a domain we have that S is N-2 (i.e., Japanese).
(2) We say that R is a Nagata ring if R is Noetherian and for every prime ideal

p the ring R/p is N-2.

It is clear that a Noetherian universally Japanese ring is a Nagata ring. It is our
goal to show that a Nagata ring is universally Japanese. This is not obvious at all,
and requires some work. But first, here is a useful lemma.

Lemma 162.2.03GH Let R be a Nagata ring. Let R → S be essentially of finite type
with S reduced. Then the integral closure of R in S is finite over R.

Proof. As S is essentially of finite type over R it is Noetherian and has finitely
many minimal primes q1, . . . , qm, see Lemma 31.6. Since S is reduced we have
S ⊂

∏
Sqi

and each Sqi
= Ki is a field, see Lemmas 25.4 and 25.1. It suffices

to show that the integral closure A′
i of R in each Ki is finite over R. This is true

because R is Noetherian and A ⊂
∏
A′
i. Let pi ⊂ R be the prime of R corresponding

to qi. As S is essentially of finite type over R we see that Ki = Sqi = κ(qi) is a
finitely generated field extension of κ(pi). Hence the algebraic closure Li of κ(pi)
in Ki is finite over κ(pi), see Fields, Lemma 26.11. It is clear that A′

i is the integral
closure of R/pi in Li, and hence we win by definition of a Nagata ring. □
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Lemma 162.3.0351 Let R be a ring. To check that R is universally Japanese it suffices
to show: If R→ S is of finite type, and S a domain then S is N-1.

Proof. Namely, assume the condition of the lemma. Let R → S be a finite type
ring map with S a domain. Let L be a finite extension of the fraction field of S.
Then there exists a finite ring extension S ⊂ S′ ⊂ L such that L is the fraction
field of S′. By assumption S′ is N-1, and hence the integral closure S′′ of S′ in L is
finite over S′. Thus S′′ is finite over S (Lemma 7.3) and S′′ is the integral closure
of S in L (Lemma 36.16). We conclude that R is universally Japanese. □

Lemma 162.4.032S If R is universally Japanese then any algebra essentially of finite
type over R is universally Japanese.

Proof. The case of an algebra of finite type over R is immediate from the definition.
The general case follows on applying Lemma 161.3. □

Lemma 162.5.032T Let R be a Nagata ring. If R→ S is a quasi-finite ring map (for
example finite) then S is a Nagata ring also.

Proof. First note that S is Noetherian as R is Noetherian and a quasi-finite ring
map is of finite type. Let q ⊂ S be a prime ideal, and set p = R ∩ q. Then
R/p ⊂ S/q is quasi-finite and hence we conclude that S/q is N-2 by Lemma 161.5
as desired. □

Lemma 162.6.032U A localization of a Nagata ring is a Nagata ring.

Proof. Clear from Lemma 161.3. □

Lemma 162.7.032V Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal.
(1) If each Rfi

is universally Japanese then so is R.
(2) If each Rfi

is Nagata then so is R.

Proof. Let φ : R → S be a finite type ring map so that S is a domain. Then
φ(f1), . . . , φ(fn) generate the unit ideal in S. Hence if each Sfi

= Sφ(fi) is N-1
then so is S, see Lemma 161.4. This proves (1).
If each Rfi

is Nagata, then each Rfi
is Noetherian and hence R is Noetherian, see

Lemma 23.2. And if p ⊂ R is a prime, then we see each Rfi
/pRfi

= (R/p)fi
is N-2

and hence we conclude R/p is N-2 by Lemma 161.4. This proves (2). □

Lemma 162.8.032W A Noetherian complete local ring is a Nagata ring.

Proof. Let R be a complete local Noetherian ring. Let p ⊂ R be a prime. Then
R/p is also a complete local Noetherian ring, see Lemma 160.2. Hence it suffices
to show that a Noetherian complete local domain R is N-2. By Lemmas 161.5
and 160.11 we reduce to the case R = k[[X1, . . . , Xd]] where k is a field or R =
Λ[[X1, . . . , Xd]] where Λ is a Cohen ring.
In the case k[[X1, . . . , Xd]] we reduce to the statement that a field is N-2 by Lemma
161.17. This is clear. In the case Λ[[X1, . . . , Xd]] we reduce to the statement that a
Cohen ring Λ is N-2. Applying Lemma 161.16 once more with x = p ∈ Λ we reduce
yet again to the case of a field. Thus we win. □

Definition 162.9.032X Let (R,m) be a Noetherian local ring. We say R is analytically
unramified if its completion R∧ = limnR/m

n is reduced. A prime ideal p ⊂ R is
said to be analytically unramified if R/p is analytically unramified.
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At this point we know the following are true for any Noetherian local ring R: The
map R → R∧ is a faithfully flat local ring homomorphism (Lemma 97.3). The
completion R∧ is Noetherian (Lemma 97.5) and complete (Lemma 97.4). Hence
the completion R∧ is a Nagata ring (Lemma 162.8). Moreover, we have seen in
Section 160 that R∧ is a quotient of a regular local ring (Theorem 160.8), and
hence universally catenary (Remark 160.9).

Lemma 162.10.032Y Let (R,m) be a Noetherian local ring.
(1) If R is analytically unramified, then R is reduced.
(2) If R is analytically unramified, then each minimal prime of R is analytically

unramified.
(3) If R is reduced with minimal primes q1, . . . , qt, and each qi is analytically

unramified, then R is analytically unramified.
(4) If R is analytically unramified, then the integral closure of R in its total

ring of fractions Q(R) is finite over R.
(5) If R is a domain and analytically unramified, then R is N-1.

Proof. In this proof we will use the remarks immediately following Definition 162.9.
As R → R∧ is a faithfully flat local ring homomorphism it is injective and (1)
follows.
Let q be a minimal prime of R, and assume R is analytically unramified. Then q
is an associated prime of R (see Proposition 63.6). Hence there exists an f ∈ R
such that {x ∈ R | fx = 0} = q. Note that (R/q)∧ = R∧/q∧, and that {x ∈ R∧ |
fx = 0} = q∧, because completion is exact (Lemma 97.2). If x ∈ R∧ is such that
x2 ∈ q∧, then fx2 = 0 hence (fx)2 = 0 hence fx = 0 hence x ∈ q∧. Thus q is
analytically unramified and (2) holds.
Assume R is reduced with minimal primes q1, . . . , qt, and each qi is analytically
unramified. Then R → R/q1 × . . . × R/qt is injective. Since completion is exact
(see Lemma 97.2) we see that R∧ ⊂ (R/q1)∧ × . . .× (R/qt)∧. Hence (3) is clear.
Assume R is analytically unramified. Let p1, . . . , ps be the minimal primes of R∧.
Then we see that

Q(R∧) = R∧
p1
× . . .×R∧

ps

with each R∧
pi

a field as R∧ is reduced (see Lemma 25.4). Hence the integral closure
S of R∧ in Q(R∧) is equal to S = S1× . . .×Ss with Si the integral closure of R∧/pi
in its fraction field. In particular S is finite over R∧. Denote R′ the integral closure
of R in Q(R). As R → R∧ is flat we see that R′ ⊗R R∧ ⊂ Q(R)⊗R R∧ ⊂ Q(R∧).
Moreover R′ ⊗R R∧ is integral over R∧ (Lemma 36.13). Hence R′ ⊗R R∧ ⊂ S is
a R∧-submodule. As R∧ is Noetherian it is a finite R∧-module. Thus we may
find f1, . . . , fn ∈ R′ such that R′ ⊗R R∧ is generated by the elements fi ⊗ 1 as a
R∧-module. By faithful flatness we see that R′ is generated by f1, . . . , fn as an
R-module. This proves (4).
Part (5) is a special case of part (4). □

Lemma 162.11.032Z Let R be a Noetherian local ring. Let p ⊂ R be a prime. Assume
(1) Rp is a discrete valuation ring, and
(2) p is analytically unramified.

Then for any associated prime q of R∧/pR∧ the local ring (R∧)q is a discrete
valuation ring.
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Proof. Assumption (2) says that R∧/pR∧ is a reduced ring. Hence an associated
prime q ⊂ R∧ of R∧/pR∧ is the same thing as a minimal prime over pR∧. In
particular we see that the maximal ideal of (R∧)q is p(R∧)q. Choose x ∈ R such
that xRp = pRp. By the above we see that x ∈ (R∧)q generates the maximal ideal.
As R→ R∧ is faithfully flat we see that x is a nonzerodivisor in (R∧)q. Hence we
win. □

Lemma 162.12.0330 Let (R,m) be a Noetherian local domain. Let x ∈ m. Assume
(1) x ̸= 0,
(2) R/xR has no embedded primes, and
(3) for each associated prime p ⊂ R of R/xR we have

(a) the local ring Rp is regular, and
(b) p is analytically unramified.

Then R is analytically unramified.

Proof. Let p1, . . . , pt be the associated primes of the R-module R/xR. Since R/xR
has no embedded primes we see that each pi has height 1, and is a minimal prime
over (x). For each i, let qi1, . . . , qisi

be the associated primes of the R∧-module
R∧/piR

∧. By Lemma 162.11 we see that (R∧)qij
is regular. By Lemma 65.3 we

see that
AssR∧(R∧/xR∧) =

⋃
p∈AssR(R/xR)

AssR∧(R∧/pR∧) = {qij}.

Let y ∈ R∧ with y2 = 0. As (R∧)qij
is regular, and hence a domain (Lemma 106.2)

we see that y maps to zero in (R∧)qij
. Hence y maps to zero in R∧/xR∧ by Lemma

63.19. Hence y = xy′. Since x is a nonzerodivisor (as R → R∧ is flat) we see that
(y′)2 = 0. Hence we conclude that y ∈

⋂
xnR∧ = (0) (Lemma 51.4). □

Lemma 162.13.0331 Let (R,m) be a local ring. If R is Noetherian, a domain, and
Nagata, then R is analytically unramified.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial. Hence we as-
sume dim(R) = d and that the lemma holds for all Noetherian Nagata domains of
dimension < d.
Let R ⊂ S be the integral closure of R in the field of fractions of R. By assumption
S is a finite R-module. By Lemma 162.5 we see that S is Nagata. By Lemma 112.4
we see dim(R) = dim(S). Let m1, . . . ,mt be the maximal ideals of S. Each of these
lies over the maximal ideal m of R. Moreover

(m1 ∩ . . . ∩mt)n ⊂ mS

for sufficiently large n as S/mS is Artinian. By Lemma 97.2 R∧ → S∧ is an injective
map, and by the Chinese Remainder Lemma 15.4 combined with Lemma 96.9 we
have S∧ =

∏
S∧
i where S∧

i is the completion of S with respect to the maximal ideal
mi. Hence it suffices to show that Smi is analytically unramified. In other words,
we have reduced to the case where R is a Noetherian normal Nagata domain.
Assume R is a Noetherian, normal, local Nagata domain. Pick a nonzero x ∈ m
in the maximal ideal. We are going to apply Lemma 162.12. We have to check
properties (1), (2), (3)(a) and (3)(b). Property (1) is clear. We have that R/xR
has no embedded primes by Lemma 157.6. Thus property (2) holds. The same
lemma also tells us each associated prime p of R/xR has height 1. Hence Rp is
a 1-dimensional normal domain hence regular (Lemma 119.7). Thus (3)(a) holds.
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Finally (3)(b) holds by induction hypothesis, since R/p is Nagata (by Lemma 162.5
or directly from the definition). Thus we conclude R is analytically unramified. □

Lemma 162.14.0BI2 Let (R,m) be a Noetherian local ring. The following are equiv-
alent

(1) R is Nagata,
(2) for R → S finite with S a domain and m′ ⊂ S maximal the local ring Sm′

is analytically unramified,
(3) for (R,m) → (S,m′) finite local homomorphism with S a domain, then S

is analytically unramified.

Proof. Assume R is Nagata and let R → S and m′ ⊂ S be as in (2). Then S is
Nagata by Lemma 162.5. Hence the local ring Sm′ is Nagata (Lemma 162.6). Thus
it is analytically unramified by Lemma 162.13. It is clear that (2) implies (3).
Assume (3) holds. Let p ⊂ R be a prime ideal and let L/κ(p) be a finite extension
of fields. To prove (1) we have to show that the integral closure of R/p is finite
over R/p. Choose x1, . . . , xn ∈ L which generate L over κ(p). For each i let
Pi(T ) = T di + ai,1T

di−1 + . . . + ai,di
be the minimal polynomial for xi over κ(p).

After replacing xi by fixi for a suitable fi ∈ R, fi ̸∈ p we may assume ai,j ∈ R/p. In
fact, after further multiplying by elements of m, we may assume ai,j ∈ m/p ⊂ R/p
for all i, j. Having done this let S = R/p[x1, . . . , xn] ⊂ L. Then S is finite over R,
a domain, and S/mS is a quotient of R/m[T1, . . . , Tn]/(T d1

1 , . . . , T dn
n ). Hence S is

local. By (3) S is analytically unramified and by Lemma 162.10 we find that its
integral closure S′ in L is finite over S. Since S′ is also the integral closure of R/p
in L we win. □

The following proposition says in particular that an algebra of finite type over a
Nagata ring is a Nagata ring.

Proposition 162.15 (Nagata).0334 Let R be a ring. The following are equivalent:
(1) R is a Nagata ring,
(2) any finite type R-algebra is Nagata, and
(3) R is universally Japanese and Noetherian.

Proof. It is clear that a Noetherian universally Japanese ring is universally Nagata
(i.e., condition (2) holds). Let R be a Nagata ring. We will show that any finitely
generated R-algebra S is Nagata. This will prove the proposition.
Step 1. There exists a sequence of ring maps R = R0 → R1 → R2 → . . .→ Rn = S
such that each Ri → Ri+1 is generated by a single element. Hence by induction it
suffices to prove S is Nagata if S ∼= R[x]/I.
Step 2. Let q ⊂ S be a prime of S, and let p ⊂ R be the corresponding prime
of R. We have to show that S/q is N-2. Hence we have reduced to the proving
the following: (*) Given a Nagata domain R and a monogenic extension R ⊂ S of
domains then S is N-2.
Step 3. Let R be a Nagata domain and R ⊂ S a monogenic extension of domains.
Let R ⊂ R′ be the integral closure of R in its fraction field. Let S′ be the subring of
the fraction field of S generated by R′ and S. As R′ is finite over R (by the Nagata
property) also S′ is finite over S. Since S is Noetherian it suffices to prove that S′

is N-2 (Lemma 161.7). Hence we have reduced to proving the following: (**) Given
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a normal Nagata domain R and a monogenic extension R ⊂ S of domains then S
is N-2.

Step 4: Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains. Suppose the induced extension of fraction fields of R and S is purely
transcendental. In this case S = R[x]. By Lemma 161.13 we see that S is N-
2. Hence we have reduced to proving the following: (**) Given a normal Nagata
domain R and a monogenic extension R ⊂ S of domains inducing a finite extension
of fraction fields then S is N-2.

Step 5. Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains inducing a finite extension of fraction fields L/K. Choose an element
x ∈ S which generates S as an R-algebra. Let M/L be a finite extension of fields.
Let R′ be the integral closure of R in M . Then the integral closure S′ of S in
M is equal to the integral closure of R′[x] in M . Also the fraction field of R′ is
M and R ⊂ R′ is finite (by the Nagata property of R). This implies that R′ is
a Nagata ring (Lemma 162.5). To show that S′ is finite over S is the same as
showing that S′ is finite over R′[x]. Replace R by R′ and S by R′[x] to reduce to
the following statement: (***) Given a normal Nagata domain R with fraction field
K, and x ∈ K, the ring S ⊂ K generated by R and x is N-1.

Step 6. Let R be a normal Nagata domain with fraction field K. Let x = b/a ∈ K.
We have to show that the ring S ⊂ K generated by R and x is N-1. Note that
Sa ∼= Ra is normal. Hence by Lemma 161.15 it suffices to show that Sm is N-1 for
every maximal ideal m of S.

With assumptions as in the preceding paragraph, pick such a maximal ideal and
set n = R ∩ m. The residue field extension κ(m)/κ(n) is finite (Theorem 34.1)
and generated by the image of x. Hence there exists a monic polynomial f(X) =
Xd +

∑
i=1,...,d aiX

d−i with f(x) ∈ m. Let K ′′/K be a finite extension of fields
such that f(X) splits completely in K ′′[X]. Let R′ be the integral closure of R in
K ′′. Let S′ ⊂ K ′′ be the subring generated by R′ and x. As R is Nagata we see
R′ is finite over R and Nagata (Lemma 162.5). Moreover, S′ is finite over S. If for
every maximal ideal m′ of S′ the local ring S′

m′ is N-1, then S′
m is N-1 by Lemma

161.15, which in turn implies that Sm is N-1 by Lemma 161.7. After replacing R by
R′ and S by S′, and m by any of the maximal ideals m′ lying over m we reach the
situation where the polynomial f above split completely: f(X) =

∏
i=1,...,d(X−ai)

with ai ∈ R. Since f(x) ∈ m we see that x − ai ∈ m for some i. Finally, after
replacing x by x− ai we may assume that x ∈ m.

To recapitulate: R is a normal Nagata domain with fraction field K, x ∈ K and S
is the subring of K generated by x and R, finally m ⊂ S is a maximal ideal with
x ∈ m. We have to show Sm is N-1.

We will show that Lemma 162.12 applies to the local ring Sm and the element x.
This will imply that Sm is analytically unramified, whereupon we see that it is N-1
by Lemma 162.10.

We have to check properties (1), (2), (3)(a) and (3)(b). Property (1) is trivial. Let
I = Ker(R[X] → S) where X 7→ x. We claim that I is generated by all linear
forms aX − b such that ax = b in K. Clearly all these linear forms are in I. If
g = adX

d+ . . . a1X+a0 ∈ I, then we see that adx is integral over R (Lemma 123.1)
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and hence b := adx ∈ R as R is normal. Then g − (adX − b)Xd−1 ∈ I and we win
by induction on the degree. As a consequence we see that

S/xS = R[X]/(X, I) = R/J

where
J = {b ∈ R | ax = b for some a ∈ R} = xR ∩R

By Lemma 157.6 we see that S/xS = R/J has no embedded primes as an R-module,
hence as an R/J-module, hence as an S/xS-module, hence as an S-module. This
proves property (2). Take such an associated prime q ⊂ S with the property q ⊂ m
(so that it is an associated prime of Sm/xSm – it does not matter for the arguments).
Then q is minimal over xS and hence has height 1. By the sequence of equalities
above we see that p = R ∩ q is an associated prime of R/J , and so has height 1
(see Lemma 157.6). Thus Rp is a discrete valuation ring and therefore Rp ⊂ Sq is
an equality. This shows that Sq is regular. This proves property (3)(a). Finally,
(S/q)m is a localization of S/q, which is a quotient of S/xS = R/J . Hence (S/q)m
is a localization of a quotient of the Nagata ring R, hence Nagata (Lemmas 162.5
and 162.6) and hence analytically unramified (Lemma 162.13). This shows (3)(b)
holds and we are done. □

Proposition 162.16.0335 The following types of rings are Nagata and in particular
universally Japanese:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 162.8. In the other
cases you just check if R/p is N-2 for every prime ideal p of the ring. This is clear
whenever R/p is a field, i.e., p is maximal. Hence for the Dedekind ring case we
only need to check it when p = (0). But since we assume the fraction field has
characteristic zero Lemma 161.11 kicks in. □

Example 162.17.09E1 A discrete valuation ring is Nagata if and only if it is N-2
(because the quotient by the maximal ideal is a field and hence N-2). The discrete
valuation ring A of Example 119.5 is not Nagata, i.e., it is not N-2. Namely, the
finite extension A ⊂ R = A[f ] is not N-1. To see this say f =

∑
aix

i. For
every n ≥ 1 set gn =

∑
i<n aix

i ∈ A. Then hn = (f − gn)/xn is an element of the
fraction field of R and hpn ∈ kp[[x]] ⊂ A. Hence the integral closure R′ of R contains
h1, h2, h3, . . .. Now, if R′ were finite over R and hence A, then f = xnhn+gn would
be contained in the submodule A+xnR′ for all n. By Artin-Rees this would imply
f ∈ A (Lemma 51.4), a contradiction.

Lemma 162.18.09E2 Let (A,m) be a Noetherian local domain which is Nagata and
has fraction field of characteristic p. If a ∈ A has a pth root in A∧, then a has a
pth root in A.

Proof. Consider the ring extension A ⊂ B = A[x]/(xp − a). If a does not have a
pth root in A, then B is a domain whose completion isn’t reduced. This contradicts
our earlier results, as B is a Nagata ring (Proposition 162.15) and hence analytically
unramified by Lemma 162.13. □

https://stacks.math.columbia.edu/tag/0335
https://stacks.math.columbia.edu/tag/09E1
https://stacks.math.columbia.edu/tag/09E2
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163. Ascending properties

0336 In this section we start proving some algebraic facts concerning the “ascent” of
properties of rings. To do this for depth of rings one uses the following result on
ascending depth of modules, see [DG67, IV, Proposition 6.3.1].

Lemma 163.1.0338 [DG67, IV,
Proposition 6.3.1]

We have
depth(M ⊗R N) = depth(M) + depth(N/mRN)

where R → S is a local homomorphism of local Noetherian rings, M is a finite
R-module, and N is a finite S-module flat over R.

Proof. In the statement and in the proof below, we take the depth of M as an
R-module, the depth of M ⊗R N as an S-module, and the depth of N/mRN as
an S/mRS-module. Denote n the right hand side. First assume that n is zero.
Then both depth(M) = 0 and depth(N/mRN) = 0. This means there is a z ∈ M
whose annihilator is mR and a y ∈ N/mRN whose annihilator is mS/mRS. Let
y ∈ N be a lift of y. Since N is flat over R the map z : R/mR → M produces an
injective map N/mRN → M ⊗R N . Hence the annihilator of z ⊗ y is mS . Thus
depth(M ⊗R N) = 0 as well.
Assume n > 0. If depth(N/mRN) > 0, then we may choose f ∈ mS mapping
to f ∈ S/mRS which is a nonzerodivisor on N/mRN . Then depth(N/mRN) =
depth(N/(f,mR)N) + 1 by Lemma 72.7. According to Lemma 99.1 the element
f ∈ S is a nonzerodivisor on N and N/fN is flat over R. Hence by induction on n
we have

depth(M ⊗R N/fN) = depth(M) + depth(N/(f,mR)N).
Because N/fN is flat over R the sequence

0→M ⊗R N →M ⊗R N →M ⊗R N/fN → 0
is exact where the first map is multiplication by f (Lemma 39.12). Hence by Lemma
72.7 we find that depth(M ⊗RN) = depth(M ⊗RN/fN) + 1 and we conclude that
equality holds in the formula of the lemma.
If n > 0, but depth(N/mRN) = 0, then we can choose f ∈ mR which is a nonzero-
divisor on M . As N is flat over R it is also the case that f is a nonzerodivisor on
M ⊗R N . By induction on n again we have

depth(M/fM ⊗R N) = depth(M/fM) + depth(N/mRN).
In this case depth(M⊗RN) = depth(M/fM⊗RN)+1 and depth(M) = depth(M/fM)+
1 by Lemma 72.7 and we conclude that equality holds in the formula of the
lemma. □

Lemma 163.2.0337 Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Then

depth(S) = depth(R) + depth(S/mRS).

Proof. This is a special case of Lemma 163.1. □

Lemma 163.3.045J Let R → S be a flat local homomorphism of local Noetherian
rings. Then the following are equivalent

(1) S is Cohen-Macaulay, and
(2) R and S/mRS are Cohen-Macaulay.

https://stacks.math.columbia.edu/tag/0338
https://stacks.math.columbia.edu/tag/0337
https://stacks.math.columbia.edu/tag/045J
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Proof. Follows from the definitions and Lemmas 163.2 and 112.7. □

Lemma 163.4.0339 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are (Sk), and
(5) R has property (Sk).

Then S has property (Sk).

Proof. Let q be a prime of S lying over a prime p of R. By Lemma 163.2 we have

depth(Sq) = depth(Sq/pSq) + depth(Rp).

On the other hand, we have

dim(Rp) + dim(Sq/pSq) ≥ dim(Sq)

by Lemma 112.6. (Actually equality holds, by Lemma 112.7 but strictly speaking
we do not need this.) Finally, as the fibre rings of the map are assumed (Sk) we
see that depth(Sq/pSq) ≥ min(k, dim(Sq/pSq)). Thus the lemma follows by the
following string of inequalities

depth(Sq) = depth(Sq/pSq) + depth(Rp)
≥ min(k, dim(Sq/pSq)) + min(k, dim(Rp))
= min(2k, dim(Sq/pSq) + k, k + dim(Rp),dim(Sq/pSq) + dim(Rp))
≥ min(k, dim(Sq))

as desired. □

Lemma 163.5.033A Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) have property (Rk), and
(5) R has property (Rk).

Then S has property (Rk).

Proof. Let q be a prime of S lying over a prime p of R. Assume that dim(Sq) ≤ k.
Since dim(Sq) = dim(Rp)+dim(Sq/pSq) by Lemma 112.7 we see that dim(Rp) ≤ k
and dim(Sq/pSq) ≤ k. Hence Rp and Sq/pSq are regular by assumption. It follows
that Sq is regular by Lemma 112.8. □

Lemma 163.6.0C21 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are reduced,
(5) R is reduced.

Then S is reduced.

https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/033A
https://stacks.math.columbia.edu/tag/0C21
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Proof. For Noetherian rings reduced is the same as having properties (S1) and
(R0), see Lemma 157.3. Thus we know R and the fibre rings have these properties.
Hence we may apply Lemmas 163.4 and 163.5 and we see that S is (S1) and (R0),
in other words reduced by Lemma 157.3 again. □

Lemma 163.7.033B Let φ : R→ S be a ring map. Assume
(1) φ is smooth,
(2) R is reduced.

Then S is reduced.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 142). In particular, the fibres are reduced. Thus if R
is Noetherian, then S is Noetherian and we get the result from Lemma 163.6.
In the general case we may find a finitely generated Z-subalgebra R0 ⊂ R and a
smooth ring map R0 → S0 such that S ∼= R⊗R0 S0, see remark (10) in Section 142.
Now, if x ∈ S is an element with x2 = 0, then we can enlarge R0 and assume that
x comes from an element x0 ∈ S0. After enlarging R0 once more we may assume
that x2

0 = 0 in S0. However, since R0 ⊂ R is reduced we see that S0 is reduced and
hence x0 = 0 as desired. □

Lemma 163.8.0C22 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are normal, and
(5) R is normal.

Then S is normal.

Proof. For a Noetherian ring being normal is the same as having properties (S2)
and (R1), see Lemma 157.4. Thus we know R and the fibre rings have these
properties. Hence we may apply Lemmas 163.4 and 163.5 and we see that S is (S2)
and (R1), in other words normal by Lemma 157.4 again. □

Lemma 163.9.033C Let φ : R→ S be a ring map. Assume
(1) φ is smooth,
(2) R is normal.

Then S is normal.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 142). In particular, the fibres are normal. Thus if R
is Noetherian, then S is Noetherian and we get the result from Lemma 163.8.
The general case. First note that R is reduced and hence S is reduced by Lemma
163.7. Let q be a prime of S and let p be the corresponding prime of R. Note that
Rp is a normal domain. We have to show that Sq is a normal domain. To do this
we may replace R by Rp and S by Sp. Hence we may assume that R is a normal
domain.
Assume R→ S smooth, and R a normal domain. We may find a finitely generated
Z-subalgebra R0 ⊂ R and a smooth ring map R0 → S0 such that S ∼= R⊗R0 S0, see
remark (10) in Section 142. As R0 is a Nagata domain (see Proposition 162.16) we

https://stacks.math.columbia.edu/tag/033B
https://stacks.math.columbia.edu/tag/0C22
https://stacks.math.columbia.edu/tag/033C
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see that its integral closure R′
0 is finite over R0. Moreover, as R is a normal domain

it is clear that R′
0 ⊂ R. Hence we may replace R0 by R′

0 and S0 by R′
0 ⊗R0 S0

and assume that R0 is a normal Noetherian domain. By the first paragraph of the
proof we conclude that S0 is a normal ring (it need not be a domain of course).
In this way we see that R =

⋃
Rλ is the union of normal Noetherian domains and

correspondingly S = colimRλ ⊗R0 S0 is the colimit of normal rings. This implies
that S is a normal ring. Some details omitted. □

Lemma 163.10.07NF Let φ : R→ S be a ring map. Assume
(1) φ is smooth,
(2) R is a regular ring.

Then S is regular.

Proof. This follows from Lemma 163.5 applied for all (Rk) using Lemma 140.3 to
see that the hypotheses are satisfied. □

164. Descending properties

033D In this section we start proving some algebraic facts concerning the “descent” of
properties of rings. It turns out that it is often “easier” to descend properties than
it is to ascend them. In other words, the assumption on the ring map R → S are
often weaker than the assumptions in the corresponding lemma of the preceding
section. However, we warn the reader that the results on descent are often useless
unless the corresponding ascent can also be shown! Here is a typical result which
illustrates this phenomenon.

Lemma 164.1.033E Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian.

Then R is Noetherian.

Proof. Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be a growing sequence of ideals of R. By assumption
we have InS = In+1S = In+2S = . . . for some n. Since R→ S is flat we have IkS =
Ik⊗R S. Hence, as R→ S is faithfully flat we see that InS = In+1S = In+2S = . . .
implies that In = In+1 = In+2 = . . . as desired. □

Lemma 164.2.033F Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is reduced.

Then R is reduced.

Proof. This is clear as R→ S is injective. □

Lemma 164.3.033G Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a normal ring.

Then R is a normal ring.

Proof. Since S is reduced it follows that R is reduced. Let p be a prime of R. We
have to show that Rp is a normal domain. Since Sp is faithfully over Rp too we may
assume that R is local with maximal ideal m. Let q be a prime of S lying over m.
Then we see that R → Sq is faithfully flat (Lemma 39.17). Hence we may assume

https://stacks.math.columbia.edu/tag/07NF
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https://stacks.math.columbia.edu/tag/033F
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S is local as well. In particular S is a normal domain. Since R → S is faithfully
flat and S is a normal domain we see that R is a domain. Next, suppose that a/b
is integral over R with a, b ∈ R. Then a/b ∈ S as S is normal. Hence a ∈ bS.
This means that a : R → R/bR becomes the zero map after base change to S. By
faithful flatness we see that a ∈ bR, so a/b ∈ R. Hence R is normal. □

Lemma 164.4.07NG Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a regular ring.

Then R is a regular ring.

Proof. We see that R is Noetherian by Lemma 164.1. Let p ⊂ R be a prime.
Choose a prime q ⊂ S lying over p. Then Lemma 110.9 applies to Rp → Sq and
we conclude that Rp is regular. Since p was arbitrary we see R is regular. □

Lemma 164.5.0352 Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian and has property (Sk).

Then R is Noetherian and has property (Sk).

Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 164.1. Let p ⊂ R be a prime ideal. Choose a prime q ⊂ S lying over p which
corresponds to a minimal prime of the fibre ring S⊗Rκ(p). Then A = Rp → Sq = B
is a flat local ring homomorphism of Noetherian local rings with mAB an ideal of
definition of B. Hence dim(A) = dim(B) (Lemma 112.7) and depth(A) = depth(B)
(Lemma 163.2). Hence since B has (Sk) we see that A has (Sk). □

Lemma 164.6.0353 Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian and has property (Rk).

Then R is Noetherian and has property (Rk).

Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 164.1. Let p ⊂ R be a prime ideal and assume dim(Rp) ≤ k. Choose a
prime q ⊂ S lying over p which corresponds to a minimal prime of the fibre ring
S⊗Rκ(p). Then A = Rp → Sq = B is a flat local ring homomorphism of Noetherian
local rings with mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma
112.7). As S has (Rk) we conclude that B is a regular local ring. By Lemma 110.9
we conclude that A is regular. □

Lemma 164.7.0354 Let R→ S be a ring map. Assume that
(1) R→ S is smooth and surjective on spectra, and
(2) S is a Nagata ring.

Then R is a Nagata ring.

Proof. Recall that a Nagata ring is the same thing as a Noetherian universally
Japanese ring (Proposition 162.15). We have already seen that R is Noetherian in
Lemma 164.1. Let R → A be a finite type ring map into a domain. According
to Lemma 162.3 it suffices to check that A is N-1. It is clear that B = A ⊗R S
is a finite type S-algebra and hence Nagata (Proposition 162.15). Since A → B
is smooth (Lemma 137.4) we see that B is reduced (Lemma 163.7). Since B is

https://stacks.math.columbia.edu/tag/07NG
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Noetherian it has only a finite number of minimal primes q1, . . . , qt (see Lemma
31.6). As A→ B is flat each of these lies over (0) ⊂ A (by going down, see Lemma
39.19) The total ring of fractions Q(B) is the product of the Li = κ(qi) (Lemmas
25.4 and 25.1). Moreover, the integral closure B′ of B in Q(B) is the product of
the integral closures B′

i of the B/qi in the factors Li (compare with Lemma 37.16).
Since B is universally Japanese the ring extensions B/qi ⊂ B′

i are finite and we
conclude that B′ =

∏
B′
i is finite over B. Since A → B is flat we see that any

nonzerodivisor on A maps to a nonzerodivisor on B. The corresponding map

Q(A)⊗A B = (A \ {0})−1A⊗A B = (A \ {0})−1B → Q(B)

is injective (we used Lemma 12.15). Via this map A′ maps into B′. This induces a
map

A′ ⊗A B −→ B′

which is injective (by the above and the flatness of A → B). Since B′ is a finite
B-module and B is Noetherian we see that A′ ⊗A B is a finite B-module. Hence
there exist finitely many elements xi ∈ A′ such that the elements xi ⊗ 1 generate
A′ ⊗A B as a B-module. Finally, by faithful flatness of A → B we conclude that
the xi also generated A′ as an A-module, and we win. □

Remark 164.8.0355 The property of being “universally catenary” does not descend;
not even along étale ring maps. In Examples, Section 19 there is a construction
of a finite ring map A→ B with A local Noetherian and not universally catenary,
B semi-local with two maximal ideals m, n with Bm and Bn regular of dimension
2 and 1 respectively, and the same residue fields as that of A. Moreover, mA
generates the maximal ideal in both Bm and Bn (so A → B is unramified as well
as finite). By Lemma 152.3 there exists a local étale ring map A → A′ such that
B ⊗A A′ = B1 × B2 decomposes with A′ → Bi surjective. This shows that A′ has
two minimal primes qi with A′/qi ∼= Bi. Since Bi is regular local (since it is étale
over either Bm or Bn) we conclude that A′ is universally catenary.

165. Geometrically normal algebras

037Y In this section we put some applications of ascent and descent of properties of rings.

Lemma 165.1.037Z Let k be a field. Let A be a k-algebra. The following properties
of A are equivalent:

(1) k′ ⊗k A is a normal ring for every field extension k′/k,
(2) k′ ⊗k A is a normal ring for every finitely generated field extension k′/k,
(3) k′ ⊗k A is a normal ring for every finite purely inseparable extension k′/k,
(4) kperf ⊗k A is a normal ring.

Here normal ring is defined in Definition 37.11.

Proof. It is clear that (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4).

If k′/k is a finite purely inseparable extension, then there is an embedding k′ →
kperf of k-extensions. The ring map k′ ⊗k A→ kperf ⊗k A is faithfully flat, hence
k′⊗k A is normal if kperf ⊗k A is normal by Lemma 164.3. In this way we see that
(4) ⇒ (3).

Assume (2) and let k′/k be any field extension. Then we can write k′ = colimi ki as
a directed colimit of finitely generated field extensions. Hence we see that k′⊗kA =

https://stacks.math.columbia.edu/tag/0355
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colimi ki ⊗k A is a directed colimit of normal rings. Thus we see that k′ ⊗k A is a
normal ring by Lemma 37.17. Hence (1) holds.
Assume (3) and let K/k be a finitely generated field extension. By Lemma 45.3 we
can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′

is separable. By Lemma 158.10 there exists a smooth k′-algebra B such that K ′

is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a
normal ring because we assumed (3). Step 2: B ⊗k′ k′ ⊗k A is a normal ring as
k′ ⊗k A → B ⊗k′ k′ ⊗k A is smooth (Lemma 137.4) and ascent of normality along
smooth maps (Lemma 163.9). Step 3. K ′⊗k′k′⊗kA = K ′⊗kA is a normal ring as it
is a localization of a normal ring (Lemma 37.13). Step 4. Finally K⊗kA is a normal
ring by descent of normality along the faithfully flat ring map K ⊗k A→ K ′ ⊗k A
(Lemma 164.3). This proves the lemma. □

Definition 165.2.0380 Let k be a field. A k-algebra R is called geometrically normal
over k if the equivalent conditions of Lemma 165.1 hold.

Lemma 165.3.06DE Let k be a field. A localization of a geometrically normal k-algebra
is geometrically normal.

Proof. This is clear as being a normal ring is checked at the localizations at prime
ideals. □

Lemma 165.4.0C30 Let k be a field. Let K/k be a separable field extension. Then K
is geometrically normal over k.

Proof. This is true because kperf ⊗kK is a field. Namely, it is reduced by Lemma
43.6. By Lemma 45.4 (or by Definition 45.5) the field extension kperf/k is purely
inseparable. Hence by Lemma 46.10 the ring kperf ⊗k K has a unique prime ideal.
A reduced ring with a unique prime ideal is a field. □

Lemma 165.5.06DF Let k be a field. Let A,B be k-algebras. Assume A is geometrically
normal over k and B is a normal ring. Then A⊗k B is a normal ring.

Proof. Let r be a prime ideal of A⊗kB. Denote p, resp. q the corresponding prime
of A, resp. B. Then (A ⊗k B)r is a localization of Ap ⊗k Bq. Hence it suffices to
prove the result for the ring Ap ⊗k Bq, see Lemma 37.13 and Lemma 165.3. Thus
we may assume A and B are domains.
Assume that A and B are domains with fractions fields K and L. Note that B is
the filtered colimit of its finite type normal k-sub algebras (as k is a Nagata ring,
see Proposition 162.16, and hence the integral closure of a finite type k-sub algebra
is still a finite type k-sub algebra by Proposition 162.15). By Lemma 37.17 we
reduce to the case that B is of finite type over k.
Assume that A and B are domains with fractions fields K and L and B of finite
type over k. In this case the ring K⊗kB is of finite type over K, hence Noetherian
(Lemma 31.1). In particular K ⊗k B has finitely many minimal primes (Lemma
31.6). Since A→ A⊗kB is flat, this implies that A⊗kB has finitely many minimal
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primes (by going down for flat ring maps – Lemma 39.19 – these primes all lie over
(0) ⊂ A). Thus it suffices to prove that A⊗k B is integrally closed in its total ring
of fractions (Lemma 37.16).
We claim that K ⊗k B and A ⊗k L are both normal rings. If this is true then
any element x of Q(A ⊗k B) which is integral over A ⊗k B is (by Lemma 37.12)
contained in K⊗kB ∩A⊗k L = A⊗kB and we’re done. Since A⊗K L is a normal
ring by assumption, it suffices to prove that K ⊗k B is normal.
As A is geometrically normal over k we see K is geometrically normal over k
(Lemma 165.3) hence K is geometrically reduced over k. Hence K =

⋃
Ki is the

union of finitely generated field extensions of k which are geometrically reduced
(Lemma 43.2). Each Ki is the localization of a smooth k-algebra (Lemma 158.10).
So Ki⊗kB is the localization of a smooth B-algebra hence normal (Lemma 163.9).
Thus K ⊗k B is a normal ring (Lemma 37.17) and we win. □

Lemma 165.6.0C31 Let k′/k be a separable algebraic field extension. Let A be an alge-
bra over k′. Then A is geometrically normal over k if and only if it is geometrically
normal over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′ ⊗k L
is a field (see material in Fields, Section 28) and A⊗k L = A⊗k′ L′. Hence if A is
geometrically normal over k′, then A is geometrically normal over k.
Assume A is geometrically normal over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′

Since k′ ⊗k k′ → k′ is a localization by Lemma 43.8, we see that K ⊗k′ A is a
localization of a normal ring, hence normal. □

166. Geometrically regular algebras

045K Let k be a field. Let A be a Noetherian k-algebra. Let K/k be a finitely generated
field extension. Then the ring K⊗kA is Noetherian as well, see Lemma 31.8. Thus
the following lemma makes sense.

Lemma 166.1.0381 Let k be a field. Let A be a k-algebra. Assume A is Noetherian.
The following properties of A are equivalent:

(1) k′ ⊗k A is regular for every finitely generated field extension k′/k, and
(2) k′ ⊗k A is regular for every finite purely inseparable extension k′/k.

Here regular ring is as in Definition 110.7.

Proof. The lemma makes sense by the remarks preceding the lemma. It is clear
that (1) ⇒ (2).
Assume (2) and let K/k be a finitely generated field extension. By Lemma 45.3 we
can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′

is separable. By Lemma 158.10 there exists a smooth k′-algebra B such that K ′

https://stacks.math.columbia.edu/tag/0C31
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is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a
regular ring because we assumed (2). Step 2: B ⊗k′ k′ ⊗k A is a regular ring as
k′ ⊗k A→ B ⊗k′ k′ ⊗k A is smooth (Lemma 137.4) and ascent of regularity along
smooth maps (Lemma 163.10). Step 3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a regular
ring as it is a localization of a regular ring (immediate from the definition). Step
4. Finally K ⊗k A is a regular ring by descent of regularity along the faithfully flat
ring map K ⊗k A→ K ′ ⊗k A (Lemma 164.4). This proves the lemma. □

Definition 166.2.0382 Let k be a field. Let R be a Noetherian k-algebra. The
k-algebra R is called geometrically regular over k if the equivalent conditions of
Lemma 166.1 hold.

It is clear from the definition that K ⊗k R is a geometrically regular algebra over
K for any finitely generated field extension K of k. We will see later (More on
Algebra, Proposition 35.1) that it suffices to check R ⊗k k′ is regular whenever
k ⊂ k′ ⊂ k1/p (finite).

Lemma 166.3.07NH Let k be a field. Let A→ B be a faithfully flat k-algebra map. If
B is geometrically regular over k, so is A.

Proof. Assume B is geometrically regular over k. Let k′/k be a finite, purely
inseparable extension. Then A ⊗k k′ → B ⊗k k′ is faithfully flat as a base change
of A→ B (by Lemmas 30.3 and 39.7) and B⊗k k′ is regular by our assumption on
B over k. Then A⊗k k′ is regular by Lemma 164.4. □

Lemma 166.4.07QF Let k be a field. Let A→ B be a smooth ring map of k-algebras.
If A is geometrically regular over k, then B is geometrically regular over k.

Proof. Let k′/k be a finitely generated field extension. Then A⊗k k′ → B⊗k k′ is
a smooth ring map (Lemma 137.4) and A⊗k k′ is regular. Hence B⊗k k′ is regular
by Lemma 163.10. □

Lemma 166.5.07QG Let k be a field. Let A be an algebra over k. Let k = colim ki be
a directed colimit of subfields. If A is geometrically regular over each ki, then A is
geometrically regular over k.

Proof. Let k′/k be a finite purely inseparable field extension. We can get k′

by adjoining finitely many variables to k and imposing finitely many polynomial
relations. Hence we see that there exists an i and a finite purely inseparable field
extension k′

i/ki such that ki = k⊗ki k
′
i. Thus A⊗k k′ = A⊗ki k

′
i and the lemma is

clear. □

Lemma 166.6.07QH Let k′/k be a separable algebraic field extension. Let A be an alge-
bra over k′. Then A is geometrically regular over k if and only if it is geometrically
regular over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′ ⊗k L
is a field (see material in Fields, Section 28) and A⊗k L = A⊗k′ L′. Hence if A is
geometrically regular over k′, then A is geometrically regular over k.
Assume A is geometrically regular over k. Since k′ is the filtered colimit of fi-
nite extensions of k we may assume by Lemma 166.5 that k′/k is finite separable.
Consider the ring maps

k′ → A⊗k k′ → A.

https://stacks.math.columbia.edu/tag/0382
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Note that A⊗k k′ is geometrically regular over k′ as a base change of A to k′. Note
that A ⊗k k′ → A is the base change of k′ ⊗k k′ → k′ by the map k′ → A. Since
k′/k is an étale extension of rings, we see that k′⊗k k′ → k′ is étale (Lemma 143.3).
Hence A is geometrically regular over k′ by Lemma 166.4. □

167. Geometrically Cohen-Macaulay algebras

045L This section is a bit of a misnomer, since Cohen-Macaulay algebras are automati-
cally geometrically Cohen-Macaulay. Namely, see Lemma 130.6 and Lemma 167.2
below.

Lemma 167.1.045M Let k be a field and let K/k and L/k be two field extensions such
that one of them is a field extension of finite type. Then K ⊗k L is a Noetherian
Cohen-Macaulay ring.

Proof. The ringK⊗kL is Noetherian by Lemma 31.8. SayK is a finite extension of
the purely transcendental extension k(t1, . . . , tr). Then k(t1, . . . , tr)⊗kL→ K⊗kL
is a finite free ring map. By Lemma 112.9 it suffices to show that k(t1, . . . , tr)⊗k L
is Cohen-Macaulay. This is clear because it is a localization of the polynomial ring
L[t1, . . . , tr]. (See for example Lemma 104.7 for the fact that a polynomial ring is
Cohen-Macaulay.) □

Lemma 167.2.045N Let k be a field. Let S be a Noetherian k-algebra. Let K/k be a
finitely generated field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime of
S. Let qK ⊂ SK be a prime of SK lying over q. Then Sq is Cohen-Macaulay if and
only if (SK)qK

is Cohen-Macaulay.

Proof. By Lemma 31.8 the ring SK is Noetherian. Hence Sq → (SK)qK
is a flat

local homomorphism of Noetherian local rings. Note that the fibre

(SK)qK
/q(SK)qK

∼= (κ(q)⊗k K)q′

is the localization of the Cohen-Macaulay (Lemma 167.1) ring κ(q) ⊗k K at a
suitable prime ideal q′. Hence the lemma follows from Lemma 163.3. □

168. Colimits and maps of finite presentation, II

07RF This section is a continuation of Section 127.

We start with an application of the openness of flatness. It says that we can
approximate flat modules by flat modules which is useful.

Lemma 168.1.02JO Let R→ S be a ring map. Let M be an S-module. Assume that
(1) R→ S is of finite presentation,
(2) M is a finitely presented S-module, and
(3) M is flat over R.

In this case we have the following:
(1) There exists a finite type Z-algebra R0 and a finite type ring map R0 → S0

and a finite S0-module M0 such that M0 is flat over R0, together with a
ring maps R0 → R and S0 → S and an S0-module map M0 →M such that
S ∼= R⊗R0 S0 and M = S ⊗S0 M0.

https://stacks.math.columbia.edu/tag/045M
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(2) If R = colimλ∈Λ Rλ is written as a directed colimit, then there exists a λ
and a ring map Rλ → Sλ of finite presentation, and an Sλ-module Mλ of
finite presentation such that Mλ is flat over Rλ and such that S = R⊗Rλ

Sλ
and M = S ⊗Sλ

Mλ.
(3) If

(R→ S,M) = colimλ∈Λ(Rλ → Sλ,Mλ)
is written as a directed colimit such that
(a) Rµ ⊗Rλ

Sλ → Sµ and Sµ ⊗Sλ
Mλ →Mµ are isomorphisms for µ ≥ λ,

(b) Rλ → Sλ is of finite presentation,
(c) Mλ is a finitely presented Sλ-module,

then for all sufficiently large λ the module Mλ is flat over Rλ.

Proof. We first write (R → S,M) as the directed colimit of a system (Rλ →
Sλ,Mλ) as in as in Lemma 127.18. Let q ⊂ S be a prime. Let p ⊂ R, qλ ⊂ Sλ, and
pλ ⊂ Rλ the corresponding primes. As seen in the proof of Theorem 129.4

((Rλ)pλ
, (Sλ)qλ

, (Mλ)qλ
)

is a system as in Lemma 127.13, and hence by Lemma 128.3 we see that for some
λq ∈ Λ for all λ ≥ λq the module Mλ is flat over Rλ at the prime qλ.

By Theorem 129.4 we get an open subset Uλ ⊂ Spec(Sλ) such that Mλ flat over Rλ
at all the primes of Uλ. Denote Vλ ⊂ Spec(S) the inverse image of Uλ under the
map Spec(S) → Spec(Sλ). The argument above shows that for every q ∈ Spec(S)
there exists a λq such that q ∈ Vλ for all λ ≥ λq. Since Spec(S) is quasi-compact
we see this implies there exists a single λ0 ∈ Λ such that Vλ0 = Spec(S).

The complement Spec(Sλ0)\Uλ0 is V (I) for some ideal I ⊂ Sλ0 . As Vλ0 = Spec(S)
we see that IS = S. Choose f1, . . . , fr ∈ I and s1, . . . , sn ∈ S such that

∑
fisi = 1.

Since colimSλ = S, after increasing λ0 we may assume there exist si,λ0 ∈ Sλ0 such
that

∑
fisi,λ0 = 1. Hence for this λ0 we have Uλ0 = Spec(Sλ0). This proves (1).

Proof of (2). Let (R0 → S0,M0) be as in (1) and suppose that R = colimRλ.
Since R0 is a finite type Z algebra, there exists a λ and a map R0 → Rλ such that
R0 → Rλ → R is the given map R0 → R (see Lemma 127.3). Then, part (2) follows
by taking Sλ = Rλ ⊗R0 S0 and Mλ = Sλ ⊗S0 M0.

Finally, we come to the proof of (3). Let (Rλ → Sλ,Mλ) be as in (3). Choose
(R0 → S0,M0) and R0 → R as in (1). As in the proof of (2), there exists a λ0
and a ring map R0 → Rλ0 such that R0 → Rλ0 → R is the given map R0 → R.
Since S0 is of finite presentation over R0 and since S = colimSλ we see that for
some λ1 ≥ λ0 we get an R0-algebra map S0 → Sλ1 such that the composition
S0 → Sλ1 → S is the given map S0 → S (see Lemma 127.3). For all λ ≥ λ1 this
gives maps

Ψλ : Rλ ⊗R0 S0 −→ Rλ ⊗Rλ1
Sλ1
∼= Sλ

the last isomorphism by assumption. By construction colimλ Ψλ is an isomorphism.
Hence Ψλ is an isomorphism for all λ large enough by Lemma 127.8. In the same
vein, there exists a λ2 ≥ λ1 and an S0-module map M0 → Mλ2 such that M0 →
Mλ2 → M is the given map M0 → M (see Lemma 127.5). For λ ≥ λ2 there is an
induced map

Sλ ⊗S0 M0 −→ Sλ ⊗Sλ2
Mλ2

∼= Mλ
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and for λ large enough this map is an isomorphism by Lemma 127.6. This implies
(3) because M0 is flat over R0. □

Lemma 168.2.034Y Let R → A→ B be ring maps. Assume A→ B faithfully flat of
finite presentation. Then there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0 B0.

Proof. We first prove the lemma with R replaced Z. By Lemma 168.1 there exists
a diagram

A0 // A

B0

OO

// B

OO

where A0 is of finite type over Z, B0 is flat of finite presentation over A0 such that
B = A ⊗A0 B0. As A0 → B0 is flat of finite presentation we see that the image
of Spec(B0) → Spec(A0) is open, see Proposition 41.8. Hence the complement of
the image is V (I0) for some ideal I0 ⊂ A0. As A → B is faithfully flat the map
Spec(B) → Spec(A) is surjective, see Lemma 39.16. Now we use that the base
change of the image is the image of the base change. Hence I0A = A. Pick a
relation

∑
firi = 1, with ri ∈ A, fi ∈ I0. Then after enlarging A0 to contain the

elements ri (and correspondingly enlarging B0) we see that A0 → B0 is surjective
on spectra also, i.e., faithfully flat.

Thus the lemma holds in case R = Z. In the general case, take the solution A′
0 → B′

0
just obtained and set A0 = A′

0 ⊗Z R, B0 = B′
0 ⊗Z R. □

Lemma 168.3.07RG Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is finite,
(2) C0 is of finite type over B0.

Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is finite.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick monic polynomials
Pj ∈ A⊗A0 B0[T ] such that Pj(1⊗xj) = 0 in A⊗A0 C0. For some i ≥ 0 we can find
Pj,i ∈ Ai ⊗A0 B0[T ] mapping to Pj . Since ⊗ commutes with colimits we see that
Pj,i(1⊗ xj) is zero in Ai ⊗A0 C0 after possibly increasing i. Then this i works. □

Lemma 168.4.07RH Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is surjective,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is surjective.
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Proof. Let x1, . . . , xm be generators for C0 over B0. Pick bj ∈ A⊗A0 B0 mapping
to 1 ⊗ xj in A ⊗A0 C0. For some i ≥ 0 we can find bj,i ∈ Ai ⊗A0 B0 mapping to
bj . After increasing i we may assume that bj,i maps to 1⊗ xj in Ai ⊗A0 C0 for all
j = 1, . . . ,m. Then this i works. □

Lemma 168.5.0C4F Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is unramified,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is unramified.

Proof. Set Bi = Ai ⊗A0 B0, Ci = Ai ⊗A0 C0, B = A⊗A0 B0, and C = A⊗A0 C0.
Let x1, . . . , xm be generators for C0 over B0. Then dx1, . . . ,dxm generate ΩC0/B0

over C0 and their images generate ΩCi/Bi
over Ci (Lemmas 131.14 and 131.9).

Observe that 0 = ΩC/B = colim ΩCi/Bi
(Lemma 131.5). Thus there is an i such

that dx1, . . . ,dxm map to zero and hence ΩCi/Bi
= 0 as desired. □

Lemma 168.6.0C32 Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is an isomorphism,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is an isomorphism.

Proof. By Lemma 168.4 there exists an i such that Ai ⊗A0 B0 → Ai ⊗A0 C0 is
surjective. Since the map is of finite presentation the kernel is a finitely generated
ideal. Let g1, . . . , gr ∈ Ai ⊗A0 B0 generate the kernel. Then we may pick i′ ≥ i
such that gj map to zero in Ai′ ⊗A0 B0. Then Ai′ ⊗A0 B0 → Ai′ ⊗A0 C0 is an
isomorphism. □

Lemma 168.7.07RI Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is étale,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is étale.

Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the
image of fj,0 in the polynomial ring over Bi. Write B = A⊗A0B0 and C = A⊗A0C0.
Note that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the
polynomial ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk
is an isomorphism. Thus for sufficiently large i we can find elements

ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with dξk,i = dxk in
⊕
Cidxk. Moreover, on increasing i if necessary, we see that∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit. Then
this i works. □

Lemma 168.8.0C0B Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume
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(1) A⊗A0 B0 → A⊗A0 C0 is smooth,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is smooth.

Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the
image of fj,0 in the polynomial ring over Bi. Write B = A⊗A0B0 and C = A⊗A0C0.
Note that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the
polynomial ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk

is a split injection. Let ξk ∈ (f1, . . . , fm)/(f1, . . . , fm)2 be elements such that∑
(∂fj/∂xk)ξk = fj mod (f1, . . . , fm)2. Then for sufficiently large i we can find

elements
ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with
∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit.
Then this i works. □

Lemma 168.9.0C33 Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A ⊗A0 B0 → A ⊗A0 C0 is syntomic (resp. a relative global complete inter-
section),

(2) C0 is of finite presentation over B0.
Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is syntomic
(resp. a relative global complete intersection).

Proof. Assume A ⊗A0 B0 → A ⊗A0 C0 is a relative global complete intersection.
By Lemma 136.11 there exists a finite type Z-algebra R, a ring map R→ A⊗A0B0,
a relative global complete intersection R→ S, and an isomorphism

(A⊗A0 B0)⊗R S −→ A⊗A0 C0

Because R is of finite type (and hence finite presentation) over Z, there exists an i
and a map R→ Ai⊗A0 B0 lifting the map R→ A⊗A0 B0, see Lemma 127.3. Using
the same lemma, there exists an i′ ≥ i such that (Ai ⊗A0 B0) ⊗R S → A ⊗A0 C0
comes from a map (Ai ⊗A0 B0) ⊗R S → Ai′ ⊗A0 C0. Thus we may assume, after
replacing i by i′, that the displayed map comes from an Ai ⊗A0 B0-algebra map

(Ai ⊗A0 B0)⊗R S −→ Ai ⊗A0 C0

By Lemma 168.6 after increasing i this map is an isomorphism. This finishes the
proof in this case because the base change of a relative global complete intersection
is a relative global complete intersection by Lemma 136.9.
Assume A⊗A0 B0 → A⊗A0 C0 is syntomic. Then there exist elements g1, . . . , gm in
A⊗A0 C0 generating the unit ideal such that A⊗A0 B0 → (A⊗A0 C0)gj

is a relative
global complete intersection, see Lemma 136.15. We can find an i and elements
gi,j ∈ Ai ⊗A0 C0 mapping to gj . After increasing i we may assume gi,1, . . . , gi,m
generate the unit ideal of Ai ⊗A0 C0. The result of the previous paragraph implies
that, after increasing i, we may assume the maps Ai ⊗A0 B0 → (Ai ⊗A0 C0)gi,j are
relative global complete intersections. Then Ai ⊗A0 B0 → Ai ⊗A0 C0 is syntomic
by Lemma 136.4 (and the already used Lemma 136.15). □

https://stacks.math.columbia.edu/tag/0C33
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The following lemma is an application of the results above which doesn’t seem to
fit well anywhere else.

Lemma 168.10.034Z Let R → S be a faithfully flat ring map of finite presentation.
Then there exists a commutative diagram

S // S′

R

__ >>

where R→ S′ is quasi-finite, faithfully flat and of finite presentation.

Proof. As a first step we reduce this lemma to the case where R is of finite type
over Z. By Lemma 168.2 there exists a diagram

S0 // S

R0

OO

// R

OO

where R0 is of finite type over Z, and S0 is faithfully flat of finite presentation over
R0 such that S = R⊗R0 S0. If we prove the lemma for the ring map R0 → S0, then
the lemma follows for R → S by base change, as the base change of a quasi-finite
ring map is quasi-finite, see Lemma 122.8. (Of course we also use that base changes
of flat maps are flat and base changes of maps of finite presentation are of finite
presentation.)
Assume R → S is a faithfully flat ring map of finite presentation and that R is
Noetherian (which we may assume by the preceding paragraph). Let W ⊂ Spec(S)
be the open set of Lemma 130.4. As R → S is faithfully flat the map Spec(S) →
Spec(R) is surjective, see Lemma 39.16. By Lemma 130.5 the map W → Spec(R)
is also surjective. Hence by replacing S with a product Sg1 × . . . × Sgm

we may
assume W = Spec(S); here we use that Spec(R) is quasi-compact (Lemma 17.8),
and that the map Spec(S) → Spec(R) is open (Proposition 41.8). Suppose that
p ⊂ R is a prime. Choose a prime q ⊂ S lying over p which corresponds to a
maximal ideal of the fibre ring S ⊗R κ(p). The Noetherian local ring Sq = Sq/pSq

is Cohen-Macaulay, say of dimension d. We may choose f1, . . . , fd in the maximal
ideal of Sq which map to a regular sequence in Sq. Choose a common denominator
g ∈ S, g ̸∈ q of f1, . . . , fd, and consider the R-algebra

S′ = Sg/(f1, . . . , fd).
By construction there is a prime ideal q′ ⊂ S′ lying over p and corresponding to q
(via Sg → S′

g). Also by construction the ring map R → S′ is quasi-finite at q as
the local ring

S′
q′/pS′

q′ = Sq/(f1, . . . , fd) + pSq = Sq/(f1, . . . , fd)
has dimension zero, see Lemma 122.2. Also by construction R → S′ is of finite
presentation. Finally, by Lemma 99.3 the local ring map Rp → S′

q′ is flat (this
is where we use that R is Noetherian). Hence, by openness of flatness (Theorem
129.4), and openness of quasi-finiteness (Lemma 123.13) we may after replacing
g by gg′ for a suitable g′ ∈ S, g′ ̸∈ q assume that R → S′ is flat and quasi-
finite. The image Spec(S′) → Spec(R) is open and contains p. In other words we

https://stacks.math.columbia.edu/tag/034Z
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have shown a ring S′ as in the statement of the lemma exists (except possibly the
faithfulness part) whose image contains any given prime. Using one more time the
quasi-compactness of Spec(R) we see that a finite product of such rings does the
job. □
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