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1. Introduction

In this chapter we introduce some types of morphisms of schemes. A basic reference

is [DG67].

2. Closed immersions

In this section we elucidate some of the results obtained previously on closed im-
mersions of schemes. Recall that a morphism of schemes i : Z — X is defined to
be a closed immersion if (a) ¢ induces a homeomorphism onto a closed subset of X,
(b) i* : Ox — .0y is surjective, and (c) the kernel of i* is locally generated by
sections, see Schemes, Definitions [10.2)and [} It turns out that, given that Z and
X are schemes, there are many different ways of characterizing a closed immersion.

Lemma 2.1. Leti : Z — X be a morphism of schemes. The following are
equivalent:

(1) The morphism i is a closed immersion.

(2) For every affine open Spec(R) = U C X, there exists an ideal I C R such
that i~*(U) = Spec(R/I) as schemes over U = Spec(R).

(3) There exists an affine open covering X =J,c;U;, U; = Spec(R;) and for
every j € J there exists an ideal I; C R; such that i~*(U;j) = Spec(R;/1;)
as schemes over U; = Spec(R;).

(4) The morphism i induces a homeomorphism of Z with a closed subset of X
and it : Ox — 1,0y is surjective.
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(5) The morphism i induces a homeomorphism of Z with a closed subset of X,
the map i* : Ox — .0z is surjective, and the kernel Ker(i') C Ox is a
quasi-coherent sheaf of ideals.

(6) The morphism i induces a homeomorphism of Z with a closed subset of X,
the map i* : Ox — 1,0y is surjective, and the kernel Ker(iﬁ) Cc Ox is a
sheaf of ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Defini-

tions and So (6) < (1). We have (1) = (2) by Schemes, Lemma [10.1}
Trivially (2) = (3).

Assume (3). Each of the morphisms Spec(R;/I;) — Spec(R;) is a closed immersion,
see Schemes, Example Hence i~*(U;) — Uj is a homeomorphism onto its
image and iﬁ|Uj is surjective. Hence i is a homeomorphism onto its image and 4* is
surjective since this may be checked locally. We conclude that (3) = (4).

The implication (4) = (1) is Schemes, Lemma The implication (5) = (6) is
trivial. And the implication (6) = (5) follows from Schemes, Lemma [10.1] O

Lemma 2.2. Let X be a scheme. Leti : Z — X and i’ : Z' — X be closed
immersions and consider the ideal sheaves T = Ker(i*) and ' = Ker((i')*) of Ox.
(1) The morphism i : Z — X factors as Z — Z' — X for some a: Z — Z' if

and only if ' C Z. If this happens, then a is a closed immersion.
(2) We have Z = Z' over X if and only if T =71'.

Proof. This follows from our discussion of closed subspaces in Schemes, Section
especially Schemes, Lemmas [4.5] and It also follows in a straightforward way
from characterization (3) in Lemma [2.1] above. O

Lemma 2.3. Let X be a scheme. Let T C Ox be a sheaf of ideals. The following
are equivalent:

(1) Z is locally generated by sections as a sheaf of Ox-modules,

(2) T is quasi-coherent as a sheaf of Ox-modules, and

(3) there exists a closed immersion i : Z — X of schemes whose corresponding
sheaf of ideals Ker(i*) is equal to T.

Proof. The equivalence of (1) and (2) is immediate from Schemes, Lemma [10.1
If (1) holds, then there is a closed subspace i : Z — X with Z = Ker(i*) by
Schemes, Definition [£.4 and Example[4.3] By Schemes, Lemma[I0.1] this is a closed
immersion of schemes and (3) holds. Conversely, if (3) holds, then (2) holds by
Schemes, Lemma m (which applies because a closed immersion of schemes is a
fortiori a closed immersion of locally ringed spaces). O

Lemma 2.4. The base change of a closed immersion is a closed immersion.
Proof. See Schemes, Lemma [18.2 (]
Lemmal 2.5. A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma but here is another proof.
Namely, it follows from the characterization (3) of closed immersions in Lemma
Since if I C R is an ideal, and J C R/I is an ideal, then J = J/I for some
ideal J C R which contains I and (R/I)/J = R/J. O
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Lemma 2.6. A closed immersion is quasi-compact.
Proof. This lemma is a duplicate of Schemes, Lemma [19.5 O
Lemma 2.7. A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma [23.§ (]

3. Immersions
In this section we collect some facts on immersions.

Lemma 3.1. Let Z =Y — X be morphisms of schemes.
(1) If Z = X is an immersion, then Z —'Y is an immersion.
(2) If Z — X is a quasi-compact immersion and Y — X is quasi-separated,
then Z —'Y is a quasi-compact immersion.
(3) If Z — X is a closed immersion and Y — X is separated, then Z —'Y is
a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

J——=Y xXxZ——>7

NG

Y ——=X
where the composition of the top horizontal arrows is the identity. Let us prove
(1). The first horizontal arrow is a section of Y xx Z — Z, whence an immersion
by Schemes, Lemma [21.11} The arrow ¥ xx Z — Y is a base change of Z — X
hence an immersion (Schemes, Lemma . Finally, a composition of immersions
is an immersion (Schemes, Lemma [24.3). This proves (1). The other two results
are proved in exactly the same manner. ([l

Lemma 3.2. Let h : Z — X be an immersion. If h is quasi-compact, then we

can factor h = io j with j : Z — Z an open immersion and i : Z — X a closed
1Mmersion.

Proof. Note that h is quasi-compact and quasi-separated (see Schemes, Lemma

23.8)). Hence h.Oyz is a quasi-coherent sheaf of Ox-modules by Schemes, Lemma

24.1] This implies that Z = Ker(Ox — h.Oy) is a quasi-coherent sheaf of ideals,

see Schemes, Section Let Z C X be the closed subscheme corresponding to
Z, see Lemma [2:3] By Schemes, Lemma the morphism h factors as h =70
where i : Z — X is the inclusion morphism. To see that j is an open immersion,
choose an open subscheme U C X such that h induces a closed immersion of Z
into U. Then it is clear that Z|y is the sheaf of ideals corresponding to the closed
immersion Z — U. Hence we see that Z = ZNU. ([

Lemma 3.3. Leth: Z — X be an immersion. If Z is reduced, then we can factor
h=io0j withj:Z — Z an open immersion and i : Z — X a closed immersion.

Proof. Let Z C X be the closure of h(Z) with the reduced induced closed sub-
scheme structure, see Schemes, Definition By Schemes, Lemma [12.7] the mor-
phism h factors as h = ioj with i : Z — X the inclusion morphism and j : Z — Z.
From the definition of an immersion we see there exists an open subscheme U C X
such that h factors through a closed immersion into U. Hence Z NU and h(Z) are
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reduced closed subschemes of U with the same underlying closed set. Hence by the
uniqueness in Schemes, Lemma we see that h(Z) =2 ZNU. So j induces an
isomorphism of Z with Z NU. In other words j is an open immersion. O

Example 3.4. Here is an example of an immersion which is not a composition
of an open immersion followed by a closed immersion. Let k be a field. Let X =
Spec(k[z1, 2,3, ...]). Let U = J;_, D(xy,). Then U — X is an open immersion.
Consider the ideals

I, = (at, 2, ... xn 1,2 — 1, Zpt1, Tnya, .. .) C K[z, 29, 23,. . J[1/25].

Note that I,k[z1,z2,x3,...][1/zp2m] = (1) for any m # n. Hence the quasi-
coherent ideals I,, on D(z,) agree on D(z,2,,), namely T,L\D(I”zm) = Op(zpwm) if
n # m. Hence these ideals glue to a quasi-coherent sheaf of ideals Z C Oy. Let
Z C U be the closed subscheme corresponding to Z. Thus Z — X is an immersion.

We claim that we cannot factor Z — X as Z — Z — X, where Z — X is closed and
Z — Z is open. Namely, Z would have to be defined by an ideal I C k[x1, 2, x3, .. .|
such that I,, = Ik[z1,x2,23,...][1/x,]. But the only element f € k[z1, 2,23, .. ]
which ends up in all [, is 0! Hence I does not exist.

Lemma 3.5. Let f:Y — X be a morphism of schemes. If for all y € Y there
is an open subscheme f(y) € U C X such that fly-1qy @ f~HU) — U is an
immersion, then f is an immersion.

Proof. This statement follows readily from the discussion of closed subschemes at
the end of Schemes, Section [10] but we will also give a detailed proof. Let Z C X
be the closure of f(Y). Since taking closures commutes with restricting to opens,
we see from the assumption that f(Y) C Z is open. Hence Z' = Z\ f(Y') is closed.
Hence X' = X\ Z’ is an open subscheme of X and f factors as f : Y — X’ followed
by the inclusion. If y € Y and U C X is as in the statement of the lemma, then
U’ = X’ NU is an open neighbourhood of f’(y) such that (f')~*(U’) — U’ is an
immersion (Lemma with closed image. Hence it is a closed immersion, see
Schemes, Lemma Since being a closed immersion is local on the target (for
example by Lemma [2.1)) we conclude that f’ is a closed immersion as desired. O

4. Closed immersions and quasi-coherent sheaves

The following lemma finally does for quasi-coherent sheaves on schemes what Mod-
ules, Lemma does for abelian sheaves. See also the discussion in Modules,

Section [I3l

Lemma 4.1. Leti: Z — X be a closed immersion of schemes. Let T C Ox be
the quasi-coherent sheaf of ideals cutting out Z. The functor

ix 1 QCoh(Oz) — QCoh(Ox)
is exact, fully faithful, with essential image those quasi-coherent O x -modules G such
that 7G = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas and
Hence Schemes, Lemma, applies and the pushforward of a quasi-coherent
sheaf on Z is indeed a quasi-coherent sheaf on X.

By Modules, Lemma, the functor i, is fully faithful.
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Now we turn to the description of the essential image of the functor 7.. We have
Z(i+F) = 0 for any quasi-coherent Oz-module, for example by Modules, Lemma
Next, suppose that G is any quasi-coherent Ox-module such that ZG = 0. It
suffices to show that the canonical map

is an isomorphisnﬂ In the case of schemes and quasi-coherent modules, working
affine locally on X and using Lemma [2.1] and Schemes, Lemma [7.3] it suffices to

prove the following algebraic statement: Given a ring R, an ideal I and an R-module
N such that IN = 0 the canonical map

N —N®rR/I, n—n®l
is an isomorphism of R-modules. Proof of this easy algebra fact is omitted. O

Let i : Z — X be a closed immersion. Because of the lemma above we often, by
abuse of notation, denote F the sheaf i, F on X.

Lemma 4.2. Let X be a scheme. Let F be a quasi-coherent Ox-module. Let
G C F be a Ox-submodule. There exists a unique quasi-coherent O x-submodule
G' C G with the following property: For every quasi-coherent Ox-module H the
map

Homo, (H,G') — Homo, (H,G)
is bijective. In particular G' is the largest quasi-coherent O x -submodule of F con-
tained in G.

Proof. Let G,, a € A be the set of quasi-coherent O x-submodules contained in G.

Then the image G’ of
D, 07
a€A

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Schemes, Section The module G’ is contained in G. Hence this is the largest
quasi-coherent O x-module contained in G.

To prove the formula, let H be a quasi-coherent Ox-module and let a : H — G be
an Ox-module map. The image of the composition H — G — F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G’. Hence
« factors through G’ as desired. O

Lemma 4.3. Leti: Z — X be a closed immersion of schemes. There is a functmﬂ
i' : QCoh(Ox) — QCoh(Oyz) which is a right adjoint to i.. (Compare Modules,
Lemmal6.5)

Proof. Given quasi-coherent Ox-module G we consider the subsheaf Hz(G) of
G of local sections annihilated by Z. By Lemma there is a canonical largest
quasi-coherent O x-submodule Hz(G)'. By construction we have

HOmoX (7:*}—’ HZ(g)/) = HomOx (i*f, g)
for any quasi-coherent O z-module F. Hence we can set i'G = i*(Hz(G)'). Details

omitted. O

IThis was proved in a more general situation in the proof of Modules, Lemma m
2This is likely nonstandard notation.
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Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed
subschemes (see Lemma [2.3) we can define scheme theoretic intersections and
unions of closed subschemes.

Definition 4.4. Let X be a scheme. Let Z,Y C X be closed subschemes corre-
sponding to quasi-coherent ideal sheaves Z,J C Ox. The scheme theoretic inter-
section of Z and Y is the closed subscheme of X cut out by Z 4+ J. The scheme
theoretic union of Z and Y is the closed subscheme of X cut out by ZN J.

Lemma 4.5. Let X be a scheme. Let Z,Y C X be closed subschemes. Let ZNY
be the scheme theoretic intersection of Z andY. Then ZNY — Z and ZNY =Y
are closed immersions and

ZNY — 7

|

Y — X

is a cartesian diagram of schemes, i.e., ZNY =Z xx Y.

Proof. The morphisms ZNY — Z and ZNY — Y are closed immersions by
Lemma Let U = Spec(A) be an affine open of X and let ZNU and Y NU
correspond to the ideals I € A and J C A. Then ZNY NU corresponds to
I'+J C A Since A/I®4 A/J = A/(I + J) we see that the diagram is cartesian
by our description of fibre products of schemes in Schemes, Section O

Lemma 4.6. Let S be a scheme. Let X, Y C S be closed subschemes. Let X UY
be the scheme theoretic union of X and Y. Let X N'Y be the scheme theoretic
intersection of X andY. Then X — XUY andY — X UY are closed immersions,
there is a short exact sequence

O—)OXUyﬁOXXOy%Ome—)O
of Og-modules, and the diagram
XNy ——X

L

Y ——=XUY

is cocartesian in the category of schemes, i.e., XUY = X lIxny Y.

Proof. The morphisms X — X UY and Y — X UY are closed immersions by
Lemma In the short exact sequence we use the equivalence of Lemma to
think of quasi-coherent modules on closed subschemes of S as quasi-coherent mod-
ules on S. For the first map in the sequence we use the canonical maps Oxyy — Ox
and Oxyy — Oy and for the second map we use the canonical map Ox — Oxny
and the negative of the canonical map Oy — Oxny. Then to check exactness we
may work affine locally. Let U = Spec(A) be an affine open of S and let X NU and
Y NU correspond to the ideals I C A and J C A. Then (X UY) NU corresponds
tolINJ C Aand X NY NU corresponds to I + J C A. Thus exactness follows
from the exactness of

0> A/INJ = A/IxA/J—A/I+J)—=0

To show the diagram is cocartesian, suppose we are given a scheme T and mor-
phisms of schemes f : X — T, g : Y — T agreeing as morphisms X NY — T.
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Goal: Show there exists a unique morphism h : X UY — T agreeing with f and g¢.
To construct h we may work affine locally on X UY, see Schemes, Section If
s€X,s¢Y, then X - X UY is an isomorphism in a neighbourhood of s and it
is clear how to construct h. Similarly for s € Y, s € X. For s € X NY we can pick
an affine open V' = Spec(B) C T containing f(s) = g(s). Then we can choose an
affine open U = Spec(A) C S containing s such that f(X NU) and g(Y NU) are
contained in V. The morphisms f|xn~y and glyny into V correspond to ring maps

B— A/I and B— A/J

which agree as maps into A/(I + J). By the short exact sequence displayed above
there is a unique lift of these ring homomorphism to a ring map B — A/INJ as
desired. 0

5. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent
modules on schemes. Recall that the support of a sheaf of modules has been defined
in Modules, Section [5l On the other hand, the support of a module was defined in
Algebra, Section [62] These match.

Lemmal 5.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U C X be an affine open, and set M = T'(U,F). Let x € U, and let
p C A be the corresponding prime. The following are equivalent

(1) p is in the support of M, and

(2) x is in the support of F.

Proof. This follows from the equality F, = M,, see Schemes, Lemma and the
definitions. O

Lemma 5.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. The
support of F is closed under specialization.

Proof. If 2/ ~~ z is a specialization and F, = 0 then F,/ is zero, as F, is a
localization of the module F,. Hence the complement of Supp(F) is closed under
generalization. 0

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 5.3. Let F be a finite type quasi-coherent module on a scheme X. Then
(1) The support of F is closed.
(2) Forz € X we have
x € Supp(F) & Fp #0 & Fp Qoy., k(x) #0.

(3) For any morphism of schemes f : Y — X the pullback f*F is of finite type
as well and we have Supp(f*F) = f~1(Supp(F)).

Proof. Part (1) is a reformulation of Modules, Lemma You can also combine
Lemma Properties, Lemma and Algebra, Lemma to see this. The
first equivalence in (2) is the definition of support, and the second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma Let f:Y — X be a
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morphism of schemes. Note that f*F is of finite type by Modules, Lemma[9.2] For
the final assertion, let y € Y with image x € X. Recall that

(f*}—)y = -Fx ®OX7I OY,yv

see Sheaves, Lemma Hence (f*F), ® k(y) is nonzero if and only if F, ® x(z)
is nonzero. By (2) this implies z € Supp(F) if and only if y € Supp(f*F), which is
the content of assertion (3). O

Lemmal 5.4. Let F be a finite type quasi-coherent module on a scheme X. There
exists a smallest closed subscheme i : Z — X such that there exists a quasi-coherent
Ogz-module G with i,G = F. Moreover:

(1) If Spec(A) C X is any affine open, and F|spec(a) = M then Z NSpec(A) =

Spec(A/I) where I = Anny(M).

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.

(3) The quasi-coherent sheaf G is of finite type.

(4) The support of G and of F is Z.

Proof. Suppose that i’ : Z/ — X is a closed subscheme which satisfies the descrip-
tion on open affines from the lemma. Then by Lemma we see that F = i.G’
for some unique quasi-coherent sheaf G’ on Z’. Furthermore, it is clear that Z’ is
the smallest closed subscheme with this property (by the same lemma). Finally,
using Properties, Lemma and Algebra, Lemma it follows that G’ is of finite
type. We have Supp(G’) = Z by Algebra, Lemma Hence, in order to prove
the lemma it suffices to show that the characterization in (1) actually does define
a closed subscheme. And, in order to do this it suffices to prove that the given
rule produces a quasi-coherent sheaf of ideals, see Lemma This comes down to
the following algebra fact: If A is a ring, f € A, and M is a finite A-module, then
Annys(M)y = Anng, (My). We omit the proof. O

Definition| 5.5. Let X be a scheme. Let F be a quasi-coherent O x-module of
finite type. The scheme theoretic support of F is the closed subscheme Z C X
constructed in Lemma [5.4]

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma [4.1).

6. Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 6.1. Let f : X — Y be a morphism of schemes. There exists a closed
subscheme Z CY such that f factors through Z and such that for any other closed
subscheme Z' C'Y such that f factors through Z' we have Z C 7Z'.

Proof. Let Z = Ker(Oy — f.Ox). If T is quasi-coherent then we just take Z to
be the closed subscheme determined by Z, see Lemma [2.3] This works by Lemma
22 In general the same lemma requires us to show that there exists a largest
quasi-coherent sheaf of ideals Z’ contained in Z. This follows from Lemma[4.2l O

Definition 6.2. Let f: X — Y be a morphism of schemes. The scheme theoretic
image of f is the smallest closed subscheme Z C Y through which f factors, see
Lemma [6.] above.
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For a morphism f : X — Y of schemes with scheme theoretic image Z we often
denote f : X — Z the factorization of f through its scheme theoretic image. If the
morphism f is not quasi-compact, then (in general)
(1) the set theoretic inclusion f(X) C Z is not an equality, i.e., f(X) C Z is
not a dense subset, and
(2) the construction of the scheme theoretic image does not commute with
restriction to open subschemes to Y.

In Examples, Section [24] the reader finds an example for both phenomena. These
phenomena can arise even for immersions, see Examples, Section However, the
next lemma shows that both disasters are avoided when the morphism is quasi-
compact.

Lemmal6.3. Let f: X — Y be a morphism of schemes. Let Z C'Y be the scheme
theoretic image of f. If f is quasi-compact then
(1) the sheaf of ideals T = Ker(Oy — f.Ox) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subscheme determined by T,
(3) for any open U C'Y the scheme theoretic image of fly—1vy : f~HU) = U
is equal to ZNU, and
(4) the image f(X) C Z is a dense subset of Z, in other words the morphism
X — Z is dominant (see Definition .

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since
the formation of Z commutes with restriction to open subschemes of Y. And if
(1) holds then in the proof of Lemma we showed (2). Thus it suffices to prove
that 7 is quasi-coherent. Since the property of being quasi-coherent is local we may
assume Y is affine. As f is quasi-compact, we can find a finite affine open covering
X = Ui:l,...,n U;. Denote f’ the composition

X’:HUi—>X—>Y.

Then f,Ox is a subsheaf of f,Ox/, and hence Z = Ker(Oy — f.Ox/). By Schemes,
Lemma the sheaf f.Ox/ is quasi-coherent on Y. Hence we win. O

Example 6.4. If A — B is a ring map with kernel I, then the scheme theoretic
image of Spec(B) — Spec(A) is the closed subscheme Spec(A/I) of Spec(A). This
follows from Lemma [6.31

If the morphism is quasi-compact, then the scheme theoretic image only adds points
which are specializations of points in the image.

Lemma 6.5. Let f: X — Y be a quasi-compact morphism. Let Z be the scheme

theoretic image of f. Let z € ZE| There exists a valuation ring A with fraction field
K and a commutative diagram

Spec(K) ——— =X

e

Spec(d) —Z ——Y
such that the closed point of Spec(A) maps to z. In particular any point of Z is the

specialization of a point of f(X).

3By Lemma set-theoretically Z agrees with the closure of f(X) in Y.
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Proof. Let z € Spec(R) = V C Y be an affine open neighbourhood of z. By
Lemma the intersection Z NV is the scheme theoretic image of f~1(V) — V.
Hence we may replace Y by V and assume Y = Spec(R) is affine. In this case X
is quasi-compact as f is quasi-compact. Say X = U; U...U U, is a finite affine
open covering. Write U; = Spec(4;). Let I = Ker(R — A; x ... x 4,). By
Lemma [6.3| again we see that Z corresponds to the closed subscheme Spec(R/I) of
Y. If p C R is the prime corresponding to z, then we see that I, C R, is not an
equality. Hence (as localization is exact, see Algebra, Proposition we see that
Ry, — (A1)p x ... x (Ay), is not zero. Hence one of the rings (A4;), is not zero.
Hence there exists an i and a prime q; C A; lying over a prime p; C p. By Algebra,
Lemma we can choose a valuation ring A C K = k(q;) dominating the local
ring R, /p; Ry, C k(q;). This gives the desired diagram. Some details omitted. O

Lemma 6.6. Let
X —Y
J« ) J/
f2
Xo——Y,

be a commutative diagram of schemes. Let Z; C Y;, 1 = 1,2 be the scheme theoretic
image of f;. Then the morphism Y, — Y5 induces a morphism Zy — Zs and a
commutative diagram

X1 —=21——=Y;
Xo——>Zy ——Y,

Proof. The scheme theoretic inverse image of Zs in Y7 is a closed subscheme of Y;
through which f; factors. Hence Z; is contained in this. This proves the lemma. [

Lemma 6.7. Let f: X — Y be a morphism of schemes. If X is reduced, then the
scheme theoretic image of f is the reduced induced scheme structure on f(X).

Proof. This is true because the reduced induced scheme structure on f(X) is

clearly the smallest closed subscheme of Y through which f factors, see Schemes,
Lemma, [12.7 O

Lemma 6.8. Let f: X — Y be a separated morphism of schemes. Let V CY be
a retrocompact open. Let s : V — X be a morphism such that f os = idy. Let Y’
be the scheme theoretic image of s. Then Y' — Y is an isomorphism over V.

Proof. The assumption that V is retrocompact in Y (Topology, Definition
means that V' — Y is a quasi-compact morphism. By Schemes, Lemma the
morphism s : V — X is quasi-compact. Hence the construction of the scheme
theoretic image Y’ of s commutes with restriction to opens by Lemma [6.3] In
particular, we see that Y/ N f~1(V) is the scheme theoretic image of a section of
the separated morphism f~!(V) — V. Since a section of a separated morphism is
a closed immersion (Schemes, Lemma [21.11)), we conclude that Y’ N f=3(V) — V/
is an isomorphism as desired. O
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7. Scheme theoretic closure and density

We take the following definition from [DG67, IV, Definition 11.10.2].

Definition/ 7.1. Let X be a scheme. Let U C X be an open subscheme.

(1) The scheme theoretic image of the morphism U — X is called the scheme
theoretic closure of U in X.

(2) We say U is scheme theoretically dense in X if for every open V C X the
scheme theoretic closure of U NV in V is equal to V.

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X, see Example [7.2] This is
somewhat inelegant; but see Lemmas and below. On the other hand, with
this definition U is scheme theoretically dense in X if and only if for every V C X
open the ring map Ox (V) — Ox (U NV) is injective, see Lemma below. In
particular we see that scheme theoretically dense implies dense which is pleasing.

Example 7.2. Here is an example where scheme theoretic closure being X does
not imply dense for the underlying topological spaces. Let k be a field. Set A =
klx, z1,22,...]/(2™2y) Set I = (z1,29,...) C A. Consider the affine scheme X =
Spec(A) and the open subscheme U = X \ V(I). Since A — [],, A, is injective
we see that the scheme theoretic closure of U is X. Consider the morphism X —
Spec(k[z]). This morphism is surjective (set all z, = 0 to see this). But the
restriction of this morphism to U is not surjective because it maps to the point
x = 0. Hence U cannot be topologically dense in X.

Lemma 7.3. Let X be a scheme. Let U C X be an open subscheme. If the
inclusion morphism U — X is quasi-compact, then U is scheme theoretically dense
in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma part (3). O

Example 7.4. Let A be a ring and X = Spec(A). Let fi1,...,fn € A and let
U=D(fi)U...UD(f,). Let I = Ker(A — [[Ay,). Then the scheme theoretic
closure of U in X is the closed subscheme Spec(A/I) of X. Note that U — X is
quasi-compact. Hence by Lemma [7.3] we see U is scheme theoretically dense in X
if and only if I = 0.

Lemma 7.5. Letj: U — X be an open immersion of schemes. Then U is scheme
theoretically dense in X if and only if Ox — j.Oy is injective.

Proof. If Ox — j.Oyp is injective, then the same is true when restricted to any
open V of X. Hence the scheme theoretic closure of U NV in V is equal to V,
see proof of Lemma [6.1] Conversely, suppose that the scheme theoretic closure of
UNYV isequal to V for all opens V. Suppose that Ox — j.Op is not injective.
Then we can find an affine open, say Spec(A) = V C X and a nonzero element
f € A such that f maps to zero in I'(V NU,Ox). In this case the scheme theoretic
closure of VN U in V is clearly contained in Spec(A/(f)) a contradiction. O

Lemmal 7.6. Let X be a scheme. If U, V are scheme theoretically dense open
subschemes of X, then so isUNV.

Proof. Let W C X be any open. Consider the map Ox (W) - Ox(WNV) —
Ox(WnNnVnNU). By Lemma both maps are injective. Hence the composite is
injective. Hence by Lemma [7.5]U NV is scheme theoretically dense in X. g
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Lemma 7.7. Let h: Z — X be an immersion. Assume either h is quasi-compact
or Z is reduced. Let Z C X be the scheme theoretic image of h. Then the morphism
7 — Z is an open immersion which identifies Z with a scheme theoretically dense
open subscheme of Z. Moreover, Z is topologically dense in Z.

Proof. By Lemma or Lemma we can factor Z — X as 7 — Z; — X
with Z — Z; open and Z; — X closed. On the other hand, let 7 — Z C X
be the scheme theoretic closure of Z — X. We conclude that Z C Z;. Since Z
is an open subscheme of Z; it follows that Z is an open subscheme of Z as well.
In the case that Z is reduced we know that Z C Z; is topologically dense by the
construction of Z; in the proof of Lemma Hence Z; and Z have the same
underlying topological spaces. Thus Z C Z; is a closed immersion into a reduced
scheme which induces a bijection on underlying topological spaces, and hence it is
an isomorphism. In the case that Z — X is quasi-compact we argue as follows:
The assertion that Z is scheme theoretically dense in Z follows from Lemma
part (3). The last assertion follows from Lemma [6.3] part (4). O

Lemma 7.8. Let X be a reduced scheme and let U C X be an open subscheme.
Then the following are equivalent

(1) U is topologically dense in X,

(2) the scheme theoretic closure of U in X is X, and

(3) U is scheme theoretically dense in X.

Proof. This follows from Lemma [T.7and the fact that a closed subscheme Z of X
whose underlying topological space equals X must be equal to X as a scheme. [

Lemma 7.9. Let X be a scheme and let U C X be a reduced open subscheme.
Then the following are equivalent

(1) the scheme theoretic closure of U in X is X, and
(2) U is scheme theoretically dense in X.

If this holds then X is a reduced scheme.

Proof. This follows from Lemma [[.71and the fact that the scheme theoretic closure
of U in X is reduced by Lemma[6.7] O

Lemmal 7.10. Let S be a scheme. Let X, Y be schemes over S. Let f,g: X —Y
be morphisms of schemes over S. Let U C X be an open subscheme such that
flu = glu. If the scheme theoretic closure of U in X is X andY — S is separated,
then f =g.

Proof. Follows from the definitions and Schemes, Lemma [21.5 (]

8. Dominant morphisms

The definition of a morphism of schemes being dominant is a little different from
what you might expect if you are used to the notion of a dominant morphism of
varieties.

Definition 8.1. A morphism f : X — S of schemes is called dominant if the
image of f is a dense subset of S.
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So for example, if £ is an infinite field and A1, A2, ... is a countable collection of
distinct elements of k, then the morphism

]_[,71 , Spec(k) —» Spec(k[z])
with th factor mapping to the point x = ); is dominant.

Lemma 8.2. Let f: X — S be a morphism of schemes. If every generic point of
every irreducible component of S is in the image of f, then f is dominant.

Proof. This is a topological fact which follows directly from the fact that the
topological space underlying a scheme is sober, see Schemes, Lemma [11.1] and
that every point of S is contained in an irreducible component of S, see Topology,
Lemma 8.3 O

The expectation that morphisms are dominant only if generic points of the target
are in the image does hold if the morphism is quasi-compact.

Lemma 8.3. Let f: X — S be a quasi-compact morphism of schemes. Then f is
dominant if and only if for every irreducible component Z C S the generic point of
Z is in the image of f.

Proof. Let V C S be an affine open. Because f is quasi-compact we may choose
finitely many affine opens U; C f~%(V), i = 1,...,n covering f~(V). Consider
the morphism of affines

'f, : Hi:l,.“,n U’L —V

A disjoint union of affines is affine, see Schemes, Lemma Generic points of
irreducible components of V' are exactly the generic points of the irreducible com-
ponents of S that meet V. Also, f is dominant if and only if f’ is dominant no
matter what choices of V,n,U; we make above. Thus we have reduced the lemma
to the case of a morphism of affine schemes. The affine case is Algebra, Lemma
30.6l |

Lemma 8.4. Let f: X — S be a quasi-compact dominant morphism of schemes.
Let g: S’ — S be a morphism of schemes and denote f' : X' — S’ the base change
of f by g. If generalizations lift along g, then f' is dominant.

Proof. Observe that f’ is quasi-compact by Schemes, Lemma[19.3] Let 5’ € S’ be
the generic point of an irreducible component of S’. If generalizations lift along g,
then n = g(n’) is the generic point of an irreducible component of S. By Lemma
m we see that n is in the image of f. Hence 7’ is in the image of f’ by Schemes,
Lemma [17.5 It follows that f’ is dominant by Lemma [8.3 O

Lemma 8.5. Let f: X — S be a quasi-compact morphism of schemes. Letn € S
be a generic point of an irreducible component of S. If n & f(X) then there exists
an open neighbourhood V- C S of n such that f=1(V) = 0.

Proof. Let Z C S be the scheme theoretic image of f. We have to show that n & Z.
This follows from Lemma but can also be seen as follows. By Lemma the
morphism X — Z is dominant, which by Lemma means all the generic points
of all irreducible components of Z are in the image of X — Z. By assumption we
see that n € Z since 1 would be the generic point of some irreducible component of
Z if it were in Z. O
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There is another case where dominant is the same as having all generic points of
irreducible components in the image.

Lemmal 8.6. Let f : X — S be a morphism of schemes. Suppose that X has
finitely many irreducible components. Then f is dominant (if and) only if for every
irreducible component Z C S the generic point of Z is in the image of f. If so,
then S has finitely many irreducible components as well.

Proof. Assume f is dominant. Say X = Z; U Zy U...U Z, is the decomposition
of X into irreducible components. Let & € Z; be its generic point, so Z; = {&}.
Note that f(Z;) is an irreducible subset of S. Hence

s=rX)=Jr@)=Jiren

is a finite union of irreducible subsets whose generic points are in the image of f.
The lemma follows. O

Lemma 8.7. Let f: X — Y be a morphism of integral schemes. The following
are equivalent

(1) f is dominant,

(2) f maps the generic point of X to the generic point of Y,

(3) for some nonempty affine opens U C X and V C Y with f(U) C V the
ring map Oy (V) — Ox (U) is injective,

(4) for all nonempty affine opens U C X and V C Y with f(U) CV the ring
map Oy (V) — Ox (U) is injective,

(5) for some x € X with image y = f(x) € Y the local ring map Oy,y — Ox »
1s injective, and

(6) for all x € X with image y = f(x) € Y the local ring map Oy,y — Ox 5 is
injective.

Proof. The equivalence of (1) and (2) follows from Lemma [8.6] Let U C X and
V' CY be nonempty affine opens with f(U) C V. Recall that the rings A = Ox (U)
and B = Oy (V) are integral domains. The morphism f|y : U — V corresponds to
a ring map ¢ : B — A. The generic points of X and Y correspond to the prime
ideals (0) C A and (0) C B. Thus (2) is equivalent to the condition (0) = ¢~1((0)),
i.e., to the condition that ¢ is injective. In this way we see that (2), (3), and (4)
are equivalent. Similarly, given x and y as in (5) the local rings Ox , and Oy, are
domains and the prime ideals (0) C Ox , and (0) C Oy, correspond to the generic
points of X and Y (via the identification of the spectrum of the local ring at = with
the set of points specializing to x, see Schemes, Lemma . Thus we can argue
in the exact same manner as above to see that (2), (5), and (6) are equivalent. O

9. Surjective morphisms

Definition 9.1. A morphism of schemes is said to be surjective if it is surjective
on underlying topological spaces.

Lemma 9.2. The composition of surjective morphisms is surjective.

Proof. Omitted. O
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Lemma 9.3. Let X and Y be schemes over a base scheme S. Given points x € X
and y €Y, there is a point of X XgY mapping to x and y under the projections if
and only if x and y lie above the same point of S.

Proof. The condition is obviously necessary, and the converse follows from the
proof of Schemes, Lemma [17.5 O

Lemma) 9.4. The base change of a surjective morphism is surjective.

Proof. Let f: X — Y be a morphism of schemes over a base scheme S. If ' — §
is a morphism of schemes, let p : Xg» — X and ¢ : Ys» — Y be the canonical
projections. The commutative square

XS’T>X

N

|

identifies Xg/ as a fibre product of X — Y and Yg — Y. Let Z be a subset of
the underlying topological space of X. Then ¢~ *(f(Z)) = fs/(p~*(Z)), because
y' € ¢ 1 (f(2)) if and only if q(y') = f(z) for some z € Z, if and only if, by Lemma
there exists 2/ € Xg/ such that fs/(2’) = ¢/ and p(z’) = z. In particular taking
Z = X we see that if f is surjective so is the base change fs/ : Xg — Y. O

Example| 9.5. Bijectivity is not stable under base change, and so neither is
injectivity. For example consider the bijection Spec(C) — Spec(R). The base
change Spec(C ®gr C) — Spec(C) is not injective, since there is an isomorphism
C ®r C = C x C (the decomposition comes from the idempotent W) and
hence Spec(C ®gr C) has two points.

X——=Y
f
N
A
be a commutative diagram of morphisms of schemes. If f is surjective and p is
quasi-compact, then q is quasi-compact.

Lemma 9.6. Let

Proof. Let W C Z be a quasi-compact open. By assumption p~1(W) is quasi-
compact. Hence by Topology, Lemma the inverse image ¢~ 1(W) = f(p~1(W))
is quasi-compact too. This proves the lemma. ([

10. Radicial and universally injective morphisms

In this section we define what it means for a morphism of schemes to be radicial
and what it means for a morphism of schemes to be universally injective. We then
show that these notions agree. The reason for introducing both is that in the case
of algebraic spaces there are corresponding notions which may not always agree.

Definition 10.1. Let f: X — S be a morphism.
(1) We say that f is universally injective if and only if for any morphism of
schemes S’ — S the base change f': X — S’ is injective (on underlying
topological spaces).
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(2) We say f is radicial if f is injective as a map of topological spaces, and for
every € X the field extension x(x)/k(f(x)) is purely inseparable.

01S4 Lemmal 10.2. Let f : X — S be a morphism of schemes. The following are

equivalent:

(1) For every field K the induced map Mor(Spec(K), X) — Mor(Spec(K), S)
15 injective.

(2) The morphism f is universally injective.

(3) The morphism f is radicial.

(4) The diagonal morphism Ax s : X — X xg X is surjective.

Proof. Let K be a field, and let s : Spec(K) — S be a morphism. Giving a
morphism z : Spec(K) — X such that f oz = s is the same as giving a section
of the projection Xx = Spec(K) xg X — Spec(K), which in turn is the same as
giving a point « € Xk whose residue field is K. Hence we see that (2) implies (1).

Conversely, suppose that (1) holds. Assume that z, 2’ € X map to the same point
s’ € §’. Choose a commutative diagram

K<—k(x)

|

k(z') =<— k()

of fields. By Schemes, Lemma we get two morphisms a,a’ : Spec(K) — Xg.
One corresponding to the point z and the embedding x(x) C K and the other
corresponding to the point 2’ and the embedding k(z’) C K. Also we have f' oa =
f'oa’. Condition (1) now implies that the compositions of @ and o’ with Xg — X
are equal. Since Xg is the fibre product of S’ and X over S we see that a = a’.
Hence z = /. Thus (1) implies (2).

If there are two different points x, 2’ € X mapping to the same point of s then (2)
is violated. If for some s = f(x), © € X the field extension x(z)/k(s) is not purely
inseparable, then we may find a field extension K/k(s) such that x(x) has two
k(s)-homomorphisms into K. By Schemes, Lemma this implies that the map
Mor(Spec(K), X) — Mor(Spec(K), S) is not injective, and hence (1) is violated.
Thus we see that the equivalent conditions (1) and (2) imply f is radicial, i.e., they
imply (3).

Assume (3). By Schemes, Lemmaa morphism Spec(K) — X is given by a pair
(z,k(x) = K). Property (3) says exactly that associating to the pair (z, k(z) = K)
the pair (s, k(s) — x(x) = K) is injective. In other words (1) holds. At this point
we know that (1), (2) and (3) are all equivalent.

Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of X xg X
is given by a quadruple (z1,x2,s,p), where z1,22 € X, f(x1) = f(z2) = s and
p C K(71) @y (s) K(2) is a prime ideal, see Schemes, Lemma@ If f is universally
injective, then by taking S’ = X in the definition of universally injective, Ax/g
must be surjective since it is a section of the injective morphism X xg X — X.
Conversely, if Ay/g is surjective, then always x1 = z2 = z and there is exactly one
such prime ideal p, which means that x(s) C k(z) is purely inseparable. Hence f is
radicial. Alternatively, if A /g is surjective, then for any S” — S the base change
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Ax,, /s is surjective which implies that f is universally injective. This finishes the
proof of the lemma. ([

Lemma 10.3. A universally injective morphism is separated.

Proof. Combine Lemma with the remark that X — S is separated if and
only if the image of Ay,g is closed in X X X, see Schemes, Definition and
the discussion following it. |

Lemmal 10.4. A base change of a universally injective morphism is universally
injective.

Proof. This is formal. |

Lemma 10.5. A composition of radicial morphisms is radicial, and so the same
holds for the equivalent condition of being universally injective.

Proof. Omitted. O

11. Affine morphisms

Definition 11.1. A morphism of schemes f : X — S is called affine if the inverse
image of every affine open of S is an affine open of X.

Lemmal 11.2. An affine morphism is separated and quasi-compact.

Proof. Let f: X — S be affine. Quasi-compactness is immediate from Schemes,
Lemmal[19.2] We will show f is separated using Schemes, Lemma[21.7] Let xq,z2 €
X be points of X which map to the same point s € S. Choose any affine open
W C S containing s. By assumption f~!(W) is affine. Apply the lemma cited with
U=V =f"1Ww). a

Lemmal 11.3. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is affine.
(2) There exists an affine open covering S = |JW; such that each f~Y(W;) is
affine.
(3) There exists a quasi-coherent sheaf of Og-algebras A and an isomorphism
X = %S(.A) of schemes over S. See Constructions, Sectionfor nota-
tion.

Moreover, in this case X = Specs(f*OX).
Proof. It is obvious that (1) implies (2).

Assume S = (J;; Wj is an affine open covering such that each f~*(W}) is affine.
By Schemes, Lemma we see that f is quasi-compact. By Schemes, Lemma
we see the morphism f is quasi-separated. Hence by Schemes, Lemma [24.1
the sheaf A = f,Ox is a quasi-coherent sheaf of Og-algebras. Thus we have the
scheme ¢ : Y = SpecS(A) — S over S. The identity map id : A = f,Ox — f.Ox
provides, via the definition of the relative spectrum, a morphism can : X — Y over
S, see Constructions, Lemma By assumption and the lemma just cited the
restriction can|y-1w,y : f7H(W;) = g~'(W;) is an isomorphism. Thus can is an
isomorphism. We have shown that (2) implies (3).

[DG67, 11, Corollary
1.3.2]
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Assume (3). By Constructions, Lemma [4.6] we see that the inverse image of every
affine open is affine, and hence the morphism is affine by definition. ([

Remark 11.4. We can also argue directly that (2) implies (1) in Lemmaabove
as follows. Assume S = |JW; is an affine open covering such that each f~!(W;)
is affine. First argue that A = f,Ox is quasi-coherent as in the proof above. Let
Spec(R) =V C S be affine open. We have to show that f=1(V) is affine. Set A =
A(V) = f.0x (V) = Ox(f~1(V)). By Schemes, Lemma there is a canonical
morphism ¢ : f~1(V) — Spec(A) over Spec(R) = V. By Schemes, Lemma
there exists an integer n > 0, a standard open covering V = Ui:l,...,n D(h;),
h; € R, and a map a : {1,...,n} — J such that each D(h;) is also a standard
open of the affine scheme W,;y. The inverse image of a standard open under a
morphism of affine schemes is standard open, see Algebra, Lemma Hence we
see that f~1(D(h;)) is a standard open of f~1(Wy(;), in particular that f~'(D(h;))
is affine. Because A is quasi-coherent we have Ay, = A(D(h;)) = Ox (f~H(D(h;))),
so f~1(D(h;)) is the spectrum of Aj,. It follows that the morphism ¢ induces an
isomorphism of the open f~*(D(h;)) with the open Spec(Ay,) of Spec(A). Since
F~YV)=Uf HD(h;)) and Spec(A) = |JSpec(4y,) we win.

Lemma 11.5. Let S be a scheme. There is an anti-equivalence of categories

Schemes affine quasi-coherent sheaves
over S of Og-algebras

which associates to f : X — S the sheaf f.Ox. Moreover, this equivalence is
compatible with arbitrary base change.

Proof. The functor from right to left is given by Spec = The two functors are
mutually inverse by Lemma and Constructions, Lemma [4.6| part (3). The final
statement is Constructions, Lemma part (2). O

Lemmal 11.6. Let f: X — S be an affine morphism of schemes. Let A= f,Ox.
The functor F — f«JF induces an equivalence of categories

category of quasi-coherent category of quasi-coherent
—
Ox-modules A-modules

Moreover, an A-module is quasi-coherent as an Og-module if and only if it is quasi-
coherent as an A-module.
Proof. Omitted. O

Lemma 11.7. The composition of affine morphisms is affine.

Proof. Let f: X — Y and g: Y — Z be affine morphisms. Let U C Z be affine
open. Then g=1(U) is affine by assumption on g. Whereupon f~1(g=1(U)) is affine
by assumption on f. Hence (go f)~1(U) is affine. O

Lemma 11.8. The base change of an affine morphism is affine.

Proof. Let f : X — S be an affine morphism. Let S’ — S be any morphism.
Denote [/ : Xg» = S’ xg X — S’ the base change of f. For every s’ € S’ there
exists an open affine neighbourhood s’ € V' C S’ which maps into some open affine
U C S. By assumption f~1(U) is affine. By the material in Schemes, Section
we see that f~1(U)y =V xy f~1(U) is affine and equal to (f')~(V). This proves
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that S’ has an open covering by affines whose inverse image under f’ is affine. We

conclude by Lemma [IT.3] above. O
Lemma 11.9. A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma See Schemes, Lemma
for a complete statement. O
Lemma 11.10. Let X be a scheme. Let L be an invertible Ox-module. Let
s € (X, L). The inclusion morphism j : Xy — X is affine.

Proof. This follows from Properties, Lemma and the definition. O
Lemma 11.11. Suppose g : X — Y is a morphism of schemes over S.

(1) If X is affine over S and A:Y =Y xgY is affine, then g is affine.

(2) If X is affine over S and Y is separated over S, then g is affine.

(3) A morphism from an affine scheme to a scheme with affine diagonal is

affine.

(4) A morphism from an affine scheme to a separated scheme is affine.
Proof. Proof of (1). The base change X xgY — Y is affine by Lemmam The
morphism (1, g) : X — X XxgY is the base change of Y — Y xgY by the morphism
X xsgY =Y xgY. Hence it is affine by Lemma [11.8 The composition of affine
morphisms is affine (see Lemma and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma [11.9) and Y/S separated means A is a
closed immersion. Parts (3) and (4) are special cases of (1) and (2). O
Lemma 11.12. A morphism between affine schemes is affine.

Proof. Immediate from Lemma [11.11| with S = Spec(Z). It also follows directly
from the equivalence of (1) and (2) in Lemma [11.3] O
Lemma 11.13. Let S be a scheme. Let A be an Artinian ring. Any morphism
Spec(A4) — S is affine.

Proof. Omitted. (]
Lemmal 11.14. Let j:Y — X be an immersion of schemes. Assume there exists

an open U C X with complement Z = X \ U such that
(1) U — X is affine,
(2) 77YU) = U is affine, and
(3) J(Y)N Z is closed.

Then j is affine. In particular, if X is affine, so is Y.

Proof. By Schemes, Definition there exists an open subscheme W C X such
that j factors as a closed immersion ¢ : Y — W followed by the inclusion morphism
W — X. Since a closed immersion is affine (Lemma , we see that for every
x € W there is an affine open neighbourhood of  in X whose inverse image under
j is affine. If z € U, then the same thing is true by assumption (2). Finally,
assume x € Z and ¢ W. Then z ¢ j(Y) N Z. By assumption (3) we can find
an affine open neighbourhood V' C X of x which does not meet j(Y) N Z. Then
j~HV) =j7YV NU) which is affine by assumptions (1) and (2). It follows that j
is affine by Lemma [I1.3] O
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12. Families of ample invertible modules
A short section on the notion of a family of ample invertible modules.

Definition 12.1. Let X be a scheme. Let {£;};cr be a family of invertible Ox-
modules. We say {L;}ics is an ample family of invertible modules on X if
(1) X is quasi-compact, and
(2) for every x € X there exists an i € I, an n > 1, and s € T'(X, L") such
that x € X, and X is affine.

If {L£;}ier is an ample family of invertible modules on a scheme X, then there exists
a finite subset I’ C I such that {£;};cp is an ample family of invertible modules
on X (follows immediately from quasi-compactness). A scheme having an ample
family of invertible modules has an affine diagonal by the next lemma and hence is
a fortiori quasi-separated.

Lemmal 12.2. Let X be a scheme such that for every point x € X there exists an
invertible Ox -module L and a global section s € I'(X, L) such that v € X5 and X
is affine. Then the diagonal of X is an affine morphism.

Proof. Given invertible Ox-modules £, M and global sections s € T'(X, L), t €
I'(X, M) such that X and X; are affine we have to prove X, N X, is affine. Namely,
then Lemma applied to A : X — X x X and the fact that A=} (X, x X;) =
X, N X; shows that A is affine. The fact that X, N X; is affine follows from
Properties, Lemma [26.4] O

Remark| 12.3. In Properties, Lemma we see that a scheme which has an
ample invertible module is separated. This is wrong for schemes having an ample
family of invertible modules. Namely, let X be as in Schemes, Example with
n =1, i.e., the affine line with zero doubled. We use the notation of that example
except that we write x for x1 and y for y;. There is, for every integer n, an invertible
sheaf £,, on X which is trivial on X; and X5 and whose transition function U;o —
Usy is f(z) — y™ f(y). The global sections of L,, are pairs (f(x), g(y)) € k[z] ® k[y]
such that y”f(y) = ¢(y). The sections s = (1,y) of £; and t = (x,1) of £L_4
determine an open affine cover because X; = X; and X; = X5. Therefore X has
an ample family of invertible modules but it is not separated.

13. Quasi-affine morphisms

Recall that a scheme X is called quasi-affine if it is quasi-compact and isomorphic
to an open subscheme of an affine scheme, see Properties, Definition [I8.1

Definition 13.1. A morphism of schemes f : X — S is called quasi-affine if the
inverse image of every affine open of S is a quasi-affine scheme.

Lemmal 13.2. A quasi-affine morphism is separated and quasi-compact.

Proof. Let f : X — S be quasi-affine. Quasi-compactness is immediate from
Schemes, Lemma Let U C S be an affine open. If we can show that f~1(U)
is a separated scheme, then f is separated (Schemes, Lemma shows that being
separated is local on the base). By assumption f~!(U) is isomorphic to an open
subscheme of an affine scheme. An affine scheme is separated and hence every open
subscheme of an affine scheme is separated as desired. [

[BGIT1), 11
Definition 2.2.4]
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Lemmal 13.3. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is quasi-affine.
(2) There exists an affine open covering S = |JW; such that each f~(W;) is
quasi-affine.
(3) There exists a quasi-coherent sheaf of Og-algebras A and a quasi-compact
open immersion

X

Spec(A)

N

S

over S.
(4) Same as in (3) but with A= f.Ox and the horizontal arrow the canonical
morphism of Constructions, Lemma [{.7]}

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume S = ey Wj is an affine open covering such that each f ~1(W;) is quasi-
affine. By Schemes, Lemma we see that f is quasi-compact. By Schemes,
Lemma [21.6] we see the morphism f is quasi-separated. Hence by Schemes, Lemma
[24.1]the sheaf A = f,Ox is a quasi-coherent sheaf of O x-algebras. Thus we have the
scheme g : Y = Spec (A) — S over S. The identity map id : A = f,.Ox — f.Ox
provides, via the definition of the relative spectrum, a morphism can : X — Y
over S, see Constructions, Lemma [4.7] By assumption, the lemma just cited, and
Properties, Lemma the restriction can|p-1w,) : f~H(W;) — ¢ (W;) is a
quasi-compact open immersion. Thus can is a quasi-compact open immersion. We
have shown that (2) implies (4).

Assume (3). Choose any affine open U C S. By Constructions, Lemma we see
that the inverse image of U in the relative spectrum is affine. Hence we conclude
that f~1(U) is quasi-affine (note that quasi-compactness is encoded in (3) as well).
Thus (3) implies (1). O

Lemma 13.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Let f: X - Y and g : Y — Z be quasi-affine morphisms. Let U C Z be
affine open. Then g~1(U) is quasi-affine by assumption on g. Let j : g~ *(U) = V
be a quasi-compact open immersion into an affine scheme V. By Lemma
above we see that f~!(¢g~!(U)) is a quasi-compact open subscheme of the relative
spectrum Mgﬂ U (A) for some quasi-coherent sheaf of Oy-1(y)-algebras A. By
Schemes, Lemma the sheaf A" = j, A is a quasi-coherent sheaf of Oy -algebras
with the property that j* A" = A. Hence we get a commutative diagram

-1(U) (A) — MV (A/)
g () — 14

with the square being a fibre square, see Constructions, Lemma Note that the
upper right corner is an affine scheme. Hence (g o f)~1(U) is quasi-affine. O

=g~ (1) — Spec,
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Lemma 13.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Let f: X — S be a quasi-affine morphism. By Lemma [13.3| above we can
find a quasi-coherent sheaf of Og-algebras A and a quasi-compact open immersion
X — Specg(A) over S. Let g : S’ — S be any morphism. Denote f' : Xg =
S’ xg X — S’ the base change of f. Since the base change of a quasi-compact open
immersion is a quasi-compact open immersion we see that Xg — Spec S,(g*.A) is a
quasi-compact open immersion (we have used Schemes, Lemmas and and
Constructions, Lemma . By Lemma again we conclude that Xg — S’ is
quasi-affine. O

Lemma 13.6. A quasi-compact immersion is quasi-affine.

Proof. Let X — S be a quasi-compact immersion. We have to show the inverse
image of every affine open is quasi-affine. Hence, assuming S is an affine scheme,
we have to show X is quasi-affine. By Lemma [7.7] the morphism X — S factors as
X — Z — S where Z is a closed subscheme of S and X C Z is a quasi-compact
open. Since S is affine Lemma 2.I] implies Z is affine. Hence we win. O

Lemma 13.7. Let S be a scheme. Let X be an affine scheme. A morphism
f X — S is quasi-affine if and only if it is quasi-compact. In particular any
morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

Proof. Let V C S be an affine open. Then f~!(V) is an open subscheme of
the affine scheme X, hence quasi-affine if and only if it is quasi-compact. This
proves the first assertion. The quasi-compactness of any f : X — S where X
is affine and S quasi-separated follows from Schemes, Lemma [21.14] applied to
X — S — Spec(Z). O

Lemma 13.8. Suppose g : X — Y is a morphism of schemes over S. If X
is quasi-affine over S and Y is quasi-separated over S, then g is quasi-affine. In
particular, any morphism from a quasi-affine scheme to a quasi-separated scheme
is quasi-affine.

Proof. The base change X xgY — Y is quasi-affine by Lemma [13.5 The mor-
phism X — X xgY is a quasi-compact immersion as Y — S is quasi-separated, see
Schemes, Lemma [21.11] A quasi-compact immersion is quasi-affine by Lemma [13.6
and the composition of quasi-affine morphisms is quasi-affine (see Lemma .
Thus we win. O

14. Types of morphisms defined by properties of ring maps

In this section we study what properties of ring maps allow one to define local
properties of morphisms of schemes.

Definition 14.1. Let P be a property of ring maps.

(1) We say that P is local if the following hold:
(a) For any ring map R — A, and any f € R we have P(R — A) =
P(Rf — Af)
(b) For any rings R, A, any f € R, a € A, and any ring map R; — A we
have P(R;y -+ A) = P(R — A,).
(¢) For any ring map R — A, and a; € A such that (aq,...,a,) = A then
Vi, P(R = Aq,) = P(R — A).
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(2) We say that P is stable under base change if for any ring maps R — A,
R — R’ we have P(R — A) = P(R' — R' ®@r A).

(3) We say that P is stable under composition if for any ring maps A — B,
B — C we have P(A— B)AP(B— C)= P(A— ().

Definition 14.2. Let P be a property of ring maps. Let f : X — S be a morphism
of schemes. We say f is locally of type P if for any x € X there exists an affine
open neighbourhood U of x in X which maps into an affine open V' C S such that
the induced ring map Og(V) — Ox(U) has property P.

This is not a “good” definition unless the property P is a local property. Even if P is
a local property we will not automatically use this definition to say that a morphism
is “locally of type P” unless we also explicitly state the definition elsewhere.

Lemma 14.3. Let f : X — S be a morphism of schemes. Let P be a property
of ring maps. Let U be an affine open of X, and V an affine open of S such that
fU) c V. If f is locally of type P and P is local, then P(Og(V) — Ox (U)) holds.

Proof. As f is locally of type P for every u € U there exists an affine open
U, C X mapping into an affine open V,, C S such that P(Og(V,) — Ox(Uy))
holds. Choose an open neighbourhood U}, C U N U, of u which is standard affine
open in both U and U,,, see Schemes, Lemma[I1.5] By Definition [I4.1](1)(b) we see
that P(Og(V,,) — Ox (U))) holds. Hence we may assume that U, C U is a standard
affine open. Choose an open neighbourhood V! C VNV, of f(u) which is standard
affine open in both V and V,,, see Schemes, Lemma[11.5] Then U, = f~1(V})NU,
is a standard affine open of U, (hence of U) and we have P(Og(V.) — Ox(U}))
by Definition [14.1] (1)(a). Hence we may assume both U, C U and V,, C V are
standard affine open. Applying Definition m (1)(b) one more time we conclude
that P(Og(V) — Ox(U,)) holds. Because U is quasi-compact we may choose a

finite number of points uq, ..., u, € U such that
U=U, U...ul,,.
By Definition [T4.1] (1)(c) we conclude that P(Og(V) — Ox (U)) holds. O

Lemma 14.4. Let P be a local property of ring maps. Let f : X — S be a
morphism of schemes. The following are equivalent
(1) The morphism f is locally of type P.
(2) For every affine opens U C X, V C S with f(U) CV we have P(Og(V) —
Ox(U)).
(3) There exists an open covering S = J;c; V; and open coverings vy =
Uielj U; such that each of the morphisms U; — Vj, j € J,i € I; is locally
of type P.
(4) There exists an affine open covering S = J,c ; V; and affine open coverings
vy = Uielj U; such that P(Og(V;) = Ox (U;)) holds, for all j € J,i €
Moreover, if f is locally of type P then for any open subschemes U C X,V C S
with f(U) CV the restriction f|y : U =V is locally of type P.

Proof. This follows from Lemma [[4.3] above. O
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Lemmal 14.5. Let P be a property of ring maps. Assume P is local and stable
under composition. The composition of morphisms locally of type P is locally of
type P.

Proof. Let f: X — Y and g : Y — Z be morphisms locally of type P. Let
x € X. Choose an affine open neighbourhood W C Z of g(f(z)). Choose an affine
open neighbourhood V' C g=}(W) of f(z). Choose an affine open neighbourhood
UcC fY(V)of . By Lemmathe ring maps Oz (W) — Oy (V) and Oy (V) —
Ox(U) satisfy P. Hence Oz(W) — Ox(U) satisfies P as P is assumed stable
under composition. O

Lemmal 14.6. Let P be a property of ring maps. Assume P is local and stable
under base change. The base change of a morphism locally of type P is locally of
type P.

Proof. Let f : X — S be a morphism locally of type P. Let S’ — S be any
morphism. Denote [/ : Xg = 8 xg X — S5’ the base change of f. For every
s’ € S’ there exists an open affine neighbourhood s’ € V' C S’ which maps into
some open affine V' C S. By Lemma the open f~(V) is a union of affines
U; such that the ring maps Og(V) — Ox(U;) all satisfy P. By the material in
Schemes, Section [17] we see that f~1(U)y, = V' xy f~1(V) is the union of the
affine opens V' xy U;. Since Ox, (V' xy U;) = Os/(V') ®p4 vy Ox (U;) we see
that the ring maps Og/ (V') — Ox,, (V' xy U;) satisfy P as P is assumed stable
under base change. O

Lemmal 14.7. The following properties of a ring map R — A are local.

(1) (Isomorphism on local rings.) For every prime q of A lying over p C R the
ring map R — A induces an isomorphism R, — Ag.

(2) (Open immersion.) For every prime q of A there exists an f € R, o(f) € q
such that the ring map ¢ : R — A induces an isomorphism Ry — Ay.

(3) (Reduced fibres.) For every prime p of R the fibre ring AQrr(p) is reduced.

(4) (Fibres of dimension at most n.) For every prime p of R the fibre ring
A Qg k(p) has Krull dimension at most n.

(5) (Locally Noetherian on the target.) The ring map R — A has the property
that A is Noetherian.

(6) Add more here as needecﬂ

Proof. Omitted. (]

Lemma 14.8. The following properties of ring maps are stable under base change.

(1) (Isomorphism on local rings.) For every prime q of A lying over p C R the
ring map R — A induces an isomorphism Ry, — Ag.

(2) (Open immersion.) For every prime q of A there exists an f € R, o(f) € q
such that the ring map ¢ : R —+ A induces an isomorphism Ry — Ag.

(3) Add more here as needeﬂ,

Proof. Omitted. U

Lemma 14.9. The following properties of ring maps are stable under composition.

1But only those properties that are not already dealt with separately elsewhere.
5But only those properties that are not already dealt with separately elsewhere.
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(1) (Isomorphism on local rings.) For every prime q of A lying over p C R the
ring map R — A induces an isomorphism Ry, — A,.

(2) (Open immersion.) For every prime q of A there exists an f € R, p(f) € q
such that the ring map ¢ : R — A induces an isomorphism Ry — Ay.

(3) (Locally Noetherian on the target.) The ring map R — A has the property
that A is Noetherian.

(4) Add more here as needecﬂ

Proof. Omitted. O

15. Morphisms of finite type

Recall that a ring map R — A is said to be of finite type if A is isomorphic to a
quotient of R[z1,...,z,] as an R-algebra, see Algebra, Definition

Definition 15.1. Let f: X — S be a morphism of schemes.

(1) We say that f is of finite type at x € X if there exists an affine open
neighbourhood Spec(A4) = U C X of x and an affine open Spec(R) =V C S
with f(U) C V such that the induced ring map R — A is of finite type.

(2) We say that f is locally of finite type if it is of finite type at every point of
X.

(3) We say that f is of finite type if it is locally of finite type and quasi-compact.

Lemma 15.2. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite type.

(2) For all affine opens U C X,V C S with f(U) CV the ring map Og(V) —
Ox (U) is of finite type.

(3) There exist an open covering S = \J;c;V; and open coverings V) =
UZ.GIJ_ U; such that each of the morphisms U; — Vj, j € J,i € I; is locally
of finite type.

(4) There exist an affine open covering S = UjeJ V; and affine open coverings
v = Uier, Ui such that the ring map Os(V;) — Ox(Us) is of finite
type, for all j € J,i € I;.

Moreover, if f is locally of finite type then for any open subschemesU C X,V C S
with f(U) CV the restriction f|y : U — V is locally of finite type.

Proof. This follows from Lemma if we show that the property “R — A is of
finite type” is local. We check conditions (a), (b) and (c) of Definition [I4.1} By
Algebra, Lemma being of finite type is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma being of finite type is stable under
composition and trivially for any ring R the ring map R — Ry is of finite type.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
23.3 O

Lemma 15.3. The composition of two morphisms which are locally of finite type
is locally of finite type. The same is true for morphisms of finite type.

6But only those properties that are not already dealt with separately elsewhere.
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Proof. In the proof of Lemma we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
[[4.5] combined with the fact that being of finite type is a property of ring maps that
is stable under composition, see Algebra, Lemma By the above and the fact
that compositions of quasi-compact morphisms are quasi-compact, see Schemes,
Lemma we see that the composition of morphisms of finite type is of finite
type. (I

Lemma 15.4. The base change of a morphism which is locally of finite type is
locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
14.6] combined with the fact that being of finite type is a property of ring maps that
is stable under base change, see Algebra, Lemma By the above and the fact
that a base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma[19.3] we see that the base change of a morphism of finite type is a morphism
of finite type. (Il

Lemmal 15.5. A closed immersion is of finite type. An immersion is locally of
finite type.

Proof. This is true because an open immersion is a local isomorphism, and a closed
immersion is obviously of finite type. O

Lemma 15.6. Let f: X — S be a morphism. If S is (locally) Noetherian and f
(locally) of finite type then X is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a
Noetherian ring is Noetherian, see Algebra, Lemma (Also: use the fact
that the source of a quasi-compact morphism with quasi-compact target is quasi-
compact.) O

Lemma 15.7. Let f: X — S be locally of finite type with S locally Noetherian.
Then f is quasi-separated.

Proof. In fact, it is true that X is quasi-separated, see Properties, Lemma [5.4
and Lemma above. Then apply Schemes, Lemma [21.13| to conclude that f is
quasi-separated. [

Lemmal 15.8. Let X — Y be a morphism of schemes over a base scheme S. If
X is locally of finite type over S, then X — 'Y is locally of finite type.

Proof. Via Lemma this translates into the following algebra fact: Given ring
maps A — B — C such that A — C' is of finite type, then B — C' is of finite type.
(See Algebra, Lemma [6.2). O

16. Points of finite type and Jacobson schemes

Let S be a scheme. A finite type point s of S is a point such that the morphism
Spec(k(s)) — S is of finite type. The reason for studying this is that finite type
points can replace closed points in a certain sense and in certain situations. There
are always enough of them for example. Moreover, a scheme is Jacobson if and only
if all finite type points are closed points.
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Lemma 16.1. Let S be a scheme. Let k be a field. Let f : Spec(k) — S be a
morphism. The following are equivalent:
(1) The morphism f is of finite type.
(2) The morphism f is locally of finite type.
(3) There exists an affine open U = Spec(R) of S such that f corresponds to a
finite ring map R — k.
(4) There exists an affine open U = Spec(R) of S such that the image of f
consists of a closed point u in U and the field extension k/k(u) is finite.

Proof. The equivalence of (1) and (2) is obvious as Spec(k) is a singleton and
hence any morphism from it is quasi-compact.

Suppose f is locally of finite type. Choose any affine open Spec(R) = U C S such
that the image of f is contained in U, and the ring map R — k is of finite type.
Let p C R be the kernel. Then R/p C k is of finite type. By Algebra, Lemma
there exist a f € R/p such that (R/p)7 is a field and (R/p)7 — k is a finite field
extension. If f € R is a lift of f, then we see that k is a finite Ry-module. Thus
(2) = (3).

Suppose that Spec(R) = U C S is an affine open such that f corresponds to a finite
ring map R — k. Then f is locally of finite type by Lemma Thus (3) = (2).

Suppose R — k is finite. The image of R — k is a field over which k is finite by
Algebra, Lemma [36.18] Hence the kernel of R — k is a maximal ideal. Thus (3)
= (4).

The implication (4) = (3) is immediate. O
Lemmal 16.2. Let S be a scheme. Let A be an Artinian local ring with residue

field k. Let f : Spec(A) — S be a morphism of schemes. Then f is of finite type if
and only if the composition Spec(k) — Spec(A) — S is of finite type.

Proof. Since the morphism Spec(k) — Spec(A) is of finite type it is clear that if
f is of finite type so is the composition Spec(k) — S (see Lemma [15.3). For the
converse, note that Spec(A) — S maps into some affine open U = Spec(B) of S as
Spec(A) has only one point. To finish apply Algebra, Lemma toB— A, O

Recall that given a point s of a scheme S there is a canonical morphism Spec(x(s)) —
S, see Schemes, Section

Definition 16.3. Let S be a scheme. Let us say that a point s of S is a finite
type point if the canonical morphism Spec(k(s)) — S is of finite type. We denote
Ske-pts the set of finite type points of S.

We can describe the set of finite type points as follows.

Lemma 16.4. Let S be a scheme. We have

Sprpts = U
ft-pts UCS open 0

where Uy is the set of closed points of U. Here we may let U range over all opens
or over all affine opens of S.

Proof. Immediate from Lemma [16.1] O
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Lemma 16.5. Let f: T — S be a morphism of schemes. If f is locally of finite
type, then f(Tjpis) C Sp-pts-

Proof. If T is the spectrum of a field this is Lemma [16.1] In general it follows
since the composition of morphisms locally of finite type is locally of finite type

(Lemma [15.3]). O

Lemma 16.6. Let f: T — S be a morphism of schemes. If f is locally of finite
type and surjective, then f(Tfpts) = Strpts-

Proof. We have f(Tt-pts) C St-pts by Lemma Let s € S be a finite type
point. As f is surjective the scheme Ty = Spec(k(s)) Xg T is nonempty, therefore
has a finite type point ¢ € Ty by Lemma Now Ty — T is a morphism of finite
type as a base change of s — § (Lemma. Hence the image of ¢ in T is a finite
type point by Lemma [16.5] which maps to s by construction. O

Lemma 16.7. Let S be a scheme. For any locally closed subset T' C S we have
T#0= TﬂSft_pts # 0.
In particular, for any closed subset T C S we see that T N Sy_pis is dense in T

Proof. Note that T carries a scheme structure (see Schemes, Lemma such
that T' — S is a locally closed immersion. Any locally closed immersion is locally of
finite type, see Lemma [I5.5] Hence by Lemma [16.5] we see Typts C Stipts. Finally,
any nonempty affine open of T has at least one closed point which is a finite type
point of T' by Lemma [16.4] O

It follows that most of the material from Topology, Section [18| goes through with
the set of closed points replaced by the set of points of finite type. In fact, if S is
Jacobson then we recover the closed points as the finite type points.

Lemma 16.8. Let S be a scheme. The following are equivalent:

(1) the scheme S is Jacobson,

(2) Sp-pis s the set of closed points of S,

(3) for all T — S locally of finite type closed points map to closed points, and

(4) for allT — S locally of finite type closed points t € T map to closed points
s € 5 with k(s) C k(t) finite.

Proof. We have trivially (4) = (3) = (2). Lemma [16.7] shows that (2) implies
(1). Hence it suffices to show that (1) implies (4). Suppose that T — S is locally
of finite type. Choose t € T closed and let s € S be the image. Choose affine
open neighbourhoods Spec(R) = U C S of s and Spec(A) =V C T of t with V
mapping into U. The induced ring map R — A is of finite type (see Lemma
and R is Jacobson by Properties, Lemma[6.3] Thus the result follows from Algebra,
Proposition [35.19 (]

Lemmal 16.9. Let S be a Jacobson scheme. Any scheme locally of finite type over
S is Jacobson.

Proof. This is clear from Algebra, Proposition [35.19| (and Properties, Lemma
and Lemma [15.2)). [

Lemma) 16.10. The following types of schemes are Jacobson.
(1) Any scheme locally of finite type over a field.
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(2) Any scheme locally of finite type over Z.

(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain
with infinitely many primes.

(4) A scheme of the form Spec(R) \ {m} where (R,m) is a Noetherian local
ring. Also any scheme locally of finite type over it.

Proof. We will use Lemma|[I6.9) without mention. The spectrum of a field is clearly
Jacobson. The spectrum of Z is Jacobson, see Algebra, Lemma m For (3) see
Algebra, Lemma For (4) see Properties, Lemma [6.4] O

17. Universally catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T' C T” there exist a maximal chain of irreducible closed subsets

T=TycThc..cT.=T

and every such chain has the same length. See Topology, Definition[I1.4] Recall that
a scheme is catenary if its underlying topological space is catenary. See Properties,

Definition [[1.1]

Definition 17.1. Let S be a scheme. Assume S is locally Noetherian. We say
S is universally catenary if for every morphism X — S locally of finite type the
scheme X is catenary.

This is a “better” notion than catenary as there exist Noetherian schemes which are
catenary but not universally catenary. See Examples, Section Many schemes
are universally catenary, see Lemma below.

Recall that a ring A is called catenary if for any pair of prime ideals p C q there
exists a maximal chain of primes

P=pPoC...CpPe=1(
and all of these have the same length. See Algebra, Definition We have seen
the relationship between catenary schemes and catenary rings in Properties, Section
Recall that a ring A is called universally catenary if A is Noetherian and for
every finite type ring map A — B the ring B is catenary. See Algebra, Definition
Many interesting rings which come up in algebraic geometry satisfy this
property.

Lemma 17.2. Let S be a locally Noetherian scheme. The following are equivalent

(1) S is undversally catenary,

(2) there exists an open covering of S all of whose members are universally
catenary schemes,

(3) for every affine open Spec(R) = U C S the ring R is universally catenary,
and

(4) there exists an affine open covering S = |JU; such that each U; is the
spectrum of a universally catenary ring.

Moreover, in this case any scheme locally of finite type over S is universally catenary
as well.

Proof. By Lemma [15.5/an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma [15.3). Thus it
is clear that if S is universally catenary then any open and any scheme locally of
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finite type over S is universally catenary as well. This proves the final statement
of the lemma and that (1) implies (2).

If Spec(R) is a universally catenary scheme, then every scheme Spec(A) with A a
finite type R-algebra is catenary. Hence all these rings A are catenary by Algebra,
Lemma Thus R is universally catenary. Combined with the remarks above
we conclude that (1) implies (3), and (2) implies (4). Of course (3) implies (4)
trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let X — S be a
morphism locally of finite type. We can find an affine open covering X = J V; such
that each V; — S maps into one of the U;. By Lemma the induced ring map
O(U;) — O(V;) is of finite type. Hence O(V;) is catenary. Hence X is catenary by
Properties, Lemma [11.2 ([

Lemmal17.3. Let S be a locally Noetherian scheme. The following are equivalent:

(1) S is undversally catenary, and
(2) all local rings Og, s of S are universally catenary.

Proof. Assume that all local rings of .S are universally catenary. Let f : X — S be
locally of finite type. We know that X is catenary if and only if Ox , is catenary
for all z € X. If f(z) = s, then Ox , is essentially of finite type over Og ;. Hence
Ox s is catenary by the assumption that Og , is universally catenary.

Conversely, assume that S is universally catenary. Let s € S. We may replace
S by an affine open neighbourhood of s by Lemma Say S = Spec(R) and
s corresponds to the prime ideal p. Any finite type Rp-algebra A’ is of the form
A, for some finite type R-algebra A. By assumption (and Lemma if you like)
the ring A is catenary, and hence A’ (a localization of A) is catenary. Thus R, is
universally catenary. O

Lemmal 17.4. Let S be a locally Noetherian scheme. Then S is universally cate-
nary if and only if the irreducible components of S are universally catenary.

Proof. Omitted. For the affine case, please see Algebra, Lemma [105.8 O

Lemma 17.5. The following types of schemes are universally catenary.

(1) Any scheme locally of finite type over a field.

(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.

(3) Any scheme locally of finite type over Z.

(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally
catenary, see Algebra, Lemma [I05.9] Also, use the last assertion of Lemma [I7.2]
Some details omitted. O

18. Nagata schemes, reprise

See Properties, Section [13| for the definitions and basic properties of Nagata and
universally Japanese schemes.

Lemma 18.1. Let f: X — S be a morphism. If S is Nagata and f locally of
finite type then X is Nagata. If S is universally Japanese and f locally of finite
type then X is universally Japanese.
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Proof. For “universally Japanese” this follows from Algebra, Lemma [162.4 For
“Nagata” this follows from Algebra, Proposition [162.15 (]

Lemma 18.2. The following types of schemes are Nagata.
(1) Any scheme locally of finite type over a field.

(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.

(4) Any scheme locally of finite type over a Dedekind ring of characteristic zero.
(5) And so on.

Proof. By Lemma [18.1] we only need to show that the rings mentioned above are
Nagata rings. For this see Algebra, Proposition [162.16 O

19. The singular locus, reprise

We look for a criterion that implies openness of the regular locus for any scheme
locally of finite type over the base. Here is the definition.

Definition 19.1. Let X be a locally Noetherian scheme. We say X is J-2 if for
every morphism Y — X which is locally of finite type the regular locus Reg(Y) is
open in Y.

This is the analogue of the corresponding notion for Noetherian rings, see More on
Algebra, Definition [47.1]

Lemmal 19.2. Let X be a locally Noetherian scheme. The following are equivalent
(1) X is J-2,
(2) there exists an open covering of X all of whose members are J-2 schemes,
(3) for every affine open Spec(R) = U C X the ring R is J-2, and
(4) there exists an affine open covering S = |JU; such that each O(U;) is J-2
for all i.

Moreover, in this case any scheme locally of finite type over X is J-2 as well.

Proof. By Lemma an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma . Thus it
is clear that if X is J-2 then any open and any scheme locally of finite type over X
is J-2 as well. This proves the final statement of the lemma.

If Spec(R) is J-2, then for every finite type R-algebra A the regular locus of the
scheme Spec(A) is open. Hence R is J-2, by definition (see More on Algebra,
Definition [47.1)). Combined with the remarks above we conclude that (1) implies
(3), and (2) implies (4). Of course (1) = (2) and (3) = (4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let Y — X be a
morphism locally of finite type. We can find an affine open covering Y = |J V; such
that each V; — X maps into one of the U;. By Lemma the induced ring map
O(U;) — O(V;) is of finite type. Hence the regular locus of V; = Spec(O(V;)) is
open. Since Reg(Y)NV; = Reg(V;) we conclude that Reg(Y") is open as desired. O

Lemma 19.3. The following types of schemes are J-2.

(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
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(4) Any scheme locally of finite type over a Noetherian local ring of dimension
1.

(5) Any scheme locally of finite type over a Nagata ring of dimension 1.

(6) Any scheme locally of finite type over a Dedekind ring of characteristic zero.

(7) And so on.

Proof. By Lemma we only need to show that the rings mentioned above are
J-2. For this see More on Algebra, Proposition [48.7] O

20. Quasi-finite morphisms

A solid treatment of quasi-finite morphisms is the basis of many developments
further down the road. It will lead to various versions of Zariski’s Main Theorem,
behaviour of dimensions of fibres, descent for étale morphisms, etc, etc. Before
reading this section it may be a good idea to take a look at the algebra results in
Algebra, Section [122

Recall that a finite type ring map R — A is quasi-finite at a prime q if q defines an
isolated point of its fibre, see Algebra, Definition [122.3

Definition 20.1. Let f: X — S be a morphism of schemes.

(1) We say that f is quasi-finite at a point x € X if there exist an affine
neighbourhood Spec(A4) = U C X of z and an affine open Spec(R) =V C S
such that f(U) C V, the ring map R — A is of finite type, and R — A is
quasi-finite at the prime of A corresponding to x (see above).

(2) We say f is locally quasi-finite if f is quasi-finite at every point x of X.

(3) We say that f is quasi-finite if f is of finite type and every point z is an
isolated point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below
that a morphism f which is locally of finite type is quasi-finite at z if and only if x is
isolated in its fibre. Moreover, the set of points at which a morphism is quasi-finite
is open; we will see this in Section [56] on Zariski’s Main Theorem.

Lemma 20.2. Let f: X — S be a morphism of schemes. Let x € X be a point.
Set s = f(x). If k(x)/k(s) is an algebraic field extension, then

(1) z is a closed point of its fibre, and

(2) if in addition s is a closed point of S, then x is a closed point of X.

Proof. The second statement follows from the first by elementary topology. Ac-
cording to Schemes, Lemma to prove the first statement we may replace X by
X; and S by Spec(k(s)). Thus we may assume that S = Spec(k) is the spectrum
of a field. In this case, let Spec(A) = U C X be any affine open containing z. The
point x corresponds to a prime ideal q¢ C A such that x(q)/k is an algebraic field
extension. By Algebra, Lemma [35.9] we see that q is a maximal ideal, i.e., z € U is
a closed point. Since the affine opens form a basis of the topology of X we conclude
that {z} is closed. O

The following lemma is a version of the Hilbert Nullstellensatz.

Lemmal 20.3. Let f: X — S be a morphism of schemes. Let x € X be a point.
Set s = f(x). Assume f is locally of finite type. Then x is a closed point of its fibre
if and only if k(x)/k(s) is a finite field extension.

[IDGG6T, 1T Definition
6.2.3]
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Proof. If the extension is finite, then z is a closed point of the fibre by Lemma
[20.2) above. For the converse, assume that z is a closed point of its fibre. Choose
affine opens Spec(A) = U C X and Spec(R) = V C S such that f(U) C V. By
Lemma the ring map R — A is of finite type. Let q C A, resp. p C R be the
prime ideal corresponding to z, resp. s. Consider the fibre ring A = A®gr x(p). Let
q be the prime of A corresponding to q. The assumption that z is a closed point of
its fibre implies that q is a maximal ideal of A. Since A is an algebra of finite type
over the field x(p) we see by the Hilbert Nullstellensatz, see Algebra, Theorem [34.1]
that x(q) is a finite extension of x(p). Since k(s) = k(p) and x(x) = x(q) = &(q)
we win. (]

Lemma 20.4. Let f: X — S be a morphism of schemes which is locally of finite
type. Let g : 8" — S be any morphism. Denote ' : X' — S’ the base change. If
r' € X' maps to a point x € X which is closed in Xy then x' is closed in X},( )

x!

Proof. The residue field x(2) is a quotient of (f'(2')) ®su(f(2)) £(2), see Schemes,
Lemma Hence it is a finite extension of k(f’(z')) as k(z) is a finite extension
of k(f(x)) by Lemma Thus we see that 2’ is closed in its fibre by applying

that lemma one more time. O

Lemmal 20.5. Let f: X — S be a morphism of schemes. Let x € X be a point.
Set s = f(x). If f is quasi-finite at x, then the residue field extension r(x)/k(s) is
finite.

Proof. This is clear from Algebra, Definition [122.3 (]

Lemma 20.6. Let f: X — S be a morphism of schemes. Let x € X be a point.
Set s = f(x). Let Xs be the fibre of f at s. Assume f is locally of finite type. The
following are equivalent:
(1) The morphism f is quasi-finite at x.
(2) The point x is isolated in Xj.
(3) The point x is closed in X5 and there is no point &' € X, ©' # x which
specializes to x.
(4) For any pair of affine opens Spec(A) = U C X, Spec(R) =V C S with
f(U) CV and x € U corresponding to q C A the ring map R — A is
quasi-finite at q.

Proof. Assume f is quasi-finite at z. By assumption there exist opens U C X,
V C S such that f(U) CV, z € U and z an isolated point of U,. Hence {z} C U;
is an open subset. Since Us = UN X, C X, is also open we conclude that {z} C X
is an open subset also. Thus we conclude that x is an isolated point of Xj.

Note that X is a Jacobson scheme by Lemma (and Lemma [15.4). If x is
isolated in X, i.e., {z} C X, is open, then {z} contains a closed point (by the
Jacobson property), hence x is closed in X . It is clear that there is no point
z' € X, distinct from z, specializing to .

Assume that z is closed in X, and that there is no point 2’ € X, distinct from z,
specializing to z. Consider a pair of affine opens Spec(4) = U C X, Spec(R) =
V ¢ Swith f(U) CVandx € U. Let q C A correspond to x and p C R correspond
to s. By Lemma [I5.2) the ring map R — A is of finite type. Consider the fibre ring
A= A®pgk(p). Let g be the prime of A corresponding to q. Since Spec(A) is an


https://stacks.math.columbia.edu/tag/053M
https://stacks.math.columbia.edu/tag/01TG
https://stacks.math.columbia.edu/tag/01TH

02NG

06RT

01TJ

02NH

MORPHISMS OF SCHEMES 35

open subscheme of the fibre X; we see that g is a maximal ideal of A and that there
is no point of Spec(A) specializing to §. This implies that dim(Az) = 0. Hence by
Algebra, Definition [122.3] we see that R — A is quasi-finite at q, i.e., X — S is

quasi-finite at = by definition.

At this point we have shown conditions (1) — (3) are all equivalent. It is clear that
(4) implies (1). And it is also clear that (2) implies (4) since if z is an isolated point
of X then it is also an isolated point of Uy for any open U which contains it. [

Lemma 20.7. Let f: X — S be a morphism of schemes. Let s € S. Assume that
(1) f is locally of finite type, and
(2) f7Y({s}) is a finite set.
Then X is a finite discrete topological space, and f is quasi-finite at each point of
X lying over s.

Proof. Suppose T is a scheme which (a) is locally of finite type over a field k, and
(b) has finitely many points. Then Lemma shows T is a Jacobson scheme. A
finite Jacobson space is discrete, see Topology, Lemma Apply this remark to
the fibre X which is locally of finite type over Spec(k(s)) to see the first statement.
Finally, apply Lemma [20.6] to see the second. O

Lemmal 20.8. Let f: X — S be a morphism of schemes. Assume f is locally of
finite type. Then the following are equivalent
(1) f is locally quasi-finite,
(2) for every s € S the fibre X is a discrete topological space, and
(3) for every morphism Spec(k) — S where k is a field the base change Xy, has
an underlying discrete topological space.

Proof. It is immediate that (3) implies (2). Lemma [20.6]shows that (2) is equiva-
lent to (1). Assume (2) and let Spec(k) — S be as in (3). Denote s € S the image
of Spec(k) — S. Then X} is the base change of X, via Spec(k) — Spec(k(s)).
Hence every point of X} is closed by Lemma As X — Spec(k) is locally of
finite type (by Lemma , we may apply Lemma to conclude that every
point of X}, is isolated, i.e., X has a discrete underlying topological space. O

Lemma 20.9. Let f: X — S be a morphism of schemes. Then f is quasi-finite
if and only if f is locally quasi-finite and quasi-compact.

Proof. Assume f is quasi-finite. It is quasi-compact by Definition Let z € X.
We see that f is quasi-finite at * by Lemma [20.6] Hence f is quasi-compact and
locally quasi-finite.

Assume f is quasi-compact and locally quasi-finite. Then f is of finite type. Let
x € X be a point. By Lemma we see that z is an isolated point of its fibre.
The lemma is proved. (]

Lemma 20.10. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) f is quasi-finite, and

(2) f is locally of finite type, quasi-compact, and has finite fibres.
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Proof. Assume f is quasi-finite. In particular f is locally of finite type and quasi-
compact (since it is of finite type). Let s € S. Since every & € X is isolated in X
we see that X, = UxeXs{x} is an open covering. As f is quasi-compact, the fibre
X is quasi-compact. Hence we see that X is finite.

Conversely, assume f is locally of finite type, quasi-compact and has finite fibres.
Then it is locally quasi-finite by Lemma [20.7] Hence it is quasi-finite by Lemma
20.9 ([l

Recall that a ring map R — A is quasi-finite if it is of finite type and quasi-finite
at all primes of A, see Algebra, Definition [122.3

Lemmal 20.11. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally quasi-finite.

(2) For every pair of affine opens U C X, V C S with f(U) CV the ring map
Os(V) = Ox(U) is quasi-finite.

(3) There exists an open covering S = J;c; V; and open coverings V) =
Uz‘elj U; such that each of the morphisms U; — V;, j € J,i € I; is locally
quasi-finite.

(4) There exists an affine open covering S = UjeJ V; and affine open coverings
v = Uielj U; such that the ring map Og(V;) — Ox(U;) is quasi-
finite, for all j € J,i € I;.

Moreover, if f is locally quasi-finite then for any open subschemes U C X,V C S
with f(U) CV the restriction f|y : U — V is locally quasi-finite.

Proof. For a ring map R — A let us define P(R — A) to mean “R — A is quasi-
finite” (see remark above lemma). We claim that P is a local property of ring maps.
We check conditions (a), (b) and (c) of Definition [I4.1] In the proof of Lemma [15.2]
we have seen that (a), (b) and (c) hold for the property of being “of finite type”.
Note that, for a finite type ring map R — A, the property R — A is quasi-finite at
q depends only on the local ring A, as an algebra over R, where p = RN q (usual
abuse of notation). Using these remarks (a), (b) and (c¢) of Definition follow
immediately. For example, suppose R — A is a ring map such that all of the ring
maps R — A,, are quasi-finite for aj,...,a, € A generating the unit ideal. We
conclude that R — A is of finite type. Also, for any prime q C A the local ring
Aq is isomorphic as an R-algebra to the local ring (A,,)q, for some ¢ and some
q; C A,,. Hence we conclude that R — A is quasi-finite at g.

We conclude that Lemma [T4.3] applies with P as in the previous paragraph. Hence
it suffices to prove that f is locally quasi-finite is equivalent to f is locally of type
P. Since P(R — A) is “R — A is quasi-finite” which means R — A is quasi-finite
at every prime of A, this follows from Lemma [20.6 (|

Lemma 20.12. The composition of two morphisms which are locally quasi-finite
1s locally quasi-finite. The same is true for quasi-finite morphisms.

Proof. In the proof of Lemma [20.11] we saw that P =“quasi-finite” is a local
property of ring maps, and that a morphism of schemes is locally quasi-finite if
and only if it is locally of type P as in Definition [I£:2] Hence the first statement
of the lemma follows from Lemma [I4.5] combined with the fact that being quasi-
finite is a property of ring maps that is stable under composition, see Algebra,
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Lemma [122.7] By the above, Lemma [20.9] and the fact that compositions of quasi-
compact morphisms are quasi-compact, see Schemes, Lemma we see that the
composition of quasi-finite morphisms is quasi-finite. O

We will see later (Lemma [56.2)) that the set U of the following lemma is open.

Lemmal 20.13. Let f : X — S be a morphism of schemes. Let g : 8" — S be a
morphism of schemes. Denote f': X' — S’ the base change of f by g and denote
g : X' — X the projection. Assume X is locally of finite type over S.

et C resp. C e the set of points where resp. 8
1) Let U X U’ X') be th f poi here f )i
quasi-finite. Then U' =U xg 8" = (¢")~1(U).
(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
e base change of a quasi-finite morphism is quasi-finite.
3) The b h f -fini hism i j-fini

Proof. The first and second assertion follow from the corresponding algebra result,
see Algebra, Lemma (combined with the fact that f’ is also locally of finite
type by Lemma . By the above, Lemma and the fact that a base change
of a quasi-compact morphism is quasi-compact, see Schemes, Lemma we see
that the base change of a quasi-finite morphism is quasi-finite. O

Lemma 20.14. Let f : X — S be a morphism of schemes of finite type. Let
s € S. There are at most finitely many points of X lying over s at which f is
quasi-finite.

Proof. The fibre X, is a scheme of finite type over a field, hence Noetherian
(Lemma . Hence the topology on X is Noetherian (Properties, Lemma
and can have at most a finite number of isolated points (by elementary topology).
Thus our lemma, follows from Lemma 20,6l O

Lemmal 20.15. Let f: X — Y be a morphism of schemes. If f is locally of finite
type and a monomorphism, then f is separated and locally quasi-finite.

Proof. A monomorphism is separated by Schemes, Lemma A monomorphism
is injective, hence we get f is quasi-finite at every x € X for example by Lemma
20.0! [l

Lemmal 20.16. Any immersion is locally quasi-finite.

Proof. This is true because an open immersion is a local isomorphism and a closed
immersion is clearly quasi-finite. (I

Lemma 20.17. Let X — Y be a morphism of schemes over a base scheme S. Let
r € X. If X — S is quasi-finite at x, then X — Y is quasi-finite at x. If X is
locally quasi-finite over S, then X — Y s locally quasi-finite.

Proof. Via Lemma [20.11]this translates into the following algebra fact: Given ring
maps A — B — C such that A — C is quasi-finite, then B — C' is quasi-finite.
This follows from Algebra, Lemma[122.6|with R=A4, S=5"=Cand R = B. O

Lemma 20.18. Let f: X - Y and g:Y — S be morphisms of schemes. If f is
surjective, g o f locally quasi-finite, and g locally of finite type, then g : Y — S is
locally quasi-finite.
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Proof. Let x € X with images y € Y and s € S. Since g o f is locally quasi-finite
by Lemma the extension k(z)/k(s) is finite. Hence k(y)/k(s) is finite. Hence
y is a closed point of Y; by Lemma Since f is surjective, we see that every
point of Y is closed in its fibre over S. Thus by Lemma [20.6] we conclude that g is
quasi-finite at every point. (I

21. Morphisms of finite presentation

Recall that a ring map R — A is of finite presentation if A is isomorphic to
Rlzy,...,zn]/(f1,--, fm) as an R-algebra for some n,m and some polynomials
fj, see Algebra, Definition

Definition 21.1. Let f: X — S be a morphism of schemes.

(1) We say that f is of finite presentation at x € X if there exists an affine
open neighbourhood Spec(A) = U C X of = and affine open Spec(R) =
V c S with f(U) C V such that the induced ring map R — A is of finite
presentation.

(2) We say that f is locally of finite presentation if it is of finite presentation
at every point of X.

(3) We say that f is of finite presentation if it is locally of finite presentation,
quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation. Later we will characterize morphisms which
are locally of finite presentation as those morphisms such that

colim Morg(T;, X) = Morg(lim 7T}, X)

for any directed system of affine schemes T; over S. See Limits, Proposition [6.1
In Limits, Section [L0] we show that, if S = lim; .S; is a limit of affine schemes, any
scheme X of finite presentation over S descends to a scheme X; over .S; for some 1.

Lemma 21.2. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite presentation.

(2) For every affine opens U C X, V. C S with f({U) C V the ring map
Os(V) = Ox(U) is of finite presentation.

(3) There exist an open covering S = \J;c ; Vj and open coverings v =
UZ.GIJ_ U; such that each of the morphisms U; — Vj, j € J,i € I; is locally
of finite presentation.

(4) There exist an affine open covering S = UjEJ V; and affine open coverings
;) = Uielj U; such that the ring map Os(V;) = Ox(U;) is of finite
presentation, for all j € J,i € I;.

Moreover, if f is locally of finite presentation then for any open subschemes U C X,
V C S with f(U) CV the restriction f|y : U — V is locally of finite presentation.

Proof. This follows from Lemma if we show that the property “R — A is
of finite presentation” is local. We check conditions (a), (b) and (c) of Definition
[[43] By Algebra, Lemma being of finite presentation is stable under base
change and hence we conclude (a) holds. By Algebra, Lemma being of finite
presentation is stable under composition and trivially for any ring R the ring map
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R — Ry is of finite presentation. We conclude (b) holds. Finally, property (c) is
true according to Algebra, Lemma [23.3 (]

Lemma 21.3. The composition of two morphisms which are locally of finite pre-
sentation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
14.5] combined with the fact that being of finite presentation is a property of ring
maps that is stable under composition, see Algebra, Lemma[6.2l By the above and
the fact that compositions of quasi-compact, quasi-separated morphisms are quasi-
compact and quasi-separated, see Schemes, Lemmas and 21.12) we see that the
composition of morphisms of finite presentation is of finite presentation. ([

Lemma 21.4. The base change of a morphism which is locally of finite presen-
tation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma we saw that being of finite presentation is a
local property of ring maps. Hence the first statement of the lemma follows from
Lemma combined with the fact that being of finite presentation is a property of
ring maps that is stable under base change, see Algebra, Lemma[l4.2] By the above
and the fact that a base change of a quasi-compact, quasi-separated morphism is
quasi-compact and quasi-separated, see Schemes, Lemmas and we see
that the base change of a morphism of finite presentation is a morphism of finite
presentation. O

Lemma 21.5. Any open immersion is locally of finite presentation.
Proof. This is true because an open immersion is a local isomorphism. (I

Lemma 21.6. Any open immersion is of finite presentation if and only if it is
quasi-compact.

Proof. We have seen (Lemma [21.5) that an open immersion is locally of finite
presentation. We have seen (Schemes, Lemma [23.8)) that an immersion is separated
and hence quasi-separated. From this and Definition the lemma follows. O

Lemma 21.7. A closed immersion i : Z — X is of finite presentation if and only
if the associated quasi-coherent sheaf of ideals T = Ker(Ox — i.0z) is of finite
type (as an Ox-module).

Proof. On any affine open Spec(R) C X we have i~!(Spec(R)) = Spec(R/I) and
T = I. Moreover, T is of finite type if and only if [ is a finite R-module for every

such affine open (see Properties, Lemma [16.1). And R/I is of finite presentation
over R if and only if I is a finite R-module. Hence we win. (|

Lemma 21.8. A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Omitted. O

Lemmal 21.9. Let f: X — S be a morphism.
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(1) If S is locally Noetherian and f locally of finite type then f is locally of
finite presentation.
(2) If S is locally Noetherian and f of finite type then f is of finite presentation.

Proof. The first statement follows from the fact that a ring of finite type over a
Noetherian ring is of finite presentation, see Algebra, Lemma Suppose that f
is of finite type and S is locally Noetherian. Then f is quasi-compact and locally
of finite presentation by (1). Hence it suffices to prove that f is quasi-separated.
This follows from Lemma [15.7] (and Lemma [21.8). O

Lemma 21.10. Let S be a scheme which is quasi-compact and quasi-separated. If
X is of finite presentation over S, then X is quasi-compact and quasi-separated.

Proof. Omitted. O

Lemma 21.11. Let f : X — Y be a morphism of schemes over S.

(1) If X is locally of finite presentation over S and Y is locally of finite type
over S, then f is locally of finite presentation.

(2) If X is of finite presentation over S andY is quasi-separated and locally of
finite type over S, then f is of finite presentation.

Proof. Proof of (1). Via Lemma this translates into the following algebra
fact: Given ring maps A — B — C such that A — C' is of finite presentation and
A — B is of finite type, then B — C' is of finite presentation. See Algebra, Lemma
6.2

Part (2) follows from (1) and Schemes, Lemmas [21.13| and [21.14 O

Lemma 21.12. Let f : X — Y be a morphism of schemes with diagonal A : X —
X xy X. If f is locally of finite type then A is locally of finite presentation. If f
s quasi-separated and locally of finite type, then A is of finite presentation.

Proof. Note that A is a morphism of schemes over X (via the second projection
X xy X — X). Assume f is locally of finite type. Note that X is of finite
presentation over X and X xy X is locally of finite type over X (by Lemma [15.4)).
Thus the first statement holds by Lemma[2T.11] The second statement follows from
the first, the definitions, and the fact that a diagonal morphism is a monomorphism,
hence separated (Schemes, Lemma [23.3)). (]

22. Constructible sets

Constructible and locally constructible sets of schemes have been discussed in Prop-
erties, Section [2| In this section we prove some results concerning images and in-
verse images of (locally) constructible sets. The main result is Chevalley’s theorem
which states that the image of a locally constructible set under a morphism of finite
presentation is locally constructible.

Lemma 22.1. Let f: X — Y be a morphism of schemes. Let E C'Y be a subset.
If E is (locally) constructible in' Y, then f~Y1(E) is (locally) constructible in X.

Proof. To show that the inverse image of every constructible subset is constructible
it suffices to show that the inverse image of every retrocompact open V of Y is retro-
compact in X, see Topology, Lemma[I5.3] The significance of V' being retrocompact
in Y is just that the open immersion V' — Y is quasi-compact. Hence the base
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change f~1(V) = X xy V — X is quasi-compact too, see Schemes, Lemma m
Hence we see f~1(V) is retrocompact in X. Suppose E is locally constructible
in Y. Choose x € X. Choose an affine neighbourhood V' of f(z) and an affine
neighbourhood U C X of z such that f(U) C V. Thus we think of f|y : U — V as
a morphism into V. By Properties, Lemma [2.1| we see that £ NV is constructible
in V. By the constructible case we see that (f|y)~*(E NV) is constructible in U.
Since (fly) " "(ENV) = f~1(E)NU we win. O

054J Lemmal 22.2. Let f: X — Y be a morphism of schemes. Assume

(1) f is quasi-compact and locally of finite presentation, and
(2) Y is quasi-compact and quasi-separated.

Then the image of every constructible subset of X is constructible in Y.

Proof. By Properties, Lemma[2.5]it suffices to prove this lemma in case Y is affine.
In this case X is quasi-compact. Hence we can write X = Uy U...U U, with each
U; affine open in X. If E C X is constructible, then each E N U; is constructible
too, see Topology, Lemma m Hence, since f(E) = |J f(FNU;) and since finite
unions of constructible sets are constructible, this reduces us to the case where X
is affine. In this case the result is Algebra, Theorem g

054K |Theorem 22.3 (Chevalley’s Theorem). Let f : X — Y be a morphism of schemes. [DG67, IV,
Assume f is quasi-compact and locally of finite presentation. Then the image of Theorem 1.8.4]
every locally constructible subset is locally constructible.

Proof. Let E C X be locally constructible. We have to show that f(F) is locally
constructible too. We will show that f(E) NV is constructible for any affine open
V C Y. Thus we reduce to the case where Y is affine. In this case X is quasi-
compact. Hence we can write X = Uy U...U U, with each U; affine open in X. If
FE C X is locally constructible, then each £ N U; is constructible, see Properties,
Lemmal[2.1} Hence, since f(E) = J f(ENU;) and since finite unions of constructible
sets are constructible, this reduces us to the case where X is affine. In this case the
result is Algebra, Theorem [29.10 ([l

05LW |Lemma 22.4. Let X be a scheme. Letx € X. Let E C X be a locally constructible
subset. If {z' |z’ ~ x} C E, then E contains an open neighbourhood of x.

Proof. Assume {z' | 2’ ~» z} C E. We may assume X is affine. In this case E is
constructible, see Properties, Lemma [2.I] In particular, also the complement E° is
constructible. By Algebra, Lemma we can find a morphism of affine schemes
f:Y — X such that E€ = f(Y). Let Z C X be the scheme theoretic image of f.
By Lemma and the assumption {z' | ' ~ x} C E we see that © ¢ Z. Hence
X \ Z C E is an open neighbourhood of z contained in E. O

23. Open morphisms

01TZ
01U0 |Definition| 23.1. Let f: X — S be a morphism.

(1) We say f is open if the map on underlying topological spaces is open.
(2) We say f is universally open if for any morphism of schemes S’ — S the
base change [’ : Xg — S’ is open.
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According to Topology, Lemma [19.7] generalizations lift along certain types of open
maps of topological spaces. In fact generalizations lift along any open morphism
of schemes (see Lemma . Also, we will see that generalizations lift along flat
morphisms of schemes (Lemma . This sometimes in turn implies that the
morphism is open.

Lemmal 23.2. Let f: X — S be a morphism.

(1) If f is locally of finite presentation and generalizations lift along f, then f
s open.

(2) If f is locally of finite presentation and generalizations lift along every base
change of f, then f is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both
X and S are affine. In this case the result follows from Algebra, Lemma and
Proposition 41.8 (I

See also Lemma [25.10| for the case of a morphism flat of finite presentation.

Lemma 23.3. A composition of (universally) open morphisms is (universally)
open.

Proof. Omitted. O

Lemma 23.4. Let k be a field. Let X be a scheme over k. The structure morphism
X — Spec(k) is universally open.

Proof. Let S — Spec(k) be a morphism. We have to show that the base change
Xg — S is open. The question is local on S and X, hence we may assume that S
and X are affine. In this case the result is Algebra, Lemma O

Lemmal 23.5. Let ¢ : X — Y be a morphism of schemes. If ¢ is open, then ¢
is generizing (i.e., generalizations lift along ). If ¢ is universally open, then ¢ is
universally generizing.

Proof. Assume ¢ is open. Let ' ~ y be a specialization of points of Y. Let z € X
with ¢(z) = y. Choose affine opens U C X and V C Y such that ¢(U) C V and
x € U. Then also y’ € V. Hence we may replace X by U and Y by V and assume
X, Y affine. The affine case is Algebra, Lemma m (combined with Algebra,
Lemma . (]

Lemmal 23.6. Let f: X — Y be a morphism of schemes. Let g :Y' —'Y be open
and surjective such that the base change f' : X' — Y’ is quasi-compact. Then f is
quasi-compact.

Proof. Let V C Y be a quasi-compact open. As g is open and surjective we
can find a quasi-compact open W/ C W such that g(W’) = V. By assumption
(f)~Y(W') is quasi-compact. The image of (f')~*(W’) in X is equal to f~1(V),
see Lemma Hence f~%(V) is quasi-compact as the image of a quasi-compact
space, see Topology, Lemma [12.7] Thus f is quasi-compact. (Il

24. Submersive morphisms

Definition 24.1. Let f: X — Y be a morphism of schemes.

Follows from the
implication (a) =
(b) in [DGET, IV,
Corollary 1.10.4]
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(1) We say f is submersiv(ﬂ if the continuous map of underlying topological
spaces is submersive, see Topology, Definition [6.3

(2) We say f is universally submersive if for every morphism of schemes Y’ — Y
the base change Y/ xy X — Y is submersive.

We note that a submersive morphism is in particular surjective.

0CES Lemma 24.2. The base change of a universally submersive morphism of schemes
by any morphism of schemes is universally submersive.

Proof. This is immediate from the definition. O

OCET Lemma 24.3. The composition of a pair of (universally) submersive morphisms
of schemes is (universally) submersive.

Proof. Omitted. O

25. Flat morphisms

01U2 Flatness is one of the most important technical tools in algebraic geometry. In
this section we introduce this notion. We intentionally limit the discussion to
straightforward observations, apart from Lemma [25.10] A very important class of
results, namely criteria for flatness, are discussed in Algebra, Sections
and More on Morphisms, Section There is a chapter dedicated to advanced
material on flat morphisms of schemes, namely More on Flatness, Section

Recall that a module M over a ring R is flat if the functor —®r M : Modg — Modg
is exact. A ring map R — A is said to be flat if A is flat as an R-module. See
Algebra, Definition [39.1]

01U3 |Definition/ 25.1. Let f: X — S be a morphism of schemes. Let F be a quasi-
coherent sheaf of O x-modules.

(1) Wesay f is flat at a point x € X if the local ring Ox , is flat over the local
ring Og, f(y)-

(2) We say that F is flat over S at a point x € X if the stalk F, is a flat
Og, f(+)-module.

(3) We say f is flat if f is flat at every point of X.

(4) We say that F is flat over S if F is flat over S at every point = of X.

Thus we see that f is flat if and only if the structure sheaf Ox is flat over S.

01U4 |Lemmal 25.2. Let f : X — S be a morphism of schemes. Let F be a quasi-
coherent sheaf of Ox-modules. The following are equivalent

(1) The sheaf F is flat over S.

(2) For every affine opens U C X,V C S with f(U) C V the Og(V)-module
F(U) is flat.

(3) There exists an open covering S = J;c; V; and open coverings i) =
Uielj U; such that each of the modules F|y, is flat over Vj, for allj € J,i €

j .
(4) There exists an affine open covering S = UjeJ V; and affine open coverings
7Y v;) = Uielj Ui such that F(U;) is a flat Og(V;)-module, for all j €

Jyielj.

"This is very different from the notion of a submersion of differential manifolds.
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Moreover, if F is flat over S then for any open subschemes U C X, V C S with
f(U) C 'V the restriction F|y is flat over V.

Proof. Let R — A be a ring map. Let M be an A-module. If M is R-flat, then
for all primes q the module M, is flat over R, with p the prime of R lying under
q. Conversely, if M, is flat over R, for all primes q of A, then M is flat over R.
See Algebra, Lemma This equivalence easily implies the statements of the
lemma. O

Lemmal 25.3. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is flat.
(2) For every affine opens U C X, V. C S with f(U) C V the ring map
Og(V) = Ox(U) is flat.
(3) There exists an open covering S = J;c; V; and open coverings V) =
Uz‘elj U; such that each of the morphisms Uy — Vj, j € J,i € I; is flat.
(4) There exists an affine open covering S = J,c; V; and affine open coverings
F7HV5) = Uiy, Ui such that Os(V;) — Ox (U;) is flat, for allj € J,i € I;.
Moreover, if f is flat then for any open subschemes U C X, V C S with f(U) CV
the restriction fly : U — V is flat.

Proof. This is a special case of Lemma above. ([

Lemma 25.4. Let f : X = Y be an affine morphism of schemes over a base
scheme S. Let F be a quasi-coherent Ox-module. Then F is flat over S if and
only if fF is flat over S.

Proof. By Lemma and the fact that f is an affine morphism, this reduces us
to the affine case. Say X — Y — S corresponds to the ring maps C' < B « A.
Let N be the C-module corresponding to F. Recall that f.F corresponds to N
viewed as a B-module, see Schemes, Lemma, Thus the result is clear. O

Lemma 25.5. Let X — Y — Z be morphisms of schemes. Let F be a quasi-
coherent Ox -module. Let x € X with image y in Y. If F is flat over Y at x, and
Y is flat over Z at vy, then F is flat over Z at x.

Proof. See Algebra, Lemma [39.4] O
Lemma 25.6. The composition of flat morphisms is flat.
Proof. This is a special case of Lemma [25.5 (]

Lemma 25.7. Let f : X — S be a morphism of schemes. Let F be a quasi-
coherent sheaf of Ox-modules. Let g : S — S be a morphism of schemes. Denote
g : X' = Xg — X the projection. Let ' € X' be a point with image x = ¢'(a') €
X. If F is flat over S at x, then (¢')*F is flat over S’ at «’. In particular, if F is
flat over S, then (¢')*F is flat over S’.

Proof. See Algebra, Lemma [39. O
Lemma 25.8. The base change of a flat morphism is flat.

Proof. This is a special case of Lemma [25.7] (]
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Lemma 25.9. Let f : X — S be a flat morphism of schemes. Then generalizations
lift along f, see Topology, Definition [19.4)

Proof. See Algebra, Section ]
Lemma 25.10. A flat morphism locally of finite presentation is universally open.

Proof. This follows from Lemmas|25.9|and Lemma [23.2] above. We can also argue
directly as follows.

Let f : X — S be flat and locally of finite presentation. By Lemmas and
any base change of f is flat and locally of finite presentation. Hence it suffices
to show f is open. To show f is open it suffices to show that we may cover X
by open affines X = |JU; such that U; — S is open. We may cover X by affline
opens U; C X such that each U; maps into an affine open V; C S and such that
the induced ring map Og(V;) — Ox (U;) is flat and of finite presentation (Lemmas
and . Then U; — Vj is open by Algebra, Proposition and the proof

is complete. ([

Lemmal 25.11. Let f : X — Y be a morphism of schemes. Let F be a quasi-
coherent Ox-module. Assume f locally finite presentation, F of finite type, X =
Supp(F), and F flat over Y. Then f is universally open.

Proof. By Lemmas and the assumptions are preserved under base
change. By Lemma [23.2] it suffices to show that generalizations lift along f. This
follows from Algebra, Lemma ]

Lemma 25.12. Let f: X — Y be a quasi-compact, surjective, flat morphism. A
subset T C Y is open (resp. closed) if and only f~1(T) is open (resp. closed). In
other words, f is a submersive morphism.

Proof. The question is local on Y, hence we may assume that Y is affine. In this
case X is quasi-compact as f is quasi-compact. Write X = X; U...U X, as a
finite union of affine opens. Then f': X' = X; ... 11 X,, — Y is a surjective flat
morphism of affine schemes. Note that for T C Y we have (f')~1(T) = f~4(T) N
XiO... 11 f~%T) N X,,. Hence, f~(T) is open if and only if (f)~1(T) is open.
Thus we may assume both X and Y are affine.

Let f : Spec(B) — Spec(A) be a surjective morphism of affine schemes correspond-
ing to a flat ring map A — B. Suppose that f~1(T) is closed, say f~1(T) =
V(J) for J C B an ideal. Then T = f(f~Y(T)) = f(V(J)) is the image of
Spec(B/J) — Spec(A) (here we use that f is surjective). On the other hand,
generalizations lift along f (Lemma . Hence by Topology, Lemma we
see that Y \ T = f(X \ f~(T)) is stable under generalization. Hence T is stable
under specialization (Topology, Lemma . Thus T is closed by Algebra, Lemma
415 O

Lemma 25.13. Let h : X — Y be a morphism of schemes over S. Let G be a
quasi-coherent sheaf on' Y. Let x € X withy = h(z) € Y. If h is flat at x, then

G flat over S at y < h*G flat over S at x.

In particular: If h is surjective and flat, then G is flat over S, if and only if h*G is
flat over S. If h is surjective and flat, and X is flat over S, then Y is flat over S.

[Gro71l Expose
VIII, Corollaire 4.3]
and [DG67, IV,
Corollaire 2.3.12]
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Proof. You can prove this by applying Algebra, Lemma Here is a direct proof.
Let s € S be the image of y. Consider the local ring maps Ogss — Oy,y — Ox z.
By assumption the ring map Oy,, — Ox, is faithfully flat, see Algebra, Lemma
Let N = G,. Note that h*G, = N ®o,., Ox .z, see Sheaves, Lemma
Let M’ — M be an injection of Og ¢-modules. By the faithful flatness mentioned
above we have

Ker(M/ ®Os,s N —- M ®Os,s N) ®Oy,y OX,a:
=Ker(M' ®o,, N ®oy., Ox,u = M @0, N ®oy., Ox.2)

Hence the equivalence of the lemma follows from the second characterization of
flatness in Algebra, Lemma [39.5 O

Lemma) 25.14. Let f:Y — X be a morphism of schemes. Let F be a finite type
quasi-coherent O x -module with scheme theoretic support Z C X. If f is flat, then
f~YZ) is the scheme theoretic support of f*F.

Proof. Using the characterization of scheme theoretic support on affines as given
in Lemma [5.4] we reduce to Algebra, Lemma [40.4 O

Lemma 25.15. Let f: X — Y be a flat morphism of schemes. Let V C Y be
a retrocompact open which is scheme theoretically dense. Then f~'V is scheme
theoretically dense in X.

Proof. We will use the characterization of Lemma [[.5l We have to show that for
any open U C X the map Ox(U) — Ox (U N f~1V) is injective. It suffices to
prove this when U is an affine open which maps into an affine open W C Y. Say
W = Spec(A) and U = Spec(B). Then VNW = D(f1)U...U D(f,) for some
fi € A, see Algebra, Lemma [29.1] Thus we have to show that B — By, x...x By,
is injective. We are given that A — Ay x ... x Ay, is injective and that A — B is
flat. Since By, = Ay, ®4 B we win. O

Lemma 25.16. Let f: X — Y be a flat morphism of schemes. Let g : V — Y be
a quasi-compact morphism of schemes. Let Z C'Y be the scheme theoretic image of
g and let Z' C X be the scheme theoretic image of the base change V xy X — X.
Then Z' = f~1Z.

Proof. Recall that Z is cut out by Z = Ker(Oy — ¢.Oy) and Z’ is cut out by
7' = Ker(Ox = (V xy X = X).Oyx, x), see Lemma [6.3] Hence the question is
local on X and Y and we may assume X and Y affine. Note that we may replace
V by [[V; where V.=V, U...UV, is a finite affine open covering. Hence we may
assume ¢ is affine. In this case (V xy X — X).Oy«, x is the pullback of g,Oy by
f. Since f is flat we conclude that f*Z = 7’ and the lemma holds. O

26. Flat closed immersions

Connected components of schemes are not always open. But they do always have
a canonical scheme structure. We explain this in this section.

Lemma 26.1. Let X be a scheme. The rule which associates to a closed subscheme
of X its underlying closed subset defines a bijection

closed subschemes Z C X closed subsets Z C X
such that Z — X is flat closed under generalizations
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If Z C X is such a closed subscheme, every morphism of schemes g : Y — X with
g(Y) C Z set theoretically factors (scheme theoretically) through Z.

Proof. The affine case of the bijection is Algebra, Lemma For general
schemes X the bijection follows by covering X by affines and glueing. Details
omitted. For the final assertion, observe that the projection Z x x ;Y — Y is a flat
(Lemma [25.8) closed immersion which is bijective on underlying topological spaces
and hence must be an isomorphism by the bijection esthablished in the first part
of the proof. O

Lemmal26.2. A flat closed immersion of finite presentation is the open immersion
of an open and closed subscheme.

Proof. The affine case is Algebra, Lemma [108.5] In general the lemma follows by
covering X by affines. Details omitted. [l

Note that a connected component T of a scheme X is a closed subset stable under
generalization. Hence the following definition makes sense.

Definition 26.3. Let X be a scheme. Let T C X be a connected component. The
canonical scheme structure on T is the unique scheme structure on 1" such that the
closed immersion T' — X is flat, see Lemma

It turns out that we can determine when every finite flat O x-module is finite locally
free using the previous lemma.

Lemma 26.4. Let X be a scheme. The following are equivalent

(1) every finite flat quasi-coherent Ox-module is finite locally free, and
(2) every closed subset Z C X which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma [108.6] The scheme case does not
follow directly from the affine case, so we simply repeat the arguments.

Assume (1). Consider a closed immersion 7 : Z — X such that i is flat. Then i, Oz
is quasi-coherent and flat, hence finite locally free by (1). Thus Z = Supp(i.Oyz) is
also open and we see that (2) holds. Hence the implication (1) = (2) follows from
the characterization of flat closed immersions in Lemma 26.1]

For the converse assume that X satisfies (2). Let F be a finite flat quasi-coherent
Ox-module. The support Z = Supp(F) of F is closed, see Modules, Lemma
On the other hand, if x ~ 2’ is a specialization, then by Algebra, Lemma [78.5| the
module F; is free over Ox ,s, and

Fo=Fu ®0X,z’ 0X,a:~

Hence 2’ € Supp(F) = « € Supp(F), in other words, the support is closed under
generalization. As X satisfies (2) we see that the support of F is open and closed.
The modules AY(F), i = 1,2,3,... are finite flat quasi-coherent Ox-modules also,
see Modules, Section Note that Supp(A“1(F)) C Supp(A*(F)). Thus we see
that there exists a decomposition

X=UyIIU, TIU,TI...

by open and closed subsets such that the support of A*(F) is U; UU;41 U... for
all i. Let = be a point of X, and say = € U,.. Note that A'(F), @ r(z) = AY(F, @
k(x)). Hence, x € U, implies that F, ® s(x) is a vector space of dimension r.
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By Nakayama’s lemma, see Algebra, Lemma we can choose an affine open
neighbourhood U C U, C X of z and sections sq,...,s, € F(U) such that the
induced map

037«—>}—|U’ (fla'”va‘)}—)Zf’iSi

is surjective. This means that A"(F|y) is a finite flat quasi-coherent Op-module
whose support is all of U. By the above it is generated by a single element, namely
$1 A ... A8.. Hence A"(F|y) & Op/ZT for some quasi-coherent sheaf of ideals 7
such that Oy /T is flat over Oy and such that V(Z) = U. It follows that Z = 0
by applying Lemma Thus s1 A ... A s, is a basis for A"(F|y) and it follows
that the displayed map is injective as well as surjective. This proves that F is finite
locally free as desired. O

27. Generic flatness

A scheme of finite type over an integral base is flat over a dense open of the base.
In Algebra, Section we proved a Noetherian version, a version for morphisms
of finite presentation, and a general version. We only state and prove the general
version here. However, it turns out that this will be superseded by Proposition 27.2]
which shows the result holds if we only assume the base is reduced.

Proposition| 27.1 (Generic flatness). Let f : X — S be a morphism of schemes.
Let F be a quasi-coherent sheaf of Ox-modules. Assume

(1) S is integral,

(2) f is of finite type, and

(3) F is a finite type Ox-module.
Then there exists an open dense subscheme U C S such that Xy — U 1is flat and
of finite presentation and such that F|x, is flat over U and of finite presentation
over Ox,, .

Proof. As S is integral it is irreducible (see Properties, Lemma and any
nonempty open is dense. Hence we may replace S by an affine open of S and
assume that S = Spec(A) is affine. As S is integral we see that A is a domain. As
f is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find
a finite affine open cover X = J,_; ,, X;. Write X; = Spec(B;). Then B; is a
finite type A-algebra, see Lemma 7 Moreover there are finite type B;-modules
M; such that F|x, is the quasi-coherent sheaf associated to the B;-module M;, see
Properties, Lemma Next, for each pair of indices 4, j choose an ideal I;; C B;
such that X; \ X; N X, = V(I;;) inside X; = Spec(B;). Set M;; = B;/I;; and think
of it as a B;-module. Then V(I;;) = Supp(M;;) and M;; is a finite B;-module.

At this point we apply Algebra, Lemma the pairs (A — B;, M;;) and to the
pairs (A — B;, M;). Thus we obtain nonzero fi;, f; € A such that (a) Ay, — By y,,
is flat and of finite presentation and M;; y,. is flat over Ay, and of finite presentation
over By, and (b) B;y, is flat and of finite presentation over Ay and M; g, is flat
and of finite presentation over B; ¢,. Set f = ([ fi)(I] fi;). We claim that taking
U = D(f) works.

To prove our claim we may replace A by Ay, ie., perform the base change by
U = Spec(Ay) — S. After this base change we see that each of A — B; is flat and
of finite presentation and that M;, M;; are flat over A and of finite presentation over
B;. This already proves that X — S is quasi-compact, locally of finite presentation,
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flat, and that F is flat over S and of finite presentation over Ox, see Lemma [21.2]
and Properties, Lemma Since M;; is of finite presentation over B; we see that
X: N X; = X; \ Supp(M;;) is a quasi-compact open of X;, see Algebra, Lemma
Hence we see that X — S is quasi-separated by Schemes, Lemma This
proves the proposition. U

It actually turns out that there is also a version of generic flatness over an arbitrary
reduced base. Here it is.

Proposition| 27.2 (Generic flatness, reduced case). Let f : X — S be a morphism
of schemes. Let F be a quasi-coherent sheaf of Ox-modules. Assume

(1) S is reduced,

(2) f is of finite type, and

(3) F is a finite type Ox-module.
Then there exists an open dense subscheme U C S such that Xy — U s flat and
of finite presentation and such that F|x, is flat over U and of finite presentation
over Ox,, .

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition
[27.1] using Algebra, Lemma instead of Algebra, Lemma [T18.3

Since being flat and being of finite presentation is local on the base, see Lemmas
and we may work affine locally on S. Thus we may assume that S =
Spec(A), where A is a reduced ring (see Properties, Lemma . As f is of finite
type, it is quasi-compact, so X is quasi-compact. Hence we can find a finite affine
open cover X = J,_; ,, X;. Write X; = Spec(B;). Then B; is a finite type A-
algebra, see Lemma Moreover there are finite type B;-modules M; such that
Flx, is the quasi-coherent sheaf associated to the B;-module M;, see Properties,
Lemma Next, for each pair of indices ¢, j choose an ideal I;; C B; such that
Xz' \Xz ﬂXj = V(IU) inside Xz = Spec(BZ) Set Mij = BZ/Im and think of it as a
B;-module. Then V (I;;) = Supp(M;;) and M;; is a finite B;,-module.

At this point we apply Algebra, Lemma the pairs (A — B;, M;;) and to the
pairs (A — B;, M;). Thus we obtain dense opens U(A — B;, M;;) C S and dense
opens U(A — B;, M;) C S with notation as in Algebra, Equation (118.3.2)). Since
a finite intersection of dense opens is dense open, we see that

N, vt I AR )
is open and dense in S. We claim that U is the desired open.

Pick w € U. By definition of the loci U(A — B;, M;;) and U(A — B, M;) there
exist fij, fi € A such that (a) u € D(f;) and u € D(fi;), (b) Ay, — Biy,, is flat
and of finite presentation and M;; . is flat over Ay, and of finite presentation over
Bi g,;, and (c) By y, is flat and of finite presentation over Ay and M; y, is flat and of
finite presentation over B .. Set f = ([] fi)(I] fi;)- Now it suffices to prove that
X — S is flat and of finite presentation over D(f) and that F restricted to Xpy)
is flat over D(f) and of finite presentation over the structure sheaf of Xpy).

Hence we may replace A by Ay, i.e., perform the base change by Spec(Ay) — S.
After this base change we see that each of A — B; is flat and of finite presentation
and that M;, M;; are flat over A and of finite presentation over B;. This already
proves that X — S is quasi-compact, locally of finite presentation, flat, and that F
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is flat over S and of finite presentation over Ox, see Lemma [21.2] and Properties,
Lemma Since M;; is of finite presentation over B; we see that X; N X; =
X \ Supp(M;;) is a quasi-compact open of X;, see Algebra, Lemma Hence
we see that X — S is quasi-separated by Schemes, Lemma This proves the
proposition. U

052C |Remark 27.3. The results above are a first step towards more refined flattening
techniques for morphisms of schemes. The article [GR71] by Raynaud and Gruson
contains many wonderful results in this direction.

28. Morphisms and dimensions of fibres

02FW Let X be a topological space, and z € X. Recall that we have defined dim,(X)
as the minimum of the dimensions of the open neighbourhoods of = in X. See
Topology, Definition [10.1]

02FX Lemmal 28.1. Let f : X — S be a morphism of schemes. Let x € X and set
s = f(x). Assume f is locally of finite type. Then

dim, (Xs) = dim(Ox, o) + trdeg,, ) (r(z)).

Proof. This immediately reduces to the case S = s, and X affine. In this case the
result follows from Algebra, Lemma [116.3 O

02JS |Lemmal 28.2. Let f: X — Y andg:Y — S be morphisms of schemes. Let
x € X and sety = f(x), s = g(y). Assume [ and g locally of finite type. Then
dim, (X,) < dimg(X,) + dim, (Y5).
Moreover, equality holds if Ox, , is flat over Oy, ,, which holds for example if Ox ,

is flat over Oy,y,.

Proof. Note that trdeg, ) (r(z)) = trdeg,,)(k(z)) + trdeg, ) (k(y)). Thus by
Lemma the statement is equivalent to

dlm(OXS,I) S dim((’)xy@) + dlm(OYS’y)
For this see Algebra, Lemmall12.6] For the flat case see Algebra, Lemma[112.7 O

02FY |Lemmal 28.3. Let
Xl H[ X

g
f’l lf
S
be a fibre product diagram of schemes. Assume f locally of finite type. Suppose that
eX,x=4¢(),s=f(2) and s =g(s') = f(x). Then
(1) dim,(Xs) = dim,(X7,),
(2) if F is the fibre of the morphism X!, — X, over x, then
dim(Opq) = dim(Ox/, o) — dim(Ox, o) = trdeg, ;) (k(x)) — trdeg, s (k(x"))

In particular dim(Ox/, ;) > dim(Ox, ) and trdeg, ) (k(x)) > trdeg, ) (k(2")).
(3) given s', s, x there exists a choice of ¥’ such that dim(Ox/, ) = dim(Ox, )
and trdeg,, ) (k(z)) = trdeg,, o) (k(z")).
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Proof. Part (1) follows immediately from Algebra, Lemma [116.6] Parts (2) and
(3) from Algebra, Lemma O

The following lemma follows from a nontrivial algebraic result. Namely, the alge-
braic version of Zariski’s main theorem.

Lemmal 28.4. Let f: X — S be a morphism of schemes. Let n > 0. Assume f
is locally of finite type. The set

U, = {Z‘ cX | dim,, Xf(w) < n}
is open in X.
Proof. This is immediate from Algebra, Lemma [125.6 O

Lemma 28.5. Let f: X — Y be a morphism of finite type with Y quasi-compact.
Then the dimension of the fibres of f is bounded.

Proof. By Lemma the set U, C X of points where the dimension of the
fibre is < n is open. Since f is of finite type, every point is contained in some
U, (because the dimension of a finite type algebra over a field is finite). Since YV

is quasi-compact and f is of finite type, we see that X is quasi-compact. Hence
X = U, for some n. O

Lemmal 28.6. Let f: X — S be a morphism of schemes. Let n > 0. Assume f
1s locally of finite presentation. The open

U,={zxe€X| dimwa(z) <n}
of Lemma is retrocompact in X. (See Topology, Definition|12.1})

Proof. The topological space X has a basis for its topology consisting of affine
opens U C X such that the induced morphism f|y : U — S factors through an
affine open V C S. Hence it is enough to show that U N U, is quasi-compact for
such a U. Note that U, NU is the same as the open {z € U | dim, U,y < n}. This
reduces us to the case where X and S are affine. In this case the lemma follows

from Algebra, Lemma |125.8| (and Lemma [21.2)). O

Lemmal 28.7. Let f : X — S be a morphism of schemes. Let v ~ x' be a
nontrivial specialization of points in X lying over the same point s € S. Assume f
is locally of finite type. Then

(1) dim,(X5) < dim, (Xs),

(2) dim(Ox, ) < dim(Ox, 4), and

(3) trdeg, s (k(x)) > trdeg, ) (r(z')).
Proof. Part (1) follows from the fact that any open of X, containing 2’ also con-
tains z. Part (2) follows since Oy, , is a localization of Ox, .+ at a prime ideal,

hence any chain of prime ideals in Ox, , is part of a strictly longer chain of primes
in Ox, 5. The last inequality follows from Algebra, Lemma [116.2 (|

29. Morphisms of given relative dimension

In order to be able to speak comfortably about morphisms of a given relative
dimension we introduce the following notion.

Definition 29.1. Let f: X — S be a morphism of schemes. Assume f is locally
of finite type.

[DG67, IV Theorem
13.1.3]
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(1) We say f is of relative dimension < d at z if dim, (X)) < d.

(2) We say f is of relative dimension < d if dim,(Xy(,)) < d for all z € X.

(3) We say f is of relative dimension d if all nonempty fibres X, are equidi-
mensional of dimension d.

This is not a particularly well behaved notion, but it works well in a number of
situations.

Lemmal 29.2. Let f: X — S be a morphism of schemes which is locally of finite
type. If f has relative dimension d, then so does any base change of f. Same for
relative dimension < d.

Proof. This is immediate from Lemma 28.3] O

Lemma 29.3. Let f: X =Y, g:Y — Z be locally of finite type. If f has relative
dimension < d and g has relative dimension < e then go f has relative dimension
<d+e. If

(1) f has relative dimension d,
(2) g has relative dimension e, and

(3) f is ﬂa'ta

then g o f has relative dimension d + e.

Proof. This is immediate from Lemma 282 O

In general it is not possible to decompose a morphism into its pieces where the
relative dimension is a given one. However, it is possible if the morphism has
Cohen-Macaulay fibres and is flat of finite presentation.

Lemma 29.4. Let f: X — S be a morphism of schemes. Assume that

(1) f is flat,

(2) f is locally of finite presentation, and

(3) for all s € S the fibre X is Cohen-Macaulay (Properties, Deﬁm’t@'on
Then there exist open and closed subschemes Xq C X such that X = Hdzo X4 and
flx, : Xa — S has relative dimension d.

Proof. This is immediate from Algebra, Lemma [130.8 U

Lemma 29.5. Let f: X — S be a morphism of schemes. Assume f is locally
of finite type. Let x € X with s = f(x). Then f is quasi-finite at x if and only if
dim,(Xs) = 0. In particular, f is locally quasi-finite if and only if f has relative
dimension 0.

Proof. First proof. If f is quasi-finite at « then x(x) is a finite extension of k(s)
(by Lemma [20.5) and = is isolated in X, (by Lemma [20.6]), hence dim, (X,) = 0 by
Lemma nversely, if dim,(X,) = 0 then by Lemma we see k(s) C k()
is algebraic and there are no other points of X, specializing to z. Hence z is closed
in its fibre by Lemma and by Lemma (3) we conclude that f is quasi-finite
at x.

Second proof. The fibre X is a scheme locally of finite type over a field, hence
locally Noetherian (Lemma |15.6)). The result now follows from Lemma and
Properties, Lemma [10.7] (]
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Lemma 29.6. Let f: X — Y be a morphism of locally Noetherian schemes which
is flat, locally of finite type and of relative dimension d. For every point x in X
with image y in'Y we have dim,(X) = dim,(Y") + d.

Proof. After shrinking X and Y to open neighborhoods of z and y, we can assume
that dim(X) = dim,(X) and dim(Y") = dim,(Y"), by definition of the dimension
of a scheme at a point (Properties, Definition . The morphism f is open by
Lemmas and Hence we can shrink Y to arrange that f is surjective. It
remains to show that dim(X) = dim(Y") + d.

Let a be a point in X with image b in Y. By Algebra, Lemma [112.7]
dim(Ox,a) = dim(OYVb) + dim((’)Xb,a).

Taking the supremum over all points a in X, it follows that dim(X) = dim(Y") +d,
as we want, see Properties, Lemma [10.2 O

30. Syntomic morphisms

An algebra A over a field k is called a global complete intersection over k if A =
Elx1,...,xn]/(f1,..., fc) and dim(A) = n —c. An algebra A over a field k is called
a local complete intersection if Spec(A) can be covered by standard opens each of
which are global complete intersections over k. See Algebra, Section Recall
that a ring map R — A is syntomic if it is of finite presentation, flat with local
complete intersection rings as fibres, see Algebra, Definition

Definition 30.1. Let f: X — S be a morphism of schemes.

(1) We say that f is syntomic at x € X if there exists an affine open neigh-
bourhood Spec(A) = U C X of x and affine open Spec(R) =V C S with
f(U) C V such that the induced ring map R — A is syntomic.

(2) We say that f is syntomic if it is syntomic at every point of X.

(3) If S = Spec(k) and f is syntomic, then we say that X is a local complete
intersection over k.

(4) A morphism of affine schemes f : X — S is called standard syntomic if there
exists a global relative complete intersection R — R[z1,...,2,]/(f1,-. ., fe)
(see Algebra, Definition such that X — S is isomorphic to

Spec(R[z1, ..., @al/(f1, .-, fe)) — Spec(R).

In the literature a syntomic morphism is sometimes referred to as a flat local com-
plete intersection morphism. It turns out this is a convenient class of morphisms.
For example one can define a syntomic topology using these, which is finer than
the smooth and étale topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic
ring maps) is in particular flat. In More on Morphisms, Section We will consider
morphisms X — S which locally are of the form

Spec(R[z1, ..., 2al/(f1, ..., fe)) — Spec(R).

for some Koszul-regular sequence f1,..., f, in R[x1,...,2,]. Such a morphism will
be called a local complete intersection morphism. Once we have this definition in
place it will be the case that a morphism is syntomic if and only if it is a flat, local
complete intersection morphism.
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Note that there is no separation or quasi-compactness hypotheses in the definition
of a syntomic morphism. Hence the question of being syntomic is local in nature
on the source. Here is the precise result.

Lemmal 30.2. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is syntomic.
(2) For every affine opens U C X, V. C S with f(U) C V the ring map
Os(V) = Ox(U) is syntomic.
(3) There exists an open covering S = J;c; V; and open coverings i) =
Uielj U; such that each of the morphisms U; — V;, j € J,i € I; is syntomic.
(4) There exists an affine open covering S = UjeJ V; and affine open coverings
V) = Uielj U; such that the ring map Og(V;) = Ox(U;) is syntomic,
forallj e Jiel;.
Moreover, if f is syntomic then for any open subschemes U C X, V. C S with
f(U) CV the restriction fly : U =V is syntomic.

Proof. This follows from Lemma if we show that the property “R — A is
syntomic” is local. We check conditions (a), (b) and (c) of Definition By
Algebra, Lemma being syntomic is stable under base change and hence we
conclude (a) holds. By Algebra, Lemma being syntomic is stable under
composition and trivially for any ring R the ring map R — Ry is syntomic. We
conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
[136.4] O

Lemma 30.3. The composition of two morphisms which are syntomic is syntomic.

Proof. In the proof of Lemma we saw that being syntomic is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma
combined with the fact that being syntomic is a property of ring maps that is
stable under composition, see Algebra, Lemma O

Lemma 30.4. The base change of a morphism which is syntomic is syntomic.

Proof. In the proof of Lemma we saw that being syntomic is a local property
of ring maps. Hence the lemma follows from Lemma [14.5] combined with the fact
that being syntomic is a property of ring maps that is stable under base change,

see Algebra, Lemma O
Lemma 30.5. Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. [
Lemma 30.6. A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. [
Lemma 30.7. A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. O

Lemma 30.8. A syntomic morphism is universally open.

Proof. Combine Lemmas [30.6] [30.7] and [25.10] O
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Let k be a field. Let A be a local k-algebra essentially of finite type over k. Recall
that A is called a complete intersection over k if we can write A = R/(f1,..., fc)
where R is a regular local ring essentially of finite type over k, and fi1,..., fc is a
regular sequence in R, see Algebra, Definition [135.5

Lemma 30.9. Let k be a field. Let X be a scheme locally of finite type over k.
The following are equivalent:

(1) X is a local complete intersection over k,

(2) for every x € X there exists an affine open U = Spec(R) C X neigh-
bourhood of x such that R = k[x1,...,z,]/(f1,--., fc) is a global complete
intersection over k, and

(3) for every x € X the local ring Ox 5 is a complete intersection over k.

Proof. The corresponding algebra results can be found in Algebra, Lemmas [135.8

and [[35.9 O

The following lemma says locally any syntomic morphism is standard syntomic.
Hence we can use standard syntomic morphisms as a local model for a syntomic
morphism. Moreover, it says that a flat morphism of finite presentation is syntomic
if and only if the fibres are local complete intersection schemes.

Lemma 30.10. Let f : X — S be a morphism of schemes. Let x € X be a
point with image s = f(x). Let V .C S be an affine open neighbourhood of s. The
following are equivalent
(1) The morphism f is syntomic at x.
(2) There exist an affine open U C X with x € U and f(U) C V such that
flu : U =V is standard syntomic.
(3) The morphism f is of finite presentation at x, the local ring map Og s —
Ox,5 is flat and Ox /msOx , is a complete intersection over k(s) (see

Algebra, Definition .
Proof. Follows from the definitions and Algebra, Lemma [136.15 (]
Lemmal 30.11. Let f : X — S be a morphism of schemes. If f is flat, locally

of finite presentation, and all fibres X are local complete intersections, then f is
syntomic.

Proof. Clear from Lemmas and [30.10] and the isomorphisms of local rings
OX,m/msOX,z = OXsJ' -

Lemmal 30.12. Let f : X — S be a morphism of schemes. Assume f locally of
finite type. Formation of the set

T ={z € X | Ox, . is a complete intersection over x(f(z))}

commutes with arbitrary base change: For any morphism g : S’ — S, consider
the base change f' : X' — S’ of f and the projection ¢’ : X' — X. Then the
corresponding set T for the morphism f' is equal to T' = (¢')~Y(T). In particular,
if f is assumed flat, and locally of finite presentation then the same holds for the
open set of points where f is syntomic.

Proof. Let s’ € S’ be a point, and let s = g(s’). Then we have
X;’ = SpeC(K)(S/)) X Spec(k(s)) X
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In other words the fibres of the base change are the base changes of the fibres.
Hence the first part is equivalent to Algebra, Lemma The second part
follows from the first because in that case T is the set of points where f is syntomic
according to Lemma [30.10 [

Lemma 30.13. Let R be a ring. Let R — A = Rlxy,...,2,]/(f1,..., fc) be a
relative global complete intersection. Set S = Spec(R) and X = Spec(A). Consider
the morphism f : X — S associated to the ring map R — A. The function
x> dimg (X¢(y)) is constant with value n — c.

Proof. By Algebra, Definition R — A being a relative global complete in-
tersection means all nonzero fibre rings have dimension n — ¢. Thus for a prime p
of R the fibre ring s (p)[x1,...,7,]/(f1,- .., f.) is either zero or a global complete
intersection ring of dimension n —c. By the discussion following Algebra, Definition
this implies it is equidimensional of dimension n —c. Whence the lemma. [

Lemma 30.14. Let f : X — S be a syntomic morphism. The function x —
dimy (X ¢(s)) is locally constant on X.

Proof. By Lemma [30.10| the morphism f locally looks like a standard syntomic
morphism of affines. Hence the result follows from Lemma [30.13] O

Lemma says that the following definition makes sense.

Definition 30.15. Let d > 0 be an integer. We say a morphism of schemes
f X — S is syntomic of relative dimension d if f is syntomic and the function
dimy (Xy(z)) = d for all v € X.

In other words, f is syntomic and the nonempty fibres are equidimensional of
dimension d.

Lemma 30.16. Let

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective and syntomic,
(2) p is syntomic, and
(3) q is locally of finite presentatimﬁ.

Then q is syntomic.

Proof. By Lemma we see that ¢ is flat. Hence it suffices to show that the
fibres of Y — S are local complete intersections, see Lemma Let s € S.
Consider the morphism X; — Y. This is a base change of the morphism X — Y
and hence surjective, and syntomic (Lemma [30.4). For the same reason X, is
syntomic over #(s). Moreover, Y is locally of finite type over (s) (Lemma [15.4).
In this way we reduce to the case where S is the spectrum of a field.

Assume S = Spec(k). Let y € Y. Choose an affine open Spec(A) C Y neighbour-
hood of y. Let Spec(B) C X be an affine open such that f(Spec(B)) C Spec(A),

8In fact, if f is surjective, flat, and locally of finite presentation and p is syntomic, then both
q and f are syntomic, see Descent, Lemma
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containing a point € X such that f(x) = y. Choose a surjection k[z1,...,z,] — A
with kernel I. Choose a surjection Aly1, ..., ym] — B, which gives rise in turn to a
surjection k[z;, y;] — B with kernel J. Let q C k[z;, y;] be the prime corresponding
to y € Spec(B) and let p C k[z;] the prime corresponding to « € Spec(A). Since x
maps to y we have p = q N k[x;]. Consider the following commutative diagram of
local rings:

OX,Q? B Bq B ]{3[131, sy Ty Y1y - e 7ym]q
Oy’y _— Ap k[l‘l, N ,,’En]p

We claim that the hypotheses of Algebra, Lemma are satisfied. Conditions
(1) and (2) are trivial. Condition (4) follows as X — Y is flat. Condition (3) follows
as the rings Oy, and OXWE = Ox ,/myOx , are complete intersection rings by our
assumptions that f and p are syntomic, see Lemma [30.10] The output of Algebra,
Lemma[135.12]is exactly that Oy, is a complete intersection ring! Hence by Lemma
30.10| again we see that Y is syntomic over k at y as desired. [

31. Conormal sheaf of an immersion

Let i : Z — X be a closed immersion. Let Z C Ox be the corresponding quasi-
coherent sheaf of ideals. Consider the short exact sequence

07> >T—I/I* =0

of quasi-coherent sheaves on X. Since the sheaf Z/Z? is annihilated by Z it corre-
sponds to a sheaf on Z by Lemma [41] This quasi-coherent Oz-module is called
the conormal sheaf of Z in X and is often simply denoted Z/Z? by the abuse of
notation mentioned in Section [l

In case ¢ : Z — X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z — X \ 0Z, where 0Z = Z \ Z.
It is often denoted Z/Z? where T is the ideal sheaf of the closed immersion i : Z —
X\oz.

Definition 31.1. Let i : Z — X be an immersion. The conormal sheaf C;,x of
Z in X or the conormal sheaf of i is the quasi-coherent O z-module Z/Z? described
above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted Nz, x. We will not follow this
convention since we would like to reserve the notation Ay /x for the normal sheaf
of the immersion. It is defined as

Nz/x = /HJO??’L(QZ (CZ/Xa Oz) = Hom(gz (I/IQ, Oz)

provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 31.2. Leti: Z — X be an immersion. The conormal sheaf of i has the
following properties:

(1) Let U C X be any open subscheme such that i factors as Z LU 5 X
where i’ is a closed immersion. Let T = Ker((i')) € Oy. Then

CZ/X = (Z/)*I and i;CZ/X :I/Iz
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(2) For any affine open Spec(R) = U C X such that ZNU = Spec(R/I) there
is a canonical isomorphism T'(Z NU,Cz/x) = I /1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal
of R we have I/I> =1 ®p R/I. Details omitted. O

Lemma 31.3. Let

A — X

fl lg

7 s X
be a commutative diagram in the category of schemes. Assume i, i immersions.
There is a canonical map of Oz-modules

f*CZ’/X’ — CZ/X
characterized by the following property: For every pair of affine opens (Spec(R) =

U C X,Spec(R') = U C X') with f(U) C U’ such that ZNU = Spec(R/I) and
Z'NU" = Spec(R'/I') the induced map

DZ'NU,Cqyx))=1'/1% — I/I* =T(ZNU,Cz/x)
is the one induced by the ring map f*: R' — R which has the property f{(I') C I.

Proof. Let 07’ = 7"\ Z' and 0Z = Z \ Z. These are closed subsets of X’ and of
X. Replacing X’ by X'\ 0Z’ and X by X \ (¢71(82') UDZ) we see that we may
assume that ¢ and ¢’ are closed immersions.

The fact that g o4 factors through ¢’ implies that ¢*Z’ maps into Z under the
canonical map ¢g*Z' — Ox, see Schemes, Lemmas and Hence we get an
induced map of quasi-coherent sheaves g*(Z'/(Z')?) — I/Z?. Pulling back by i
gives i*g*(Z'/(Z')?) — i*(Z/Z?). Note that i*(Z/Z?) = Cz,x. On the other hand,
gt (Z')/(T')?) = f*({')*(T'/(Z")?) = f*Cz//x. This gives the desired map.

Checking that the map is locally described as the given map I'/(I')? — I/I? is a
matter of unwinding the definitions and is omitted. Another observation is that
given any z € i(Z) there do exist affine open neighbourhoods U, U’ with f(U) C U’
and ZNU as well as U' N Z’ closed such that € U. Proof omitted. Hence the
requirement of the lemma indeed characterizes the map (and could have been used
to define it). O

| )

Z/AIX/

Lemma 31.4. Let

be a fibre product diagram in the category of schemes with i, i’ immersions. Then
the canonical map f*Czi/x+ — Cz/x of Lemma[31.9 s surjective. If g is flat, then
it is an isomorphism.

Proof. Let R — R be a ring map, and I’ C R’ an ideal. Set I = I'R. Then
I'/)(I')? ®rr R — I/I? is surjective. If " — R is flat, then I = I’ ®p R and
I? = (I')? ®p R and we see the map is an isomorphism. O
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Lemma 31.5. Let Z — Y — X be immersions of schemes. Then there is a
canonical exact sequence

i*Cy/X — CZ/X — Cz/y —0
where the maps come from Lemmal|31.58 and i: Z —'Y is the first morphism.
Proof. Via Lemma this translates into the following algebra fact. Suppose
that C' — B — A are surjective ring maps. Let [ = Ker(B — A), J = Ker(C — A)
and K = Ker(C — B). Then there is an exact sequence
K/K*®@p A — J/J* = I/I* = 0.
This follows immediately from the observation that I = J/K. g

32. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section [131)) and the corresponding section in the
chapter on sheaves of modules (Modules, Section .

Definition 32.1. Let f: X — S be a morphism of schemes. The sheaf of differ-
entials x5 of X over S is the sheaf of differentials of f viewed as a morphism of
ringed spaces (Modules, Definition [28.10) equipped with its universal S-derivation

dx/s : OX — QX/S-

It turns out that Qx5 is a quasi-coherent O x-module for example as it is isomor-
phic to the conormal sheaf of the diagonal morphism A : X — X xg X (Lemma
32.7). We have defined the module of differentials of X over S using a universal
property, namely as the receptacle of the universal derivation. If you have any
other construction of the sheaf of relative differentials which satisfies this universal
property then, by the Yoneda lemma, it will be canonically isomorphic to the one
defined above. For convenience we restate the universal property here.

Lemma 32.2. Let f: X — S be a morphism of schemes. The map
Homo, (Qx/s,F) — Ders(Ox,F), ar— aodx/g
is an isomorphism of functors Mod(Ox) — Sets.

Proof. This is just a restatement of the definition. (Il

Lemmal 32.3. Let f : X — S be a morphism of schemes. Let U C X, V C S
be open subschemes such that f(U) C V. Then there is a unique isomorphism
Qx/slv = Quyv of Oy-modules such that dx,s|v = dy v

Proof. This is a special case of Modules, Lemma if we use the canonical
identification f~1Og|y = (f|v) 1Oy O

From now on we will use these canonical identifications and simply write ;7,5 or
Qv for the restriction of Qx5 to U.

Lemmal 32.4. Let R — A be a ring map. Let F be a sheaf of Ox-modules on
X = Spec(A). Set S = Spec(R). The rule which associates to an S-derivation on
F its action on global sections defines a bijection between the set of S-derivations

of F and the set of R-derivations on M =T(X,F).
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Proof. Let D : A — M be an R-derivation. We have to show there exists a unique
S-derivation on F which gives rise to D on global sections. Let U = D(f) C X
be a standard affine open. Any element of I'(U, Ox) is of the form a/f™ for some
a € A and n > 0. By the Leibniz rule we have

D(a)lu = a/f"D(f")|lv + f"D(a/f")

in I'(U, F). Since f acts invertibly on I'(U, F) this completely determines the value
of D(a/f™) € T(U, F). This proves uniqueness. Existence follows by simply defining

D(a/f") = (1/f")D(a)|lv = a/f*" D(f")|v

and proving this has all the desired properties (on the basis of standard opens of
X). Details omitted. U

Lemmal 32.5. Let f: X — S be a morphism of schemes. For any pair of affine
opens Spec(A) = U C X, Spec(R) =V C S with f(U) C V there is a unique
isomorphism

LU, Qx/s) = Qa/r-

compatible with dx;s and d: A — Qa/p.

Proof. By Lemma we may replace X and S by U and V. Thus we may assume
X = Spec(A) and S = Spec(R) and we have to show the lemma with U = X and
V = S. Consider the A-module M = I'(X,{x/g) together with the R-derivation

dx/s: A— M. Let N be another A-module and denote N the quasi-coherent Ox-
module associated to N, see Schemes, Section [/} Precomposing by dx/g: A — M
we get an arrow

a:Homag(M,N) — Derg(A,N)
Using Lemmas and we get identifications

Homo, (2x/s, N) = Derg(Ox, N) = Derg (4, N)

Taking global sections determines an arrow Homo, (Qx/s, N) — Hompg(M, N).
Combining this arrow and the identifications above we get an arrow

B :Dergr(A, N) — Hompg(M, N)

Checking what happens on global sections, we find that « and § are each others
inverse. Hence we see that dx/g : A — M satisfies the same universal property
asd: A — Qu/g, see Algebra, Lemma Thus the Yoneda lemma (Cate-
gories, Lemma D implies there is a unique isomorphism of A-modules M = Q4 p
compatible with derivations. O

Remark| 32.6. The lemma above gives a second way of constructing the module
of differentials. Namely, let f : X — S be a morphism of schemes. Consider the
collection of all affine opens U C X which map into an affine open of S. These form
a basis for the topology on X. Thus it suffices to define I'(U, {2x/g) for such U. We
simply set I'(U, Qx/g) = Qa/r if A, R are as in Lemma above. This works,
but it takes somewhat more algebraic preliminaries to construct the restriction
mappings and to verify the sheaf condition with this ansatz.

The following lemma gives yet another way to define the sheaf of differentials and
it in particular shows that Qx /g is quasi-coherent if X and S are schemes.
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0852 |Lemmal 32.7. Let f: X — S be a morphism of schemes. There is a canoni-
cal isomorphism between x,s and the conormal sheaf of the diagonal morphism
Ax/le—>XXSX.

Proof. We first establish the existence of a couple of “global” sheaves and global
maps of sheaves, and further down we describe the constructions over some affine
opens.

Recall that A = Ax/g: X — X xg X is an immersion, see Schemes, Lemma
Let J be the ideal sheaf of the immersion which lives over some open subscheme W
of X xgX such that A(X) C W is closed. Let us take the one that was found in the
proof of Schemes, Lemma Note that the sheaf of rings Oy /J? is supported
on A(X). Moreover it sits in a short exact sequence of sheaves

0—J/T*— Ow/T* = A.Ox — 0.

Using A~! we can think of this as a surjection of sheaves of f~!(g-algebras with
kernel the conormal sheaf of A (see Definition and Lemma [31.2)).

0= Cx/xxsx = A7HOw/T?) = Ox =0
This places us in the situation of Modules, Lemma [28.11] The projection morphisms
pi © X xg X — X, i =1,2 induce maps of sheaves of rings (p;)* : (p;)'Ox —
Oxxsx. We may restrict to W and quotient by J2 to get (p;) 1Ox — Ow/J>.
Since Aflpifl(QX = Ox we get maps
S; - OX — A_l(OW/jZ)

Both s; and sp are sections to the map A~} (Oyw /J?) — Ox, as in Modules,
Lemma 28.11] Thus we get an S-derivation d = s3 — 51 : Ox — Cx/xxsx- By the
universal property of the module of differentials we find a unique O x-linear map

Qx/s — Cx/xxsx, fdgr— fs2(9) — fs1(9)
To see the map is an isomorphism, let us work this out over suitable affine opens.
We can cover X by affine opens Spec(4) = U C X whose image is contained in
an affine open Spec(R) = V C S. According to the proof of Schemes, Lemma
U xy U C X xg X is an affine open contained in the open W mentioned
above. Also U xy U = Spec(A ®r A). The sheaf J corresponds to the ideal
J = Ker(A®r A — A). The short exact sequence to the short exact sequence of
A ®pr A-modules
0— J/J* = (Agr A))J> - A—0
The sections s; correspond to the ring maps
A— (AopA)/J?, si:ama®l, sy:ar1®a.

By Lemma we have T'(U,Cx/xxyx) = J/J? and by Lemma we have
I'(U,Qx/s) = Qa/r- The map above is the map adb — a ® b — ab ® 1 which is
shown to be an isomorphism in Algebra, Lemma [131.13] O
01UV Lemma 32.8. Let
X —X
|

S —— 8
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be a commutative diagram of schemes. The canonical map Ox — f.Ox/ composed
with the map fidxisr @ f+Ox: — [Qlx1 /50 is a S-derivation. Hence we obtain a
canonical map of Ox-modules Qx5 — fQx1/s:, and by adjointness of f. and f*
a canonical Ox:-module homomorphism

Cy: f*QX/S — QX//S"
It is uniquely characterized by the property that f*dx,s(h) maps to dx s/ (f*h) for
any local section h of Ox.

Proof. This is a special case of Modules, Lemma In the case of schemes we
can also use the functoriality of the conormal sheaves (see Lemma and Lemma
to define cy. Or we can use the characterization in the last line of the lemma
to glue maps defined on affine patches (see Algebra, Equation (131.4.1)). O

Lemma) 32.9. Let f: X =Y, g:Y — S be morphisms of schemes. Then there
is a canonical exact sequence

f*QY/S — QX/S — Qx/y —0
where the maps come from applications of Lemma [32.8

Proof. This is the sheafified version of Algebra, Lemma[131.7] Alternatively, there
is a general version for morphisms of ringed spaces, see Modules, Lemma [28.14. [

Lemmal 32.10. Let X — S be a morphism of schemes. Let g : S' — S be a
morphism of schemes. Let X' = Xg be the base change of X. Denote g’ : X' — X
the projection. Then the map

(g/)*QX/S — QX’/S’
of Lemma[32.8 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma [131.12 (]

Lemma 32.11. Let f: X — S and g : Y — S be morphisms of schemes with
the same target. Let p : X xgY — X and q : X xXgY — Y be the projection
morphisms. The maps from Lemma[52.§

P Qx/s © ¢ Qyss — Qxxsyys
give an isomorphism.

Proof. By Lemma [32.10] the composition P Qx5 = Qxxgy/s = Qxxsy/y is an
isomorphism, and similarly for g. Moreover, the cokernel of p*Qx /s — Qx .y y/s
is xxy/x by Lemma The result follows. (I

Lemma 32.12. Let f : X — S be a morphism of schemes. If f is locally of finite
type, then Q1x /s is a finite type Ox -module.

Proof. Immediate from Algebra, Lemma [I31.16] Lemma Lemma and
Properties, Lemma |16.1 (|

Lemma) 32.13. Let f : X — S be a morphism of schemes. If f is locally of finite
presentation, then Qx5 is an Ox-module of finite presentation.

Proof. Immediate from Algebra, Lemma [131.15] Lemma Lemma [21.2] and
Properties, Lemma [16.2 (]
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Lemma 32.14. If X — S is an immersion, or more generally a monomorphism,
then Qx g is zero.

Proof. This is true because Ay,g is an isomorphism in this case and hence has
trivial conormal sheaf. Hence Qx/s = 0 by Lemma [32.7} The algebraic version is

Algebra, Lemma O

Lemma 32.15. Leti: Z — X be an immersion of schemes over S. There is a
canonical exact sequence

CZ/X — Z*Qx/s — Qz/s —0

where the first arrow is induced by dx;s and the second arrow comes from Lemma

(328

Proof. This is the sheafified version of Algebra, Lemma[131.9] However we should
make sure we can define the first arrow globally. Hence we explain the meaning of
“induced by dx/s” here. Namely, we may assume that 7 is a closed immersion by
shrinking X. Let Z C Ox be the sheaf of ideals corresponding to Z C X. Then
dx/s : T — Qx5 maps the subsheaf I’ C T to IQx/s. Hence it induces a map
/7% — Qx/s/Ix /s which is Ox /Z-linear. By Lemma this corresponds to a
map Cz/x — i"Qx/s as desired. ([

Lemma) 32.16. Leti: Z — X be an immersion of schemes over S, and assume
1 (locally) has a left inverse. Then the canonical sequence

0— CZ/X — i*QX/S — QZ/S — 0

of Lemma is (locally) split exact. In particular, if s : S — X is a section of
the structure morphism X — S then the map Cs/x — s*Qx/s induced by dx /g is
an isomorphism.

Proof. Follows from Algebra, Lemma [131.10} Clarification: if g : X — Z is a left
inverse of i, then i*c, is a right inverse of the map i*Qx/¢ — Qz/g. Also, if s is
a section, then it is an immersion s : Z =S — X over S (see Schemes, Lemma

21.11)) and in that case Q75 = 0. 0

Remark| 32.17. Let X — S be a morphism of schemes. According to Lemma

32171 we have
Qxxsx/s = Priflx/s ® prafixys
On the other hand, the diagonal morphism A : X — X Xxg X is an immersion,

which locally has a left inverse. Hence by Lemma[32.16| we obtain a canonical short
exact sequence

0— CX/XXSX — Qx/s @QX/S — QX/S —0

Note that the right arrow is (1,1) which is indeed a split surjection. On the other
hand, by Lemma @ we have an identification Qy/s = Cx/xxsx- Because we
chose dx,s(f) = s2(f) — s1(f) in this identification it turns out that the left arrow
is the map (—1,1

9Namely, the local section dx/s(f) =1®f— f®1 of the ideal sheaf of A maps via dx » ¢ x/x
to the local section 191®01® f— 10 f@101-1Q1Q fO1+f@101®1 = pridx,/s(f) —pridx,/s(f).
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Lemma 32.18. Let

be a commutative diagram of schemes where i and j are immersions. Then there
is a canonical exact sequence

Cz/y — CZ/X — i*Qx/y —0
where the first arrow comes from Lemma [31.3 and the second from Lemma[32.15
Proof. The algebraic version of this is Algebra, Lemma [134.7 t

33. Finite order differential operators

We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section [133)) and the corresponding section in the
chapter on sheaves of modules (Modules, Section .

Lemmal 33.1. Let R — A be a ring map. Denote f : X — S the corresponding
morphism of affine schemes. Let F and G be Ox-modules. If F is quasi-coherent
then the map

Diff;s(F.G) = Diffa r(P(X, F).I(X,G))
sending a differential operator to its action on global sections is bijective.

Proof. Write 7 = M for some A-module M. Set N = I'X,G). Let D : M —
N be a differential operator of order k. We have to show there exists a unique
differential operator F — G of order k which gives rise to D on global sections. Let
U = D(f) C X be a standard affine open. Then F(U) = M/ is the localization. By
Algebra, Lemma the differential operator D extends to a unique differential
operator

Dy : F(U) = M(U) = My — Ny = N(U)
The uniqueness shows that these maps Dy glue to give a map of sheaves M — N
on the basis of all standard opens of X. Hence we get a unique map of sheaves
D:M—> N agreeing with these maps by the material in Sheaves, Section
Since D is given by differential operators of order k on the standard opens, we find
that D is a differential operator of order k (small detail omitted). Finally, we can
post-compose with the canonical Ox-module map c : N—>g (Schemes, Lemma

to get co D : F — G which is a differential operator of order k by Modules,

Lemma This proves existence. We omit the proof of uniqueness. (]

Lemma 33.2. Leta: X — S andb:Y — S be morphisms of schemes. Let F
and F' be quasi-coherent Ox-modules. Let D : F — F' be a differential operator
of order k on X/S. Let G be a quasi-coherent Oy -module. Then there is a unique
differential operator

D" p,r,»{]_- ®OX><SY pr;g — pT"{]:/ ®Ox><sy Prsg

of order k on X xgY/Y such that D'(s ® t) = D(s) @ t for local sections s of F
and t of G.
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Proof. In case X, Y, and S are affine, this follows, via Lemma from the
corresponding algebra result, see Algebra, Lemma In general, one uses
coverings by affines (for example as in Schemes, Lemma to construct D’
globally. Details omitted. [

Remark| 33.3. Let a: X — S and b:Y — S be morphisms of schemes. Denote
p: X XgY — X and q: X xgY — Y the projections. In this remark, given an
Ox-module F and an Oy-module G let us set

FXG :p*f®oXXSY q°G

Denote Ax/s the additive category whose objects are quasi-coherent Ox-modules
and whose morphisms are differential operators of finite order on X/S. Similarly
for Ay/s and Axysy/s- The construction of Lemma determines a functor

&:AX/SX.A}//SH-AXXSY/S, (]?,g)%]-'ﬁg

which is bilinear on morphisms. If X = Spec(A), Y = Spec(B), and S = Spec(R),
then via the identification of quasi-coherent sheaves with modules this functor is
given by (M, N) — M ®pgN on objects and sends the morphism (D, D’) : (M, N) —
(M''N)YtoD®D': M ®gr N - M' ®@r N'.

34. Smooth morphisms

Let f: X — Y be a continuous map of topological spaces. Consider the following
condition: For every x € X there exist open neighbourhoods x € U C X and
f(z) € V CY, and an integer d such that f(U) C V and such that we obtain a
commutative diagram

X<7UT>V><R‘1’

| L7

Y<~—V

where 7 is a homeomorphism onto an open subset. Smooth morphisms of schemes
are the analogue of these maps in the category of schemes. See Lemma [34.11] and
Lemma [36.20)

Contrary to expectations (perhaps) the notion of a smooth ring map is not defined
solely in terms of the module of differentials. Namely, recall that R — A is a smooth
ring map if A is of finite presentation over R and if the naive cotangent complex of
A over R is quasi-isomorphic to a projective module placed in degree 0, see Algebra,

Definition [[37.1]

Definition 34.1. Let f: X — S be a morphism of schemes.

(1) We say that f is smooth at x € X if there exist an affine open neighbourhood
Spec(4) = U C X of z and affine open Spec(R) =V C S with f(U) CV
such that the induced ring map R — A is smooth.

(2) We say that f is smooth if it is smooth at every point of X.

(3) A morphism of affine schemes f : X — S is called standard smooth if
there exists a standard smooth ring map R — Rlz1,...,zn]/(f1,-.-, fc)
(see Algebra, Definition such that X — S is isomorphic to

Spec(R[z1, ..., 2al/(f1, .-, fe)) — Spec(R).
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A pleasing feature of this definition is that the set of points where a morphism is
smooth is automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being smooth is local in nature on the source. Here is the
precise result.

Lemmal 34.2. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is smooth.
(2) For every affine opens U C X, V. C S with f(U) C V the ring map
Os(V) = Ox(U) is smooth.
(3) There exists an open covering S = J;c; V; and open coverings V) =
Uz‘elj U; such that each of the morphisms U; — V;, j € J,i € I is smooth.
(4) There exists an affine open covering S = J,c; V; and affine open coverings
;) = Uz‘elj U; such that the ring map Ogs(V;) = Ox(U;) is smooth,
forallje Jiel;.
Moreover, if f is smooth then for any open subschemes U C X, V. C S with
f(U) C V the restriction fly : U — V is smooth.

Proof. This follows from Lemma if we show that the property “R — A is
smooth” is local. We check conditions (a), (b) and (¢) of Definition By Alge-
bra, Lemma being smooth is stable under base change and hence we conclude
(a) holds. By Algebra, Lemma being smooth is stable under composition
and for any ring R the ring map R — Ry is (standard) smooth. We conclude (b)
holds. Finally, property (c) is true according to Algebra, Lemma (]

The following lemma characterizes a smooth morphism as a flat, finitely presented
morphism with smooth fibres. Note that schemes smooth over a field are discussed
in more detail in Varieties, Section

Lemmal 34.3. Let f : X — S be a morphism of schemes. If f is flat, locally of
finite presentation, and all fibres Xg are smooth, then f is smooth.

Proof. Follows from Algebra, Lemma [137.1 (]
Lemma 34.4. The composition of two morphisms which are smooth is smooth.

Proof. In the proof of Lemma we saw that being smooth is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma [T4.5]
combined with the fact that being smooth is a property of ring maps that is stable
under composition, see Algebra, Lemma O

Lemma 34.5. The base change of a morphism which is smooth is smooth.

Proof. In the proof of Lemma we saw that being smooth is a local property
of ring maps. Hence the lemma follows from Lemma [I4.5] combined with the fact
that being smooth is a property of ring maps that is stable under base change, see

Algebra, Lemma [137.4 O
Lemmal 34.6. Any open immersion is smooth.
Proof. This is true because an open immersion is a local isomorphism. O

Lemma 34.7. A smooth morphism is syntomic.
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Proof. See Algebra, Lemma O
Lemma 34.8. A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. [
Lemma 34.9. A smooth morphism is flat.

Proof. Combine Lemmas B0.7 and B4.7 O
Lemma 34.10. A smooth morphism is universally open.

Proof. Combine Lemmas[34.9] [34.8] and[25.10] Or alternatively, combine Lemmas

847 30.8 O

The following lemma says locally any smooth morphism is standard smooth. Hence
we can use standard smooth morphisms as a local model for a smooth morphism.

Lemma 34.11. Let f: X — S be a morphism of schemes. Let © € X be a point.
Let V C S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is smooth at x.
(2) There exists an affine open U C X, with x € U and f(U) C V such that
the induced morphism fly : U — V is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas [[37.7 and [37.10] O

Lemmal 34.12. Let f : X — S be a morphism of schemes. Assume f is smooth.
Then the module of differentials Qx5 of X over S is finite locally free and

rank,(Qx/s) = dimg (X ¢(z))
for every x € X.

Proof. The statement is local on X and S. By Lemma|34.11|above we may assume
that f is a standard smooth morphism of affines. In this case the result follows from
Algebra, Lemma[137.7) (and the definition of a relative global complete intersection,
see Algebra, Definition . O

Lemma [34.12] says that the following definition makes sense.

Definition 34.13. Let d > 0 be an integer. We say a morphism of schemes
[+ X — S is smooth of relative dimension d if f is smooth and Qs is finite
locally free of constant rank d.

In other words, f is smooth and the nonempty fibres are equidimensional of di-
mension d. By Lemma below this is also the same as requiring: (a) f is
locally of finite presentation, (b) f is flat, (c) all nonempty fibres equidimensional
of dimension d, and (d) 2x/g finite locally free of rank d. It is not enough to simply
assume that f is flat, of finite presentation, and 2x,g is finite locally free of rank
d. A counter example is given by Spec(F,[t]) — Spec(F,[t?]).

Here is a differential criterion of smoothness at a point. There are many variants
of this result all of which may be useful at some point. We will just add them here
as needed.

Lemmal 34.14. Let f : X — S be a morphism of schemes. Let v € X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is smooth at x.
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(2) The local ring map Og,s — Ox  is flat and Xs — Spec(k(s)) is smooth at
z.

(3) The local ring map Ogs — Ox . is flat and the Ox z-module Qx /s, can
be generated by at most dimy(Xy(,)) elements.

(4) The local ring map Og,s — Ox , is flat and the r(z)-vector space

QXs/s,ac ®(9xs,z K)((E) = QX/S,axc ®Ox,m Iﬁ:(lL’)
can be generated by at most dim,(Xy(,)) elements.
(5) There exist affine opens U C X, and V C S such that x € U, f(U) C V
and the induced morphism f|y : U — V is standard smooth.
(6) There exist affine opens Spec(A) = U C X and Spec(R) =V C S with
x € U corresponding to q C A, and f(U) C V such that there exists a

presentation
A:R[.’El,...,l'n]/(fh...,fc)
with
0f1/0x1 Ofz/0x1 ... Ofc/0x1
g:det Bfl/ﬁa:g 8f2/8x2 8fc/8x2
Of1/0x. Ofz/0x. ... 0Of:/0x,

mapping to an element of A not in q.

Proof. Note that if f is smooth at x, then we see from Lemma that (5)
holds, and (6) is a slightly weakened version of (5). Moreover, f smooth implies
that the ring map Og s — Ox . is flat (see Lemma [34.9) and that Qg is finite
locally free of rank equal to dim, (X;) (see Lemma [34.12)). Thus (1) implies (3) and
(4). By Lemma [34.5) we also see that (1) implies (2).

By Lemma the module of differentials Qx_,, of the fibre X, over x(s) is
the pullback of the module of differentials Qx5 of X over S. Hence the displayed
equality in part (4) of the lemma. By Lemmathese modules are of finite type.
Hence the minimal number of generators of the modules Qx /g, and Qx_/, , is the

same and equal to the dimension of this k(z)-vector space by Nakayama’s Lemma
(Algebra, Lemma [20.1). This in particular shows that (3) and (4) are equivalent.

Algebra, Lemma [137.17| shows that (2) implies (1). Algebra, Lemma [140.3| shows
that (3) and (4) imply (2). Finally, (6) implies (5) see for example Algebra, Example

137.8|and (5) implies (1) by Algebra, Lemma [137.7 O
Lemmal 34.15. Let

X —=X
g

f’l lf
g

S ——= 5
be a cartesian diagram of schemes. Let W C X, resp. W' C X' be the open
subscheme of points where f, resp. f' is smooth. Then W' = (¢g")~1(W) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T ={r € X | Xy(y) is smooth over x(f(x)) at x}
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and the corresponding set 7" C X’ for f’. Then we claim 7" = (¢')~*(7T'). Namely,
let s € S’ be a point, and let s = g(s’). Then we have

Xé/ = SpeC(K‘(S,)) ><Spec(ﬁ(s)) Xs
In other words the fibres of the base change are the base changes of the fibres.
Hence the claim is equivalent to Algebra, Lemma [137.19

Thus case (1) follows because in case (1) T is the (open) set of points where f is
smooth by Lemma [34.14]

In case (2) let ' € W’. Then ¢ is flat at 2’ (Lemma and go f is flat at z’
(Lemma [25.5). It follows that f is flat at 2 = ¢/(2’) by Lemma[25.13] On the other
hand, since 2’ € T’ (Lemma we see that € T. Hence f is smooth at = by
Lemma 3414 O

Here is a lemma that actually uses the vanishing of H~' of the naive cotangent
complex for a smooth ring map.

Lemmal 34.16. Let f : X =Y, g: Y — S be morphisms of schemes. Assume f
is smooth. Then

0— f*Qy/S — QX/S — QX/Y — 0
(see Lemma is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A — B — C with B — C smooth, then the sequence

0—-C®p QB/A — QC/A — QC/B —0
of Algebra, Lemma [131.7]is exact. This is Algebra, Lemma [139.1 (I

Lemmal 34.17. Leti: Z — X be an immersion of schemes over S. Assume that
Z is smooth over S. Then the canonical exact sequence

0— CZ/X — i*QX/S — Qz/s —0
of Lemma [32.15] is short ezact.

Proof. The algebraic version of this lemma is the following: Given ring maps
A — B — C with A — C smooth and B — C surjective with kernel J, then the
sequence

O—>J/J2—>C®BQB/A—>QC/A—>O

of Algebra, Lemma [131.9]is exact. This is Algebra, Lemma [139.2 ]
Lemma) 34.18. Let
N
Y

be a commutative diagram of schemes where i and j are immersions and X =Y
is smooth. Then the canonical exact sequence

0 —>Cz/y _>CZ/X — z*QX/Y —0

of Lemma[32.18 is ezact.
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Proof. The algebraic version of this lemma is the following: Given ring maps
A — B — C with A — C surjective and A — B smooth, then the sequence

0= 1I/1*> = J/J* = C®pQpa—0
of Algebra, Lemma [134.7]is exact. This is Algebra, Lemma [139.3 (I

Lemma 34.19. Let

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and smooth,
(2) p is smooth, and
(3) q is locally of finite presentatioﬂ.

Then q is smooth.

Proof. By Lemma we see that ¢ is flat. Pick a point y € Y. Pick a point
x € X mapping to y. Suppose f has relative dimension a at x and p has relative
dimension b at . By Lemma this means that Qx /g, is free of rank b and
Qx/y,s is free of rank a. By the short exact sequence of Lemma this means
that (f*Qy/g), is free of rank b — a. By Nakayama’s Lemma this implies that
Qy/s, can be generated by b — a elements. Also, by Lemma we see that
dim, (Ys) = b — a. Hence we conclude that Y — S is smooth at y by Lemma
part (2). O

In the situation of the following lemma the image of ¢ is locally on X cut out by a
regular sequence, see Divisors, Lemma [22.8

Lemma 34.20. Let f: X — S be a morphism of schemes. Let o : S — X be a
section of f. Let s € S be a point such that f is smooth at x = o(s). Then there
exist affine open neighbourhoods Spec(A) = U C S of s and Spec(B) =V C X of
x such that

(1) f(V)CU ando(U) CV,

(2) with I = Ker(c# : B — A) the module I/I? is a free A-module, and

(3) BN = Al[x,...,z4]] as A-algebras where B" denotes the completion of B

with respect to 1.

Proof. Pick an affine open U C S containing s Pick an affine open V C f~1(U)
containing z. Pick an affine open U’ C o7 1(V) containing s. Note that V' =
Y (U')NV is affine as it is equal to the fibre product V' = U’ x; V. Then U’ and
V' satisfy (1). Write U’ = Spec(A’) and V' = Spec(B’). By Algebra, Lemma[139.4]
the module I'/(I’)? is finite locally free as a A’-module. Hence after replacing
U’ by a smaller affine open U” C U’ and V' by V" = V' n f~1(U") we obtain
the situation where I"/(I")? is free, i.e., (2) holds. In this case (3) holds also by
Algebra, Lemma O

101y fact this is implied by (1) and (2), see Descent, Lemma m Moreover, it suffices to

assume f is surjective, flat and locally of finite presentation, see Descent, Lemma
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The dimension of a scheme X at a point  (Properties, Definition [10.1)) is just the
dimension of X at z as a topological space, see Topology, Definition This is
not the dimension of the local ring Ox ., in general.

Lemma 34.21. Let f : X — Y be a smooth morphism of locally Noetherian
schemes. For every point x in X with image y inY,

dim, (X) = dim, (V) + dim, (X,),
where X, denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X — Y have dimension d at every point, see Lemma [34.12
Then f is flat (Lemma [34.9)), locally of finite type (Lemma [34.8), and of relative
dimension d. Hence the result follows from Lemma O

35. Unramified morphisms

We briefly discuss unramified morphisms before the (perhaps) more interesting class
of étale morphisms. Recall that a ring map R — A is unramified if it is of finite
type and Q4,r = 0 (this is the definition of [Ray70]). A ring map R — A is called
G-unramified if it is of finite presentation and 4,z = 0 (this is the definition of
[DGET]). See Algebra, Definition

Definition 35.1. Let f: X — S be a morphism of schemes.

(1) We say that f is unramified at © € X if there exists an affine open neigh-
bourhood Spec(A) = U C X of x and affine open Spec(R) =V C S with
f(U) C V such that the induced ring map R — A is unramified.

(2) We say that f is G-unramified at x € X if there exists an affine open
neighbourhood Spec(4) = U C X of x and affine open Spec(R) =V C S
with f(U) C V such that the induced ring map R — A is G-unramified.

(3) We say that f is unramified if it is unramified at every point of X.

(4) We say that f is G-unramified if it is G-unramified at every point of X.

Note that a G-unramified morphism is unramified. Hence any result for unramified
morphisms implies the corresponding result for G-unramified morphisms. More-
over, if S is locally Noetherian then there is no difference between G-unramified
and unramified morphisms, see Lemma [35.6] A pleasing feature of this definition
is that the set of points where a morphism is unramified (resp. G-unramified) is
automatically open.

Lemmal 35.2. Let f: X — S be a morphism of schemes. Then
(1) f is unramified if and only if f is locally of finite type and Qx,g = 0, and
(2) f is G-unramified if and only if [ is locally of finite presentation and
Qx/s = 0.

Proof. By definition a ring map R — A is unramified (resp. G-unramified) if and
only if it is of finite type (resp. finite presentation) and Q4,5 = 0. Hence the lemma
follows directly from the definitions and Lemma [32.5 (]

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being unramified is local in nature on the source. Here is the
precise result.
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Lemma 35.3. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) The morphism f is unramified (resp. G-unramified).

(2) For every affine openU C X,V C S with f(U) C V the ring map Og(V) —
Ox (U) is unramified (resp. G-unramified).

(3) There exists an open covering S = J,c; Vj and open coverings vy =
Uie[j U; such that each of the morphisms U; — V;, j € J,i € I; is unrami-
fied (resp. G-unramified).

(4) There exists an affine open covering S = UjeJ V; and affine open coverings
Yy = Uielj U; such that the ring map Og(V;) — Ox (U;) is unramified
(resp. G-unramified), for all j € J,i € I;.

Moreover, if f is unramified (resp. G-unramified) then for any open subschemes
UcCX,V c S with f(U) CV the restriction fly : U — V is unramified (resp.
G-unramified).

Proof. This follows from Lemma if we show that the property “R — A is
unramified” is local. We check conditions (a), (b) and (c) of Definition[I4.1] These
properties are proved in Algebra, Lemma [I151.3 (]

Lemma 35.4. The composition of two morphisms which are unramified is unram-
ified. The same holds for G-unramified morphisms.

Proof. The proof of Lemmashows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the first statement of the lemma follows from
Lemma combined with the fact that being unramified (resp. G-unramified) is
a property of ring maps that is stable under composition, see Algebra, Lemma
O

Lemma 35.5. The base change of a morphism which is unramified is unramified.
The same holds for G-unramified morphisms.

Proof. The proof of Lemma[35.3|shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the lemma follows from Lemma com-
bined with the fact that being unramified (resp. G-unramified) is a property of ring
maps that is stable under base change, see Algebra, Lemma O

Lemmal 35.6. Let f : X — S be a morphism of schemes. Assume S is locally
Noetherian. Then f is unramified if and only if f is G-unramified.

Proof. Follows from the definitions and Lemma 2191 O
Lemmal 35.7. Any open immersion is G-unramified.
Proof. This is true because an open immersion is a local isomorphism. ([

Lemmal 35.8. A closed immersion i : Z — X is unramified. It is G-unramified
if and only if the associated quasi-coherent sheaf of ideals T = Ker(Ox — i.O0yz) is
of finite type (as an Ox-module).

Proof. Follows from Lemma and Algebra, Lemma [T51.3 O

Lemmal 35.9. An unramified morphism is locally of finite type. A G-unramified
morphism is locally of finite presentation.
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Proof. An unramified ring map is of finite type by definition. A G-unramified ring
map is of finite presentation by definition. ([

02V5 |Lemmal 35.10. Let f : X — S be a morphism of schemes. If [ is unramified
at x then f is quasi-finite at x. In particular, an unramified morphism is locally
quasi-finite.

Proof. See Algebra, Lemma [151.6 (]

02G7 Lemma 35.11. Fibres of unramified morphisms.

(1) Let X be a scheme over a field k. The structure morphism X — Spec(k) is
unramified if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f: X — S is an unramified morphism then for every s € S the fibre X
is a disjoint union of spectra of finite separable field extensions of k(s).

Proof. Part (2) follows from part (1) and Lemma Let us prove part (1).
We first use Algebra, Lemma This lemma implies that if X is a disjoint
union of spectra of finite separable field extensions of k£ then X — Spec(k) is
unramified. Conversely, suppose that X — Spec(k) is unramified. By Algebra,
Lemma for every x € X the residue field extension x(x)/k is finite separable.
Since X — Spec(k) is locally quasi-finite (Lemma [35.10) we see that all points of X
are isolated closed points, see Lemma[20.6] Thus X is a discrete space, in particular
the disjoint union of the spectra of its local rings. By Algebra, Lemma again
these local rings are fields, and we win. ([l

The following lemma characterizes an unramified morphisms as morphisms locally
of finite type with unramified fibres.

02G8 Lemma 35.12. Let f: X — S be a morphism of schemes.

(1) If f is unramified then for any x € X the field extension k(x)/x(f(x)) is
finite separable.

(2) If f is locally of finite type, and for every s € S the fibre X is a dis-
joint union of spectra of finite separable field extensions of k(s) then f is
unramified.

(3) If f is locally of finite presentation, and for every s € S the fibre X is a
disjoint union of spectra of finite separable field extensions of k(s) then f
is G-unramified.

Proof. Follows from Algebra, Lemmas [151.5( and [I51.7] O

Here is a characterization of unramified morphisms in terms of the diagonal mor-
phism.

02GE Lemma 35.13. Let f: X — S be a morphism.

(1) If f is unramified, then the diagonal morphism A : X — X xg X is an
open immersion.

(2) If f is locally of finite type and A is an open immersion, then f is unram-
ified.

(3) If f is locally of finite presentation and A is an open immersion, then f is
G-unramified.
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Proof. The first statement follows from Algebra, Lemma [151.4] The second state-
ment from the fact that {2x,g is the conormal sheaf of the diagonal morphism
(Lemma [32.7)) and hence clearly zero if A is an open immersion. O

Lemmal 35.14. Let f : X — S be a morphism of schemes. Let x € X. Set
s = f(x). Assume [ is locally of finite type (resp. locally of finite presentation).
The following are equivalent:

(1) The morphism f is unramified (resp. G-unramified) at x.
(2) The fibre X is unramified over k(s) at x.

(3) The Ox z-module Qx /g, is zero.

(4) The Ox, o-module Qx_ /4, is zero.

(5) The k(x)-vector space

Qx, /5,2 Pox. ., k(T) = Ux/5.0 ®ox , K(T)

18 zero.
(6) We have msOx , = m, and the field extension r(z)/k(s) is finite separable.

Proof. Note that if f is unramified at x, then we see that {2x,5 = 0 in a neighbour-
hood of = by the definitions and the results on modules of differentials in Section
Hence (1) implies (3) and the vanishing of the right hand vector space in (5).
It also implies (2) because by Lemmathe module of differentials Qy_,, of the
fibre X, over (s) is the pullback of the module of differentials Qx /g of X over S.
This fact on modules of differentials also implies the displayed equality of vector
spaces in part (4). By Lemma the modules Qx5 , and Qx_/, . are of finite
type. Hence the modules Qg , and Qx_/, , are zero if and only if the correspond-
ing r(z)-vector space in (4) is zero by Nakayama’s Lemma (Algebra, Lemma [20.1)).
This in particular shows that (3), (4) and (5) are equivalent. The support of Qx,g
is closed in X, see Modules, Lemma Assumption (3) implies that x is not in
the support. Hence Q2x,g is zero in a neighbourhood of x, which implies (1). The
equivalence of (1) and (3) applied to X; — s implies the equivalence of (2) and (4).
At this point we have seen that (1) — (5) are equivalent.

Alternatively you can use Algebra, Lemma |151.3|to see the equivalence of (1) — (5)
more directly.

The equivalence of (1) and (6) follows from Lemma [35.12] It also follows more
directly from Algebra, Lemmas [151.5| and [I51.7] O

Lemma 35.15. Let f: X — S be a morphism of schemes. Assume f locally of
finite type. Formation of the open set

T =A{x € X | Xy is unramified over x(f(x)) at x}
={z € X | X is unramified over S at x}

commutes with arbitrary base change: For any morphism g : 8" — S, consider
the base change f' : X' — S’ of f and the projection ¢’ : X' — X. Then the
corresponding set T' for the morphism f' is equal to T' = (¢")"Y(T). If f is
assumed locally of finite presentation then the same holds for the open set of points
where f is G-unramified.

Proof. Let s’ € 5" be a point, and let s = g(s’). Then we have
X;’ = SpeC(KJ(S/)) X Spec(k(s)) X
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In other words the fibres of the base change are the base changes of the fibres. In
particular

QXs/s,z ®OXs,w KJ("LJ) = QXQ,/S’,ZL” ®OX//J/ KJ("B/)
h s

see Lemma [32.10, Whence 2’ € T if and only if € T by Lemma [35.14 The
second part follows from the first because in that case T is the (open) set of points
where f is G-unramified according to Lemma [35.14 (]

Lemma) 35.16. Let f: X — Y be a morphism of schemes over S.

(1) If X is unramified over S, then f is unramified.
(2) If X is G-unramified over S and Y is locally of finite type over S, then f
is G-unramified.

Proof. Assume that X is unramified over S. By Lemma we see that f is
locally of finite type. By assumption we have {2x,5 = 0. Hence Qx/y = 0 by
Lemma[32.9] Thus f is unramified. If X is G-unramified over S and Y is locally of
finite type over S, then by Lemma/[21.11|we see that f is locally of finite presentation
and we conclude that f is G-unramified. |

Lemmal|35.17. Let S be a scheme. Let X, Y be schemes over S. Let f,g: X =Y
be morphisms over S. Let x € X. Assume that

(1) the structure morphism'Y — S is unramified,
(2) f(z)=g(z) inY, sayy = f(x) = g(z), and
(3) the induced maps f*, g% : k(y) — K(x) are equal.

Then there exists an open neighbourhood of x in X on which f and g are equal.

Proof. Consider the morphism (f,g) : X — Y xgY. By assumption (1) and
Lemma [35.13| the inverse image of Ay,g(Y’) is open in X. And assumptions (2)
and (3) imply that x is in this open subset. O

36. Etale morphisms

The Zariski topology of a scheme is a very coarse topology. This is particularly clear
when looking at varieties over C. It turns out that declaring an étale morphism
to be the analogue of a local isomorphism in topology introduces a much finer
topology. On varieties over C this topology gives rise to the “correct” Betti numbers
when computing cohomology with finite coefficients. Another observable is that if
f: X — Y is an étale morphism of varieties over C, and if x is a closed point of
X, then f induces an isomorphism (’)Q} Fa) O)A(ym of complete local rings.

In this section we start our study of these matters. In fact we deliberately restrict
our discussion to a minimum since we will discuss more interesting results elsewhere.
Recall that a ring map R — A is said to be étale if it is smooth and 24,z = 0, see

Algebra, Definition [143.1

Definition 36.1. Let f: X — S be a morphism of schemes.

(1) We say that f is étale at x € X if there exists an affine open neighbourhood
Spec(A) = U C X of z and affine open Spec(R) =V C S with f(U) Cc V
such that the induced ring map R — A is étale.

(2) We say that f is étale if it is étale at every point of X.
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(3) A morphism of affine schemes f: X — S is called standard étale if X — S
is isomorphic to

Spec(Rlaln/(g)) — Spec(R)
where R — R[z]x/(g) is a standard étale ring map, see Algebra, Definition
144.1} i.e., g is monic and ¢’ invertible in R[z],/(g).

A morphism is étale if and only if it is smooth of relative dimension 0 (see Defini-
tion [34.13)). A pleasing feature of the definition is that the set of points where a
morphism is étale is automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition.

Hence the question of being étale is local in nature on the source. Here is the precise
result.

Lemmal 36.2. Let f : X — S be a morphism of schemes. The following are
equivalent
(1) The morphism f is étale.
(2) For every affine opens U C X, V. C S with f(U) C V the ring map
Os(V) = Ox(U) is étale.
(3) There exists an open covering S = J;c; V; and open coverings 7YV =
Uielj U; such that each of the morphisms Uy — V;, j € J,i € I; is élale.
(4) There exists an affine open covering S = J,c ; V; and affine open coverings
;) = Uielj U; such that the ring map Os(V;) = Ox (U;) is étale, for
all j € J,i € 1.
Moreover, if f is étale then for any open subschemes U C X,V C S with f(U) CV
the restriction f|ly : U — V is étale.

Proof. This follows from Lemma if we show that the property “R — A is
étale” is local. We check conditions (a), (b) and (c) of Definition [14.1] These all
follow from Algebra, Lemma [143.3 (]

Lemma 36.3. The composition of two morphisms which are €tale is étale.

Proof. In the proof of Lemma we saw that being étale is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma [14.5
combined with the fact that being étale is a property of ring maps that is stable
under composition, see Algebra, Lemma O

Lemma 36.4. The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma we saw that being étale is a local property of
ring maps. Hence the lemma follows from Lemma combined with the fact that
being étale is a property of ring maps that is stable under base change, see Algebra,

Lemma [143.3] O

Lemmal 36.5. Let f: X — S be a morphism of schemes. Let x € X. Then f is
étale at x if and only if f is smooth and unramified at x.

Proof. This follows immediately from the definitions. O
Lemma 36.6. An étale morphism is locally quasi-finite.

Proof. By Lemma [36.5] an étale morphism is unramified. By Lemma [35.10] an
unramified morphism is locally quasi-finite. O
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Lemma 36.7. Fibres of étale morphisms.

(1) Let X be a scheme over a field k. The structure morphism X — Spec(k) is
étale if and only if X is a disjoint union of spectra of finite separable field
extensions of k.

(2) If f: X — S is an étale morphism, then for every s € S the fibre X, is a
disjoint union of spectra of finite separable field extensions of k(s).

Proof. You can deduce this from Lemma [B5.11] via Lemma [36.5] above. Here is a
direct proof.

We will use Algebra, Lemma Hence it is clear that if X is a disjoint union
of spectra of finite separable field extensions of k then X — Spec(k) is étale.
Conversely, suppose that X — Spec(k) is étale. Then for any affine open U C X
we see that U is a finite disjoint union of spectra of finite separable field extensions
of k. Hence all points of X are closed points (see Lemma for example). Thus
X is a discrete space and we win. [

The following lemma characterizes an étale morphism as a flat, finitely presented
morphism with “étale fibres”.

Lemmal 36.8. Let f: X — S be a morphism of schemes. If f is flat, locally of
finite presentation, and for every s € S the fibre X is a disjoint union of spectra
of finite separable field extensions of k(s), then f is étale.

Proof. You can deduce this from Algebra, Lemma [143.7] Here is another proof.

By Lemma [36.7)a fibre X is étale and hence smooth over s. By Lemma[34.3] we see
that X — S is smooth. By Lemma [35.12] we see that f is unramified. We conclude
by Lemma |36.5 (]

Lemma) 36.9. Any open immersion is étale.
Proof. This is true because an open immersion is a local isomorphism. ([l
Lemma) 36.10. An étale morphism is syntomic.

Proof. See Algebra, Lemma [137.10| and use that an étale morphism is the same
as a smooth morphism of relative dimension 0. (]

Lemma 36.11. An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. [
Lemma) 36.12. An étale morphism is flat.

Proof. Combine Lemmas B0.7 and B6.10l O
Lemma) 36.13. An étale morphism is open.

Proof. Combine Lemmas [36.12] |36.11} and |25.10] O

The following lemma says locally any étale morphism is standard étale. This is
actually kind of a tricky result to prove in complete generality. The tricky parts are
hidden in the chapter on commutative algebra. Hence a standard étale morphism
is a local model for a general étale morphism.

Lemmal 36.14. Let f: X — S be a morphism of schemes. Let x € X be a point.
Let V C S be an affine open neighbourhood of f(x). The following are equivalent
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(1) The morphism f is étale at x.
(2) There ezist an affine open U C X with x € U and f(U) CV such that the
induced morphism fly : U — V is standard étale (see Definition .

Proof. Follows from the definitions and Algebra, Proposition [144.4 O

Here is a differential criterion of étaleness at a point. There are many variants of
this result all of which may be useful at some point. We will just add them here as
needed.

Lemma 36.15. Let f : X — S be a morphism of schemes. Let x € X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is étale at x.

(2) The local ring map Ogs — Ox , is flat and X, — Spec(k(s)) is étale at x.

(3) The local ring map Og s — Ox 4 is flat and Xs — Spec(k(s)) is unramified
at x.

(4) The local ring map Ogs — Ox 5 is flat and the Ox ,-module Ox/5.0 18
zero.

(5) The local ring map Ogs — Ox , is flat and the r(z)-vector space

Qx, /6,0 O0x, ., K@) = Qx50 POy, K(T)

is zero.

(6) The local ring map Og,s — Ox 4 is flat, we have m;Ox , = m, and the
field extension k(x)/k(s) is finite separable.

(7) There exist affine opens U C X, and V C S such that x € U, f(U) C V
and the induced morphism f|ly : U — V is standard smooth of relative
dimension 0.

(8) There exist affine opens Spec(A) = U C X and Spec(R) =V C S with
x € U corresponding to ¢ C A, and f(U) C V such that there exists a

presentation
A= R[.’El,...7$n]/(f1,...7fn)
with
8f1/8a:1 8f2/6l‘1 8fn/8$1
g= det (9f1/(3'1'2 8f2/3a:2 e afn/axg

mapping to an element of A not in q.
(9) There exist affine opens U C X, and V C S such that x € U, f({U) C V
and the induced morphism fly : U — V is standard étale.

(10) There exist affine opens Spec(A) = U C X and Spec(R) =V C S with
x € U corresponding to ¢ C A, and f(U) C V such that there exists a
presentation

A= Rlzlo/(P) = Rlz,1/Q]/(P)
with P,Q € R[z], P monic and P’ = dP/dx mapping to an element of A
not in q.

Proof. Use Lemma and the definitions to see that (1) implies all of the other
conditions. For each of the conditions (2) — (10) combine Lemmas and
to see that (1) holds by showing f is both smooth and unramified at « and applying
Lemma [36.5l Some details omitted. O
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Lemmal 36.16. A morphism is étale at a point if and only if it is flat and G-
unramified at that point. A morphism is étale if and only if it is flat and G-
unramified.

Proof. This is clear from Lemmas B6.15] and B5.141 |
Lemma 36.17. Let
X/ H/ X
g
f’l \Lf

s 2.9

be a cartesian diagram of schemes. Let W C X, resp. W' C X’ be the open
subscheme of points where f, resp. f' is étale. Then W' = (¢')~Y(W) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T ={x € X | f is unramified at =}
and the corresponding set 77 C X' for f’. Then 7" = (¢')*(T) by Lemma [35.15

Thus case (1) follows because in case (1) T is the (open) set of points where f is

étale by Lemma [36.16]

In case (2) let 2’ € W’'. Then ¢’ is flat at ' (Lemma [25.7) and g o f’ is flat at
a2’ (Lemma [25.5). It follows that f is flat at = ¢’(2’) by Lemma [25.13] On the
other hand, since 2’ € T' (Lemma [34.5) we see that € T. Hence f is étale at x

by Lemma [36.15] O

Lemma 36.18. Let f: X — Y be a morphism of schemes over S. If X and Y
are étale over S, then f is étale.

Proof. As a first proof one may reduce to the affine case and then use Algebra,
Lemma[143.8] This proof is somewhat complicated as it uses the “Critére de plati-
tude par fibres” to see that a morphism X — Y over S between schemes étale over
S is automatically flat.

We give a second proof using the graph argument. Namely, consider the factoriza-
tion X = X XxgY — Y, where the first arrow is given by idx and f and the second
arrow is the projection. We claim both arrows are étale and hence f is étale by
Lemma [36.3] Namely, the projection is étale as it is the base change of X — S,
see Lemma [36.4] The first arrow is the base change of the diagonal morphism
Y — Y xgY because the square

X —= X xgY

L

Y——=Y x5Y

is cartesian. The diagonal ¥ — Y X g Y is an open immersion because Y — S is
étale and hence unramified (Lemma and we may use Lemma The base
change of an open immersion is an open immersion (Schemes, Lemma and an
open immersion is étale (Lemma . This finishes the second proof. [
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Lemma 36.19. Let

N

be a commutative diagram of morphisms of schemes. Assume that

(1) f is surjective, and étale,
(2) p is étale, and
(3) q is locally of finite presentatio@.

Then q is étale.

Proof. By Lemma we see that ¢ is smooth. Thus we only need to see that
q has relative dimension 0. This follows from Lemma and the fact that f and
p have relative dimension 0. ([l

A final characterization of smooth morphisms is that a smooth morphism f : X — S
is locally the composition of an étale morphism by a projection A% — S.

Lemmal 36.20. Let ¢ : X — Y be a morphism of schemes. Let x € X. Let
V C Y be an affine open neighbourhood of ¢(x). If ¢ is smooth at x, then there
exists an integer d > 0 and an affine open U C X with x € U and o(U) C V such
that there exists a commutative diagram

- *>A§i/
s

|

R

-~
where 7 1s étale.

Proof. By Lemma [34.11]| we can find an affine open U as in the lemma such that
¢l : U — V is standard smooth. Write U = Spec(A4) and V = Spec(R) so that
we can write

A=Rlzy,....z)/(f1. . o)

with
8f1/8.1‘1 8f2/6x1 6fc/8x1
g= det Bfl/&z:g 8f2/8:172 3fc/6:c2
afl/axc 8f2/8$c 8fc/61'c
mapping to an invertible element of A. Then it is clear that R[xcy1,...,2,] = A
is standard smooth of relative dimension 0. Hence it is smooth of relative dimen-
sion 0. In other words the ring map R[zct1,...,2,] — A is étale. As A{7° =
Spec(R[Te41, - -, xy]) the lemma with d = n — c. O

U1n fact this is implied by (1) and (2), see Descent, Lemma m Moreover, it suffices to
assume that f is surjective, flat and locally of finite presentation, see Descent, Lemmam
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37. Relatively ample sheaves

Let X be a scheme and £ an invertible sheaf on X. Then £ is ample on X if X is
quasi-compact and every point of X is contained in an affine open of the form Xj,
where s € I'(X, £L®") and n > 1, see Properties, Definition We turn this into
a relative notion as follows.

Definition 37.1. Let f : X — S be a morphism of schemes. Let £ be an invertible
Ox-module. We say L is relatively ample, or f-relatively ample, or ample on X/S,
or f-ample if f: X — S is quasi-compact, and if for every affine open V' C S the
restriction of £ to the open subscheme f~!(V) of X is ample.

We note that the existence of a relatively ample sheaf on X does not force the
morphism X — S to be of finite type.

Lemma 37.2. Let X — S be a morphism of schemes. Let L be an invertible
Ox-module. Let n > 1. Then L is f-ample if and only if LE™ is f-ample.

Proof. This follows from Properties, Lemma [26.2] O

Lemmal 37.3. Let f : X — S be a morphism of schemes. If there exists an
f-ample invertible sheaf, then f is separated.

Proof. Being separated is local on the base (see Schemes, Lemma for example;
it also follows easily from the definition). Hence we may assume S is affine and
X has an ample invertible sheaf. In this case the result follows from Properties,

Lemma 6.8 O

There are many ways to characterize relatively ample invertible sheaves, analogous
to the equivalent conditions in Properties, Proposition [26.13] We will add these
here as needed.

Lemma 37.4. Let f: X — S be a quasi-compact morphism of schemes. Let L be
an invertible sheaf on X. The following are equivalent:
(1) The invertible sheaf L is f-ample.
(2) There exists an open covering S = \JV; such that each L|s-1(v,y is ample
relative to f~1(V;) — V;.
(3) There exists an affine open covering S = \JV; such that each L|z-1(v, is
ample.
(4) There exists a quasi-coherent graded Og-algebra A and a map of graded
Ox-algebras 1 : f*A — @ 50 L2 such that U(y) = X and

e X — Proj (A)

is an open immersion (see Constructions, Lemma for notation).

(5) The morphism f is quasi-separated and part (4) above holds with A =
[ (@Daso L2 and v the adjunction mapping.

(6) Same as (4) but just requiring rc 5 to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3).
It is clear that (5) implies (4).

Assume (3) holds for the affine open covering S = [JV;. We are going to show
(5) holds. Since each f~1(V;) has an ample invertible sheaf we see that f=1(V;) is
separated (Properties, Lemma [26.8). Hence f is separated. By Schemes, Lemma

[DG67, 1T Definition
4.6.1]

[DG67, 11,
Proposition 4.6.3]
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we see that A = f.(@, 50 LZ?) is a quasi-coherent graded Og-algebra. De-
note ¥ : f*A — @ 50 L% the adjunction mapping. The description of the open
U (1) in Constructions, Section [T9)and the definition of ampleness of £|-1(y,) show
that U(¢)) = X. Moreover, Constructions, Lemma [19.1] part (3) shows that the re-
striction of rz ., to f~1(V;) is the same as the morphism from Properties, Lemma
which is an open immersion according to Properties, Lemma Hence (5)
holds.

Let us show that (4) implies (1). Assume (4). Denote 7 : Proj (A) — S the
structure morphism. Choose V C S affine open. By Constructions, Definition
we see that 7= 1(V) C Proj (A) is equal to Proj(A) where A = A(V) as a
graded ring. Hence rz ., maps f~!(V) isomorphically onto a quasi-compact open
of Proj(A). Moreover, £L&? is isomorphic to the pullback of Oproj(a)(d) for some
d > 1. (See part (3) of Constructions, Lemma and the final statement of
Constructions, Lemma [14.1}) This implies that £|s-1(yy is ample by Properties,
Lemmas and [26.2

Assume (6). By the equivalence of (1) - (5) above we see that the property of being
relatively ample on X/S is local on S. Hence we may assume that S is affine,
and we have to show that £ is ample on X. In this case the morphism r. , is
identified with the morphism, also denoted r. 4 : X — Proj(A) associated to the
map ¢ : A = A(V) — TI'.(X,L). (See references above.) As above we also see
that £%¢ is the pullback of the sheaf Oproj(a)(d) for some d > 1. Moreover, since
X is quasi-compact we see that X gets identified with a closed subscheme of a
quasi-compact open subscheme Y C Proj(A4). By Constructions, Lemma [10.6] (see
also Properties, Lemma we see that Oy (d’) is an ample invertible sheaf on
Y for some d’ > 1. Since the restriction of an ample sheaf to a closed subscheme
is ample, see Properties, Lemma we conclude that the pullback of Oy (d') is
ample. Combining these results with Properties, Lemma we conclude that £
is ample as desired. ([l

Lemma 37.5. Let f: X — S be a morphism of schemes. Let L be an invertible
Ox -module. Assume S affine. Then L is f-relatively ample if and only if L is
ample on X.

Proof. Immediate from Lemma B7.4] and the definitions. O

Lemmal 37.6. Let f: X — S be a morphism of schemes. Then f is quasi-affine
if and only if Ox is f-relatively ample.

Proof. Follows from Properties, Lemma and the definitions. O

Lemma 37.7. Let f: X — Y be a morphism of schemes, M an invertible Oy -
module, and L an invertible Ox -module.
(1) If L is f-ample and M is ample, then L @ f*M®* is ample for a > 0.
(2) If M is ample and [ quasi-affine, then f*M is ample.

Proof. Assume L is f-ample and M ample. By assumption Y and f are quasi-
compact (see Definition and Properties, Definition . Hence X is quasi-
compact. By Properties, Lemma the scheme Y is separated and by Lemma
[37-3] the morphism f is separated. Hence X is separated by Schemes, Lemma 21.12
Pick 2 € X. We can choose m > 1 and t € T'(Y, M®™) such that Y; is affine and

[DG67, 1T Corollary
4.6.6)

[DGET, 11
Proposition 5.1.6]


https://stacks.math.columbia.edu/tag/01VK
https://stacks.math.columbia.edu/tag/0891
https://stacks.math.columbia.edu/tag/0892

0C4K

0893

0CAL

MORPHISMS OF SCHEMES 83

f(z) € V3. Since L restricts to an ample invertible sheaf on f~}(V;) = Xyt we
can choose n > 1 and s € T(Xp«y, L27) with z € (Xpvy)s with (Xf+)s affine.
By Properties, Lemma m part (2) whose assumptions are satisfied by the above,
there exists an integer ¢ > 1 and a section s’ € I'(X,L®" ® f*M®°™) which
restricts to s(f*t)¢ on X «;. For any b > 0 consider the section s” = s'(f*t)" of
LE" @ f*M®etb)m  Then X, = (Xs+¢)s is an affine open of X containing z.
Picking b such that n divides e 4 b we see LE" @ f* M@0 ig the nth power of
L® f*M®? for some a and we can get any a divisible by m and big enough. Since
X is quasi-compact a finite number of these affine opens cover X. We conclude that
for some a sufficiently divisible and large enough the invertible sheaf £ @ f* M®
is ample on X. On the other hand, we know that M®¢ (and hence its pullback
to X) is globally generated for all ¢ > 0 by Properties, Proposition Thus
L ® f*M®at¢ is ample (Properties, Lemma for ¢ > 0 and (1) is proved.

Part (2) follows from Lemma Properties, Lemma and part (1). O

Lemma 37.8. Letg:Y — S and f: X — Y be morphisms of schemes. Let M be
an invertible Oy -module. Let L be an invertible Ox-module. If S is quasi-compact,
M is g-ample, and L is f-ample, then L@ f*M®% is go f-ample for a > 0.

Proof. Let S = |J,_; Vi be a finite affine open covering. By Lemma it
suffices to prove that £ ® f*M®? is ample on (go f)~*(V;) for i = 1,...,n. Thus
the lemma follows from Lemma [37.7] O

Lemma 37.9. Let f: X — S be a morphism of schemes. Let L be an invertible
Ox-module. Let S’ — S be a morphism of schemes. Let ' : X' — S’ be the base
change of f and denote L' the pullback of L to X'. If L is f-ample, then L' is

f'-ample.

Proof. By Lemma it suffices to find an affine open covering S’ = |J U/ such
that £’ restricts to an ample invertible sheaf on (f/)~1(U/) for all i. We may choose
U! mapping into an affine open U; C S. In this case the morphism (f")~1(U}) —
f7L(U;) is affine as a base change of the affine morphism U; — U; (Lemma .
Thus L|(f)-1(vy is ample by Lemma O

Lemma 37.10. Letg:Y — S and f : X — Y be morphisms of schemes. Let L
be an invertible Ox-module. If L is g o f-ample and [ is quasz'—compaaEI then L
is f-ample.

Proof. Assume f is quasi-compact and L is g o f-ample. Let U C S be an affine
open and let V' C Y be an affine open with g(V)) C U. Then L|(4of)-1(v) is ample
on (go f)~H(U) by assumption. Since f~1(V) C (go f)~!(U) we see that L|p-1v,
is ample on f~1(V) by Properties, Lemma [26.14, Namely, f~1(V) — (go f)~1(U)
is a quasi-compact open immersion by Schemes, Lemma as (go f)~Y(U) is
separated (Properties, Lemma and f~1(V) is quasi-compact (as f is quasi-
compact). Thus we conclude that £ is f-ample by Lemma m O

12This follows if g is quasi-separated by Schemes, Lemma [21.14
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38. Very ample sheaves

Recall that given a quasi-coherent sheaf £ on a scheme S the projective bundle
associated to & is the morphism P(£) — S, where P(£) = Proj (Sym(£)), see
Constructions, Definition [21.1

Definition 38.1. Let f : X — S be a morphism of schemes. Let £ be an invertible
Ox-module. We say L is relatively very ample or more precisely f-relatively very
ample, or very ample on X/S, or f-very ample if there exist a quasi-coherent Og-
module £ and an immersion i : X — P(€) over S such that £ = i*Opg)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in
general that a relatively very ample invertible sheaf is a relatively ample invertible
sheaf.

Lemmal 38.2. Let f: X — S be a morphism of schemes. Let L be an invertible
Ox-module. If f is quasi-compact and L is a relatively very ample invertible sheaf,
then L is a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent Og-module £ and an immersion
i: X — P(£) over S such that £ = i*Op(g)(1). Set A = Sym(£), so P(£) =
Proj S(A) by definition. The graded Og-algebra A comes equipped with a map

VA @ | mOpe(n) = P Sl

where the second arrow uses the identification £ = i*Op¢)(1). By adjointness of
[+ and f* we get a morphism ¢ : f*A — @,,~, L®". We omit the verification that
the morphism 7., associated to this map is exactly the immersion i. Hence the
result follows from part (6) of Lemma [37.4] O

To arrive at the correct converse of this lemma we ask whether given a relatively
ample invertible sheaf £ there exists an integer m > 1 such that £®" is relatively
very ample? In general this is false. There are several things that prevent this from
being true:

(1) Even if S is affine, it can happen that no finite integer n works because
X — S is not of finite type, see Example [38.4]

(2) The base not being quasi-compact means the result can be prevented from
being true even with f finite type. Namely, given a field k there exists a
scheme X of finite type over k with an ample invertible sheaf Ox,(1) so
that the smallest tensor power of Ox,(1) which is very ample is the dth
power. See Example[38.5] Taking f to be the disjoint union of the schemes
X4 mapping to the disjoint union of copies of Spec(k) gives an example.

To see our version of the converse take a look at Lemma B9.5] below. We will do
some preliminary work before proving it.

Example| 38.3. Let S be a scheme. Let A be a quasi-coherent graded Og-algebra
generated by A; over Ag. Set X = Proj.(A). In this case Ox (1) is a very ample
invertible sheaf on X. Namely, the morphism associated to the graded Og-algebra
map

Symg (A1) — A
is a closed immersion X — P(A;) which pulls back Op4,)(1) to Ox(1), see Con-
structions, Lemma [18.5

[DG67, 11,
Proposition 4.6.2]
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Example| 38.4. Let k be a field. Consider the graded k-algebra
A=k[U,V,Z1,Zy,Z3,...])] with I=(U*-23U*-23 U522 ..)

with grading given by deg(U) = deg(V) = deg(Z1) = 1 and deg(Z;) = d. Note
that X = Proj(A) is covered by D4 (U) and D4 (V). Hence the sheaves Ox(n)
are all invertible and isomorphic to Ox (1)®™. In particular Ox (1) is ample and
f-ample for the morphism f : X — Spec(k). We claim that no power of Ox (1) is
f-relatively very ample. Namely, it is easy to see that I'(X, Ox(n)) is the degree n
summand of the algebra A. Hence if Ox(n) were very ample, then X would be a
closed subscheme of a projective space over k and hence of finite type over k. On
the other hand D, (V) is the spectrum of k[t ty,ta,...]/(t? —t2,#* — 12 6 —42,..))
which is not of finite type over k.

Example 38.5. Let k& be an infinite field. Let A1, Ao, A3, ... be pairwise distinct
elements of k*. (This is not strictly necessary, and in fact the example works
perfectly well even if all \; are equal to 1.) Consider the graded k-algebra

2d
Ag=Ek[U,V,Z)/I; with I;=(Z2%— H‘_I(U — V).

with grading given by deg(U) = deg(V) = 1 and deg(Z) = d. Then X4 = Proj(Aq)
has ample invertible sheaf Ox,(1). We claim that if Ox,(n) is very ample, then
n > d. The reason for this is that Z has degree d, and hence I'( X4, Ox,(n)) =
k[U, V], for n < d. Details omitted.

Lemmal 38.6. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. If L is relatively very ample on X/S then f is separated.

Proof. Being separated is local on the base (see Schemes, Section . An im-
mersion is separated (see Schemes, Lemma [23.8)). Hence the lemma follows since
locally X has an immersion into the homogeneous spectrum of a graded ring which
is separated, see Constructions, Lemma [8.8 (I

Lemma 38.7. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is quasi-compact. The following are equivalent

(1) L is relatively very ample on X/S,

(2) there exists an open covering S =V such that L|s-1(y,) is relatively very
ample on f~1(V;)/V; for all j,

(3) there exists a quasi-coherent sheaf of graded Og-algebras A generated in
degree 1 over Og and a map of graded Ox-algebras ¥ : f*A — @,,5o LZ"
such that f* Ay — L is surjective and the associated morphism T,/V‘)w_i X —
Proj (A) is an immersion, and

(4) f is quasi-separated, the canonical map b : f*f L — L is surjective, and
the associated map vz : X — P(f.L) is an immersion.

Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the
hypothesis of quasi-separation in (4) is used to guarantee that f.L is quasi-coherent
via Schemes, Lemma [24.1

Assume (2). We will prove (4). Let S = (JV; be an open covering as in (2). Set
X; = f~YV;) and f; : X; — Vj the restriction of f. We see that f is separated
by Lemma m (as being separated is local on the base). By assumption there
exists a quasi-coherent Oy -module &; and an immersion i; : X; — P(&;) with
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L|x, =2 i;0p(,;)(1). The morphism i; corresponds to a surjection f&; — Llx;,
see Constructions, Section This map is adjoint to a map £ — f.L|y, such that
the composition

7€ — (f fL)|x; — Llx;

is surjective. We conclude that ¢ : f*f,.L — L is surjective. Let rz  : X — P(f.L)
be the associated morphism. We still have to show that 7, 4 is an immersion; we
urge the reader to prove this for themselves. The Oy,-module map & — f.L|y,
determines a homomorphism on symmetric algebras, which in turn defines a mor-
phism

where Uj is the open subscheme of Constructions, Lemma The compatibility
of ¢ with & — f.L|v, shows that r. ,(X;) C U; and that there is a factorization

L

Xj—=U; —=P(&)
We omit the verification. This shows that r. , is an immersion.

At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3).
Assume (3). We will prove (1). Let A be a quasi-coherent sheaf of graded Og-
algebras generated in degree 1 over Og. Consider the map of graded Og-algebras
Sym(A;) — A. This is surjective by hypothesis and hence induces a closed immer-
sion

Proj (4) — P(Ay)

which pulls back O(1) to O(1), see Constructions, Lemma Hence it is clear
that (3) implies (1). O

Lemma) 38.8. Let f: X — S be a morphism of schemes. Let L be an invertible
Ox-module. Let S" — S be a morphism of schemes. Let f' : X' — S’ be the base
change of f and denote L' the pullback of L to X'. If L is f-very ample, then L'
is f'-very ample.

Proof. By Definition there exists there exist a quasi-coherent Og-module &€
and an immersion i : X — P(€) over S such that £ = i*Op(g)(1). The base change
of P(£) to S’ is the projective bundle associated to the pullback £ of £ and the
pullback of Op(g)(1) is Op(ery(1), see Constructions, Lemma Finally, the
base change of an immersion is an immersion (Schemes, Lemma [18.2)). O

39. Ample and very ample sheaves relative to finite type morphisms

In fact most of the material in this section is about the notion of a (quasi-)projective
morphism which we have not defined yet.

Lemma) 39.1. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is very ample on X/S,

(2) the morphism X — S is of finite type, and

(3) S is affine.
Then there exist an n > 0 and an immersion 1 : X — P% over S such that
L=i*Opn(1).
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Proof. Assume (1), (2) and (3). Condition (3) means S = Spec(R) for some ring
R. Condition (1) means by definition there exists a quasi-coherent Og-module &£
and an immersion o : X — P(&) such that £ = a*Op(g)(1). Write & = M for
some R-module M. Thus we have

P(€) = Proj(Sym(M)).

Since « is an immersion, and since the topology of Proj(Sympg(M)) is generated by
the standard opens D (f), f € Sym%(M), d > 1, we can find for each z € X an
f € Symy (M), d > 1, with a(z) € D, (f) such that

ala-1(py(p)) @ H(DL(f)) = Di(f)

is a closed immersion. Condition (2) implies X is quasi-compact. Hence we can
find a finite collection of elements f; € Sym?{ (M), d; > 1 such that for each f = f;
the displayed map above is a closed immersion and such that o(X) C (JDy(f;).
Write U; = a~!(D4(f;)). Note that U; is affine as a closed subscheme of the affine
scheme D, (f;). Write U; = Spec(A4;). Condition (2) also implies that A; is of
finite type over R, see Lemma[I5.2} Choose finitely many z;, € A; which generate
Aj as a R-algebra. Since a|y, is a closed immersion we see that x; is the image
of an element

fj»k/fjejk € SymR(M)(fg) = F(D+(fj)a OProj(SymR(l\/[)))~

Finally, choose n > 1 and elements yg, ..., ¥y, € M such that each of the polyno-
mials f;, fj x € Symp(M) is a polynomial in the elements y, with coefficients in R.
Consider the graded ring map

¥ R[Yy,...,Ys] — Symg(M), Y;— y,.

Denote F}, F}j the elements of R[Yy,...,Y,] such that ¢/(F;) = f; and ¢(Fj i) =
fj k- By Constructions, Lemma we obtain an open subscheme

U(y) C Proj(Symp(M))

and a morphism 7y, : U(y) — P7%. This morphism satisfies r;l(D_,_(Fj)) =D+ (f),
and hence we see that a(X) C U(v). Moreover, it is clear that

i=ryoa: X —Ph

is still an immersion since iﬁ(Fj,k/FjeJ”“) =z, € A; = I'(U;j,0x) by construc-
tion. Moreover, the morphism ry comes equipped with a map ¢ : r),Opn (1) —
OProj(Sym g ( ) (1)]o(p) which is an isomorphism in this case (for construction 6 see
lemma cited above; some details omitted). Since the original map « was assumed
to have the property that £ = a*Opyoj(sym(ar)) (1) we win. O

Lemmal 39.2. Let 7 : X — S be a morphism of schemes. Assume that X is
quasi-affine and that m is locally of finite type. Then there exist n > 0 and an
immersion i : X — A% over S.

Proof. Let A = I'(X,Ox). By assumption X is quasi-compact and is identified
with an open subscheme of Spec(A), see Properties, Lemma Moreover, the set
of opens Xy, for those f € A such that X is affine, forms a basis for the topology
of X, see the proof of Properties, Lemma [18.4l Hence we can find a finite number
of fj € A, j = 1,...,m such that X = |JXy,, and such that 7(Xy,) C V; for
some affine open V; C S. By Lemma the ring maps O(V;) — O(Xy,) = Ay,
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are of finite type. Thus we may choose aj,...,ay € A such that the elements
ai,...,an,1/f; generate Ay, over O(V;) for each j. Take n =m + N and let

i: X — AjG

be the morphism given by the global sections fi,..., fm,a1,...,ayx of the struc-
ture sheaf of X. Let D(x;) C A% be the open subscheme where the jth coordinate
function is nonzero. Then for 1 < j < m we have i~!(D(z;)) = X, and the induced
morphism Xy, — D(x;) factors through the affine open Spec(O(Vj)[z1, ..., 2y, 1/15])
of D(x;). Since the ring map O(Vj)[x1,..., 7, 1/z;] — Ay, is surjective by con-
struction we conclude that i~!(D(z;)) — D(z;) is an immersion as desired. O

01VS Lemma 39.3. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is ample on X, and
(2) the morphism X — S is locally of finite type.

Then there exists a dy > 1 such that for every d > dy there exist an n > 0 and an
immersion i : X — P% over S such that L& = i*Opn (1).

Proof. Let A = I'\(X,£) = @, (X, L®%). By Properties, Proposition [26.13
the set of affine opens X, with a € A, homogeneous forms a basis for the topology
of X. Hence we can find finitely many such elements ag, ..., a, € Ay such that

(1) we have X = Uizo)mm Xa,,
(2) each X,, is affine, and
(3) each X,, maps into an affine open V; C S.

By Lemma we see that the ring maps Og(V;) — Ox(X,,) are of finite type.
Hence we can find finitely many elements f;; € Ox(X,,), j = 1,...,n; which
generate Ox (X,,) as an Og(V;)-algebra. By Properties, Lemma [17.2] we may write
each f;; as a;;/ a;” for some a;; € A4 homogeneous. Let N be a positive integer
which is a common multiple of all the degrees of the elements a;, a;;. Consider the

elements

ai\’/deg(ai) jaEN/ deg(ai))—eij € Ay.

) ,
By construction these generate the invertible sheaf L&V over X. Hence they give
rise to a morphism

j: X —PY¢ withm:n—&—Zni

over S, see Constructions, Lemma and Deﬁnition Moreover, j*Opg4 (1) =
L8N, We name the homogeneous coordinates T, . .., T, T;; instead of Tg, ..., Tp,.
For i = 0,...,n we have i~ *(D,(T})) = X,,. Moreover, pulling back the element
T;;/T; via j* we get the element fij € Ox(X,,). Hence the morphism j restricted
to X, gives a closed immersion of X,, into the affine open D (T;) N PY of PY.
Hence we conclude that the morphism j is an immersion. This implies the lemma
holds for some d and n which is enough in virtually all applications.

This proves that for one do > 1 (namely do = N above), some m > 0 there exists
some immersion j : X — P given by global sections s,...,s!, € I'(X,L£®%).
By Properties, Proposition we know there exists an integer d; such that
L& g globally generated for all d > dy. Set dy = di + d2. We claim that the
lemma holds with this value of dy. Namely, given an integer d > dy we may choose

s ... 8] € T(X, £L®47492) which generate L&~ over X. Set k = (m + 1)t and
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denote s, ..., s the collection of sections sj,sj3, a =0,...,m, B =1,...,t. These
generate £ over X and therefore define a morphism

. E—1
1: X — Pyg

such that i*Opz (1) = L2 To see that i is an immersion, observe that i is the
composition

X —PgxgPy — P!
where the first morphism is (j, j') with j/ given by s7,..., s} and the second mor-
phism is the Segre embedding (Constructions, Lemma . Since j is an immer-
sion, so is (4,j') (apply Lemma to X - P xg Py — P7%). Thusiis a
composition of immersions and hence an immersion (Schemes, Lemma 24.3). O

Lemmal 39.4. Let f: X — S be a morphism of schemes. Let L be an invertible
Ox -module. Assume S affine and f of finite type. The following are equivalent

) L is f-ample,

) L% js f-very ample for some d > 1,

) L% s f-very ample for all d > 1,

) for some d > 1 there exist n > 1 and an immersion i : X — P such that
£®d = i*OPg(l), and

(6) for all d > 1 there exist n > 1 and an immersion i : X — P% such that

L= i*Opan(1).

Proof. The equivalence of (1) and (2) is Lemma [37.5] The implication (2) = (6)
is Lemma [39.3] Trivially (6) implies (5). As P% is a projective bundle over S (see
Constructions, Lemma we see that (5) implies (3) and (6) implies (4) from
the definition of a relatively very ample sheaf. Trivially (4) implies (3). To finish
we have to show that (3) implies (2) which follows from Lemma and Lemma
O

Lemma 39.5. Let f: X — S be a morphism of schemes. Let L be an invert-
ible Ox-module. Assume S quasi-compact and f of finite type. The following are
equivalent

(1) L is f-ample,

(2) £24 is f-very ample for some d > 1,

(3) L% is f-very ample for all d > 1.

Proof. Trivially (3) implies (2). Lemma [38.2] guarantees that (2) implies (1) since
a morphism of finite type is quasi-compact by definition. Assume that £ is f-ample.
Choose a finite affine open covering S = Vi U...UV,,. Write X; = f~1(V;). By
Lemma above we see there exists a dy such that £®9 is relatively very ample
on X;/V; for all d > dy. Hence we conclude (1) implies (3) by Lemma [38.7] O

The following two lemmas provide the most used and most useful characterizations
of relatively very ample and relatively ample invertible sheaves when the morphism
is of finite type.

Lemma 39.6. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f-relatively very ample, and
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(2) there exist an open covering S = |JV;, for each j an integer n;, and im-
mersions

ij: X;=7N(V)) =V xs X — Py

over V; such that L|x, = i;‘OP;,- (1).
i

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma to each of the restrictions of f and £. We see that (2)
implies (1) by Lemma O

Lemmal 39.7. Let f: X — S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f-relatively ample, and
(2) there exist an open covering S = |JVj, for each j an integers d; > 1,
n; > 0, and immersions

ij: Xj=[(V) =Vjxs X — Py

d; ~ ik
over Vj such that L& |x, = szPv‘Z (1).
Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma to each of the restrictions of f and £. We see that (2)
implies (1) by Lemma [37.4] O

Lemma 39.8. Let f: X — S be a morphism of schemes. Let N, L be invertible
Ox -modules. Assume S is quasi-compact, f is of finite type, and L is f-ample.
Then N ®@o, L% is f-very ample for all d > 1.

Proof. By Lemma we reduce to the case S is affine. Combining Lemma, [39.4
and Properties, Proposition we can find an integer dy such that N @ £8% is
globally generated. Choose global sections sq, ..., s, of N ® £%% which generate
it. This determines a morphism j : X — P% over S. By Lemma we can also
pick an integer d; such that for all d > d; there exist sections t40,...,tqn() of
L% which generate it and define an immersion

S . n(d)
Jd = Pred o, . tan - X PS

over S. Then for d > dy + d; we can consider the morphism

n+1)(n(d—dp)+1)—1
@N®L®dqu®td—d0,i . X — PFS )( ( 0) )

This morphism is an immersion as it is the composition
X Pg Xg Pg(d—dg) N sz—&-l)(n(d—do)-‘rl)—l

where the first morphism is (j, jq—4,) and the second is the Segre embedding (Con-
structions, Lemma . Since j is an immersion, so is (4, ja—d,) (apply Lemma
. We have a composition of immersions and hence an immersion (Schemes,
Lemma . (]
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40. Quasi-projective morphisms

The discussion in the previous section suggests the following definitions. We take
our definition of quasi-projective from [DG67]. The version with the letter “H” is
the definition in [Har77).

Definition 40.1. Let f: X — S be a morphism of schemes.
(1) We say f is quasi-projective if f is of finite type and there exists an f-
relatively ample invertible O x-module.
(2) We say f is H-quasi-projective if there exists a quasi-compact immersion
X — P% over S for some n
(3) Wesay f is locally quasi-projective if there exists an open covering S = [JV;
such that each f=(V;) — V; is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on S.
At a later stage we will be able to say more about the category of quasi-projective
schemes, see More on Morphisms, Section

Lemma 40.2. A base change of a quasi-projective morphism is quasi-projective.
Proof. This follows from Lemmas [[5.4] and [37.91 O
Lemmal 40.3. Let f: X - Y and g : Y — S be morphisms of schemes. If S is
quasi-compact and [ and g are quasi-projective, then g o f is quasi-projective.

Proof. This follows from Lemmas [[5.3] and 37.8 O

Lemmal 40.4. Let f: X — S be a morphism of schemes. If f is quasi-projective,
or H-quasi-projective or locally quasi-projective, then f is separated of finite type.

Proof. Omitted. (]
Lemma 40.5. A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. O

Lemmal 40.6. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally quasi-projective.

(2) There exists an open covering S = |JV; such that each f~*(V;) — V; is

H-quasi-projective.

Proof. By Lemma we see that (2) implies (1). Assume (1). The question is
local on S and hence we may assume S is affine, X of finite type over S and L is
a relatively ample invertible sheaf on X/S. By Lemma we may assume L is

ample on X. By Lemma [39.3] we see that there exists an immersion of X into a
projective space over S, i.e., X is H-quasi-projective over S as desired. (]

Lemma 40.7. A quasi-affine morphism of finite type is quasi-projective.

Proof. This follows from Lemma [B7.6 O

13This is not exactly the same as the definition in Hartshorne. Namely, the definition in
Hartshorne (8th corrected printing, 1997) is that f should be the composition of an open immersion
followed by a H-projective morphism (see Definition , which does not imply f is quasi-
compact. See Lemma for the implication in the other direction.

DG, 11,
Definition 5.3.1] and
[Har77, page 103]

[DG67, 11,
Proposition 5.3.4

(1))


https://stacks.math.columbia.edu/tag/01VW
https://stacks.math.columbia.edu/tag/0B3G
https://stacks.math.columbia.edu/tag/0C4M
https://stacks.math.columbia.edu/tag/01VX
https://stacks.math.columbia.edu/tag/01VY
https://stacks.math.columbia.edu/tag/01VZ
https://stacks.math.columbia.edu/tag/0B3H

0C4N

01WO0

01W1

02K7

01W2

01W3

01W4

MORPHISMS OF SCHEMES 92

Lemma 40.8. Letg:Y — S and f : X — Y be morphisms of schemes. If go f
s quasi-projective and f is quasi-compacEI, then f is quasi-projective.

Proof. Observe that f is of finite type by Lemma Thus the lemma follows
from Lemma [B7.10] and the definitions. (I

41. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. An
important example of a proper morphism will be the structure morphism P — §
of projective n-space, and this is in fact the motivating example leading to the
definition.

Definition 41.1. Let f: X — S be a morphism of schemes. We say f is proper
if f is separated, finite type, and universally closed.

The morphism from the affine line with zero doubled to the affine line is of finite
type and universally closed, so the separation condition is necessary in the definition
above. In the rest of this section we prove some of the basic properties of proper
morphisms and of universally closed morphisms.

Lemmal 41.2. Let f : X — S be a morphism of schemes. The following are
equivalent:
(1) The morphism f is universally closed.
(2) There exists an open covering S = |JV; such that f=*(V;) — V; is univer-
sally closed for all indices j.

Proof. This is clear from the definition. O

Lemma 41.3. Let f : X — S be a morphism of schemes. The following are
equivalent:
(1) The morphism f is proper.
(2) There exists an open covering S = JV; such that f~1(V;) — V; is proper
for all indices j.

Proof. Omitted. (]

Lemma 41.4. The composition of proper morphisms is proper. The same is true
for universally closed morphisms.

Proof. A composition of closed morphisms is closed. If X — Y — Z are univer-
sally closed morphisms and Z’ — Z is any morphism, then we see that Z’ xz X =
(Z'xzY)xy X =5 Z' xzY is closed and Z' xz Y — Z' is closed. Hence the
result for universally closed morphisms. We have seen that “separated” and “finite
type” are preserved under compositions (Schemes, Lemma and Lemma.
Hence the result for proper morphisms. O

Lemma 41.5. The base change of a proper morphism is proper. The same is true
for universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for
separated morphisms (Schemes, Lemma [21.12)). It is true for morphisms of finite
type (Lemma [15.4)). Hence it is true for proper morphisms. [

MThis follows if g is quasi-separated by Schemes, Lemma [21.14
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Lemmal 41.6. A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes,
Lemma . Hence it is universally closed. A closed immersion is separated
(Schemes, Lemma[23.8)). A closed immersion is of finite type (Lemma . Hence
a closed immersion is proper. a

Lemma 41.7. Suppose given a commutative diagram of schemes

X—Y

S
with Y separated over S.

(1) If X — S is universally closed, then the morphism X — Y is universally
closed.
(2) If X is proper over S, then the morphism X — 'Y is proper.

In particular, in both cases the image of X in'Y is closed.

Proof. Assume that X — S is universally closed (resp. proper). We factor the
morphism as X — X xgY — Y. The first morphism is a closed immersion,
see Schemes, Lemma Hence the first morphism is proper (Lemma .
The projection X xgY — Y is the base change of a universally closed (resp.
proper) morphism and hence universally closed (resp. proper), see Lemma
Thus X — Y is universally closed (resp. proper) as the composition of universally
closed (resp. proper) morphisms (Lemma . O

The proof of the following lemma is due to Bjorn Poonen, see [this location.
Lemma 41.8. A universally closed morphism of schemes is quasi-compact.

Proof. Let f: X — S be a morphism. Assume that f is not quasi-compact. Our
goal is to show that f is not universally closed. By Schemes, Lemma there
exists an affine open V' C S such that f~!(V) is not quasi-compact. To achieve our
goal it suffices to show that f=1(V) — V is not universally closed, hence we may
assume that S = Spec(A) for some ring A.

Write X = UiE ; X; where the X; are affine open subschemes of X. Let T' =
Spec(Aly;;i € I]). Let T; = D(y;) C T. Let Z be the closed set (X xgT) —
Uier(XixsT;). It suffices to prove that the image fr(Z) of Z under fr : X xsT —
T is not closed.

There exists a point s € S such that there is no neighborhood U of s in S such that
Xy is quasi-compact. Otherwise we could cover S with finitely many such U and
Schemes, Lemma would imply f quasi-compact. Fix such an s € S.

First we check that fr(Zs) # Ts. Let t € T be the point lying over s with x(t) =
k() such that y; = 1 in k(¢) for all i. Then ¢ € T; for all 4, and the fiber of Z; — T
above ¢ is isomorphic to (X — J;c; Xi)s, which is empty. Thus ¢t € T, — fr(Z;).

Assume fr(Z) is closed in T. Then there exists an element g € Aly;;¢ € I] with
fr(Z) CV(g) but t € V(g). Hence the image of ¢ in £(¢) is nonzero. In particular
some coefficient of g has nonzero image in k(s). Hence this coefficient is invertible
on some neighborhood U of s. Let J be the finite set of j € I such that y; appears

Due to Bjorn
Poonen.
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in g. Since Xy is not quasi-compact, we may choose a point x € X —J s Xj lying
above some u € U. Since g has a coefficient that is invertible on U, we can find a
point ¢’ € T lying above u such that t' ¢ V(g) and t' € V(y;) for all ¢ ¢ J. This
is true because V(y;;i € 1,1 ¢ J) = Spec(Alt;;j € J]) and the set of points of this
scheme lying over w is bijective with Spec(k(u)[t;;j € J]). In other words t’ ¢ T;
for each i ¢ J. By Schemes, Lemma [17.5] we can find a point z of X xg T mapping
tox € Xandtot € T. Since x ¢ X, for j € Jand ¢/ ¢ T, for i € I\ J we see
that z € Z. On the other hand fr(z) =t' ¢ V(g) which contradicts fr(Z) C V(g).
Thus the assumption “f7(Z) closed” is wrong and we conclude indeed that fr is
not closed, as desired. ([l

The following lemma says that the image of a proper scheme (in a separated scheme
of finite type over the base) is proper.

Lemma 41.9. Let S be a scheme. Let f : X =Y be a morphism of schemes over
S. If X is universally closed over S and f is surjective then Y is universally closed
over S. In particular, if also Y is separated and locally of finite type over S, then
Y is proper over S.

Proof. Assume X is universally closed and f surjective. Denote p : X — S,
q : Y — S the structure morphisms. Let S’ — S be a morphism of schemes.
The base change [’ : Xg» — Yg is surjective (Lemma , and the base change
p i Xg — S is closed. If T C Yy is closed, then (f)~}(T) C Xg is closed, hence
P ((f)"1(T)) = ¢/(T) is closed. So ¢ is closed. This proves the first statement.
Thus Y — S is quasi-compact by Lemma and hence Y — S is proper by
definition if in addition Y — S is locally of finite type and separated. O

Lemma 41.10. Suppose given a commutative diagram of schemes
X Y
h
N A
S

(1) X — S is a universally closed (for example proper) morphism, and

(2) Y — S is separated and locally of finite type.
Then the scheme theoretic image Z C Y of h is proper over S and X — Z is
surjective.

Assume

Proof. The scheme theoretic image of h is constructed in Section [f] Since f is
quasi-compact (Lemma we find that h is quasi-compact (Schemes, Lemma
21.14)). Hence h(X) C Z is dense (Lemma[6.3). On the other hand h(X) is closed
in Y (Lemma hence X — Z is surjective. Thus Z — S is a proper (Lemma
41.9)). O

The target of a separated scheme under a surjective universally closed morphism is
separated.

Lemmal 41.11. Let S be a scheme. Let f : X — Y be a surjective universally
closed morphism of schemes over S.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then'Y is separated.
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(3) If X is quasi-separated over S, then'Y is quasi-separated over S.
(4) If X is separated over S, then'Y is separated over S.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = Spec(Z) (see
Schemes, Definition [21.3). Consider the commutative diagram

X— = X X S X
L
A
Yy — 7 s v xgY
The left vertical arrow is surjective (i.e., universally surjective). The right vertical

arrow is universally closed as a composition of the universally closed morphisms
X xgX =X xsgY =Y xgY. Hence it is also quasi-compact, see Lemma [1.8]

Assume X is quasi-separated over S, i.e., Ax/g is quasi-compact. If V C Y x5V is
a quasi-compact open, then V Xy, vy X — A;}S(V) is surjective and V Xy x v X
is quasi-compact by our remarks above. We conclude that Ay g is quasi-compact,
i.e., Y is quasi-separated over S.

Assume X is separated over S, i.e., Ax/g is a closed immersion. Then X — Y x5V
is closed as a composition of closed morphisms. Since X — Y is surjective, it follows
that Ay/g(Y') is closed in Y xg Y. Hence Y is separated over S by the discussion
following Schemes, Definition U

42. Valuative criteria

We have already discussed the valuative criterion for universal closedness and for
separatedness in Schemes, Sections [20| and In this section we will discuss some
consequences and variants. In Limits, Section we will show that it suffices to
consider discrete valuation rings when working with locally Noetherian schemes and
morphisms of finite type.

Lemma 42.1 (Valuative criterion for properness). Let S be a scheme. Let f : X —
Y be a morphism of schemes over S. Assume f is of finite type and quasi-separated.
Then the following are equivalent

(1) f is proper,

(2) f satisfies the valuative criterion (Schemes, Definition ,

(3) given any commutative solid diagram

Spec(K) —— X
| ]
Spec(A) ——=Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute.

Proof. Part (3) is a reformulation of (2). Thus the lemma is a formal consequence
of Schemes, Proposition and Lemma and the definitions. |

One usually does not have to consider all possible diagrams when testing the val-
uative criterion. We will call a valuative criterion as in the next lemma a “refined
valuative criterion”.

[DG67, IT Theorem
7.3.8]
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Lemmal 42.2. Let f : X — S and h : U — X be morphisms of schemes. As-
sume that f and h are quasi-compact and that h(U) is dense in X. If given any
commutative solid diagram

Spec(K) ——=U —h;X

~
~
~
l // f
~
~

Spec(A) S

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute, then f is universally closed. If moreover f is
quasi-separated, then f is separated.

Proof. To prove f is universally closed we will verify the existence part of the
valuative criterion for f which suffices by Schemes, Proposition To do this,
consider a commutative diagram

Spec(K) — X

|

Spec(A) —— S

where A is a valuation ring and K is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U, X, and S by their respective
reductions by Schemes, Lemma In this case the assumption that h(U) is
dense means that the scheme theoretic image of A : U — X is X, see Lemma
We may also replace S by an affine open through which the morphism Spec(A) — S
factors. Thus we may assume that S = Spec(R).

Let Spec(B) C X be an affine open through which the morphism Spec(K) — X
factors. Choose a polynomial algebra P over B and a B-algebra surjection P — K.
Then Spec(P) — X is flat. Hence the scheme theoretic image of the morphism
U x x Spec(P) — Spec(P) is Spec(P) by Lemma[25.16] By Lemma [6.5) we can find

a commutative diagram

Spec(K') —— U x x Spec(P)

l |

Spec(A4") Spec(P)

where A’ is a valuation ring and K’ is the fraction field of A’ such that the closed
point of Spec(A’) maps to Spec(K) C Spec(P). In other words, there is a B-algebra
map ¢ : K — A’/my,. Choose a valuation ring A” C A’/m, dominating p(A)
with field of fractions K” = A’/m 4, (Algebra, Lemma [50.2). We set

C={ e A |Amodmy € A"}.
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which is a valuation ring by Algebra, Lemma [50.10] As C is an R-algebra with
fraction field K’, we obtain a commutative diagram

Spec(K') —=U ——= X

—
—~
—~
—
—
—~

Spec(C) ——— 8§

as in the statement of the lemma. Thus a dotted arrow fitting into the diagram as
indicated. By the uniqueness assumption of the lemma the composition Spec(A’) —
Spec(C) — X agrees with the given morphism Spec(A’) — Spec(P) — Spec(B) C
X. Hence the restriction of the morphism to the spectrum of C//m4, = A” induces
the given morphism Spec(K") = Spec(A’/ma/) — Spec(K) — X. Let € X be
the image of the closed point of Spec(A”) — X. The image of the induced ring map
Ox, — A" is a local subring which is contained in K C K”. Since A is maximal
for the relation of domination in K and since A C A”, we have A = K N A”. We
conclude that Ox , — A” factors through A C A”. In this way we obtain our
desired arrow Spec(A) — X.

Finally, assume f is quasi-separated. Then A : X — X xg X is quasi-compact.
Given a solid diagram

Spec(K) U i =X
s
Spec(A) - X xg X

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute. Namely, the lower horizontal arrow is the
same thing as a pair of morphisms Spec(A) — X which can serve as the dotted
arrow in the diagram of the lemma. Thus the required uniqueness shows that the
lower horizontal arrow factors through A. Hence we can apply the result we just
proved to A : X — X Xg X and h : U — X and conclude that A is universally
closed. Clearly this means that f is separated. ]

Remark|/42.3. The assumption on uniqueness of the dotted arrows in Lemma
is necessary (details omitted). Of course, uniqueness is guaranteed if f is separated

(Schemes, Lemma [22.1)).

Lemma 42.4. Let S be a scheme. Let X, Y be schemes over S. Let s € S and
r € X,y eY points over s.

(1) Let f,g : X = Y be morphisms over S such that f(z) = g(z) = y and
fi =gt : Oy, — Ox.. Then there is an open neighbourhood U C X with
flu = glu in the following cases

(a) Y is locally of finite type over S,

(b) X is integral,

(¢) X is locally Noetherian, or

(d) X is reduced with finitely many irreducible components.

(2) Let ¢ : Oy,y — Oxp be a local Og s-algebra map. Then there exists an
open neighbourhood U C X of x and a morphism f :U — Y mapping x to
y with f% = ¢ in the following cases
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(a) Y is locally of finite presentation over S,

(b) Y is locally of finite type and X is integral,

(¢) Y is locally of finite type and X is locally Noetherian, or

(d) Y is locally of finite type and X is reduced with finitely many irreducible

components.

Proof. Proof of (1). We may replace X, Y, S by suitable affine open neighbour-
hoods of z, y, s and reduce to the following algebra problem: given a ring R, two
R-algebra maps ¢,1 : B — A such that

(1) R — B is of finite type, or A is a domain, or A is Noetherian, or A is

reduced and has finitely many minimal primes,

(2) the two maps B — A, are the same for some prime p C A,
show that ¢, define the same map B — A, for a suitable g€ A, g ¢p. f R — B
is of finite type, let t1,...,t,, € B be generators of B as an R-algebra. For each j
we can find g; € A, g; € p such that o(t;) and ¥ (t;) have the same image in A, .
Then we set g = [[ g;. In the other cases (if A is a domain, Noetherian, or reduced
with finitely many minimal primes), we can find a g € A, g & p such that A, C A,.
See Algebra, Lemma Thus the maps B — A, are equal as desired.

Proof of (2). To do this we may replace X, Y, and S by suitable affine opens. Say
X = Spec(A4), Y = Spec(B), and S = Spec(R). Let p C A be the prime ideal
corresponding to x. Let q¢ C B be the prime corresponding to y. Then ¢ is a local
R-algebra map ¢ : B; — A,. If R — B is a ring map of finite presentation, then
there exists a g € A\ p and an R-algebra map B — A such that

By —= 4y

]

B—— A,

commutes, see Algebra, Lemmasand The induced morphism Spec(A44) —
Spec(B) works. If B is of finite type over R, let t1,...,t,, € B be generators of B as
an R-algebra. Then we can choose g; € A, g; ¢ p such that ¢(t;) € Im(A4y, — Ap).
Thus after replacing A by A[1/]]g;] we may assume that B maps into the image
of A = Ap. If we can find a g € A, g & p such that A, — A, is injective, then
we'll get the desired R-algebra map B — A,. Thus the proof is finished by another
application of See Algebra, Lemma |31.9 O

Lemma 42.5. Let S be a scheme. Let X, Y be schemes over S. Let x € X. Let
U C X be an open and let f : U — Y be a morphism over S. Assume

(1) x is in the closure of U,
(2) X is reduced with finitely many irreducible components or X is Noetherian,
(3) Ox,» is a valuation ring,
(4) Y — S is proper
Then there exists an open U C U’ C X containing x and an S-morphism [’ : U —
Y extending f.

Proof. It is harmless to replace X by an open neighbourhood of z in X (small detail
omitted). By Properties, Lemma [29.8| we may assume X is affine with I'(X, Ox) C
Ox . In particular X is integral with a unique generic point £ whose residue field
is the fraction field K of the valuation ring Ox . Since z is in the closure of U
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we see that U is not empty, hence U contains £. Thus by the valuative criterion
of properness (Lemma [42.1)) there is a morphism ¢ : Spec(Ox ) — Y fitting into a
commutative diagram

Spec(K) — Spec(Ox )

EJ{ tl
v— 1 .y

of morphisms of schemes over S. Applying Lemma with y = t(z) and ¢ = ¢},
we obtain an open neighbourhood V' C X of  and a morphism g : V — Y over S
which sends = to y and such that gf = t£. As Y — S is separated, the equalizer
E of fluny and g|yny is a closed subscheme of U NV, see Schemes, Lemma
Since f and g determine the same morphism Spec(K) — Y by construction we see
that E contains the generic point of the integral scheme UNV. Hence E=UNV
and we conclude that f and g glue to a morphism U/ = U UV — Y as desired. [

43. Projective morphisms

We will use the definition of a projective morphism from [DG67]. The version of
the definition with the “H” is the one from [Har77]. The resulting definitions are
different. Both are useful.

Definition 43.1. Let f: X — S be a morphism of schemes.

(1) We say f is projective if X is isomorphic as an S-scheme to a closed sub-
scheme of a projective bundle P(£) for some quasi-coherent, finite type
Og-module £.

(2) We say f is H-projective if there exists an integer n and a closed immersion
X — P% over S.

(3) We say f is locally projective if there exists an open covering S = | U; such
that each f~1(U;) — U; is projective.

As expected, a projective morphism is quasi-projective, see Lemma Con-
versely, quasi-projective morphisms are often compositions of open immersions and
projective morphisms, see Lemma[d3.12] For an overview of properties of projective
morphisms over a quasi-projective base, see More on Morphisms, Section

Example 43.2. Let S be a scheme. Let A be a quasi-coherent graded Og-algebra
generated by A; over Ag. Assume furthermore that A; is of finite type over Og.
Set X = ProjS(A). In this case X — S is projective. Namely, the morphism
associated to the graded Og-algebra map

Symg, (A1) — A

is a closed immersion, see Constructions, Lemma [18.5

Lemma 43.3. An H-projective morphism is H-quasi-projective. An H-projective
morphism is projective.

Proof. The first statement is immediate from the definitions. The second holds as
P% is a projective bundle over S, see Constructions, Lemma 21.5] O

Lemma 43.4. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally projective.
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(2) There exists an open covering S = |JU; such that each f~Y(U;) — U; is
H-projective.
Proof. By Lemma we see that (2) implies (1). Assume (1). For every point

s € S we can find Spec(R) = U C S an affine open neighbourhood of s such
that Xy is isomorphic to a closed subscheme of P(€) for some finite type, quasi-

coherent sheaf of Opy-modules £. Write £ = M for some finite type R-module
M (see Properties, Lemma [16.1]). Choose generators xo,...,z, € M of M as an
R-module. Consider the surjective graded R-algebra map

R[Xo,...,X,] — Symg(M).
According to Constructions, Lemma the corresponding morphism

PE) - Ph
is a closed immersion. Hence we conclude that f~1(U) is isomorphic to a closed
subscheme of P}, (as a scheme over U). In other words: (2) holds. (]

Lemma 43.5. A locally projective morphism is proper.

Proof. Let f: X — S be locally projective. In order to show that f is proper we
may work locally on the base, see Lemma [I1.3] Hence, by Lemma [£3.4] above we
may assume there exists a closed immersion X — P%. By Lemmas and
it suffices to prove that P% — S is proper. Since P% — S is the base change of
P, — Spec(Z) it suffices to show that P} — Spec(Z) is proper, see Lemma
By Constructions, Lemma the scheme P7 is separated. By Constructions,
Lemma the scheme P7 is quasi-compact. It is clear that P% — Spec(Z) is
locally of finite type since P7, is covered by the affine opens D, (X;) each of which
is the spectrum of the finite type Z-algebra

Finally, we have to show that P7 — Spec(Z) is universally closed. This follows from

Constructions, Lemma and the valuative criterion (see Schemes, Proposition
20.6)). O

Lemma 43.6. Let f: X — S be a proper morphism of schemes. If there exists
an f-ample invertible sheaf on X, then f is locally projective.

Proof. If there exists an f-ample invertible sheaf, then we can locally on S find
an immersion ¢ : X — P%, see Lemma @ Since X — S is proper the morphism
i is a closed immersion, see Lemma [{1.7] O

Lemma 43.7. A composition of H-projective morphisms is H-projective.

Proof. Suppose X — Y and Y — Z are H-projective. Then there exist closed
immersions X — P§ over Y, and Y — P% over Z. Consider the following diagram

n n_ ______Ppn m nm-+n+m
X —=Py ——>P}, P% xz P} ——= Py

e

Y —— P7

|

Z
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Here the rightmost top horizontal arrow is the Segre embedding, see Constructions,
Lemma The diagram identifies X as a closed subscheme of P} ag
desired. (]

Lemma 43.8. A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is
projective space, and the fact that the base change of a closed immersion is a closed
immersion, see Schemes, Lemma [18.2 O

Lemma 43.9. A base change of a (locally) projective morphism is (locally) pro-
jective.

Proof. This is true because the base change of a projective bundle over a scheme
is a projective bundle, the pullback of a finite type O-module is of finite type
(Modules, Lemma and the fact that the base change of a closed immersion is
a closed immersion, see Schemes, Lemma Some details omitted. O

Lemma 43.10. A projective morphism is quasi-projective.

Proof. Let f : X — S be a projective morphism. Choose a closed immersion
i: X — P(E) where £ is a quasi-coherent, finite type Og-module. Then £ =
i*Op(g)(1) is f-very ample. Since f is proper (Lemma it is quasi-compact.
Hence Lemma implies that £ is f-ample. Since f is proper it is of finite type.
Thus we’ve checked all the defining properties of quasi-projective holds and we
win. O

Lemma 43.11. Let f: X — S be a H-quasi-projective morphism. Then f factors
as X - X' — S where X — X' is an open immersion and X' — S is H-projective.

Proof. By definition we can factor f as a quasi-compact immersion ¢ : X — P%
followed by the projection P% — S. By Lemma @there exists a closed subscheme
X' C P% such that i factors through an open immersion X — X’. The lemma
follows. O

Lemma 43.12. Let f : X — S be a quasi-projective morphism with S quasi-
compact and quasi-separated. Then f factors as X — X' — S where X — X' is
an open immersion and X' — S is projective.

Proof. Let £ be f-ample. Since f is of finite type and S is quasi-compact L& is
f-very ample for some n > 0, see Lemmam Replace £ by L&, Write F = f.L.
This is a quasi-coherent Og-module by Schemes, Lemma (quasi-projective
morphisms are quasi-compact and separated, see Lemma [40.4). By Properties,
Lemma we can find a directed set I and a system of finite type quasi-coherent
Og-modules &; over I such that F = colim&;. Consider the compositions ; :
f*& — f*F — L. Choose a finite affine open covering S =J,_; ., V;. For each
j we can choose sections

55,05+ 8im; € D(FH(V)), £) = fuL(Vy) = F(Vj)
which generate £ over f~!'V; and define an immersion
1V — P,
see Lemma Choose ¢ such that there exist sections e;; € &(V;) mapping to
sjpin Fforall j=1,...,mand ¢t =1,...,n;. Then the map 1; is surjective as
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the sections f*e;; have the same image as the sections s; ; which generate £|s-1y, .
Whence we obtain a morphism

TLap,; ¢ X — P(gl)
over S such that over V; we have a factorization
IV, = P(E)y, — P

of the immersion given above. It follows that 7 4, |y, is an immersion, see Lemma
Since S = |JV; we conclude that 7., is an immersion. Note that rz y,
is quasi-compact as X — S is quasi-compact and P(&;) — S is separated (see
Schemes, Lemma[21.14)). By Lemmal7.7] there exists a closed subscheme X’ C P(&;)
such that ¢ factors through an open immersion X — X’. Then X’ — S is projective
by definition and we win. O

Lemma 43.13. Let S be a quasi-compact and quasi-separated scheme. Let f :
X — S be a morphism of schemes. Then

(1) f is projective if and only if f is quasi-projective and proper, and

(2) f is H-projective if and only if f is H-quasi-projective and proper.

Proof. If f is projective, then f is quasi-projective by Lemma and proper
by Lemma Conversely, if X — S is quasi-projective and proper, then we can
choose an open immersion X — X’ with X’ — S projective by Lemmal[43.12] Since
X — S is proper, we see that X is closed in X’ (Lemma , ie, X = X' is
a (open and) closed immersion. Since X’ is isomorphic to a closed subscheme of
a projective bundle over S (Definition we see that the same thing is true for
X, ie., X — S is a projective morphism. This proves (1). The proof of (2) is the
same, except it uses Lemmas and O

Lemma 43.14. Let f : X — Y and g : Y — S be morphisms of schemes. If
S is quasi-compact and quasi-separated and f and g are projective, then g o f is
projective.

Proof. By Lemmas and we see that f and g are quasi-projective and
proper. By Lemmas [I1.4] and [40.3] we see that g o f is proper and quasi-projective.
Thus g o f is projective by Lemma |43.13 (]

Lemma 43.15. Letg:Y — S and f: X — Y be morphisms of schemes. If go f
is projective and g is separated, then f is projective.

Proof. Choose a closed immersion X — P(&) where £ is a quasi-coherent, finite
type Og-module. Then we get a morphism X — P(£) xg Y. This morphism is a
closed immersion because it is the composition

X—)XXSY—>P((€) XsY

where the first morphism is a closed immersion by Schemes, Lemma [21.10] (and the
fact that g is separated) and the second as the base change of a closed immersion.
Finally, the fibre product P(£) xgY is isomorphic to P(¢g*E) and pullback preserves
quasi-coherent, finite type modules. (Il

Lemmal 43.16. Let S be a scheme which admits an ample invertible sheaf. Then
(1) any projective morphism X — S is H-projective, and
(2) any quasi-projective morphism X — S is H-quasi-projective.
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Proof. The assumptions on S imply that S is quasi-compact and separated, see
Properties, Definition and Lemma[26.11)and Constructions, Lemma[8.8] Hence
Lemma applies and we see that (1) implies (2). Let £ be a finite type quasi-
coherent Og-module. By our definition of projective morphisms it suffices to show
that P(£) — S is H-projective. If £ is generated by finitely many global sections,
then the corresponding surjection (’)g‘?” — & induces a closed immersion

P(&) — P(OZ") =P}

as desired. In general, let £ be an ample invertible sheaf on S. By Properties,
Propositionthere exists an integer n such that EQp, L™ is globally generated
by finitely many sections. Since P(€) = P(€ ®p, LZ") by Constructions, Lemma
this finishes the proof. O

Lemma 43.17. Let f : X — S be a universally closed morphism. Let L be an
f-ample invertible O x-module. Then the canonical morphism

ri X — Projg (B, £-£%)

of Lemma [37.4] is an isomorphism.

Proof. Observe that f is quasi-compact because the existence of an f-ample in-
vertible module forces f to be quasi-compact. By the lemma cited the morphism
r is an open immersion. On the other hand, the image of r is closed by Lemma
(the target of r is separated over S by Constructions, Lemma . Finally,
the image of r is dense by Properties, Lemma (here we also use that it was
shown in the proof of Lemma [37.4] that the morphism 7 over affine opens of S is
given by the canonical morphism of Properties, Lemma ‘ Thus we conclude
that r is a surjective open immersion, i.e., an isomorphism. (I

Lemma 43.18. Let f : X — S be a universally closed morphism. Let L be
an f-ample invertible Ox-module. Let s € T'(X,L). Then X, — S is an affine
morphism.

Proof. The question is local on S (Lemma hence we may assume S is affine.
By Lemma we can write X = Proj(A) where A is a graded ring and s
corresponds to f € A; and X; = D, (f) (Properties, Lemma @ which proves
the lemma by construction of Proj(A), see Constructions, Section E (|

44. Integral and finite morphisms

Recall that a ring map R — A is said to be integral if every element of A satisfies
a monic equation with coefficients in R. Recall that a ring map R — A is said to
be finite if A is finite as an R-module. See Algebra, Definition [36.1]

Definition 44.1. Let f: X — S be a morphism of schemes.

(1) We say that f is integral if f is affine and if for every affine open Spec(R) =
V C S with inverse image Spec(A4) = f~1(V) C X the associated ring map
R — A is integral.

(2) We say that f is finite if f is affine and if for every affine open Spec(R) =
V C S with inverse image Spec(A4) = f~1(V) C X the associated ring map
R — A is finite.
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It is clear that integral/finite morphisms are separated and quasi-compact. It is
also clear that a finite morphism is a morphism of finite type. Most of the lemmas
in this section are completely standard. But note the fun Lemma [A4.7] at the end
of the section.

Lemma 44.2. Let f : X — S be a morphism of schemes. The following are
equivalent:
(1) The morphism f is integral.
(2) There exists an affine open covering S = \JU; such that each f=*(U;) is
affine and Og(U;) — Ox (f~2(U;)) is integral.
(3) There exists an open covering S = |JU; such that each f=*(U;) — U; is
integral.
Moreover, if f is integral then for every open subscheme U C S the morphism
f:f~YU) = U is integral.

Proof. See Algebra, Lemma [36.14] Some details omitted. O

Lemma 44.3. Let f : X — S be a morphism of schemes. The following are
equivalent:
(1) The morphism f is finite.
(2) There exists an affine open covering S = |JU; such that each f~1(U;) is
affine and Og(U;) — Ox (f~1(U;)) is finite.
(3) There exists an open covering S = \JU; such that each f~*(U;) — U; is
finite.
Moreover, if f is finite then for every open subscheme U C S the morphism f :
FYU) = U is finite.

Proof. See Algebra, Lemma [36.14l Some details omitted. d
Lemma 44.4. A finite morphism is integral. An integral morphism which is locally
of finite type is finite.

Proof. See Algebra, Lemma and Lemma [36.5 O

Lemmal 44.5. A composition of finite morphisms is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemmas [7.3] and O

Lemma 44.6. A base change of a finite morphism is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemma [36.13 (|
Lemma 44.7. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) f is integral, and

(2) f is affine and universally closed.
Proof. Assume (1). An integral morphism is affine by definition. A base change
of an integral morphism is integral so in order to prove (2) it suffices to show that
an integral morphism is closed. This follows from Algebra, Lemmas [36.22| and [41.6]
Assume (2). We may assume f is the morphism f : Spec(A) — Spec(R) coming
from a ring map R — A. Let a be an element of A. We have to show that a is
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integral over R, i.e. that in the kernel I of the map R[z] — A sending z to a there
is a monic polynomial. Consider the ring B = A[z]/(ax —1) and let J be the kernel
of the composition R[x] — Alz] — B. If f € J there exists ¢ € A[z] such that
f=(az—1)gin Afz] soif f =3, fiz" and ¢ = Y, ¢;2*, for all i > 0 we have
fi =aq;—1 — q;. For n > degq + 1 the polynomial

L o i
ZiZO fur” I_Zizo(aqz’l 42" = (e - z) Zz‘zo G

is clearly in I; if fy = 1 this polynomial is also monic, so we are reduced to
prove that J contains a polynomial with constant term 1. We do it by proving
Spec(R[z]/(J + (x)) is empty.

Since f is universally closed the base change Spec(A[z]) — Spec(R[z]) is closed.
Hence the image of the closed subset Spec(B) C Spec(Alz]) is the closed sub-
set Spec(R[z]/J) C Spec(R]z]), see Example and Lemma In particular
Spec(B) — Spec(R]z]/J) is surjective. Consider the following diagram where ev-
ery square is a pullback:

Spec(B) > Spec(R[z]/J) Spec(R[z])

| T |

0 Spec(R[z]/(J + (x))) — Spec(R)

The bottom left corner is empty because it is the spectrum of R ®pg(,) B where the
map R[z] — B sends x to an invertible element and R[z] — R sends x to 0. Since g
is surjective this implies Spec(R[z]/(J + (x))) is empty, as we wanted to show. O

Lemma 44.8. Let f : X — S be an integral morphism. Then every point of X is
closed in its fibre.

Proof. See Algebra, Lemma [36.20 g

Lemma 44.9. Let f : X — Y be an integral morphism. Then dim(X) < dim(Y).
If f is surjective then dim(X) = dim(Y").

Proof. Since the dimension of X and Y is the supremum of the dimensions of
the members of an affine open covering, we may assume Y and X are affine. The
inequality follows from Algebra, Lemma [I12.3] The equality then follows from

Algebra, Lemmas [112.1] and [36.22 O
Lemma 44.10. A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma and Lemma Alternatively,
all points in fibres are closed points by Lemma (and the fact that a finite
morphism is integral) and use Lemma (3) to see that f is quasi-finite at z for
all z € X. O

Lemma 44.11. Let f : X — S be a morphism of schemes. The following are
equivalent

(1) f is finite, and

(2) f is affine and proper.
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Proof. This follows formally from Lemma the fact that a finite morphism
is integral and separated, the fact that a proper morphism is the same thing as a
finite type, separated, universally closed morphism, and the fact that an integral
morphism of finite type is finite (Lemma . O

Lemma 44.12. A closed immersion is finite (and a fortiori integral).

Proof. True because a closed immersion is affine (Lemma [11.9) and a surjective
ring map is finite and integral. (Il

Lemma 44.13. Let X; — Y, i=1,...,n be finite morphisms of schemes. Then
XiI... 10X, =Y is finite too.

Proof. Follows from the algebra fact that if R — A;, i = 1,...,n are finite ring
maps, then R — A1 x ... x A,, is finite too. ([l

Lemma 44.14. Let f: X =Y and g:Y — Z be morphisms.
(1) If go f is finite and g separated then f is finite.
(2) If go f is integral and g separated then f is integral.

Proof. Assume g o f is finite (resp. integral) and g separated. The base change
X xzY — Y is finite (resp. integral) by Lemma[d4.6] The morphism X — X xzY
is a closed immersion as Y — Z is separated, see Schemes, Lemma A
closed immersion is finite (resp. integral), see Lemma The composition of
finite (resp. integral) morphisms is finite (resp. integral), see Lemma Thus we
win. (Il

Lemma 44.15. Let f : X — Y be a morphism of schemes. If f is finite and a
monomorphism, then f is a closed immersion.

Proof. This reduces to Algebra, Lemma [107.6 ]
Lemma 44.16. A finite morphism is projective.

Proof. Let f : X — S be a finite morphism. Then f.,Ox is a quasi-coherent
Og-module (Lemma [L1.5)) of finite type (by our definition of finite morphisms and
Properties, Lemma [16.1)). We claim there is a closed immersion

0: X — P(f.0x) = Proj (Symp, (f+Ox))

over S, which finishes the proof. Namely, we let o be the morphism which corre-
sponds (via Constructions, Lemma [16.11]) to the surjection

[ f:Ox — Ox

coming from the adjunction map f* f, — id. Then o is a closed immersion. Namely,
affine locally on S we can write X = Spec(A) and S = Spec(R). Since X is
finite over S we may choose aq,...,a, € A generating A as an R-module. Then
the R-algebra map R[Ty,T4,...,T,] — Symp(A) sending Ty to 1 and T; to a;
for 1 < i < n is surjective. Whence P(f.Ox) is a closed subscheme of P% by
Constructions, Lemma [I1.3] Thus it suffices to prove that the induced morphism
X — P% is a closed immersion (see for example, Lemma . The reader checks
that X — P?% has image contained in the open D, (Tp) = A% and that X — A%
corresponds to the surjective R-algebra map R[z1,...,x,] — Symp(A) sending z;
to a;. Whence X — P% is an immersion (as a composition of a closed immersion
and an open immersion). Since X is finite over S the image of this immersion is
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closed (this uses Lemma [44.11] Lemma [41.7] and Constructions, Lemma[13.4). We
conclude by Schemes, Lemma O

45. Universal homeomorphisms

The following definition is really superfluous since a universal homeomorphism is
really just an integral, universally injective and surjective morphism, see Lemma

40,0l

Definition 45.1. A morphism f: X — Y of schemes is called a universal home-
omorphism if the base change f’ : Y’ xy X — Y’ is a homeomorphism for every
morphism Y/ — Y.

First we state the obligatory lemmas.

Lemma 45.2. The base change of a universal homeomorphism of schemes by any
morphism of schemes is a universal homeomorphism.

Proof. This is immediate from the definition. O

Lemma 45.3. The composition of a pair of universal homeomorphisms of schemes
is a universal homeomorphism.

Proof. Omitted. O
The following simple lemma is the key to characterizing universal homeomorphisms.

Lemma 45.4. Let f : X — Y be a morphism of schemes. If f is a homeomorphism
onto a closed subset of Y then f is affine.

Proof. Let y € Y be a point. If y ¢ f(X), then there exists an affine neighbour-
hood of y which is disjoint from f(X). If y € f(X), let z € X be the unique point
of X mapping to y. Let y € V be an affine open neighbourhood. Let U C X be an
affine open neighbourhood of « which maps into V. Since f(U) C VN f(X) is open
in the induced topology by our assumption on f we may choose a h € T'(V, Oy )
such that y € D(h) and D(h)N f(X) C f(U). Denote b’ € I'(U, Ox) the restriction
of f#(h) to U. Then we see that D(h') C U is equal to f~*(D(h)). In other words,
every point of Y has an open neighbourhood whose inverse image is affine. Thus f
is affine, see Lemma [11.3 ([l

Lemma 45.5. Let f : X — Y be a morphism of schemes. The following are
equivalent:

(1) f is a universal homeomorphism, and

(2) f is integral, universally injective and surjective.

Proof. Assume f is a universal homeomorphism. By Lemma we see that f
is affine. Since f is clearly universally closed we see that f is integral by Lemma
It is also clear that f is universally injective and surjective.

Assume f is integral, universally injective and surjective. By Lemma fis
universally closed. Since it is also universally bijective (see Lemma|9.4)) we see that
it is a universal homeomorphism. ([l

Lemma 45.6. Let X be a scheme. The canonical closed immersion X,eq — X
(see Schemes, Deﬁnition s a universal homeomorphism.

Proof. Omitted. O
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Lemma 45.7. Let f: X — S and S’ — S be morphisms of schemes. Assume

— S is a closed immersion,
1) 8= S losed i j
— S is bijective on points,
2) S" — S is bijecti int
xg S — 8" is a closed immersion, an
3) X xg8 =54 losed i j d
(4) X — S is of finite type or S’ — S is of finite presentation.

Then f: X — S is a closed immersion.

Proof. Assumptions (1) and (2) imply that S” — S is a universal homeomorphism
(for example because Syeq = S.,; and using Lemma . Hence (3) implies that
X — S is homeomorphism onto a closed subset of S. Then X — S is affine by
Lemma[45.4] Let U C S be an affine open, say U = Spec(A). Then S’ = Spec(A/I)
by (1) for a locally nilpotent ideal I by (2). As f is affine we see that f~1(U) =
Spec(B). Assumption (4) tells us B is a finite type A-algebra (Lemma or
that I is finitely generated (Lemma [21.7). Assumption (3) is that A/ — B/IB
is surjective. From Algebra, Lemma if A — B is of finite type or Algebra,
Lemma if I is finitely generated and hence nilpotent we deduce that A — B

is surjective. This means that f is a closed immersion, see Lemma [2.1 (I

Lemma 45.8. Let f: X — Z be the composition of two morphisms g : X =Y
and h: Y — Z. If two of the morphisms {f, g, h} are universal homeomorphisms,
so is the third morphism.

Proof. If both of g and h are universal homeomorphisms, so is f by Lemma

Suppose both of f and g are universal homeomorphisms. We want to show that h
is also. Now base change the diagram along an arbitrary morphism « : Z’ — Z of
schemes, we get the following diagram with all squares Cartesian:

;9 ;W /
X —Y —7

L

X2y .oz

Our assumption implies that the composition f' =h'og’ : X' - Z' and ¢’ : X' —
Y’ are homeomorphisms, therefore so is h’. This finishes the proof of h being a
universal homeomorphism.

Finally, assume f and h are universal homeomorphisms. We want to show that ¢ is
a universal homeomorphism. Let 5 : Y’ — Y be an arbitrary morphism of schemes.
We get the following diagram with all squares Cartesian:

X/L)Y/

L

X49>YL>Z

Here the morphism v : Y’ — Y” is defined by the universal property of fiber
products and the two morphisms idy: : Y/ — Y’ and 8 : Y/ — Y. We shall
prove that ¢’ is a homeomorphism. Since the property of being a homeomorphism
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has 2-out-of-3 property, we see that ¢” is a homeomorphism. Staring at the top
square, it suffices to prove that ~+ is a universal homeomorphism. Since A" is a
homeomorphism, we see that it is an affine morphism by Lemma [45.4and a fortiori
separated (Lemma [I1.2). Since h” oy is the identity, we see that v is a closed
immersion by Schemes, Lemma Since h” is bijective, it follows that v is a
bijective closed immersion and hence a universal homeomorphism (for example by
the characterization in Lemma as desired. O

46. Universal homeomorphisms of affine schemes
In this section we characterize universal homeomorphisms of affine schemes.

Lemmal 46.1. Let A — B be a ring map such that the induced morphism of
schemes f : Spec(B) — Spec(A) is a universal homeomorphism, resp. a universal
homeomorphism inducing isomorphisms on residue fields, resp. universally closed,
resp. universally closed and universally injective. Then for any A-subalgebra B’ C
B the same thing is true for f': Spec(B’) — Spec(A).

Proof. If f is universally closed, then B is integral over A by Lemma [{4.7] Hence
B’ is integral over A and f’ is universally closed (by the same lemma). This proves
the case where f is universally closed.

Continuing, we see that B is integral over B’ (Algebra, Lemma [36.15)) which implies
Spec(B) — Spec(B’) is surjective (Algebra, Lemma [36.17). Thus if A — B induces
purely inseparable extensions of residue fields, then the same is true for A — B’.

This proves the case where f is universally closed and universally injective, see
Lemma [10.2

The case where f is a universal homeomorphism follows from the remarks above,
Lemma and the obvious observation that if f is surjective, then so is f’.

If A — B induces isomorphisms on residue fields, then so does A — B’ (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. O

Lemma 46.2. Let A be a ring. Let B = colim By be a filtered colimit of A-algebras.
If each f : Spec(By) — Spec(A) is a universal homeomorphism, resp. a universal
homeomorphism inducing isomorphisms on residue fields, resp. universally closed,

resp. universally closed and universally injective, then the same thing is true for
f : Spec(B) — Spec(A).

Proof. If f, is universally closed, then B, is integral over A by Lemma[44.7 Hence
B is integral over A and f is universally closed (by the same lemma). This proves
the case where each fy is universally closed.

For a prime q C B lying over p C A denote q) C B, the inverse image. Then
k(q) = colimk(qy). Thus if A — B, induces purely inseparable extensions of
residue fields, then the same is true for A — B. This proves the case where f) is
universally closed and universally injective, see Lemma [10.2

The case where f is a universal homeomorphism follows from the remarks above
and Lemma [45.5] combined with the fact that prime ideals in B are the same thing
as compatible sequences of prime ideals in all of the B).
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If A — B, induces isomorphisms on residue fields, then so does A — B (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. O

Lemmal 46.3. Let A C B be a ring extension. Let S C A be a multiplicative
subset. Letn>1 and b; € B for1 <i<n. Any x € S™'B such that

r @S YA and bzt € STYA fori=1,...,n
is equal to s~1y with s € S and y € B such that
ye& Aandby' € A fori=1,...,n
Proof. Omitted. Hint: clear denominators. O

Lemmal 46.4. Let A C B be a ring extension. If there exists b€ B, b € A and
an integer n > 2 with b" € A and b"t' € A, then there exists a b/ € B, b/ & A with
(b')2 € A and (V)3 € A.

Proof. Let b and n be as in the lemma. Then all sufficiently large powers of b are
in A. Namely, (5”)*("+1)" = pk+0n+i which implies any power b™ with m > n?
is in A. Hence if i > 1 is the largest integer such that b* & A, then (b*)? € A and
(b)) € A. O

Lemma 46.5. Let A C B be a ring extension such that Spec(B) — Spec(A) is a

universal homeomorphism inducing isomorphisms on residue fields. If A # B, then
there exists ab € B, b ¢ A with b> € A and b € A.

Proof. Recall that A C B is integral (Lemma [44.7). By Lemma we may
assume that B is generated by a single element over A. Hence B is finite over A
(Algebra, Lemma . Hence the support of B/A as an A-module is closed and
not empty (Algebra, Lemmas and . Let p C A be a minimal prime of the
support. After replacing A C B by A, C By, (permissible by Lemma [46.3)) we may
assume that (A4, m) is a local ring, that B is finite over A, and that B/A has support
{m} as an A-module. Since B/A is a finite module, we see that I = Anny(B/A)
satisfies m = /T (Algebra, Lemma . Let m’ C B be the unique prime ideal
lying over m. Because Spec(B) — Spec(A) is a homeomorphism, we find that
m’ = /IB. For f € m’ pick n > 1 such that f* € IB. Then also f**! € IB. Since
IB C A by our choice of I we conclude that f*, f**! € A. Using Lemma we
conclude our lemma is true if m’ ¢ A. However, if m’ C A, then m’ = m and we
conclude that A = B as the residue fields are isomorphic as well by assumption.
This contradiction finishes the proof. ([l

Lemma 46.6. Let A C B be a ring extension such that Spec(B) — Spec(A) is
a universal homeomorphism. If A # B, then either there exists a b € B, b & A
with b> € A and b® € A or there exists a prime number p and a b € B, b ¢ A with
pbe A and bP € A.

Proof. The argument is almost exactly the same as in the proof of Lemma [46.5
but we write everything out to make sure it works.

Recall that A C B is integral (Lemma . By Lemma we may assume that
B is generated by a single element over A. Hence B is finite over A (Algebra,
Lemma . Hence the support of B/A as an A-module is closed and not empty
(Algebra, Lemmas and . Let p C A be a minimal prime of the support.
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After replacing A C B by A, C B, (permissible by Lemma we may assume
that (A, m) is a local ring, that B is finite over A, and that B/A has support {m} as
an A-module. Since B/A is a finite module, we see that I = Anny(B/A) satisfies
m=1 (Algebra, Lemma . Let m’ C B be the unique prime ideal lying over
m. Because Spec(B) — Spec(A) is a homeomorphism, we find that m’ = V/IB.
For f € wm’ pick n > 1 such that f* € IB. Then also f"*! € IB. Since IB C A
by our choice of I we conclude that f7, f**! € A. Using Lemma we conclude
our lemma is true if m’ ¢ A. If m’ C A, then m’ = m. Since A # B we conclude
the map kK = A/m — B/m’ = k' of residue fields cannot be an isomorphism. By
Lemma [T0.2] we conclude that the characteristic of s is a prime number p and that
the extension k’/k is purely inseparable. Pick b € B whose image in £’ is an element
not contained in k but whose pth power is in k. Then b & A, b» € A, and pb € A
(because pb € m’ = m C A) as desired. O

Proposition 46.7. Let A C B be a ring extension. The following are equivalent
(1) Spec(B) — Spec(A) is a universal homeomorphism inducing isomorphisms
on residue fields, and
(2) every finite subset E C B is contained in an extension

A[bl,...,bn} CcB
such that b2,b3 € Alby,...,bi_1] fori=1,...,n.

Proof. Assume (1). Using transfinite recursion we construct for each ordinal a an
A-subalgebra B, C B as follows. Set By = A. If « is a limit ordinal, then we
set B, = colimg<q Bg. If a = 8+ 1, then either B = B in which case we set
B, = Bg or Bg # B, in which case we apply Lemma [46.5] to choose a b, € B,
ba & Bs with b2,b3 € B and we set B, = Bg[b,] C B. Clearly, B = colim B,, (in
fact B = B, for some ordinal « as one sees by looking at cardinalities). We will
prove, by transfinite induction, that (2) holds for A — B, for every ordinal o It is
clear for a = 0. Assume the statement holds for every § < a and let E C B, be a
finite subset. If v is a limit ordinal, then B, = (J;_,, Bs and we see that E' C By
for some 8 < a which proves the result in this case. If « = f+1, then B, = Bglba].
Thus any e € F can be written as a polynomial e = ) dw-bfJK with d.; € Bg. Let
D C Bg be the set D = {d.;} U {b2,b2}. By induction assumption there exists an
A-subalgebra A[by,...,b,] C Bs as in the statement of the lemma containing D.
Then A[by,...,bn,ba] C B, is an A-subalgebra of B, as in the statement of the

lemma containing E.

Assume (2). Write B = colim By as the colimit of its finite A-subalgebras. By
Lemma it suffices to show that Spec(Bx) — Spec(A) is a universal homeomor-
phism inducing isomorphisms on residue fields. Compositions of universally closed
morphisms are universally closed and the same thing for morphisms which induce
isomorphisms on residue fields. Thus it suffices to show that if A C B and B is
generated by a single element b with b6 € A, then (1) holds. Such an exten-
sion is integral and hence Spec(B) — Spec(A) is universally closed and surjective
(Lemma and Algebra, Lemma [36.17). Note that (b°)® = (%)% in A. For any
ring map ¢ : A — K to a field K we see that there exists a A € K with ¢(b?) = \?
and p(b%) = A3. Namely, A = 0 if p(b?) = 0 and X\ = ©(b®)/p(b?) if not. Thus
B ®4 K is a quotient of K[z]/(x? — A2, 2% — A3). This ring has exactly one prime
with residue field K. This implies that Spec(B) — Spec(A) is bijective and induces


https://stacks.math.columbia.edu/tag/0CND

0CNE

O0CNF

OEUI

MORPHISMS OF SCHEMES 112

isomorphisms on residue fields. Combined with universal closedness this shows (1)
is true, see Lemmas [45.5 and [10.2] O

Proposition 46.8. Let A C B be a ring extension. The following are equivalent
(1) Spec(B) — Spec(A) is a universal homeomorphism, and
(2) every finite subset E C B is contained in an extension
Alby,...,by) C B

such that fori=1,...,n we have
(a) b2 b3 S A[bl, .. ';bi—l]; or

107
(b) there exists a prime number p with pb;, bt € Alby, ..., bi_1].
Proof. The proof is exactly the same as the proof of Proposition except for
the following changes:

(1) Use Lemma instead of Lemma which means that for each successor

ordinal @ = B + 1 we either have b2,b3 € Bs or we have a prime p and
pby, U2, € Bg.
(2) If « is a successor ordinal, then take D = {d.;} U {b2,b2} or take D =

{de,;} U{pbqa, b} depending on which case « falls into.

(3) In the proof of (2) = (1) we also need to consider the case where B is
generated over A by a single element b with pb, b € B for some prime
number p. Here A C B induces a universal homeomorphism on spectra for
example by Algebra, Lemma [46.7]

This finishes the proof. O

Lemma 46.9. Let p be a prime number. Let A — B be a ring map which induces
an isomorphism A[l/p] — B[1/p] (for example if p is nilpotent in A). The following
are equivalent
(1) Spec(B) — Spec(A) is a universal homeomorphism, and
(2) the kernel of A — B is a locally nilpotent ideal and for every b € B there
exists a p-power q with gb and b? in the image of A — B.

Proof. If (2) holds, then (1) holds by Algebra, Lemma Assume (1). Then
the kernel of A — B consists of nilpotent elements by Algebra, Lemma Thus
we may replace A by the image of A — B and assume that A C B. By Algebra,
Lemma [46.5] the set

B' ={be B|p"b,b"" € A for some n > 0}

is an A-subalgebra of B (being closed under products is trivial). We have to show
B’ = B. If not, then according to Lemma there exists a b € B, b € B’ with
either b2,b% € B’ or there exists a prime number ¢ with £b,b¢ € B’. We will show
both cases lead to a contradiction, thereby proving the lemma.

Since A[1/p] = B[1/p] we can choose a p-power ¢ such that ¢b € A.

If b2,b% € B’ then also b? € B’. By definition of B’ we find that (b7)? € A for some
p-power ¢'. Then qq'b,b% € A whence b € B’ which is a contradiction.

Assume now there exists a prime number ¢ with ¢b,b* € B’. If £ # p then ¢b € B’
and ¢gb € A C B’ imply b € B’ a contradiction. Thus £ = p and b € B’ and we get
a contradiction exactly as before. ]

Lemma 46.10. Let A be a ring. Let x,y € A.
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(1) If 23 = y? in A, then A — B = A[t]/(t? — x,t3 — y) induces bijections on
residue fields and a universal homeomorphism on spectra.

(2) If there is a prime number p such that pPx = yP in A, then A — B =
Alt)/(#? — z, pt — y) induces a universal homeomorphism on spectra.

Proof. We will use the criterion of Lemma to check this. In both cases the
ring map is integral. Thus it suffices to show that given a field k£ and a ring map
@ : A — k the k-algebra B ® 4 k has a unique prime ideal whose residue field is
equal to k in case (1) and purely inseparable over k in case (2). See Lemma [10.2}

In case (1) set A = 0 if p(x) = 0 and set A = ¢(y)/p(z) if not. Then B =
k[t]/(t?> — A2,t3 — A?). Thus the result is clear.

In case (2) if the characteristic of k is p, then we obtain ¢(y) = 0 and B =
k[t]/(tP — p(x)) which is a local Artinian k-algebra whose residue field is either k
or a degree p purely inseparable extension of k. If the characteristic of k is not p,
then setting A = ¢(y)/p we see B = k[t]/(t — A\) = k and we conclude as well. O

Lemma 46.11. Let A — B be a ring map.

(1) If A — B induces a universal homeomorphism on spectra, then B =
colim B; is a filtered colimit of finitely presented A-algebras B; such that
A — B; induces a universal homeomorphism on spectra.

(2) If A — B induces isomorphisms on residue fields and a universal homeo-
morphism on spectra, then B = colim B; is a filtered colimit of finitely pre-
sented A-algebras B; such that A — B; induces isomorphisms on residue
fields and a universal homeomorphism on spectra.

Proof. Proof of (1). We will use the criterion of Algebra, Lemma Let
A — C be of finite presentation and let ¢ : C' — B be an A-algebra map. Let
B’ = ¢(C) C Bbetheimage. Then A — B’ induces a universal homeomorphism on
spectra by Lemma By Algebra, Lemma we can write B’ = colim;c; B;
with A — B; of finite presentation and surjective transition maps. By Algebra,
Lemma[127.3| we can choose an index 0 € I and a factorization C' — By — B’ of the
map C — B’. We claim that Spec(B;) — Spec(A) is a universal homeomorphism
for 4 sufficiently large. The claim finishes the proof of (1).

Proof of the claim. By Lemma the ring map A,.q — B, induces a universal
homeomorphism on spectra. Thus A,.q C B,,; by Algebra, Lemma Set-
ting A’ = Im(A — B’) we have surjections A — A" — A,.q inducing bijections
Spec(Areq) = Spec(A’) = Spec(A). Thus A’ C B’ induces a universal homeomor-
phism on spectra. By Proposition and the fact that B’ is finite type over A’
we can find n and V),...,b, € B’ such that B’ = A’[b},...,b]] and such that for

»¥n
i =1,...,n we have
) )

(1) (05)%, (b)) € A'[bf, ..., b5 _4], or

(2) there exists a prime number p with pb, (b;)P € A'[b),...,b;_4].
Choose b1,...,b, € By lifting b7,...,b),. For i > 0 denote b;; the image of b; in
B;. For large enough i we will have for j =1,....,n

(1) b?,i’ b?',i € Ai[bl,i7 - ,bj,l,i], or

(2) there exists a prime number p with pb; ;, bii € Ailbig, ..., bj—1,].

Here A; C B; is the image of A — B;. Observe that A — A; is a surjective ring map
whose kernel is a locally nilpotent ideal. After increasing ¢ more if necessary, we may
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assume B; is generated by by,...,b, over A;, in other words B; = A;[b1,...,by].
By Algebra, Lemmas and we conclude that A — A; — A1) — ... —
A;lby, ..., b,] = B; induce universal homeomorphisms on spectra. This finishes the

proof of the claim.

The proof of (2) is exactly the same. O

47. Absolute weak normalization and seminormalization

Motivated by the results proved in the previous section we give the following defi-
nition.

Definition 47.1. Let A be a ring.

(1) We say A is seminormal if for all z,y € A with 23 = y? there is a unique
a € A with z = a® and y = a?.

(2) We say A is absolutely weakly normal if (a) A is seminormal and (b) for
any prime number p and z,y € A with pPx = yP there is a unique a € A
with z = aP and y = pa.

An amusing observation, see [Cos82], is that in the definition of seminormal rings
it Suﬂ[iceﬁ to assume the existence of a. Absolutely weakly normal schemes were
defined in [Ryd07, Appendix B].

Lemma 47.2. Being seminormal or being absolutely weakly normal is a local
property of rings, see Properties, Definition [{.1]

Proof. Suppose that A is seminormal and f € A. Let 2,y € Af with (/)% =
(y")2. Write 2/ = z/f?" and ' = y/f>" for some n > 0 and z,y € A. After
replacing x,y by 2"z, 3y and n by n + m, we see that 23 = y? in A. Then we
find a unique a € A with # = @ and y = a®. Setting a’ = a/f" we get 2’ = (a’)?
and y' = (a’)? as desired. Uniqueness of a’ follows from uniqueness of a. In exactly
the same manner the reader shows that if A is absolutely weakly normal, then Ay
is absolutely weakly normal.

Assume A is a ring and f1,..., fn € A generate the unit ideal. Assume Ay, is
seminormal for each i. Let =,y € A with 23 = y2. For each i we find a unique
a; € Ay, with = a? and y = a? in Ay,. By the uniqueness and the result of
the first paragraph (which tells us that Ay, is seminormal) we see that a; and
a; map to the same element of Ay, ¢,. By Algebra, Lemma we find a unique
a € A mapping to a; in Ay, for all ¢. Then z = a? and y = a° by the same token.
Clearly this a is unique. Thus A is seminormal. If we assume Ay, is absolutely
weakly normal, then the exact same argument shows that A is absolutely weakly
normal. O

Next we define seminormal schemes and absolutely weakly normal schemes.

Definition 47.3. Let X be a scheme.

(1) We say X is seminormal if every z € X has an affine open neighbourhood
Spec(R) = U C X such that the ring R is seminormal.

5Let A be a ring such that for all z,y € A with 23 = 3?2 there is an a € A with z = a? and
y = a3. Then A is reduced: if 2 = 0, then 22 = 23 and hence there exists an a such that z = a3
and z = a?. Then z = a3 = az = a* = 22 = 0. Finally, if a% = a% and a% = a% for aj,a2 in
a reduced ring, then (a1 — a2)3 = a{’ - 3a%a2 + 3a1a§ - ag =(1-3+3- l)a:i‘ = 0 and hence

a; = ag.
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(2) We say X is absolutely weakly normal if every x € X has an affine open
neighbourhood Spec(R) = U C X such that the ring R is absolutely weakly
normal.

Here is the obligatory lemma.

Lemma 47.4. Let X be a scheme. The following are equivalent:

(1) The scheme X is seminormal.
(2) For every affine open U C X the ring Ox(U) is seminormal.
(3) There exists an affine open covering X = |JU; such that each Ox(U;) is
seminormal.
(4) There exists an open covering X = |JX; such that each open subscheme
X; is seminormal.
Moreover, if X is seminormal then every open subscheme is seminormal. The same
statements are true with “seminormal” replaced by “absolutely weakly normal”.

Proof. Combine Properties, Lemma [.3] and Lemma O

Lemma 47.5. A seminormal scheme or ring is reduced. A fortiori the same is
true for absolutely weakly normal schemes or rings.

Proof. Let A be a ring. If a € A is nonzero but a? = 0, then a? = 0% and a® = 03
and hence A is not seminormal. O

Lemmal 47.6. Let A be a ring.
(1) The category of ring maps A — B inducing a universal homeomorphism on
spectra has a final object A — A*™™,
(2) Given A — B in the category of (1) the resulting map B — A“™™ 4s an
isomorphism if and only if B is absolutely weakly normal.
(3) The category of ring maps A — B inducing isomorphisms on residue fields
and a universal homeomorphism on spectra has a final object A — A®™.
(4) Given A — B in the category of (3) the resulting map B — A" is an
isomorphism if and only if B is seminormal.
For any ring map ¢ : A — A’ there are unique maps @™ : A% — (A)*™ and
P A% — (A" compatible with .

Proof. We prove (1) and (2) and we omit the proof of (3) and (4) and the final
statement. Consider the category of A-algebras of the form
B ZA[Qi'l,,.I‘n}/J

where J is a finitely generated ideal such that A — B defines a universal home-
omorphism on spectra. We claim this category is directed (Categories, Definition

19.1)). Namely, given
B = Alxy,...,z,)/J and B’ = Alzy,...,z0]/J
then we can consider
B// = A[xla s axn—i-n/]/J//

where J” is generated by the elements of J and the elements f(zp41,...,%Tnin’)
where f € J'. Then we have A-algebra homomorphisms B — B” and B’ — B”
which induce an isomorphism B ® 4 B’ — B”. It follows from Lemmas and
that Spec(B”) — Spec(A) is a universal homeomorphism and hence A — B”
is in our category. Finally, given ¢, ¢’ : B — B’ in our category with B as displayed
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above, then we consider the quotient B” of B’ by the ideal generated by o(x;) —
¢ (x;), 1 =1,...,n. Since Spec(B’) = Spec(B) we see that Spec(B’) — Spec(B’)
is a bijective closed immersion hence a universal homeomorphism. Thus B’ is in
our category and ¢, ¢’ are equalized by B’ — B”. This completes the proof of our
claim. We set

A" = colim B

where the colimit is over the category just described. Observe that A — A%¥"
induces a universal homeomorphism on spectra by Lemma (this is where we
use the category is directed).

Given a ring map A — B of finite presentation inducing a universal homeomorphism
on spectra, we get a canonical map B — A*“"™ by the very construction of A**™.
Since every A — B as in (1) is a filtered colimit of A — B as in (1) of finite
presentation (Lemma [46.11)), we see that A — A®“™ is final in the category (1).

Let 7,y € A%™ be elements such that #3 = y2. Then A" — AWn[t]/(t? —
x,t3 — ) induces a universal homeomorphism on spectra by Lemma Thus
A — A% (4] /(#2 —x,t3 —y) is in the category (1) and we obtain a unique A-algebra
map A% [t]/(t? — x,t3 —y) — A", The image a € A" of t is therefore the
unique element such that a? = z and a® = y in A", In exactly the same manner,
given a prime p and x,y € A" with pPx = y? we find a unique a € A*™"™ with
a? =z and pg = y. Thus A" is absolutely weakly normal by definition.

Finally, let A — B be in the category (1) with B absolutely weakly normal. Since
Avwn — B induces a universal homeomorphism on spectra and since A*“™ is
reduced (Lemma we find A**™ C B*™ (see Algebra, Lemma [30.6)). If this
inclusion is not an equality, then Lemma [46.6|implies there is an element b € B**"™,
b & A*" such that either b2,b% € A¥™ or pb,bP € A% for some prime number p.
However, by the existence and uniqueness in Definition this forces b € A*™w™
and hence we obtain the contradiction that finishes the proof. O

Lemma 47.7. Let X be a scheme.

(1) The category of universal homeomorphisms Y — X has an initial object
X — X,

(2) Given'Y — X in the category of (1) the resulting morphism X" =Y is
an isomorphism if and only if Y is absolutely weakly normal.

(3) The category of universal homeomorphisms Y — X which induce ismomor-
phisms on residue fields has an initial object X*™ — X.

(4) Given' Y — X in the category of (8) the resulting morphism X" — Y is
an isomorphism if and only if Y is seminormal.

For any morphism h : X' — X of schemes there are unique morphisms ho"™ :
(X7)awn — Xawn gnd hs™ : (X')5™ — X" compatible with h.

Proof. We will prove (1) and (2) and omit the proof of (3) and (4). Let h : X’ — X
be a morphism of schemes. If (1) holds for X and X', then X’ xx X" — X'
is a universal homeomorphism and hence we get a unique morphism (X')**" —
X' xx X*" over X' by the universal property of (X')**" — X’. Composed with
the projection X’ x x X" — X" we obtain h*“". If in addition (2) holds for X
and X’ and h is an open immersion, then X’ x y X**" is absolutely weakly normal
(Lemma and we deduce that (X')*" — X' x x X" is an isomorphism.
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Recall that any universal homeomorphism is affine, see Lemma Thus if X is
affine then (1) and (2) follow immediately from Lemma[47.6] Let X be a scheme and
let B be the set of affine opens of X. For each U € B we obtain U**"™ — U and for
V Cc U, V,U € B we obtain a canonical isomorphism py ¢ : V4" = V xy U™ by
the discussion in the previous paragraph. Thus by relative glueing (Constructions,
Lemma we obtain a morphism X" — X which restricts to U**™ over U
compatibly with the py 7. Next, let Y — X be a universal homeomorphism. Then
U xx Y — U is a universal homeomorphism for U € B and we obtain a unique
morphism gy : U*™"™ — U xx Y over U. These gy are compatible with the
morphisms py,; details omitted. Hence there is a unique morphism g : X" =Y
over X agreeing with gy over U, see Constructions, Remark This proves (1)
for X. Part (2) follows because it holds affine locally. O

Definition 47.8. Let X be a scheme.

(1) The morphism X" — X constructed in Lemma is the seminormal-
ization of X.

(2) The morphism X*“" — X constructed in Lemma[47.7]is the absolute weak
normalization of X.

To be sure, the seminormalization X*®™ of X is a seminormal scheme and the abso-
lute weak normalization X**" is an absolutely weakly normal scheme. Moreover,
for any morphism h : Y — X of schemes we obtain a canonical commutative
diagram

yawn ysn Y
[
X awn Xsn X

of schemes; the arrows h%" and h®"“"™ are the unique ones compatible with h.

Lemma 47.9. Let X be a scheme. The following are equivalent

(1) X is seminormal,

(2) X is equal to its own seminormalization, i.e., the morphism X" — X is
an isomorphism,

(3) if 7 : Y — X is a universal homeomorphism inducing isomorphisms on
residue fields with Y reduced, then 7 is an isomorphism.

Proof. The equivalence of (1) and (2) is clear from Lemma If (3) holds, then
X" — X is an isomorphism and we see that (2) holds.

Assume (2) holds and let 7 : ¥ — X be a universal homeomorphism inducing
isomorphisms on residue fields with Y reduced. Then there exists a factorization
X =Y — X of idx by Lemma [47.7} Then X — Y is a closed immersion (by
Schemes, Lemma [21.11] and the fact that 7 is separated for example by Lemma
110.3)). Since X — Y is also a bijection on points, the reducedness of Y shows that
it has to be an isomorphism. This finishes the proof. O

Lemma 47.10. Let X be a scheme. The following are equivalent

(1) X is absolutely weakly normal,
(2) X is equal to its own absolute weak normalization, i.e., the morphism
X — X 4s an isomorphism,
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3) if m: Y = X is a universal homeomorphism with Y reduced, then m is an
isomorphism.

Proof. This is proved in exactly the same manner as Lemma [47.9 t

48. Finite locally free morphisms

In many papers the authors use finite flat morphisms when they really mean finite
locally free morphisms. The reason is that if the base is locally Noetherian then
this is the same thing. But in general it is not, see Exercises, Exercise [5.3

Definition 48.1. Let f: X — S be a morphism of schemes. We say f is finite
locally free if f is affine and f.Ox is a finite locally free Og-module. In this case
we say f is has rank or degree d if the sheaf f,Ox is finite locally free of degree d.

Note that if f : X — S is finite locally free then S is the disjoint union of open and
closed subschemes S such that f=1(S;) — Sy is finite locally free of degree d.

Lemmal 48.2. Let f : X — S be a morphism of schemes. The following are
equivalent:

(1) f is finite locally free,

(2) f is finite, flat, and locally of finite presentation.

If S is locally Noetherian these are also equivalent to
(3) f is finite and flat.

Proof. Let V C S be affine open. In all three cases the morphism is affine hence
f71(V) is affine. Thus we may write V = Spec(R) and f~1(V) = Spec(A) for some
R-algebra A. Assume (1). This means we can cover S by affine opens V' = Spec(R)
such that A is finite free as an R-module. Then R — A is of finite presentation by
Algebra, Lemmal7.4l Thus (2) holds. Conversely, assume (2). For every affine open
V = Spec(R) of S the ring map R — A is finite and of finite presentation and A is
flat as an R-module. By Algebra, Lemma we see that A is finitely presented
as an R-module. Thus Algebra, Lemma [78.2| implies A is finite locally free. Thus
(1) holds. The Noetherian case follows as a finite module over a Noetherian ring is
a finitely presented module, see Algebra, Lemma [31.4 ([l

Lemma 48.3. A composition of finite locally free morphisms is finite locally free.

Proof. Omitted. O

Lemmal 48.4. A base change of a finite locally free morphism is finite locally free.

Proof. Omitted. (]

Lemma 48.5. Let f: X — S be a finite locally free morphism of schemes. There
exists a disjoint union decomposition S = [[,~,Sa by open and closed subschemes
such that setting Xg = f~1(Sq) the restrictions flx, are finite locally free mor-
phisms X4 — Sy of degree d.

Proof. This is true because a finite locally free sheaf locally has a well defined
rank. Details omitted. ]
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Lemma 48.6. Let f: Y — X be a finite morphism with X affine. There exists a
diagram
7' ~—Y ——=Y
X —X

1) Y =Y and X' — X are surjective finite locally free,

2) Y = X' xx Y,

(3) i:Y' = Z' is a closed immersion,

(4) Z' — X' is finite locally free, and

(5) Z' = Ujz1,..m Zj is a (set theoretic) finite union of closed subschemes,
each of which maps isomorphically to X'.

Proof. Write X = Spec(A4) and Y = Spec(B). See also More on Algebra, Section
Let x1,...,2, € B be generators of B over A. For each i we can choose a
monic polynomial P;(T) € A[T] such that P(z;) = 0 in B. By Algebra, Lemma
(applied n times) there exists a finite locally free ring extension A C A’ such
that each P; splits completely:

Pi(T) = Hk:l,...,d» (T = ir)

i

for certain oy, € A’. Set
C=AT,....,T,]/(P(T),...,P.,(T,))

and B’ = A’ ®4 B. The map C — B', T; — 1 ® x; is an A’-algebra surjection.
Setting X’ = Spec(A’), Y’ = Spec(B’) and Z' = Spec(C) we see that (1) — (4)
hold. Part (5) holds because set theoretically Spec(C) is the union of the closed
subschemes cut out by the ideals

(Th — gy, To — Q2pyy -+, T — Qi)
for any 1 < k; < d;. O
The following lemma is stated in the correct generality in Lemma [56.4] below.

Lemma 48.7. Let f : Y — X be a finite morphism of schemes. Let T C'Y be
a closed nowhere dense subset of Y. Then f(T) C X is a closed nowhere dense
subset of X.

Proof. By Lemma we know that f(7T) C X is closed. Let X = |JX; be an
affine covering. Since T is nowhere dense in Y, we see that also T'N f~1(X;) is
nowhere dense in f~1(X;). Hence if we can prove the theorem in the affine case,
then we see that f(7') N X; is nowhere dense. This then implies that T' is nowhere
dense in X by Topology, Lemma [21.4

Assume X is affine. Choose a diagram
7' <—Y ——Y

N, b

X —X


https://stacks.math.columbia.edu/tag/03HW
https://stacks.math.columbia.edu/tag/03HX

01RR
01RS

0BXS8

MORPHISMS OF SCHEMES 120

as in Lemma The morphisms a, b are open since they are finite locally free
(Lemmas :48.2 and [25.10). Hence T' = a~!(T) is nowhere dense, see Topology,
Lemma [21.6f The morphism b is surjective and open. Hence, if we can prove
f(T") = b=L(f(T)) is nowhere dense, then f(T) is nowhere dense, see Topology,
Lemma As 7 is a closed immersion, by Topology, Lemma [21.5] we see that
i(T") C Z' is closed and nowhere dense. Thus we have reduced the problem to the
case discussed in the following paragraph.

Assume that Y = Ui:l,..,,nYi is a finite union of closed subsets, each mapping
isomorphically to X. Consider T; = Y; NT. If each of the T; is nowhere dense in
Y;, then each f(T;) is nowhere dense in X as Y; — X is an isomorphism. Hence
f(T) = f(T;) is a finite union of nowhere dense closed subsets of X and we win, see
Topology, Lemma Suppose not, say 77 contains a nonempty open V C Y.
We are going to show this leads to a contradiction. Consider Yo NV C V. This
is either a proper closed subset, or equal to V. In the first case we replace V' by
VAV NYs s0oV CTisopen in Y7 and does not meet Y. In the second case we
have V C Y1 NY5 is open in both Y; and Y5. Repeat sequentially with ¢ = 3,... n.
The result is a disjoint union decomposition

{1,...,71}:]1]_[]2, 16.[1
and an open V of Y; contained in 7} such that V C Y; fori € I; and VNY; = for

i € I5. Set U = f(V). This is an open of X since f|y, : Y1 — X is an isomorphism.
Then

floy=valJ, oo w)

As ey, Yi is closed, this implies that V' C f~Y(U) is open, hence V C Y is open.
This contradicts the assumption that T is nowhere dense in Y, as desired. O

49. Rational maps

Let X be a scheme. Note that if U, V' are dense open in X, then sois UNV.

Definition| 49.1. Let X, Y be schemes.

(1) Let f: U =Y, g:V — Y be morphisms of schemes defined on dense open
subsets U, V of X. We say that [ is equivalent to g if f|lw = g|w for some
W CcUNV dense open in X.

(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

(3) If X, Y are schemes over a base scheme S we say that a rational map from
X to Y is an S-rational map from X to Y if there exists a representative
f:U — Y of the equivalence class which is an S-morphism.

We say that two morphisms f, g as in (1) of the definition define the same rational
map instead of saying that they are equivalent. In some cases rational maps are
determined by maps on local rings at generic points.

Lemmal 49.2. Let S be a scheme. Let X and Y be schemes over S. Assume X
has finitely many irreducible components with generic points x1,...,x,. Let s; € S
be the image of x;. Consider the map

S-rational maps . (Y1, 01, -+ Yn, Pn) where y; €Y lies over s; and
from X toY @i Oyy, = Ox 4, 15 a local Og s, -algebra map

which sends f: U =Y to the 2n-tuple with y; = f(x;) and @; = fﬁ Then
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(1) If Y — S is locally of finite type, then the map is injective.
(2) If Y — S is locally of finite presentation, then the map is bijective.
(3) If Y — S is locally of finite type and X reduced, then the map is bijective.

Proof. Observe that any dense open of X contains the points z; so the construction
makes sense. To prove (1) or (2) we may replace X by any dense open. Thus if
Zi,...,Zy, are the irreducible components of X, then we may replace X by X \
U, 2 ZiNZ;j. After doing this X is the disjoint union of its irreducible components
(viewed as open and closed subschemes). Then both the right hand side and the
left hand side of the arrow are products over the irreducible components and we
reduce to the case where X is irreducible.

Assume X is irreducible with generic point z lying over s € S. Part (1) follows
from part (1) of Lemma Parts (2) and (3) follow from part (2) of the same
lemma. O

Definition 49.3. Let X be a scheme. A rational function on X is a rational map
from X to AL.

See Constructions, Definition for the definition of the affine line A'. Let X
be a scheme over S. For any open U C X a morphism U — A} is the same
as a morphism U — Ag over S. Hence a rational function is also the same as a
S-rational map from X into A}.

Recall that we have the canonical identification Mor(T,A%) = T'(T, Or) for any
scheme T, see Schemes, Example Hence A is a ring-object in the category
of schemes. More precisely, the morphisms

AL X AL s AL
(f,g) — f+g

ci AL x AL — Al
(f,9) — fg

satisfy all the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into AL has a natural ring
structure.

Definition 49.4. Let X be a scheme. The ring of rational functions on X is the
ring R(X) whose elements are rational functions with addition and multiplication
as just described.

For schemes with finitely many irreducible components we can compute this.

Lemma 49.5. Let X be a scheme with finitely many irreducible components
X1,..., Xy If n; € X; is the generic point, then

R(X) = OX,7h X ... X Oxyn"

If X is reduced this is equal to [[ x(n;). If X is integral then R(X) = Ox ,, = k(n)
s a field.

Proof. Let U C X be an open dense subset. Then U; = (U N X;) \ (U, X;) is
nonempty open as it contained 7;, contained in X;, and |JU; C U C X is dense.
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Thus the identification in the lemma comes from the string of equalities
R(X) = colimycx open dense Mor(U, Az)
= colimycx open dense Ox (U)
= colim,, cv, c X open H Ox(Uy)
= H colimy, cv, c x open Ox (Ui)

= H OXJh

where the second equality is Schemes, Example The final statement follows
from Algebra, Lemma [25.1 O

Definition 49.6. Let X be an integral scheme. The function field, or the field of
rational functions of X is the field R(X).

We may occasionally indicate this field k(X)) instead of R(X). We can use the
notion of the function field to elucidate the separation condition on an integral
scheme. Note that by Lemma on an integral scheme every local ring Ox , may
be viewed as a local subring of R(X).

Lemma 49.7. Let X be an integral separated scheme. Let Z1, Zs be distinct
irreducible closed subsets of X. Let n; be the generic point of Z;. If Z1 ¢ Zs, then
Ox.n € Ox.y, as subrings of R(X). In particular, if Zy = {x} consists of one
closed point x, there exists a function regular in a neighborhood of x which is not
m OX,nz-

Proof. First observe that under the assumption of X being separated, there is a
unique map of schemes Spec(Ox ,,) — X over X such that the composition

Spec(R(X)) — Spec(Ox,p,) — X

is the canonical map Spec(R(X)) — X. Namely, there is the canonical map can :
Spec(Ox ,,) — X, see Schemes, Equation . Given a second morphism
a to X, we have that a agrees with can on the generic point of Spec(Ox ,,) by
assumption. Now X being separated guarantees that the subset in Spec(Ox )
where these two maps agree is closed, see Schemes, Lemma [21.5 Hence a = can
on all of Spec(Ox y,)-

Assume Z; ¢ Zy and assume on the contrary that Ox , C Ox,, as subrings of
R(X). Then we would obtain a second morphism

Spec(Ox ) — Spec(Ox ) — X.

By the above this composition would have to be equal to can. This implies that 7
specializes to 11 (see Schemes, Lemma [13.2]). But this contradicts our assumption
71 ¢ Zs. O

Definition 49.8. Let ¢ be a rational map between two schemes X and Y. We
say @ is defined in a point x € X if there exists a representative (U, f) of ¢ with
x € U. The domain of definition of o is the set of all points where ¢ is defined.

With this definition it isn’t true in general that ¢ has a representative which is
defined on all of the domain of definition.
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0A1Y Lemma 49.9. Let X andY be schemes. Assume X reduced andY separated. Let
@ be a rational map from X to Y with domain of definition U C X. Then there
exists a unique morphism f : U — Y representing p. If X andY are schemes over
a separated scheme S and if v is an S-rational map, then f is a morphism over S.

Proof. Let (V,g) and (V’, ¢’) be representatives of ¢. Then g, ¢’ agree on a dense
open subscheme W C V N V’. On the other hand, the equalizer E of g|ynys and
d'|vav: is a closed subscheme of V NV’ (Schemes, Lemma . Now W C E
implies that £ = V NV’ set theoretically. As V NV’ is reduced we conclude
E = V NV’ scheme theoretically, i.e., glynyv: = ¢'|vav. It follows that we can
glue the representatives g : V. — Y of ¢ to a morphism f : U — Y, see Schemes,
Lemma We omit the proof of the final statement. O

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our schemes are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

0A1Z |Definition| 49.10. Let X and Y be irreducible schemes. A rational map from X
to Y is called dominant if any representative f : U — Y is a dominant morphism
of schemes.

By Lemma it is equivalent to require that the generic point n € X maps to
the generic point & of Y, i.e., f(n) = £ for any representative f : U — Y. We
can compose a dominant rational map ¢ between irreducible schemes X and Y
with an arbitrary rational map ¥ from Y to Z. Namely, choose representatives
f:U — Y with U C X open dense and g : V — Z with V C Y open dense.
Then W = f~1(V) C X is open nonempty (because it contains the generic point
of X) and we let 1 o ¢ be the equivalence class of go f|w : W — Z. We omit the
verification that this is well defined.

In this way we obtain a category whose objects are irreducible schemes and whose
morphisms are dominant rational maps. Given a base scheme S we can similarly
define a category whose objects are irreducible schemes over .S and whose morphisms
are dominant S-rational maps.

0A20 Definition 49.11. Let X and Y be irreducible schemes.

(1) We say X and Y are birational if X and Y are isomorphic in the category
of irreducible schemes and dominant rational maps.

(2) Assume X and Y are schemes over a base scheme S. We say X and YV
are S-birational if X and Y are isomorphic in the category of irreducible
schemes over S and dominant S-rational maps.

If X and Y are birational irreducible schemes, then the set of rational maps from
X to Z is bijective with the set of rational map from Y to Z for all schemes
Z (functorially in Z). For “general” irreducible schemes this is just one possible
definition. Another would be to require X and Y have isomorphic rings of rational
functions. For varieties these conditions are equivalent, see Lemma [50.6

0BAA Lemma 49.12. Let X and Y be irreducible schemes.

(1) The schemes X and Y are birational if and only if they have isomorphic
nonemply opens.
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(2) Assume X and Y are schemes over a base scheme S. Then X andY are
S-birational if and only if there are nonempty opens U C X and V C Y
which are S-isomorphic.

Proof. Assume X and Y are birational. Let f: U — Y and g : V — X define
inverse dominant rational maps from X to Y and from Y to X. We may assume
V affine. We may replace U by an affine open of f=1(V). As go f is the identity
as a dominant rational map, we see that the composition U — V — X is the
identity on a dense open of U. Thus after replacing U by a smaller affine open
we may assume that U — V — X is the inclusion of U into X. It follows that
U — V is an immersion (apply Schemes, Lemma toU — g Y (U) = U).
However, switching the roles of U and V' and redoing the argument above, we see
that there exists a nonempty affine open V' C V such that the inclusion factors
as V! — U — V. Then V' — U is necessarily an open immersion. Namely,
V' — f~YV') — V' are monomorphisms (Schemes, Lemma [23.8)) composing to
the identity, hence isomorphisms. Thus V" is isomorphic to an open of both X and
Y. In the S-rational maps case, the exact same argument works. ([l

Remark| 49.13. Here is a generalization of the category of irreducible schemes
and dominant rational maps. For a scheme X denote X the set of points z € X
with dim(Ox ) = 0, in other words, X° is the set of generic points of irreducible
components of X. Then we can consider the category with

(1) objects are schemes X such that every quasi-compact open has finitely
many irreducible components, and
(2) morphisms from X to Y are rational maps f: U — Y from X to Y such
that f(U°) =Y".
If U C X is a dense open of a scheme, then U C X° need not be an equality, but
if X is an object of our category, then this is the case. Thus given two morphisms
in our category, the composition is well defined and a morphism in our category.

Remark|49.14. There is a variant of Definition where we consider only those
morphism U — Y defined on scheme theoretically dense open subschemes U C X.
We use Lemma [7.6] to see that we obtain an equivalence relation. An equivalence
class of these is called a pseudo-morphism from X to Y. If X is reduced the two
notions coincide.

50. Birational morphisms

You may be used to the notion of a birational map of varieties having the property
that it is an isomorphism over an open subset of the target. However, in general
a birational morphism may not be an isomorphism over any nonempty open, see
Example [50.4] Here is the formal definition.

Definition 50.1. Let X, Y be schemes. Assume X and Y have finitely many
irreducible components. We say a morphism f : X — Y is birational if

(1) f induces a bijection between the set of generic points of irreducible com-
ponents of X and the set of generic points of the irreducible components of
Y, and

(2) for every generic point 7 € X of an irreducible component of X the local
ring map Oy, ¢y — Ox,y is an isomorphism.

[GD60, (2.2.9)]
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We will see below that the fibres of a birational morphism over generic points are
singletons. Moreover, we will see that in most cases one encounters in practice the
existence a birational morphism between irreducible schemes X and Y implies X
and Y are birational schemes.

Lemma 50.2. Let f: X — Y be a morphism of schemes having finitely many
irreducible components. If f is birational then f is dominant.

Proof. Follows from Lemma [8.2] and the definition. O

Lemma 50.3. Let f: X — Y be a birational morphism of schemes having finitely
many trreducible components. If y € Y is the generic point of an irreducible com-
ponent, then the base change X xy Spec(Oy,y) — Spec(Oy,y) is an isomorphism.

Proof. We may assume Y = Spec(B) is affine and irreducible. Then X is irre-
ducible too. If we prove the result for any nonempty affine open U C X, then the
result holds for X (small argument omitted). Hence we may assume X is affine too,
say X = Spec(A). Let y € Y correspond to the minimal prime q C B. By assump-
tion A has a unique minimal prime p lying over q and By — A, is an isomorphism.
It follows that Ay — k(p) is surjective, hence pA, is a maximal ideal. On the other
hand pA, is the unique minimal prime of A,. We conclude that pA, is the unique
prime of A4 and that Ay = A,. Since A; = A ®p By the lemma follows. O

Example| 50.4. Here are two examples of birational morphisms which are not
isomorphisms over any open of the target.

First example. Let k be an infinite field. Let A = k[z]. Let B = k[z, {ya tack]/((z—
)Yas Yayp). There is an inclusion A C B and a retraction B — A setting all
Yo equal to zero. Both the morphism Spec(A) — Spec(B) and the morphism
Spec(B) — Spec(A) are birational but not an isomorphism over any open.

Second example. Let A be a domain. Let S C A be a multiplicative subset not
containing 0. With B = S~ A the morphism f : Spec(B) — Spec(A) is birational.
If there exists an open U of Spec(A) such that f~1(U) — U is an isomorphism,
then there exists an a € A such that each every element of S becomes invertible in
the principal localization A,. Taking A = Z and S the set of odd integers give a
counter example.

Lemma 50.5. Let f: X — Y be a birational morphism of schemes having finitely
many irreducible components over a base scheme S. Assume one of the following
conditions is satisfied

(1) f is locally of finite type and Y reduced,
(2) f is locally of finite presentation.

Then there exist dense opens U C X and V CY such that f(U) C V and f|y :
U — V is an isomorphism. In particular if X and Y are irreducible, then X and
Y are S-birational.

Proof. There is an immediate reduction to the case where X and Y are irreducible
which we omit. Moreover, after shrinking further and we may assume X and Y
are affine, say X = Spec(A) and Y = Spec(B). By assumption A, resp. B has a
unique minimal prime p, resp. q, the prime p lies over q, and By = A,. By Lemma
[50.3] we have By = Ay = A,.
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Suppose B — A is of finite type, say A = B[x1,...,x,]. There exist a b; € B and
g; € B\ q such that b;/g; maps to the image of x; in A,;. Hence b, — g;x; maps
to zero in Ay, for some g; € B\ q. Setting g = [[gig; we see that By — A, is
surjective. If moreover Y is reduced, then the map B, — B, is injective and hence
B, — A, is injective as well. This proves case (1).

Proof of (2). By the argument given in the previous paragraph we may assume that
B — A is surjective. As f is locally of finite presentation the kernel J C B is a
finitely generated ideal. Say J = (b1,...,b,). Since By = A, there exist g; € B\ q
such that g;b; = 0. Setting g = [] g; we see that By — A, is an isomorphism. O

Lemmal 50.6. Let S be a scheme. Let X and Y be irreducible schemes locally
of finite presentation over S. Let x € X and y € Y be the generic points. The
following are equivalent

(1) X and Y are S-birational,

(2) there exist nonempty opens of X and'Y which are S-isomorphic, and

(3) z and y map to the same point s of S and Ox , and Oy, are isomorphic
as Og s-algebras.

Proof. We have seen the equivalence of (1) and (2) in Lemma It is imme-
diate that (2) implies (3). To finish we assume (3) holds and we prove (1). By
Lemma there is a rational map f : U — Y which sends z € U to y and in-
duces the given isomorphism Oy, = Ox . Thus f is a birational morphism and
hence induces an isomorphism on nonempty opens by Lemma [50.5] This finishes
the proof. O

Lemmal 50.7. Let S be a scheme. Let X and Y be integral schemes locally of
finite type over S. Let x € X and y € Y be the generic points. The following are
equivalent

(1) X and Y are S-birational,

(2) there exist nonempty opens of X andY which are S-isomorphic, and

(3) x and y map to the same point s € S and r(z) = k(y) as k(s)-extensions.

Proof. We have seen the equivalence of (1) and (2) in Lemma[49.12] It is immedi-
ate that (2) implies (3). To finish we assume (3) holds and we prove (1). Observe
that Ox . = k(z) and Oy, = k(y) by Algebra, Lemma By Lemma [49.2]
there is a rational map f : U — Y which sends € U to y and induces the given
isomorphism Oy, = Ox . Thus f is a birational morphism and hence induces an
isomorphism on nonempty opens by Lemma This finishes the proof. (I

51. Generically finite morphisms

In this section we characterize maps between schemes which are locally of finite
type and which are “generically finite” in some sense.

Lemma 51.1. Let X, Y be schemes. Let f : X — Y be locally of finite type.
Let n € Y be a generic point of an irreducible component of Y. The following are
equivalent:
(1) the set f=*({n}) is finite,
(2) there exist affine opens U; C X, i=1,...,n and V CY with f(U;) CV,
n€V and f~1({n}) C UU; such that each fly, : U; — V is finite.
If f is quasi-separated, then these are also equivalent to
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(3) there exist affine opens V.C Y, and U C X with f(U) C V, n €V and
F~Y({n}) C U such that fly : U —V is finite.

If f is quasi-compact and quasi-separated, then these are also equivalent to
(4) there erxists an affine open V. C Y, n €V such that f~1(V) — V is finite.

Proof. The question is local on the base. Hence we may replace Y by an affine
neighbourhood of 7, and we may and do assume throughout the proof below that
Y is affine, say Y = Spec(R).

It is clear that (2) implies (1). Assume that f~1({n}) = {&,...,&,} is finite.
Choose affine opens U; C X with & € U;. By Algebra, Lemma we see that
after replacing Y by a standard open in Y each of the morphisms U; — Y is finite.
In other words (2) holds.

It is clear that (3) implies (1). Assume f is quasi-separated and (1). Write
F~Y{n}) = {&,...,&.}. There are no specializations among the &; by Lemma
[20.71 Since each & maps to the generic point 1 of an irreducible component of
Y, there cannot be a nontrivial specialization £ ~» &; in X (since £ would map
to n as well). We conclude each &; is a generic point of an irreducible component
of X. Since Y is affine and f quasi-separated we see X is quasi-separated. By
Properties, Lemma we can find an affine open U C X containing each ¢;. By
Algebra, Lemma we see that after replacing Y by a standard open in Y the
morphisms U — Y is finite. In other words (3) holds.

It is clear that (4) implies all of (1) — (3) with no further assumptions on f. Suppose
that f is quasi-compact and quasi-separated. We have to show that the equivalent
conditions (1) — (3) imply (4). Let U, V be as in (3). Replace Y by V. Since
f is quasi-compact and Y is quasi-compact (being affine) we see that X is quasi-
compact. Hence Z = X \ U is quasi-compact, hence the morphism f|z : Z = Y
is quasi-compact. By construction of Z we see that n ¢ f(Z). Hence by Lemma
[8.5] we see that there exists an affine open neighbourhood V' of 1 in Y such that
F~Y(V')NZ = 0. Then we have f~}(V') C U and this means that f~1(V’) — V'
is finite. O

Example 51.2. Let A =[], n F2. Every element of A is an idempotent. Hence
every prime ideal is maximal with residue field Fo. Thus the topology on X =
Spec(A4) is totally disconnected and quasi-compact. The projection maps A — Fy
define open points of Spec(A). It cannot be the case that all the points of X are
open since X is quasi-compact. Let x € X be a closed point which is not open.
Then we can form a scheme Y which is two copies of X glued along X \ {z}.
In other words, this is X with x doubled, compare Schemes, Example The
morphism f :Y — X is quasi-compact, finite type and has finite fibres but is not
quasi-separated. The point x € X is a generic point of an irreducible component of
X (since X is totally disconnected). But properties (3) and (4) of Lemma do
not hold. The reason is that for any open neighbourhood x € U C X the inverse
image f~1(U) is not affine because functions on f~!(U) cannot separate the two
points lying over x (proof omitted; this is a nice exercise). Hence the condition that
f is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark| 51.3. An alternative to Lemma, is the statement that a quasi-finite
morphism is finite over a dense open of the target. This will be shown in More on
Morphisms, Lemma
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Lemma 51.4. Let X, Y be schemes. Let f : X — Y be locally of finite type. Let
X°, resp. YO denote the set of generic points of irreducible components of X, resp.
Y. Let n € Y°. The following are equivalent

(1) f~H({n}) c X°,

(2) f is quasi-finite at all points lying over 1),

(3) f is quasi-finite at all £ € X° lying over 0.

Proof. Condition (1) implies there are no specializations among the points of the
fibre X,,. Hence (2) holds by Lemma[20.6] The implication (2) = (3) is immediate.
Since 7 is a generic point of Y, the generic points of X, are generic points of X.
Hence (3) and Lemma imply the generic points of X, are also closed. Thus all
points of X, are generic and we see that (1) holds. ]

Lemma 51.5. Let X, Y be schemes. Let f: X — Y be locally of finite type. Let
XY, resp. YO denote the set of generic points of irreducible components of X, resp.
Y. Assume

(1) X% and Y° are finite and f~1(Y°) = XY,

(2) either f is quasi-compact or f is separated.
Then there exists a dense open V CY such that f~1(V) — V is finite.

Proof. Since Y has finitely many irreducible components, we can find a dense open
which is a disjoint union of its irreducible components. Thus we may assume Y is
irreducible affine with generic point 7. Then the fibre over 7 is finite as X is finite.

Assume f is separated and Y irreducible affine. Choose V C Y and U C X as
in Lemma part (3). Since f|y : U — V is finite, we see that U C f~1(V) is
closed as well as open (Lemmas and . Thus f~1(V)=U LI W for some
open subscheme W of X. However, since U contains all the generic points of X we
conclude that W = ) as desired.

Assume f is quasi-compact and Y irreducible affine. Then X is quasi-compact,
hence there exists a dense open subscheme U C X which is separated (Properties,
Lemma . Since the set of generic points X© is finite, we see that X% c U.
Thus n &€ f(X \U). Since X \ U — Y is quasi-compact, we conclude that there is
a nonempty open V C Y such that f~1(V) C U, see Lemma After replacing
X by f~1(V) and Y by V we reduce to the separated case which we dealt with in
the preceding paragraph. O

Lemma 51.6. Let X, Y be schemes. Let f : X — Y be a birational morphism
between schemes which have finitely many irreducible components. Assume
(1) either f is quasi-compact or f is separated, and
(2) either [ is locally of finite type and Y is reduced or f is locally of finite
presentation.

Then there exists a dense open V CY such that f=1(V) — V is an isomorphism.

Proof. By Lemma we may assume that f is finite. Since Y has finitely many
irreducible components, we can find a dense open which is a disjoint union of its
irreducible components. Thus we may assume Y is irreducible. By Lemma [50.5
we find a nonempty open U C X such that f|y : U — Y is an open immersion.
After removing the closed (as f finite) subset f(X \ U) from Y we see that f is an
isomorphism. [
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Lemma 51.7. Let X, Y be integral schemes. Let f : X — Y be locally of finite
type. Assume f is dominant. The following are equivalent:

(1) the extension R(Y') C R(X) has transcendence degree 0,

(2) the extension R(Y) C R(X) is finite,

(3) there exist nonempty affine opens U C X and V CY such that f(U) CV
and fly : U =V is finite, and

(4) the generic point of X is the only point of X mapping to the generic point
of Y.

If f is separated or if f is quasi-compact, then these are also equivalent to
(5) there exists a nonempty affine open V .CY such that f~1(V) — V is finite.

Proof. Choose any affine opens Spec(A) = U C X and Spec(R) =V C Y such
that f(U) C V. Then R and A are domains by definition. The ring map R — A
is of finite type (Lemma . By Lemma the generic point of X maps to the
generic point of Y hence R — A is injective. Let K = R(Y") be the fraction field
of R and L = R(X) the fraction field of A. Then L/K is a finitely generated field
extension. Hence we see that (1) is equivalent to (2).

Suppose (2) holds. Let x1,...,2, € A be generators of A over R. By assumption
there exist nonzero polynomials P;(X) € R[X] such that P;(x;) = 0. Let f; € R
be the leading coeflicient of P;. Then we conclude that Ry, 7, — Ay, 5, is finite,
i.e., (3) holds. Note that (3) implies (2). So now we see that (1), (2) and (3) are
all equivalent.

Let 7 be the generic point of X, and let ” € Y be the generic point of Y. Assume
(4). Then dim,,(X,/) = 0 and we see that R(X) = x(n) has transcendence degree 0
over R(Y) = (') by Lemma[28.1] In other words (1) holds. Assume the equivalent
conditions (1), (2) and (3). Suppose that € X is a point mapping to . Asz is a
specialization of n, this gives inclusions R(Y) C Ox , C R(X), which implies Ox ,
is a field, see Algebra, Lemma Hence & = 7. Thus we see that (1) — (4) are
all equivalent.

It is clear that (5) implies (3) with no additional assumptions on f. What remains
is to prove that if f is either separated or quasi-compact, then the equivalent
conditions (1) — (4) imply (5). This follows from Lemma O

Definition 51.8. Let X and Y be integral schemes. Let f : X — Y be locally

of finite type and dominant. Assume [R(X) : R(Y)] < oo, or any other of the

equivalent conditions (1) — (4) of Lemma Then the positive integer
deg(X/Y) = [R(X) : R(Y)]

is called the degree of X over Y.

It is possible to extend this notion to a morphism f : X — Y if (a) YV is integral
with generic point 7, (b) f is locally of finite type, and (c) f~1({n}) is finite. In
this case we can define

deg(X/V) = Zsex, F©)=n

Namely, given that R(Y) = k(1) = Oy,, (Lemma [49.5) the dimensions above are
finite by Lemma [51.1] above. However, for most applications the definition given
above is the right one.

diInR(y) (OX,E)~
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Lemma 51.9. Let X, Y, Z be integral schemes. Let f: X —Y andg:Y — Z
be dominant morphisms locally of finite type. Assume that [R(X) : R(Y)] < o0 and
[R(Y): R(Z)] < 0. Then

deg(X/Z) = deg(X/Y) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma O

Remark|/51.10. Let f : X — Y be a morphism of schemes which is locally of finite
type. There are (at least) two properties that we could use to define generically
finite morphisms. These correspond to whether you want the property to be local
on the source or local on the target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-
compact open of Y has finitely many irreducible components (for example
if Y is locally Noetherian). The requirement is that the inverse image of
each generic point is finite, see Lemma [51.1

(2) (Local on the source.) The requirement is that there exists a dense open
U C X such that U — Y is locally quasi-finite.

In case (1) the requirement can be formulated without the auxiliary condition on
Y, but probably doesn’t give the right notion for general schemes. Property (2) as
formulated doesn’t imply that the fibres over generic points are finite; however, if
f is quasi-compact and Y is as in (1) then it does.

Definition 51.11. Let X be an integral scheme. A modification of X is a bira-
tional proper morphism f : X’ — X with X’ integral.

Let f : X’ — X be a modification as in the definition. By Lemma there
exists a nonempty U C X such that f~}(U) — U is finite. By generic flatness
(Proposition we may assume f~1(U) — U is flat and of finite presentation.
So f~Y(U) — U is finite locally free (Lemma. Since f is birational, the degree
of X’ over X is 1. Hence f~1(U) — U is finite locally free of degree 1, in other words
it is an isomorphism. Thus we can redefine a modification to be a proper morphism
f: X' — X of integral schemes such that f~1(U) — U is an isomorphism for some
nonempty open U C X.

Definition 51.12. Let X be an integral scheme. An alteration of X is a proper
dominant morphism f : Y — X with Y integral such that f=1(U) — U is finite for
some nonempty open U C X.

This is the definition as given in [dJ96], except that here we do not require X
and Y to be Noetherian. Arguing as above we see that an alteration is a proper
dominant morphism f : Y — X of integral schemes which induces a finite extension
of function fields, i.e., such that the equivalent conditions of Lemma [51.7] hold.

52. The dimension formula

For morphisms between Noetherian schemes we can say a little more about dimen-
sions of local rings. Here is an important (and not so hard to prove) result. Recall
that R(X) denotes the function field of an integral scheme X.

Lemmal 52.1. Let S be a scheme. Let f: X — S be a morphism of schemes. Let
x € X, and set s = f(x). Assume

[dJ96, Definition
2.20]
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(1) S is locally Noetherian,
(2) f is locally of finite type,
(3) X and S integral, and
(4) f dominant.

We have
02JV  (52.1.1) dim(Ox z) < dim(Og,s) + trdegp gy R(X) — trdeg, k().
Moreover, equality holds if S is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma [113.1] t

0BAE Lemma 52.2. Let S be a scheme. Let f: X — S be a morphism of schemes. Let
x € X, and set s = f(x). Assume S is locally Noetherian and f is locally of finite
type, We have

0BAF (52.2.1) dim(Ox ) < dim(Os,s) + E — trdeg, s k(7).

where E is the mazimum of trdeg, ;) (k(§)) where § runs over the generic points
of irreducible components of X containing x.

Proof. Let Xi,...,X, be the irreducible components of X containing x endowed
with their reduced induced scheme structure. These correspond to the minimal
primes q; of Ox , and hence there are finitely many of them (Schemes, Lemma m
and Algebra, Lemma[31.6). Then dim(Ox ) = max dim(Ox ,/q;) = max dim(Ox, o).
The &’s occurring in the definition of E are exactly the generic points & € X;.
Let Z; = {f(&)} C S endowed with the reduced induced scheme structure. The
composition X; — X — S factors through Z; (Schemes, Lemma . Thus
we may apply the dimension formula (Lemma [52.1) to see that dim(Ox, ) <
dim(Oz, ») + trdeg, s(e)) (K(§)) — trdeg, (s r(z). Putting everything together we
obtain the lemma. (]

An application is the construction of a dimension function on any scheme of finite
type over a universally catenary scheme endowed with a dimension function. For
the definition of dimension functions, see Topology, Definition

02JW Lemma 52.3. Let S be a locally Noetherian and universally catenary scheme. Let
0 : S — Z be a dimension function. Let f : X — S be a morphism of schemes.
Assume f locally of finite type. Then the map

6= 5x/s X —Z
x — 6(f()) + trdeg, sz k()
is a dimension function on X.

Proof. Let f: X — S belocally of finite type. Let x ~ y, x # y be a specialization
in X. We have to show that dx/s(z) > dx/s(y) and that dx/s(x) = dx/s(y) + 1 if
y is an immediate specialization of z.

Choose an affine open V' C S containing the image of y and choose an affine open
U C X mapping into V and containing y. We may clearly replace X by U and S
by V. Thus we may assume that X = Spec(A) and S = Spec(R) and that f is
given by a ring map R — A. The ring R is universally catenary (Lemma and
the map R — A is of finite type (Lemma .


https://stacks.math.columbia.edu/tag/0BAE
https://stacks.math.columbia.edu/tag/02JW

02JX

MORPHISMS OF SCHEMES 132

Let ¢ C A be the prime ideal corresponding to the point x and let p C R be the
prime ideal corresponding to f(x). The restriction ¢’ of § to S’ = Spec(R/p) C S
is a dimension function. The ring R/p is universally catenary. The restriction of
dx/s to X' = Spec(A/q) is clearly equal to the function dx//g constructed using
the dimension function ¢’. Hence we may assume in addition to the above that
R C A are domains, in other words that X and S are integral schemes, and that z
is the generic point of X and f(x) is the generic point of S.

Note that Ox , = R(X) and that since x ~ y, x # y, the spectrum of Ox , has at
least two points (Schemes, Lemma [13.2) hence dim(Ox ) > 0. If y is an immediate
specialization of x, then Spec(Ox ) = {z,y} and dim(Ox ) = 1.

Write s = f(x) and t = f(y). We compute
ox/s(x) — 0x/s(y) = 0(s) + trdeg, () k() — 0(t) — trdeg, 4K (y)

= 0(s) — 0(t) + trdegpg) R(X) — trdeg, )k (y)

=0(s) — (t) + dim(Ox,y) — dim(Og,)
where we use equality in (52.1.1)) in the last step. Since § is a dimension function
on the scheme S and s € S is the generic point, the difference §(s) — () is equal to
codim({t}, S) by Topology, Lemma This is equal to dim(Og ;) by Properties,
Lemma [10.3] Hence we conclude that

dx/s(w) = dx/s(y) = dim(Ox )

and the lemma follows from what we said above about dim(Ox ). O
Another application of the dimension formula is that the dimension does not change
under “alterations” (to be defined later).
Lemma 52.4. Let f: X — Y be a morphism of schemes. Assume that

(1) Y is locally Noetherian,
(2) X andY are integral schemes,
(3) f is dominant, and
(4) f is locally of finite type.
Then we have
dim(X) < dim(Y') + trdegpy ) R(X).

If f is closeﬂ then equality holds.

Proof. Let f: X — Y be as in the lemma. Let & ~» & ~ ... ~» & be a sequence
of specializations in X. Set x = . and y = f(z). Observe that e < dim(Ox ) as
the given specializations occur in the spectrum of Ox ,, see Schemes, Lemmam
By the dimension formula, Lemma [52.1] we see that

e < dim(Ox ;)
< dim(Oyy) + trdegpy)R(X) — trdeg, k()
< dim(Oyy) + trdegpy) R(X)
Hence we conclude that e < dim(Y') + trdegp(y)R(X) as desired.

Next, assume f is also closed. Say &, ~ & ~ ... ~ £, is a sequence of specializa-
tions in Y. We want to show that dim(X) > d 4+ r. We may assume that £, = 7

6por example if f is proper, see Definition
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is the generic point of Y. The generic fibre X, is a scheme locally of finite type
over £(n) = R(Y). It is nonempty as f is dominant. Hence by Lemma itis a
Jacobson scheme. Thus by Lemma we can find a closed point & € X, and the
extension (1) C k(£p) is a finite extension. Note that Ox ¢, = Ox, ¢, because 7 is
the generic point of Y. Hence we see that dim(Ox ¢,) = 7 by Lemma applied
to the scheme X, over the universally catenary scheme Spec(x(n)) (see Lemma
and the point &;. This means that we can find &_, ~~» ...~ & 1 ~ & in X.
On the other hand, as f is closed specializations lift along f, see Topology, Lemma
- Thus, as & lies over = £, we can find specializations &y ~» & ~ ... ~ &4
lying over &y ~» &5 ~ ... ~ &,. In other words we have

R S N S N S I I ¥

which means that dim(X) > d + r as desired. O

Lemmal 52.5. Let f : X — Y be a morphism of schemes. Assume that Y is
locally Noetherian and f is locally of finite type. Then

dim(X) < dim(Y) + F

where E is the supremum of trdeg, .y (rk(§)) where & runs through the generic
points of the irreducible components of X .

Proof. Immediate consequence of Lemma and Properties, Lemma O

53. Relative normalization

In this section we construct the normalization of one scheme in another.

Lemmal|53.1. Let X be a scheme. Let A be a quasi-coherent sheaf of Ox -algebras.
The subsheaf A’ C A defined by the rule

U— {f € AWU) | fz € Ay integral over Ox 4 for all z € U}

is a quasi-coherent Ox -algebra, the stalk A’ is the integral closure of Ox 4 in A,
and for any affine open U C X the ring A'(U) C A(U) is the integral closure of
Ox(U) in A(U).

Proof. This is a subsheaf by the local nature of the conditions. It is an Ox-algebra
by Algebra, Lemma Let U C X be an affine open. Say U = Spec(R) and
say A is the quasi-coherent sheaf associated to the R-algebra A. Then according
to Algebra, Lemma the value of A’ over U is given by the integral closure
A’ of R in A. This proves the last assertion of the lemma. To prove that A’ is
quasi-coherent, it suffices to show that A’(D(f)) = A’. This follows from the fact
that integral closure and localization commute, see Algebra, Lemma The
same fact shows that the stalks are as advertised. ]

Definition 53.2. Let X be a scheme. Let A be a quasi-coherent sheaf of Ox-
algebras. The integral closure of Ox in A is the quasi-coherent Ox-subalgebra
A’ C A constructed in Lemma above.
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In the setting of the definition above we can consider the morphism of relative
spectra

Y = Spec

(A) X' = Spec,, (A)

~,

X

see Lemma[IT1.5l The scheme X’ — X will be the normalization of X in the scheme
Y. Here is a slightly more general setting. Suppose we have a quasi-compact and
quasi-separated morphism f : Y — X of schemes. In this case the sheaf of Ox-
algebras f,QOy is quasi-coherent, see Schemes, Lemma [24.1] Taking the integral
closure O’ C f,Oy we obtain a quasi-coherent sheaf of O x-algebras whose relative
spectrum is the normalization of X in Y. Here is the formal definition.

X

Definition 53.3. Let f:Y — X be a quasi-compact and quasi-separated mor-
phism of schemes. Let O’ be the integral closure of Ox in f,Oy. The normalization
of X inY is the schemdﬂ
v /
v: X' =Spec, (0) - X
over X. It comes equipped with a natural factorization

v

y Lox s x
of the initial morphism f.

The factorization is the composition of the canonical morphism Y — Spec (f«Oy)
(see Constructions, Lemma and the morphism of relative spectra coming from
the inclusion map O’ — f.Oy. We can characterize the normalization as follows.

Lemma 53.4. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. The factorization f = v o f', where v : X' — X is the normalization
of X in'Y is characterized by the following two properties:
(1) the morphism v is integral, and
(2) for any factorization f = mwo g, with m : Z — X integral, there exists a
commutative diagram

ok
X 2sX
for some unique morphism h : X' — Z.

Moreover, the morphism ' :' Y — X' is dominant and in (2) the morphism h :
X' — Z is the normalization of Z in'Y.

Proof. Let O’ C f.Oy be the integral closure of Ox as in Definition [53.3] The
morphism v is integral by construction, which proves (1). Assume given a factoriza-
tion f = wog with 7 : Z — X integral as in (2). By Definition 7 is affine, and
hence Z is the relative spectrum of a quasi-coherent sheaf of Ox-algebras B. The
morphism ¢ : Y — Z corresponds to a map of Ox-algebras x : B — f.Oy. Since

B(U) is integral over Ox (U) for every affine open U C X (by Definition [44.1)) we

17The scheme X’ need not be normal, for example if Y = X and f =idx, then X' = X.
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see from Lemma that x(B) C O’. By the functoriality of the relative spectrum
Lemma this provides us with a unique morphism h : X’ — Z. We omit the
verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = v o f’ since it charac-
terizes it as an initial object in a category.

From the universal property in (2) we see that f’ does not factor through a proper
closed subscheme of X’. Hence the scheme theoretic image of f is X’. Since f' is
quasi-compact (by Schemes, Lemma and the fact that v is separated as an
affine morphism) we see that f/(Y) is dense in X'. Hence f’ is dominant.

Observe that g is quasi-compact and quasi-separated by Schemes, Lemmas [21.13
and Thus the last statement of the lemma makes sense. The morphism A in
(2) is integral by Lemma Given a factorization g = 7' o ¢’ with 7’ : Z/ — Z
integral, we get a factorization f = (mon’)og’ and we get a morphism b’ : X’ — Z’.
Uniqueness implies that 7’ o h’ = h. Hence the characterization (1), (2) applies to
the morphism h : X’ — Z which gives the final assertion of the lemma. ([

Lemma 53.5. Let

YQ —— Y1

Al

X2 *>X1

be a commutative diagram of morphisms of schemes. Assume f1, fo quasi-compact
and quasi-separated. Let f; = v;o fl, i =1,2 be the canonical factorizations, where
v; X! — X, is the normalization of X; in Y;. Then there exists a unique arrow
X} — X] fitting into a commutative diagram

YQ —— Y1

féi lf{

X2 *>X1

Proof. By Lemmas[53.4] (1) and [44.6] the base change X x x, X{ — X is integral.
Note that fo factors through this morphism. Hence we get a unique morphism
X} — X x x, X{ from Lemma [53.4] (2). This gives the arrow X} — X{ fitting into
the commutative diagram and uniqueness follows as well. O

Lemma 53.6. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Let U C X be an open subscheme and set V = f~Y(U). Then the
normalization of U in V is the inverse image of U in the normalization of X in'Y.

Proof. Clear from the construction. O

Lemma 53.7. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Let X' be the normalization of X in'Y. Then the normalization of X'

inY is X'.


https://stacks.math.columbia.edu/tag/035J
https://stacks.math.columbia.edu/tag/035K
https://stacks.math.columbia.edu/tag/0BXA

0AXN

0AXP

03GO

03GQ

MORPHISMS OF SCHEMES 136

Proof. If Y — X” — X’ is the normalization of X’ in Y, then we can apply Lemma
to the composition X” — X to get a canonical morphism h : X’ — X" over
X. We omit the verification that the morphisms 4 and X” — X’ are mutually
inverse (using uniqueness of the factorization in the lemma). (]

Lemma 53.8. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Let X' — X be the normalization of X in'Y. If Y is reduced, so is
X'

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. O

Lemma 53.9. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Let X' — X be the normalization of X in Y. Every generic point
of an irreducible component of X' is the image of a generic point of an irreducible
component of Y.

Proof. By Lemma we may assume X = Spec(A) is affine. Choose a finite
affine open covering Y = JSpec(B;). Then X’ = Spec(A’) and the morphisms
Spec(B;) = Y — X’ jointly define an injective A-algebra map A’ — [[ B;. Thus
the lemma follows from Algebra, Lemma [30.5] (]

Lemma 53.10. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Suppose that Y = Y111Y5 is a disjoint union of two schemes. Write f; =
fly,. Let X| be the normalization of X inY;. Then X111 X} is the normalization
of X inY.

Proof. In terms of integral closures this corresponds to the following fact: Let
A — B be a ring map. Suppose that B = By x B. Let A} be the integral closure
of Ain B;. Then A} x A} is the integral closure of A in B. The reason this works is
that the elements (1,0) and (0,1) of B are idempotents and hence integral over A.
Thus the integral closure A’ of A in B is a product and it is not hard to see that the
factors are the integral closures A’ as described above (some details omitted). O

Lemma 53.11. Let f : X — S be a quasi-compact, quasi-separated and universally
closed morphisms of schemes. Then f,Ox is integral over Og. In other words, the
normalization of S in X is equal to the factorization

X — Spec(fOx) — S
of Constructions, Lemma [4.7
Proof. The question is local on S, hence we may assume S = Spec(R) is affine.

Let h € T'(X,0x). We have to show that h satisfies a monic equation over R.
Think of h as a morphism as in the following commutative diagram

X - Al
x /
S
Let Z C A} be the scheme theoretic image of h, see Definition The morphism
h is quasi-compact as f is quasi-compact and A} — S is separated, see Schemes,

Lemma By Lemma [6.3] the morphism X — Z is dominant. By Lemma [1.7]
the morphism X — Z is closed. Hence h(X) = Z (set theoretically). Thus we can
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use Lemma [41.9] “ to conclude that Z — S is universally closed (and even proper).
Since Z C Aj, we see that Z — S is affine and proper, hence integral by Lemma
- 44.70 Writing A} = Spec(R[T]) we conclude that the ideal I C R[T] of Z contains
a monic polynomlal P(T) € R[T). Hence P(h) =0 and we win. O

Lemmal 53.12. Let f: Y — X be an integral morphism. Then the normalization
of X inY is equal to Y.

Proof. By Lemma this is a special case of Lemma [53.11 O

Lemma 53.13. Let f:Y — X be a quasi-compact and quasi-separated morphism
of schemes. Let X' be the normalization of X in'Y . Assume

(1) Y is a normal scheme,
(2) quasi-compact opens of Y have finitely many irreducible components.

Then X' is a disjoint union of integral normal schemes. Moreover, the morphism
Y — X' is dominant and induces a bijection of irreducible components.

Proof. Let U C X be an affine open. Consider the inverse image U’ of U in
X', Set V = f~1(U). By Lemma we V. — U’ — U is the normalization
of U in V. Say U = Spec(A4). Then V is quasi-compact, and hence has a finite
number of irreducible components by assumption. Hence V = [],_ V; is a finite
disjoint union of normal integral schemes by Properties, Lemma [7 ﬁ By Lemma
we see that U’ = [[,_, U/, where U] is the normalization of U in V.
By Properties, Lemma we see that B; = I'(V;, Oy;) is a normal domain. Note
that U/ = Spec(A}), where A} C B; is the integral closure of A in B;, see Lemma
53.11 By Algebra, Lemma we see that A C B; is a normal domain. Hence
U’ = 1] U/ is a finite union of normal integral schemes and hence is normal.

As X’ has an open covering by the schemes U’ we conclude from Properties, Lemma
that X’ is normal. On the other hand, each U’ is a finite disjoint union of irre-
ducible schemes, hence every quasi-compact open of X’ has finitely many irreducible
components (by a topological argument which we omit). Thus X’ is a disjoint union
of normal integral schemes by Properties, Lemma It is clear from the descrip-
tion of X’ above that ¥ — X’ is dominant and induces a bijection on irreducible
components V. — U’ for every affine open U C X. The bijection of irreducible
components for the morphism Y — X’ follows from this by a topological argument
(omitted). O

Lemmal 53.14. Let f: X — S be a morphism. Assume that

(1) S is a Nagata scheme,

(2) f is quasi-compact and quasi-separated,

(3) quasi-compact opens of X have finitely many irreducible components,

(4) if x € X is a generic point of an irreducible component, then the field
extension k(x)/k(f(x)) is finitely generated, and

(5) X is reduced.

Then the normalization v : 8" — S of S in X is finite.

Proof. There is an immediate reduction to the case S = Spec(R) where R is a
Nagata ring by assumption (1). We have to show that the integral closure A of
R in I'(X,Ox) is finite over R. Since f is quasi-compact by assumption (2) we
can write X = Ui:l,...,n U; with each U; affine. Say U; = Spec(B;). Each B; is
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reduced by assumption (5) and has finitely many minimal primes q;1, ..., qim,; by
assumption (3) and Algebra, Lemma We have

I(X,0x)C By x...x B, C H,_1 1L (Bi)as,

Jj=1,...,m;

the second inclusion by Algebra, Lemma We have #(qj) = (Bi)q,; by Algebra,
Lemma Hence the integral closure A of R in I'(X, Ox) is contained in the
product of the integral closures A;; of R in k(q;;). Since R is Noetherian it suffices
to show that A;; is a finite R-module for each 7,j. Let p;; C R be the image of
qij- As k(q;5)/k(ps;) is a finitely generated field extension by assumption (4), we
see that R — k(q;;) is essentially of finite type. Thus R — A;; is finite by Algebra,
Lemma [162.21 O

Lemmal 53.15. Let f: X — S be a morphism. Assume that

(1) S is a Nagata scheme,

(2) f is of finite type,
(3) X is reduced.

Then the normalization v : S’ — S of S in X is finite.

Proof. This is a special case of Lemma Namely, (2) holds as the finite
type morphism f is quasi-compact by definition and quasi-separated by Lemma
Condition (3) holds because X is locally Noetherian by Lemma [15.6] Finally,
condition (4) holds because a finite type morphism induces finitely generated residue
field extensions. O

Lemma 53.16. Let f : Y — X be a finite type morphism of schemes with Y
reduced and X Nagata. Let X' be the normalization of X inY. Let 2’ € X' be a
point such that

(1) dim(Ox 4) =1, and

(2) the fibre of Y — X' over a’ is empty.

Then Ox: 5 is a discrete valuation ring.

Proof. We can replace X by an affine neighbourhood of the image of z’. Hence
we may assume X = Spec(A) with A Nagata. By Lemma the morphism
X’ — X is finite. Hence we can write X’ = Spec(A4’) for a finite A-algebra A’. By
Lemma [53.7] after replacing X by X’ we reduce to the case described in the next
paragraph.

The case X = X’ = Spec(A4) with A Noetherian. Let p C A be the prime ideal
corresponding to our point z’. Choose g € p not contained in any minimal prime of
A (use prime avoidance and the fact that A has finitely many minimal primes, see
Algebra, Lemmas and . Set Z = f~'V(g) C Y; it is a closed subscheme
of Y. Then f(Z) does not contain any generic point by choice of g and does not
contain z’ because z’ is not in the image of f. The closure of f(Z) is the set of
specializations of points of f(Z) by Lemma Thus the closure of f(Z) does
not contain z’ because the condition dim(Ox- ) = 1 implies only the generic
points of X = X’ specialize to 2’. In other words, after replacing X by an affine
open neighbourhood of 2’ we may assume that f~'V(g) = (). Thus g maps to an
invertible global function on Y and we obtain a factorization

A— A, - T(Y,0v)
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Since X = X’ this implies that A is equal to the integral closure of A in A,. By
Algebra, Lemmawe conclude that A, is the integral closure of A, in A,[1/g].
By our choice of g, since dim(A4,) = 1 and since A is reduced we see that A,[1/g]
is a finite product of fields (the product of the residue fields of the minimal primes
contained in p). Hence A, is normal (Algebra, Lemma and the proof is
complete. Some details omitted. ([l

54. Normalization

Next, we come to the normalization of a scheme X. We only define/construct
it when X has locally finitely many irreducible components. Let X be a scheme
such that every quasi-compact open has finitely many irreducible components. Let
X©) = X be the set of generic points of irreducible components of X. Let

(54.0.1) f:Y = HneX<0) Spec(k(n)) — X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section Note that this morphism is quasi-compact by assumption and quasi-
separated as Y is separated (see Schemes, Section .

Definition 54.1. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the normalization of X as the
morphism

v: X" — X
which is the normalization of X in the morphism f:Y — X constructed
above.

Any locally Noetherian scheme has a locally finite set of irreducible components and
the definition applies to it. Usually the normalization is defined only for reduced
schemes. With the definition above the normalization of X is the same as the
normalization of the reduction X, .4 of X.

Lemma 54.2. Let X be a scheme such that every quasi-compact open has finitely
many trreducible components. The normalization morphism v factors through the
reduction Xyeq and XYV — X,.eq is the normalization of Xyeq.-

Proof. Let f : Y — X be the morphism . We get a factorization ¥ —
X,eq — X of f from Schemes, Lemma By Lemma [53.4] we obtain a canonical
morphism X* — X,..q and that X" is the normalization of X, .4 in Y. The lemma
follows as Y — X,..q is identical to the morphism constructed for X,..q. O

If X is reduced, then the normalization of X is the same as the relative spectrum of
the integral closure of Ox in the sheaf of meromorphic functions Kx (see Divisors,
Section . Namely, x = f.Oy in this case, see Divisors, Lemma and its
proof. We describe this here explicitly.

Lemma 54.3. Let X be a reduced scheme such that every quasi-compact open has
finitely many irreducible components. Let Spec(A) = U C X be an affine open.
Then
(1) A has finitely many minimal primes q1,...,qs,
(2) the total ring of fractions Q(A) of A is Q(A/q1) X ... X Q(A/qy),
(3) the integral closure A" of A in Q(A) is the product of the integral closures
of the domains A/q; in the fields Q(A/q;), and
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(4) v=Y(U) is identified with the spectrum of A’ where v : XV — X is the
normalization morphism.

Proof. Minimal primes correspond to irreducible components (Algebra, Lemma
[26.1)), hence we have (1) by assumption. Then (0) = g1 N ... N g, because A
is reduced (Algebra, Lemma [17.2). Then we have Q(A) = [[ Aq, = [[x(q:) by
Algebra, Lemmas [25.4] and 25.1l This proves (2). Part (3) follows from Algebra,
Lemma [37.16} or Lemma 53.10L Part (4) holds because it is clear that 7Y u)—-uU
is the morphism

Spec (H Ii(qi)) — Spec(A)
where f:Y — X is the morphism (54.0.1)). |

Lemma 54.4. Let X be a scheme such that every quasi-compact open has a finite
number of irreducible components. Let v : X¥ — X be the normalization of X. Let
x € X. Then the following are canonically isomorphic as Ox ,-algebras
(1) the stalk (v.Oxv)y,
(2) the integral closure of Ox , in the total ring of fractions of (Ox z)red,
(3) the integral closure of Ox 4 in the product of the residue fields of the mini-
mal primes of Ox , (and there are finitely many of these).

Proof. After replacing X by an affine open neighbourhood of z we may assume
that X has finitely many irreducible components and that x is contained in each of
them. Then the stalk (v,Oxv), is the integral closure of A = Ox , in the product L
of the residue fields of the minimal primes of A. This follows from the construction
of the normalization and Lemma Alternatively, you can use Lemma and
the fact that normalization commutes with localization (Algebra, Lemma [36.11]).
Since A;¢q has finitely many minimal primes (because these correspond exactly to
the generic points of the irreducible components of X passing through =) we see
that L is the total ring of fractions of A,.q (Algebra, Lemma . Thus our ring
is also the integral closure of A in the total ring of fractions of A,..q4. O

Lemma 54.5. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components.

(1) The normalization XV is a disjoint union of integral normal schemes.

(2) The morphism v : XY — X is integral, surjective, and induces a bijection
on irreducible components.

(3) For any integral morphism o« : X' — X such that for U C X quasi-compact
open the inverse image o~ (U) has finitely many irreducible components
and ofq-1y - a Y U) = U is biratz’onaﬁ there exists a factorization
XY -5 X' — X and XV — X' is the normalization of X'.

(4) For any morphism Z — X with Z a normal scheme such that each ir-
reducible component of Z dominates an irreducible component of X there
exrists a unique factorization Z — XV — X.

Proof. Let f : Y — X be as in (54.0.1)). The scheme X" is a disjoint union of
normal integral schemes because Y is normal and every affine open of Y has finitely

18This awkward formulation is necessary as we’ve only defined what it means for a morphism
to be birational if the source and target have finitely many irreducible components. It suffices if

X! .4 = Xreq satisfies the condition.
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many irreducible components, see Lemma [53.13] This proves (1). Alternatively one
can deduce (1) from Lemmas [54.2| and [54.3]

The morphism v is integral by Lemma [53.4 By Lemma [53.13] the morphism
Y — X% induces a bijection on irreducible components, and by construction of
Y this implies that X¥ — X induces a bijection on irreducible components. By
construction f : Y — X is dominant, hence also v is dominant. Since an integral
morphism is closed (Lemma this implies that v is surjective. This proves (2).

Suppose that « : X’ — X is as in (3). It is clear that X’ satisfies the assumptions
under which the normalization is defined. Let f’ : Y/ — X’ be the morphism
constructed starting with X’. As « is locally birational it is clear that
Y =Y and f = ao f'. Hence the factorization X — X’ — X exists and
X" — X' is the normalization of X’ by Lemma[53.4] This proves (3).

Let g : Z — X be a morphism whose domain is a normal scheme and such that
every irreducible component dominates an irreducible component of X. By Lemma
we have X” = X” , and by Schemes, Lemma Z — X factors through
Xreq- Hence we may replace X by X,..q and assume X is reduced. Moreover, as
the factorization is unique it suffices to construct it locally on Z. Let W C Z and
U C X be affine opens such that g(W) C U. Write U = Spec(A) and W = Spec(B),
with g|lw given by ¢ : A — B. We will use the results of Lemma freely. Let
P1,...,Ps be the minimal primes of A. As Z is normal, we see that B is a normal
ring, in particular reduced. Moreover, by assumption any minimal prime q C B
we have that ¢ ~!(q) is a minimal prime of A. Hence if z € A is a nonzerodivisor,
ie, x & Jp;, then ¢(x) is a nonzerodivisor in B. Thus we obtain a canonical ring
map Q(A) — Q(B). As B is normal it is equal to its integral closure in Q(B)
(see Algebra, Lemma [37.12)). Hence we see that the integral closure A’ C Q(A) of
A maps into B via the canonical map Q(A) — Q(B). Since v~*(U) = Spec(A’)
this gives the canonical factorization W — v=1(U) — U of v|y. We omit the
verification that it is unique. (I

Lemma 54.6. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let Z; C X, i € I be the irreducible components of
X endowed with the reduced induced structure. Let Z! — Z; be the normalization.

Then [1;c; Z{ — X is the normalization of X .

Proof. We may assume X is reduced, see Lemma [54.2] Then the lemma follows
either from the local description in Lemma or from Lemma part (3)
because [[Z; — X is integral and locally birational (as X is reduced and has
locally finitely many irreducible components). (I

Lemma 54.7. Let X be a reduced scheme with finitely many irreducible compo-
nents. Then the normalization morphism XY — X is birational.

Proof. The normalization induces a bijection of irreducible components by Lemma
(45l Let n € X be a generic point of an irreducible component of X and let
n¥ € X" be the generic point of the corresponding irreducible component of X*.
Then n” — 7 and to finish the proof we have to show that Ox, — Oxv v is
an isomorphism, see Definition Because X and X" are reduced, we see that
both local rings are equal to their residue fields (Algebra, Lemma . On the
other hand, by the construction of the normalization as the normalization of X
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in Y = []Spec(k(n)) we see that we have x(n) C k(n”) C k(n) and the proof is
complete. ([

Lemma 54.8. A finite (or even integral) birational morphism f : X — Y of
integral schemes with Y normal is an isomorphism.

Proof. Let V C Y be an affine open with inverse image U C X which is an affine
open too. Since f is a birational morphism of integral schemes, the homomorphism
Oy (V) = Ox(U) is an injective map of domains which induces an isomorphism of
fraction fields. As Y is normal, the ring Oy (V) is integrally closed in the fraction
field. Since f is finite (or integral) every element of Ox (U) is integral over Oy (V).
We conclude that Oy (V) = Ox(U). This proves that f is an isomorphism as
desired. O

Lemma 54.9. Let X be a scheme with locally finitely many irreducible compo-
nents. The normalization morphism v : XV — X is an isomorphism if and only if
X is normal.

Proof. If v is an isomorphism, then X is normal by Lemma Conversely,
suppose X is normal. By Lemma [53.6] and Properties, Lemma [7.5] we may assume
X is integral. By Lemma the morphism v is integral and X" has a unique
irreducible component (so it is an integral scheme). We conclude from Lemmas

541 and B4.8 O

Lemma 54.10. Let X be an integral, Japanese scheme. The normalization v :
X" — X is a finite morphism.

Proof. Follows from the definition (Properties, Definition [13.1)) and Lemma [54.3]
Namely, in this case the lemma says that v~!(Spec(A)) is the spectrum of the
integral closure of A in its field of fractions. ]

Lemma 54.11. Let X be a Nagata scheme. The normalization v : XV — X is a
finite morphism.

Proof. Note that a Nagata scheme is locally Noetherian, thus Definition does
apply. The lemma is now a special case of Lemma but we can also prove
it directly as follows. Write X” — X as the composition X” — X,.q — X. As
X,eqa — X is a closed immersion it is finite. Hence it suffices to prove the lemma
for a reduced Nagata scheme (by Lemma [44.5)). Let Spec(A) = U C X be an affine
open. By Lemma we have v~1(U) = Spec([] A;) where A} is the integral
closure of A/q; in its fraction field. As A is a Nagata ring (see Properties, Lemma
13.6]) each of the ring extensions A/q; C A} are finite. Hence A — [] A} is a finite
ring map and we win. (]

Lemma 54.12. Let X be an irreducible, geometrically unibranch scheme. The
normalization morphism v : X¥ — X is a universal homeomorphism.

Proof. We have to show that v is integral, universally injective, and surjective,
see Lemma [45.5] By Lemma [54.5] the morphism v is integral. Let € X and set
A = Ox 4. Since X is irreducible we see that A has a single minimal prime p and
Areqd = A/p. By Lemma the stalk A" = (v.Oxv), is the integral closure of
A in the fraction field of A,.qy. By More on Algebra, Definition we see that
A’ has a single prime m’ lying over m, C A and x(m’)/k(x) is purely inseparable.
Hence v is bijective (hence surjective) and universally injective by Lemma m ([
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55. Weak normalization

We will only define the weak normalization of a scheme when it locally has finitely
many irreducible components; similar to the case of normalization.

Lemma 55.1. Let A — B be a ring map inducing a dominant morphism Spec(B) —
Spec(A) of spectra. There exists an A-subalgebra B’ C B such that
(1) Spec(B’) — Spec(A) is a universal homeomorphism,
(2) given a factorization A — C — B such that Spec(C) — Spec(A) is a
universal homeomorphism, the image of C — B is contained in B’.

Proof. We will use Lemma [45.6] without further mention. Consider the commuta-
tive diagram

B——- Bred

]

A—— Ared

For any factorization A — C — B of A — B as in (2), we see that A,cq = Creq —
B,eq is a factorization of A,y — Bpeq as in (2). It follows that if the lemma
holds for A,cq — Byeq and produces the A,.4-subalgebra B, C B4, then setting
B’ C B equal to the inverse image of B, _, solves the lemma for A — B. This
reduces us to the case discussed in the next paragraph.

Assume A and B are reduced. In this case A C B by Algebra, Lemma Let
A — C — B be a factorization as in (2). Then we may apply Proposition to

A C C to see that every element of C' is contained in an extension Alcy,...,¢,] C C
such that for ¢ = 1,...,n we have

(1) ¢2,¢3 € Aley, ..., ciq), or

(2) there exists a prime number p with pe;, & € Aley, ..., ¢i-1].
Thus property (2) holds if we define B’ C B to be the subset of elements b € B
which are contained in an extension A[by,...,b,] C B such that (*) holds: for
i=1,...,n we have

(1) b2, b3 € A[bl, .. ~7bi—1]7 or

(2) there exists a prime number p with pb;, b € A[by, ..., bi—1].
There are only two things to check: (a) B’ is an A-subalgebra, and (b) Spec(B’) —
Spec(A) is a universal homeomorphism. Part (a) follows because given n > 0 and
bi,...,b, € B satisfying (*) and m > 0 and b),...,b,, € B satisfying (*), the
integer n + m and by,...,b,,b,...,b,, € B also satisfies (*). Finally, part (b)
holds by Proposition and our construction of B’. O

Lemma 55.2. Let A — B be a ring map inducing a dominant morphism Spec(B) —
Spec(A) of spectra. Formation of the A-subalgebra B’ C B in Lemma com-
mutes with localization (see proof for explanation).

Proof. Let S C A be a multiplicative subset. Then S™'A — S~!B is a ring map
which induces a dominant morphism Spec(S—1B) — Spec(S~1A) as well (see Lem-
mas and . Hence Lemma m produces an S~1A-subalgebra (S~!B)’ C
S~1B. The statement means that S~1B’ = (S~1B)’ as S~! A-subalgebras of S~!B.
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To see this is true, we will use the construction of B’ and (S™'B)’ in the proof
of Lemma In the first step, we see that B’ is the inverse image of the A,.4-
subalgebra B, C Byeq constructed for the ring map A,cq — Byeq and similarly for
(S71B)’. Noting that S™!B,.cq = (S7!B)cq this reduces us to the case discussed
in the next paragraph.

If A and B are reduced, we have constructed B’ as the union of the subalgebras
Alby,...,by] such that for i = 1,...,n we have

(1) blz, b? S A[bl, ey bi—1]7 or
(2) there exists a prime number p with pb;, b € A[by, ..., bi—1].

Similarly for (S~'B)’ ¢ S7!B. Thus it is clear that the image of B’ - B — S™'B

is contained in (S~1B)’. To show that the corresponding map S~'B’ — (S~1B)’

is surjective, one uses Lemma to clear denominators successively; we omit the

details. O

Lemma 55.3. Let A — B be a ring map inducing a dominant morphism Spec(B) —
Spec(A) of spectra. There exists an A-subalgebra B’ C B such that
(1) Spec(B’) — Spec(A) is a universal homeomorphism inducing isomorphisms
on residue fields,
(2) given a factorization A — C' — B such that Spec(C) — Spec(A) is a uni-
versal homeomorphism inducing isomorphisms on residue fields, the image
of C — B is contained in B’.

Proof. This proof is exactly the same as the proof of Lemma [55.1] except we use
Proposition [£6.7] in stead of Proposition [46.8] O

Lemma 55.4. Let A — B be a ring map inducing a dominant morphism Spec(B) —
Spec(A) of spectra. Formation of the A-subalgebra B' C B in Lemma com-
mutes with localization (see proof for explanation).

Proof. The proof is the same as the proof of Lemma [55.2 O

Lemma 55.5. Let f:Y — X be a quasi-compact, quasi-separated, and dominant
morphism of schemes.

(1) The category of factorizations Y — X' — X where X' — X is a universal
homeomorphism has an initial object Y — XY/¥n — X
(2) The category of factorizations Y — X' — X where X' — X is a univer-
sal homeomorphism inducing isomorphisms on residue fields has an initial
object Y — XY/s" 5 X
Moreover, formation of the factorization Y — XY/%" & X and Y — XY/5" - X
commutes with base change to open subschemes of X.

Proof. We will prove (1) and omit the proof of (2); also the final assertion will
follow from the construction of the factorization. We will use Lemma [45.5] without
further mention. First, let Y — XY/* — X be the normalization of X in Y,
see Definition m For Y - X' — X as in (1), we obtain a unique morphism
XY/n _ X' compatible with the given morphisms, see Lemma m Thus it
suffices to prove the lemma with f replaced by XY/" — X. This reduces us to the
case studied in the next paragraph.

Assume f is integral (the rest of the proof works more generally if f is affine). Let
U = Spec(A) be an affine open of X and let V = f~1(U) = Spec(B) be the inverse
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image in Y. Then A — B is a ring map which induces a dominant morphism on
spectra. By Lemma we obtain an A-subalgebra B’ C B such that setting
UV/wn = Spec(B’) the factorization V — UY/“" — U is initial in the category of
factorizations V' — U’ — U where U’ — U is a universal homeomorphism.

If Uy C Uy C X are affine opens, then setting V; = f~1(U;) we obtain a canonical
morphism
Pl U Uy g, U

over U; by the universal property of U1V /9 These morphisms satisfy a natural

functoriality which we leave to the reader to formulate and prove. Furthermore,
the morphism pgf is an isomorphism; this follows from Lemma provided that
U, C Us is a standard open and in the general case can be reduced to this case by the
functorial nature of these maps and Schemes, Lemma (details omitted). Thus
by relative glueing (Constructions, Lemma | we obtain a morphism XY/*" — X
which restricts to UY/*™ — U over U compatibly with the pg';’ Of course, the

morphisms V. — UY/*" glue to a morphism Y — XY/wn (see Constructions,
Remark [2.3) and we get our factorization ¥ — XY/*" — X where the second
morphism is a universal homeomorphism.

Finally, let Y — X’ — X be a factorization as in (1). With V — UY/*" - U c X
as above, we obtain a factorization V' — U x x X’ — U where the second arrow is a
universal homeomorphism and we obtain a unique morphism gy : UY/%*" — U x x
X’ over U by the universal property of UY/*". These gy are compatible with the
morphisms pg’f; details omitted. Hence there is a unique morphism ¢ : XY/%" — X’
over X agreeing with gy over U, see Constructions, Remark This proves that
Y — XY/wn _ X is initial in our category and the proof is complete. [

Definition/ 55.6. Let f : Y — X be a quasi-compact, quasi-separated, and
dominant morphism of schemes.

(1) The factorization Y — XY/*" — X constructed in Lemma part (2) is
the seminormalization of X inY.

(2) The factorization Y — XY/*" — X constructed in Lemma part (1) is
the weak normalization of X inY.

Here is a way to reinterpret the seminormalization of a scheme which locally has
finitely many irreducible components.

Lemma 55.7. Let X be a scheme such that every quasi-compact open has finitely
many 1rreducible components. Let v : XY — X be the normalization of X. Then
the seminormalization of X in XV is is the seminormalization of X. In a formula:
XS — XX”/sn.

Proof. Let f: Y — X be as in so that X" is the normalization of X in
Y. The seminormalization X*™* — X of X is the initial object in the category of
universal homeomorphisms X’ — X inducing isomorphisms on residue fields. Since
Y is the disjoint union of the spectra of the residue fields at the generic points of
irreducible components of X, we see that for any X’ — X in this category we obtain
a canonical lift f' : Y — X’ of f. Then by Lemma we obtain a canonical
morphism X — X’. Whence in turn a canonical morphism XX /5" — X’ by the
universal property of XX"/5"_ In this way we see that XX /5" satisfies the same
universal property that X*" has and we conclude. [l
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Lemma [55.7| motivates the following definition. Since we have only constructed the
normalization in case X locally has finitely many irreducible components, we will
also restrict ourselves to that case for the weak normalization.

Definition 55.8. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the weak normalization of X as
the weak normalization

XV — X" — X
of X in the normalization X* of X (Definition|54.1). In a formula: X®" = XX"/wn,

Combined with Lemma [55.7] we see that for a scheme X which locally has finitely
many irreducible components there are canonical morphisms

X = X" 5 X" 5 X
Having made this definition, we can say what it means for a scheme to be weakly
normal (provided it has locally finitely many irreducible components).

Definition 55.9. Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We say X is weakly normal if the weak
normalization X*" — X is an isomorphism (Definition [55.8)).

It follows immediately from the definitions that for a scheme X such that every
quasi-compact open has finitely many irreducible components we have

X normal = X weakly normal = X seminormal

We can work out the meaning of weak normality in the affine case as follows.

Lemma 55.10. Let X = Spec(A) be an affine scheme which has finitely many
irreducible components. Then X is weakly normal if and only if
(1) A is seminormal (Definition ,
(2) for a prime number p and z,w € A such that (a) z is a nonzerodivisor, (b)
wP is divisible by zP, and (c) pw is divisible by z, then w is divisible by z.

Proof. Assume X is weakly normal. Since a weakly normal scheme is seminormal,
we see that (1) holds (by our definition of weakly normal schemes). In particular
A is reduced. Let p,z,w be as in (2). Choose z,y € A such that 2Pz = wP
and zy = pw. Then pPx = yP. The ring map A — C = A[t]/(t? — z,pt — y)
induces a universal homeomorphism on spectra. The normalization X” of X is
the spectrum of the integral closure A’ of A in the total ring of fractions of A, see
Lemma Note that « = w/z € A’ because a? = z. Hence we have an A-algebra
homomorphism A — C — A’ sending ¢ to a. At this point the defining property
X = Xwn = XX"/wn of being weakly normal tells us that C — A’ maps into A.
Thus we find a € A as desired.

Conversely, assume (1) and (2). Let A’ be as in the previous paragraph. We have to
show that XX /" = X. By construction in the proof of Lemma m the scheme
XX"/wn i the spectrum of the subring of A’ which is the union of the subrings

Alay,...,a,] C A’ such that for i = 1,...,n we have
(a) a?,a} € Alay,...,a;_1], or
(b) there exists a prime number p with pa;,a? € Afay,...,a;—1].
Then we can use (1) and (2) to inductively see that aq,...,a, € A; we omit the

details. Consequently, we have X = XX"/%" and hence X is weakly normal. (I


https://stacks.math.columbia.edu/tag/0H3R
https://stacks.math.columbia.edu/tag/0H3S
https://stacks.math.columbia.edu/tag/0H3T

MORPHISMS OF SCHEMES 147

Here is the obligatory lemma.

0H3U Lemma 55.11. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. The following are equivalent:

(1) The scheme X is weakly normal.
(2) For every affine open U C X the ring Ox(U) satisfies conditions (1) and
(2) of Lemma|55.10

(3) There exists an affine open covering X = |JU; such that each ring Ox (U;)
satisfies conditions (1) and (2) of Lemma[55.10

(4) There exists an open covering X = |JX; such that each open subscheme
X is weakly normal.

Moreover, if X is weakly normal then every open subscheme is weakly normal.

Proof. The condition to X be weakly normal is that the morphism X %" = XX /wn _,
X is an isomorphism. Since the construction of X¥ — X commutes with base

change to open subschemes and since the construction of XX /%" commutes with
base change to open subschemes of X (Lemma [55.5)) the lemma is clear. O

56. Zariski’s Main Theorem (algebraic version)

03GS This is the version you can prove using purely algebraic methods. Before we can
prove more powerful versions (for non-affine morphisms) we need to develop more
tools. See Cohomology of Schemes, Section and More on Morphisms, Section
43

03GT 'Theorem 56.1 (Algebraic version of Zariski’s Main Theorem). Let f : Y — X
be an affine morphism of schemes. Assume f is of finite type. Let X' be the
normalization of X in'Y . Picture:

Yy — . x
f/

\]\ /
X

Then there exists an open subscheme U’ C X' such that

(1) (fH~YU") — U’ is an isomorphism, and
(2) (f)~YU") C Y is the set of points at which f is quasi-finite.

Proof. There is an immediate reduction to the case where X and hence Y are
affine. Say X = Spec(R) and Y = Spec(A4). Then X’ = Spec(A4’), where A’ is
the integral closure of R in A, see Definitions [53.2] and [53.3] By Algebra, Theorem
for every y € Y at which f is quasi-finite, there exists an open Uz/z c X’
such that (f')~'(U;) — U}, is an isomorphism. Set U’ = |J U, where y € Y ranges
over all points where f is quasi-finite. It remains to show that f is quasi-finite at
all points of (f/)~*(U"). If y € (f)~Y(U’) with image € X, then we see that
Y, — X/ is an isomorphism in a neighbourhood of y. Hence there is no point of
Y, which specializes to y, since this is true for f’'(y) in X, see Lemma m By
Lemma part (3) this implies f is quasi-finite at y. O

We can use the algebraic version of Zariski’s Main Theorem to show that the set
of points where a morphism is quasi-finite is open.
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Lemma 56.2. Let f: X — S be a morphism of schemes. The set of points of X
where [ is quasi-finite is an open U C X. The induced morphism U — S is locally
quasi-finite.

Proof. Suppose f is quasi-finite at . Let © € U = Spec(A) C X, V = Spec(R) C
S be affine opens as in Definition By either Theorem above or Algebra,
Lemma, the set of primes q at which R — A is quasi-finite is open in
Spec(A). Since these all correspond to points of X where f is quasi-finite we get
the first statement. The second statement is obvious. a

We will improve the following lemma to general quasi-finite separated morphisms
later, see More on Morphisms, Lemma [43.3]

Lemma 56.3. Let f:Y — X be a morphism of schemes. Assume
(1) X and Y are affine, and
(2) f is quasi-finite.

Then there exists a diagram

Y ——MM =7
J
NS
X
with Z affine, © finite and j an open immersion.

Proof. This is Algebra, Lemma [123.14] reformulated in the language of schemes.
O

Lemma 56.4. Let f:Y — X be a quasi-finite morphism of schemes. Let T CY
be a closed nowhere dense subset of Y. Then f(T) C X is a nowhere dense subset
of X.

Proof. As in the proof of Lemma [48.7] this reduces immediately to the case where
the base X is affine. In this case Y = Ui:L“_,n Y; is a finite union of affine opens
(as f is quasi-compact). Since each T'NY; is nowhere dense, and since a finite union
of nowhere dense sets is nowhere dense (see Topology, Lemma , it suffices to
prove that the image f(T'NY;) is nowhere dense in X. This reduces us to the case
where both X and Y are affine. At this point we apply Lemma [56.3 above to get
a diagram

with Z affine, 7 finite and j an open immersion. Set T=j (T) C Z. By Topology,
Lemma we see T is nowhere dense in Z. Since f(T) C 7(T) the lemma follows
from the corresponding result in the finite case, see Lemma [487] O

57. Universally bounded fibres

Let X be a scheme over a field k. If X is finite over k, then X = Spec(A) where
A is a finite k-algebra. Another way to say this is that X is finite locally free over
Spec(k), see Definition Hence X — Spec(k) has a degree which is an integer
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d > 0, namely d = dimy(A). We sometime call this the degree of the (finite) scheme
X over k.

Definition/ 57.1. Let f : X — Y be a morphism of schemes.

(1) We say the integer n bounds the degrees of the fibres of f if for all y € YV
the fibre X, is a finite scheme over x(y) whose degree over x(y) is < n.

(2) We say the fibres of f are universally boundeﬂ if there exists an integer n
which bounds the degrees of the fibres of f.

Note that in particular the number of points in a fibre is bounded by n as well.
(The converse does not hold, even if all fibres are finite reduced schemes.)

Lemmal 57.2. Let f : X — Y be a morphism of schemes. Let n > 0. The
following are equivalent:
(1) the integer n bounds the degrees of the fibres of f, and
(2) for every morphism Spec(k) — Y, where k is a field, the fibre product
Xk = Spec(k) xy X is finite over k of degree < n.
In this case the fibres of f are universally bounded and the schemes Xy have at
most n points. More precisely, if Xy = {x1,...,2:}, then we have

n2 Zi:l,...,t[ﬁ(xi) +h]

Proof. The implication (2) = (1) is trivial. The other implication holds because if
the image of Spec(k) — Y is y, then X = Spec(k) Xgpec(x(y)) Xy- By definition the
fibres of f being universally bounded means that some n exists. Finally, suppose
that X = Spec(A). Then dimy A = n. Hence A is Artinian, all prime ideals
are maximal ideals m;, and A is the product of the localizations at these maximal
ideals. See Algebra, Lemmas and Then m; corresponds to x;, we have
Am;, = Ox,, and hence there is a surjection A — @ k(m;) = @ x(x;) which
implies the inequality in the statement of the lemma by linear algebra.

Lemma 57.3. If f is a finite locally free morphism of degree d, then d bounds the
degree of the fibres of f.

Proof. This is true because any base change of f is finite locally free of degree d
(Lemma }48.4)) and hence the fibres of f all have degree d. O

Lemma 57.4. A composition of morphisms with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, assume that n bounds
the degrees of the fibres of f : X — Y and m bounds the degrees of g : Y — Z.
Then nm bounds the degrees of the fibres of go f : X — Z.

Proof. Let f: X — Y and g : Y — Z have universally bounded fibres. Say
that deg(X,/k(y)) < n for all y € Y, and that deg(Y,/k(2)) < m for all z € Z.
Let z € Z be a point. By assumption the scheme Y, is finite over Spec(k(z)). In
particular, the underlying topological space of Y, is a finite discrete set. The fibres
of the morphism f, : X, — Y, are the fibres of f at the corresponding points of Y,
which are finite discrete sets by the reasoning above. Hence we conclude that the
underlying topological space of X, is a finite discrete set as well. Thus X, is an affine
scheme (this is a nice exercise; it also follows for example from Properties, Lemma
applied to the set of all points of X,). Write X, = Spec(A), Y, = Spec(B),

19T his is probably nonstandard notation.
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and k = k(z). Then k — B — A and we know that (a) dimg(B) < m, and (b) for
every maximal ideal m C B we have dim,y)(4/mA) < n. We claim this implies
that dimg(A) < nm. Note that B is the product of its localizations By, for example
because Y, is a disjoint union of 1-point schemes, or by Algebra, Lemmas [53.2] and

So we see that dimg(B) = ) dimg(Bn) and dimg(A) = >, dimg(Am)

where in both cases m runs over the maximal ideals of B (not of A). By the above,
and Nakayama’s Lemma (Algebra, Lemma we see that each Ay, is a quotient
of BY" as a Byp-module. Hence dimy(An) < ndimg(By). Putting everything
together we see that

dimg(A) = > dim; a(Aw) <Y ndimg(Bw) = ndimg(B) < nm
as desired. 0

Lemma 57.5. A base change of a morphism with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, if n bounds the degrees
of the fibres of f: X — Y and Y’ — Y is any morphism, then the degrees of the
fibres of the base change f' :Y' xy X — Y’ is also bounded by n.

Proof. This is clear from the result of Lemma [57.2] O

Lemmal 57.6. Let f : X — Y be a morphism of schemes. Let Y — Y be a
morphism of schemes, and let ' : X' = Xy, — Y’ be the base change of f. If
Y’ =Y is surjective and f' has universally bounded fibres, then f has universally
bounded fibres. More precisely, if n bounds the degree of the fibres of f’, then also
n bounds the degrees of the fibres of f.

Proof. Let n > 0 be an integer bounding the degrees of the fibres of f’. We claim
that n works for f also. Namely, if y € Y is a point, then choose a point 3/ € Y’
lying over y and observe that

X, = Spec(k(y')) Xspec(r(y)) Xy-

Since X, is assumed finite of degree < n over x(y’) it follows that also X, is finite
of degree < n over k(y). (Some details omitted.) O

Lemma 57.7. An immersion has universally bounded fibres.
Proof. The integer n = 1 works in the definition. t

Lemma 57.8. Let f: X — Y be an étale morphism of schemes. Let n > 0. The
following are equivalent
(1) the integer n bounds the degrees of the fibres,
(2) for every field k and morphism Spec(k) — Y the base change X, = Spec(k)xy
X has at most n points, and
(3) for every y € Y and every separable algebraic closure k(y) C k(y)*P the
scheme X, ()scr has at most n points.

Proof. This follows from Lemma and the fact that the fibres X, are disjoint
unions of spectra of finite separable field extensions of x(y), see Lemma [l

Having universally bounded fibres is an absolute notion and not a relative notion.
This is why the condition in the following lemma is that X is quasi-compact, and
not that f is quasi-compact.

Lemma 57.9. Let f: X — Y be a morphism of schemes. Assume that
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(1) f is locally quasi-finite, and
(2) X is quasi-compact.
Then f has universally bounded fibres.

Proof. Since X is quasi-compact, there exists a finite affine open covering X =
Ui:l,...,n U; and affine opens V; C Y, i =1,...,n such that f(U;) C V;. Because of
the local nature of “local quasi-finiteness” (see Lemma part (4)) we see that
the morphisms f|y, : U; — V; are locally quasi-finite morphisms of affines, hence
quasi-finite, see Lemma For y € Y it is clear that Xy = J, ¢y, (Us)y is an
open covering. Hence it suffices to prove the lemma for a quasi-finite morphism of
affines (namely, if n; works for the morphism f|y, : U; — V;, then Y n; works for

f)-
Assume f : X — Y is a quasi-finite morphism of affines. By Lemma [56.3| we can
find a diagram

X— 7
J

x /
Y

with Z affine, 7 finite and j an open immersion. Since j has universally bounded
fibres (Lemma [57.7) this reduces us to showing that 7 has universally bounded
fibres (Lemma [57.4))

This reduces us to a morphism of the form Spec(B) — Spec(A) where A — B is
finite. Say B is generated by x1,...,x, over A and say P;(T) € A[T] is a monic
polynomial of degree d; such that P;(z;) = 0 in B (a finite ring extension is integral,
see Algebra, Lemma . With these notations it is clear that

s s E €1 €n
@O<€‘<d- i=1....n A B’ (a(el7"')en)) a(ela“wen)xl e l'n

is a surjective A-module map. Thus for any prime p C A this induces a surjective
map k(p)-vector spaces

K(p) I — B®a r(p)
In other words, the integer d ...d, works in the definition of a morphism with
universally bounded fibres. (I

Lemma 57.10. Consider a commutative diagram of morphisms of schemes

X—=Y
f
N
Z
If g has universally bounded fibres, and f is surjective and flat, then also h has

universally bounded fibres. More precisely, if n bounds the degree of the fibres of g,
then also n bounds the degree of the fibres of h.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
the degree of the fibres of g is bounded by n € N. We claim n also works for h. Let
z € Z. Consider the morphism of schemes X, — Y,. It is flat and surjective. By
assumption X, is a finite scheme over x(z), in particular it is the spectrum of an
Artinian ring (by Algebra, Lemma . By Lemma the morphism X, — Y,
is affine in particular quasi-compact. It follows from Lemma[25.12|that Y, is a finite
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discrete as this holds for X,. Hence Y, is an affine scheme (this is a nice exercise;
it also follows for example from Properties, Lemma [29.1] applied to the set of all
points of Y,). Write Y, = Spec(B) and X, = Spec(A). Then A is faithfully flat
over B, so B C A. Hence dimy(B) < dim(A4) < n as desired. O

58. Miscellany
Results which do not fit elsewhere.

Lemmal 58.1. Let f: Y — X be a morphism of schemes. Let x € X be a point.
Assume that Y is reduced and f(Y) is set-theoretically contained in {x}. Then f
factors through the canonical morphism x = Spec(k(z)) — X.

Proof. Omitted. Hints: working affine locally one reduces to a commutative al-
gebra lemma. Given a ring map A — B with B reduced such that there exists a
unique prime ideal p C A in the image of Spec(B) — Spec(A), then A — B factors
through x(p). This is a nice exercise. O

Lemmal 58.2. Let f: Y — X be a morphism of schemes. Let E C X. Assume
X is locally Noetherian, there are no nontrivial specializations among the elements
of E, Y is reduced, and f(Y) C E. Then f factors through [[,cpx — X.

Proof. When F is a singleton this follows from Lemma If F is finite, then
E (with the induced topology of X) is a finite discrete space by our assumption
on specializations. Hence this case reduces to the singleton case. In general, there
is a reduction to the case where X and Y are affine schemes. Say f :Y — X
corresponds to the ring map ¢ : A — B. Denote A’ C B the image of ¢. Let
E’ C Spec(A’) C Spec(A) be the set of minimal primes of A’. By Algebra, Lemma
the set E’ is contained in the image of Spec(B) — Spec(A’) C Spec(A). We
conclude that B C E. Since A’ is Noetherian we have E’ is finite by Algebra,
Lemma Since any other point in the image of Spec(B) — Spec(A) is a
specialization of an element of £’ and in E, we conclude that the image is contained
in E’ (by our assumption on specializations between points of F). Thus we reduce
to the case where E is finite which we dealt with above. a
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