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Abstract

Ž . Ž .The possibility of superconductivity SC in the ground state of the two-dimensional 2D Hubbard model was
investigated by means of the variational Monte Carlo method. The energy gain of the d-wave SC state, obtained as the
difference of the minimum energy with a finite gap and that with zero gap, was examined with respect to dependences on U,
electron density r and next nearest neighbor transfer tX mainly on the 10=10 lattice. It was found to be maximized around

Ž . XUs8 the energy unit is nearest neighbor transfer t . It was shown to sharply increase for negative values of t and have a
broad peak for tX

;y0.10. For these value of tX the energy gain was a smooth increasing function of r almost independent
of the shell structure in the region starting from ;0.76 up to the upper bound of investigation 0.92. This clearly indicates
that the result is already close to the value in the bulk limit. For tX s0, the energy gain depended on the electronic shell
state. This suggests the 10=10 lattice is not sufficiently large for this case, although it is highly plausible that the bulk limit
value is finite. Competition between the SC and the commensurate SDW states was also investigated. When tX s0, the
ground state is SDW in the range of rG;0.84. The SC region slightly extends up to ;0.87 for tX

;y0.10. Consequently
the present results strongly support an assertion that the 2D Hubbard model with tX

;y0.1 drives SC by itself in the r

region from ;0.76 to ;0.87. The above features are in a fair agreement with the phase diagram of the optimally and
overly hole-doped cuprates. The energy gain in the SC state with suitable parameters is found to be in reasonable agreement
with the condensation energy in the SC state of YBa Cu O . The corresponding t–J model proves to give an2 3 7

order-of-magnitude larger energy gain, which questions its validity. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently the mechanisms of superconductivity
Ž .SC in high-temperature cuprate superconductors
and organic superconductors have been extensively

0921-4534r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0921-4534 98 00283-4
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Ž .studied using various two-dimensional 2D models
of electronic interactions. The 2D Hubbard model is
the simplest and the most fundamental one among
such models. Early studies of this model using the

Ž .quantum Monte Carlo M.C. method indicated the
w xexistence of an attractive interaction for SC 1 .

However, this possibility has been controversial.
Some authors asserted from quantum M.C. results
that the enhanced SC correlation does not develop
into the predominant one at low temperatures or in

w xthe ground state of this model 2–5 . Some authors
supported this possibility by numerical results using

w xthe variational M.C. method 6 . Since it is of prime
importance to establish the simplest electronic model
for superconductivity and since these early studies
had shortcomings due to the restrictions to the inves-
tigated parameter space, the problem deserves more
extensive investigation from various aspects such as
dependences on the system size, the on-site Coulomb
energy U, the electron density r and the next nearest
neighbor transfer energy tX. Recently, appropriate
values of tX were found to remarkably enhance SC

w xcorrelations 7–9 . We apply the variational M.C.
w xmethod 10,11 mainly to the 10=10-site system

with electron numbers from 68 to 92. This method
has a merit that it allows to treat larger values of U
than the quantum M.C. methods. We revisit the issue

w xinvestigated in Ref. 6 , carrying out more extensive
study with higher precision in a wider parameter

w xspace. In a previous preliminary report 12 we
worked out a variational Monte Carlo calculation
with 84 electrons on the 10=10 lattice and con-
firmed that the 2D Hubbard model has the d-wave
SC state. In the present work, first, we examine the
U-dependence of the energy gain due to the conden-
sation into the SC state and find the optimal value of
U is about 8 in units of the nearest neighbor transfer
energy t. In the previous report we confirmed that
the energy gain in the SC state sharply increases
with the introduction of tX with a negative value. In
this report we calculate the energy gain as a function
of tX in a sufficiently wide range for a fixed value of
Us8 and show that it has a broad peak around a
negative value tX

;y0.1. The approximate peak
energy gain in the SC state, i.e., at tX

;y0.1, is
plotted as a function of electron density r together
with that for tX s0. When tX

;y0.1, the energy
gain starts to be finite at about rs0.68 and in-

creases fairly smoothly with increase of r in the
range of 0.76FrF0.92. We carried out calcula-
tions in both cases of open and closed shells. The
smoothness of the energy gain against r indicates
that the dependence of the energy gain on the shell
structure is weak, in contrast to the case with tX s0,
and that the results are already close to the bulk
limit. This means that the 2D Hubbard model with
tX

;y0.1 has a definite bulk-limit energy gain per
site in the SC state. While when tX s0, the energy
gain in the closed shell state was found much smaller
than that in the open shell state. This indicates that
the 10=10 lattice is not sufficiently large for the
case of tX s0, contrary to the case of tX

;y0.1,
although a kind of average of the results in both shell
states is very probable to give a finite energy gain
per site in the bulk limit. Of course it is needed to
treat larger lattices with tX s0 but some important
findings at the present stage are considered to de-
serve a report, with the latter problem left to be
settled, since with larger sizes computation needs
extremely long time.

Thirdly, we calculate the energy gain in another
Ž .ordered state, i.e., spin density wave SDW state.

Ž .We treat the SDW with a fixed wave vector p , p .
Here the length unit is the lattice constant. The
energy gain in the SDW state was found to quickly
drop with decrease of r from unity and to vanish at
r just below 0.84 when tX s0. However, at rs0.84
the SDW state was slightly more stable than the SC
state so that the boundary between both states lies
just below rs0.84 for tX s0. tX is known to desta-
bilize the SDW in the hole-doped state, while it
promotes SC pairing. We study to what extent the
phase boundary between the competing SC and SDW
states is affected by the negative tX. The boundary is
appreciably pushed up to the higher r side with
increase of the absolute value of the negative tX,
although not largely.

We point out that the resultant SC region from
r;0.76 to r;0.86 and the increased SC energy
gain with increase of r are in accord with experi-
mental features of cuprate high-T superconductorsc

in the overdoped region. The observed energy gain
in the SC state is found to be in fair agreement with
the experimental condensation energy estimated from
the critical magnetic field H and the specific heat ofc

YBa Cu O . On the other hand the t–J model as an2 3 7
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effective Hamiltonian of the Hubbard model is no-
ticed to give an enormous overestimation of the
condensation energy.

In Section 2 the model and the method are de-
scribed. Results on the SC and SDW ground states
are given in Sections 3 and 4, respectively. In Sec-
tion 5, the obtained results are compared with experi-
ments and also with other computational works.
Section 6 gives the summary. Short reports on the

w xpresent results were given in Refs. 12,13 .

2. Model and method

Our model is the 2D Hubbard model defined by

Hsyt c† c qH qU c† c c† c ,Ž .Ý Ýjs ls c j ≠ j ≠ j x j x

² : jji ,s

1Ž .
† Ž . Ž .where c c is the creation annihilation opera-js js

tor of an electron with spin s at the jth site; the
sites form a rectangular lattice; t is the transfer

Ž .energy between the nearest-neighbor n.n. sites; t is
² :our energy unit; jl denotes summation over all the

n.n. bonds. U is the on-site Coulomb energy. In this
report, we also study the effect of tX between n.n.n.
sites by including

H sytX c† c qH 2Ž .Ž .Ýnnn js ls c
²² ::jl ,s

²² ::in the Hamiltonian; in the above equation jl
means summation over the n.n.n. pairs.

Our trial wave function is a Gutzwiller-projected
w xBCS-type wave function defined as 10,11 :

C sP P c , 3Ž .s N G BCSe

† † <c s u qÕ c c 0) , 4Ž .Ž .ŁBCS k k k ≠ yk x
k

where P is the Gutzwiller projection operator givenG

by

P s 1y 1yg n n ; 5Ž . Ž .ŁG j ≠ j x
j

g is a variational parameter in the range from 0 to
unity and j labels a site in the real space. P is aNe

projection operator which extracts only the states

with a fixed total electron number N . Coefficientse

u and Õ appear in our calculation only in the ratiok k

defined by

2 2(Õ ru sD j q j qD , 6Ž .ž /k k k k k k

j sy2 t cosk qcosk y4 tXcosk cosk ym ,Ž .k x y x y

7Ž .

where D is a k-dependent gap function definedk

later; m is a variational parameter working like the
chemical potential in the trial wave function; c isks

the Fourier transform of c . Neglecting constantjs

factors, C can be rewritten ass

† † <C ;P P exp Õ qu c c 0) , 8Ž . Ž .Ýs N G k k k ≠ yk xe
k

† †C sP P exp a j,l c c 0), 9Ž . Ž .Ýs N G j ≠ l xe
j, l

N r2e

† †C ;P a j,l c c 0), 10Ž . Ž .Ýs G j ≠ l x

j, l

C sP Ýs G
j , . . . , j , l , . . . , l1 N r2 1 N r2e e

A j , . . . , j ,l , . . . ,lŽ .1 N r2 1 N r2e e

† † † † † †=c c , . . . ,c c c . . . ,c 0),j ≠ j ≠ j ≠ l x l x l x1 2 N r2 1 2 N r2e e

11Ž .

Ž .where a j,l is defined by

a j,l s 1rN Õ ru exp ikP R yR ,Ž . Ž . Ž . Ž .Ýs k k l j
k

12Ž .

with N being the number of sites ands

A j , j , . . . , j , l , l , . . . , lŽ .1 2 N r2 1 2 N r2e e

a j , l a j , l . . . a j , lŽ . Ž . Ž .1 1 1 2 1 N r2e

a j , l a j , l . . . a j , lŽ . Ž . Ž .2 1 2 2 2 N r2es ; 13Ž .. . .. . .. . .
a j , l a j , l . . . a j , lŽ . Ž . Ž .N r2 1 N r2 2 N r2 N r2e e e e

j , j , . . . are arranged in the ascending order; so are1 2

l , l , . . . . Then the ground state energy1 2

² : ² < < : ² < :E s H ' C H C r C C 14Ž .g s s s s
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w xis obtained using a M.C. procedure 10,11 . In order
to minimize computation time in the M.C. computa-
tion the values of the cofactors of the matrix in Eq.
Ž .13 were stored and corrected at each time when the
electron distribution was modified. Errors accumu-
lated in the cofactors after corrected were avoided
many times by recalculating cofactors as determi-
nants, instead of getting them by correction, after a
certain number of M.C. steps. We tested our pro-
grams using exact diagonalization results for small
systems. We optimized E with respect to g, Dg k

and m. In the later stage of work we employed the
w xcorrelated measurements method 14,15 in the pro-

cess of searching optimal parameter values minimiz-
ing E . It enables to precisely locate the minimumg

position.

3. Results for the superconducting ground state

3.1. Case of the simple 2D Hubbard model

Ž ) .We studied the cases of the d-, extended s- s -
and s-wave gap functions as follows:

d D sD cosk ycosk ,Ž .k x y

) 15Ž .s D sD cos k ycos k ,Ž .k x y

s D sD.k

The sizes of the lattice we treated are 6=6 and
10=10 having electron density close to unity with
slight hole doping into the half-filled state.

Results indicating the occurrence of the d-wave
superconductivity were obtained even for the case of
N s32 on the 6=6 lattice with the periodic and thee

Ž .antiperiodic boundary conditions b.c.’s for the x-
and the y-direction, respectively, with Us8 and
tX s0. This set of b.c.’s was chosen so that D doesk

not vanish for any k-points possibly occupied by
Ž .electrons; otherwise zero division occurs in Eq. 12 .

E rN is minimized at D;0.10. Here gs0.3038g s

and msy0.48. The energy gain due to the SC gap
formation, i.e., SC condensation energy, was esti-
mated at ;0.00028rsite from the difference be-
tween the minimum and the intercept of the E -vs.-Dg

curve with the vertical axis.
Main results written in this report were obtained

for the 10=10 lattice with the same boundary con-

ditions. Calculated energies per site for several types
of wave functions with N s84 on the 10=10e

lattice are shown in Fig. 1 for the case of Us8 and
tX s0. Here E rN is plotted as a function of D forg s

Ž .the three types of gap functions given in Eq. 15 .
With the lattice, the b.c.’s and N s84, the elec-e

tronic shell structure in the limit of Us0 is open,
i.e., some k-points are partially filled, as is illus-
trated in Fig. 2, which displays the electron occu-
pancy at the k-points. At each value of D in Fig. 1,
gs0.30 was chosen as the initial value of g and
then the optimal value of m was found by the least
squares fit of E as a function of m to a parabola.g

Using this value of m, g was optimized again. Since
E was a smooth function of g, the obtained optimalg

g and m are sufficiently accurate. Using these pa-
rameter values, E was obtained as the average ofg

the results of eight M.C. calculations each with
5=107 steps at Ds0.01, 0.04 and 0.08 for the
d-wave. The standard deviations were less than
0.00011. At other points, the numbers of M.C. calcu-
lations and steps were different but their error bars
were within 0.00015 with the total M.C. steps greater
than 2=108. The diamond shows the normal state
value, y0.73585"0.00024, obtained from 20 M.C.

Fig. 1. Computed ground state energy per site E rN is plottedg s

against D for the case of 84 electrons on the 10=10 lattice with
Us8 and tX s0. Filled circles are for the d-wave gap function
with g and m optimized for each D. Filled squares and triangles
are for the s)- and s-wave gap functions, respectively. The
diamond shows the normal state value. Straight lines between data
points are the guide for the eye. The thin curve is a parabola given
by the mean-squares fit to the d-wave data.
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Fig. 2. Distribution of k-points in the reciprocal lattice in the case
of the 10=10 lattice with the boundary conditions mentioned in
the text. Closed and empty circles denote doubly occupied and
empty sites, respectively, and circles partially closed are partially
occupied sites in the case of 84 electrons. A, B, . . . , G label
k-points lying in the neighborhood of the Fermi energy for later
use.

calculations each with 107 steps, using the
Gutzwiller-projected normal state wave function. In

Ž .the employed normal state pr5, 7pr10 and
Ž . Žypr5,y7pr10 are fully occupied but pr5,

. Ž .y7pr10 and ypr5,7pr10 are unoccupied in the
component of the trial wave function prior to the
Gutzwiller projection.

Clearly, E rN is minimum at a finite value ofg s

Df0.08 in the case of the d-wave gap parameter.
The optimal parameter values at Ds0.08 are gs
0.3037 and msy0.4263. The least squares fit of a
parabola to E rN as a function of D is of goodg s

quality, as seen in Fig. 1 and gives the minimum at
D(0.082. The curves of E rN for the s- andg s

s)-wave gap functions have definite positive slopes
at small D and are extrapolated for Ds0 to ;

y0.7354 and ;y0.7353, respectively, which are
practically equal. These values are slightly higher
than the value ;y0.73605 given by extrapolating
the d-wave fitting parabola to Ds0. The normal
state value of E rN sy0.73585 lies between theg s

two groups of extrapolated values. The differences
are due to a kind of size effect, as was explained in

w xthe previous report 12 . These differences in the
case of 10=10 lattice are much smaller than the
depth of the minimum of the d-wave curve.

The energy gain per site in the d-wave state was
obtained from the parabola fitting to the energy-vs.-D
curve as its depth of the minimum in reference with
the intersection of the fitting curve with the vertical
axis as ;0.00155rsite. It is five times larger than
that for N s32 and N s36. This suggests that thee s

size effect is considerable in the 6=6 system. This
energy gain per site in the case of N s100 ands

N s84 is of the order of magnitude of the BCSe
Žsuperconducting condensation energy ; state den-

. 2sity =D f0.0010 since the state density per site
per spin around this density is approximately equal
to 1r2p in units of t.

In order to check the superconducting nature of
the ground state with a finite value of D, the correla-
tion functions of BCS pair operators were calculated.

Ž .Superconducting pair correlation functions D l ,ab

a , bsx, y, are defined as:

² † :D l s D iq l , j D i , j , 16Ž . Ž . Ž . Ž .ab a b

Ž .where D i, j , asx, y, denote the annihilationa

operators of singlet electron pairs staying on n.n.
sites as:

D i , j sc c yc c , 17Ž . Ž .x i j x iq1, j ≠ i j ≠ iq1, j x

D i , j sc c yc c , 18Ž . Ž .y i j x i , jq1≠ i j ≠ i , jq1x

Žwhere c means the annihilation operator at site i,i js
. ² :j with spin s . The average . . . is defined in Eq.

Fig. 3. Parts of the correlation functions D of superconductingab

pair operators for case of the d-wave minimum state shown in
Fig. 1. The horizontal axis is the distance l between two positions
of two pair operators. Closed symbols are for the superconducting
state and open ones for the normal state. D is defined by Eq.ab

Ž .16 .
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Ž .14 . The result for a state close to the minimum Eg

point in Fig. 1, i.e., Ds0.078, msy0.428 and
gs0.30, is shown in Fig. 3. The vertical scale is
enlarged to highlight the long range parts. The corre-
lation extends over the whole lattice as expected,
showing a clear contrast to the normal state. The

Ž .d-wave nature appears in the negative sign of D lx y

for ls2–5.

3.2. U-dependence

The U-dependence of the energy gain in the SC
state is shown in Fig. 4 with the same values of Ns

and N . The energy gain was determined from thee

depth of the minimum, as explained above. Except
for the above-mentioned case of Us8, the mini-
mum position defined by optimal D, g and m was
determined by means of the correlated measurements
and E was calculated for this position with theg

same number of M.C. steps as for Us8. Next, Eg

for Ds0.01 was obtained and then the fitting
parabola allowed us to get the energy gain. The
energy gain in this definition gives the condensation
energy in the SC state in the present approximation.
The energy gain has the maximum for about Us8.
It quickly decreases with decrease of U. It gradually
decrease with increase of U over 12. In contrast, the
value of optimal D is nearly proportional to U up to
Us12 and then saturates for larger U.

Ž .Fig. 4. Energy gain D E closed circles and gap parameter Dg
Ž .open circles in the superconducting state are plotted against
on-site Coulomb energy U for the same system as in Fig. 1.

3.3. tX-Dependence

In the 2D Hubbard and the 2D d–p models, the
one-electron state density increases peak-wise around
the energy of the van Hove singularities located in

Ž . Ž .the k-space region around 0, p and p , 0 . When
tX is negative in the 2D Hubbard model with Hnnn

the energy level of van Hove singularity moves
toward the Fermi energy in the hole-doped systems,

Ž .as is seen from Eq. 7 , which realizes a situation
favorable to get superconductivity for most theories.
In fact Shimahara and Takada showed that in the
RPA framework T increases with the introductionc

X w x Xof t 16 . Importance of t in the physics of high-Tc
w xcuprates was pointed out in Ref. 17 . From the

viewpoint of the two-band mechanism of supercon-
ductivity in which the pair-wise transfer of electrons
from a certain k-region to another k-region promotes
SC, the location of the k-space region highly con-
tributing to the state density in the neighborhood of
the Fermi energy should lead to a larger energy gain

w xin the SC state 18,19a,19b . The state density peak
is known to be further enhanced with the increase of
electron correlation, as the single-particle dispersion

Ž .along the lines from these points to 0, 0 becomes
w xanomalously weak 20 . The increased state density

around the singularity has been argued to enhance Tc
w x Xof the d-wave superconductivity 21 . The value of t

was argued to correlate with the maximum T valuesc
w xof cuprate subfamilies 7,8 . Quantum M.C. studies

indicated that tX enables the bulk superconductivity
w xin the 2D Hubbard model 9 .

We have examined the tX-dependence of the en-
Ž .ergy gain, taking account of H in Eq. 2 in ournnn

model. In the case of N s32 on the 6=6 lattice,e

the energy minimum became slightly deeper with the
change of tX from zero toy0.25, but at tX s0.25 the
minimum became shallower by a factor of 2. In the
case of N s84 on the 10=10 lattice the energye

gain was maximized around tX (y0.1 to y0.15 as
shown in Fig. 5. The error bar for DE rN in theg s

figure is about 0.0003. D is also displayed in the
figure with the right-hand-side vertical scale. The
error bar for D is about 10% of the magnitude. With
a positive value of tX s0.10, the energy gain quickly
decreases, nearly vanishing when tX s0.25. It also
nearly vanishes for tX

;y0.40. Fig. 6 shows the SC
pair correlation functions as functions of the distance
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Fig. 5. Energy gain per site D E rN in the superconducting stateg s

is plotted by closed circles with the left vertical scale as a function
of next nearest neighbor transfer energy tX in the case of 84
electrons on the 10=10 lattice with Us8. Values of D are
shown by open triangles with the right-hand-side vertical scale.

between pair operators in the optimal state for the
case of tX sy0.10. At the farthest distance their

X Ž .values are twice larger that those for t s0 Fig. 3 ,
as expected. Thus, an appropriate negative value of
tX enhances the d-wave SC in the hole-doped case in
the Hubbard model, which is in qualitative agree-
ment with the above-mentioned references. The tX-
dependences of the energy gain and D in the case of
N s80 exhibited in Fig. 7 show similar features ase

in Fig. 5.
Ž .When one plots one-electron levels Fig. 8 , ´ sk

j qm, for k-points in the non-interacting limit as ak

function of tX, a few occupied levels and a few
empty levels are found to be bunched into a close
neighborhood of the Fermi energy ´ within "0.07F

as tX takes y0.1 to y0.15. These levels are located

Fig. 6. Parts of the correlation functions of superconducting pair
operators for the case of the largest SC energy gain in Fig. 5 with
tX sy0.10, Ds0.0941, g s0.3003, and msy0.6152. The no-
tation is the same as in Fig. 3.

Fig. 7. D E and D as functions of tX in the case of r s0.80.g

Other parameter values are the same as in Fig. 5.

in the k-space mainly in the neighborhood of the
level of the van Hove singularity. Since each one-

Ž .electron level is orbitally four- or rarely two- fold
degenerate due to symmetry, the number of one-elec-
tron states whose levels are located in the neighbor-
hood of ´ is considerable. Since such a feature isF

known to enhance the SC pair correlation functions
w xin the two-chain Hubbard model 19a,19b even in

strongly correlated situations, this feature is consid-
ered to bring about the remarkable increase of the
energy gain. Although the particular peaking location
of tX may be slightly size-dependent since the one-
electron levels are size-dependent, such a concentra-
tion of one-electron levels around ´ is consideredF

to occur for any system size when the appropriate
negative tX pushes down the van Hove singularity

Fig. 8. One-electron levels ´ of k-points A, B, . . . , G in thek

neighborhood of ´ are plotted as functions of tX. Due to orbitalF

and spin degeneracies, each levels can accommodate eight elec-
trons except the A level which can accept four. The dotted curve
exhibits ´ in the case of the Us0 limit.F
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close to ´ . Therefore, this effect should work evenF

in the bulk limit.

3.4. Electron-density dependence

Fig. 9 shows the energy gain per site in the SC
state as a function of the electron density rsN rNe s

for the cases of tX s0, y0.10 and y0.15. The
corresponding values of D as a function of r are
exhibited in Fig. 10. When tX sy0.10 whose curve
is exhibited with closed circles, the cases of rs0.68,
0.76, 0.84 and 0.92 have an open shell, in another
word, there are partially filled k-points in the elec-
tronic state in the Us0 limit, as is shown in Fig. 2
for N s10=10 and N s84 with tX s0. While thes e

other cases with rs0.72, 0.80 and 0.88 have a
closed shell. The curve has almost no dependence on
the shell state in the region of 0.76FrF0.92,
making a definite contrast with the case with tX s0
described later. This suggests that the curve is al-
ready close to the bulk limit one in this region. For
tX sy0.15 with open diamonds, the cases of rs
0.68, 0.76 and 0.88 have an open shell while others
have a closed shell. Here we observe a weak depen-
dence on the shell structure. However the deviation
from the rough average between the open-shell and
closed-shell curves are only of the order of 1r10 of
the average energy gain per site in the region of
0.76FrF0.92, which is small enough to judge that
the points are already close to the bulk limit. The
smooth dependence on r is also observed in the SC

Fig. 9. Energy gain per site D E rN in the superconducting stateg s

against electron density r. Open circles are for tX s0, closed ones
for tX sy0.1 and closed diamonds for tX sy0.15. The lattice is
10=10 and Us8.

Fig. 10. Amplitude of the gap function D is plotted as functions of
r for tX s0, y0.10 and y0.15, corresponding to the D E rNg s

vs. r curves in the preceding figure. The error bar is about 0.01
for r ;0.92. For r ;0.7 it is about 0.005.

gap amplitude D for tX sy0.10 and y0.15 in Fig.
10. These results clearly support a statement that the
2D Hubbard model with tX

;y0.1 gives a finite
condensation energy for the d-wave SC state in the
bulk limit in the region of r from ;0.76 to ;0.86.
For rs0.72 a minimum with finite D was obtained
in both cases of tX

;y0.1. But the SC energy gain
was within the error bound so that D E rN ;0. Forg s

rs0.68 a finite value was obtained for both cases
but it is so small that it may not remain finite in the
bulk limit.

Open circles for tX s0 in Fig. 9 form a zigzag
curve as a function of r. Relatively larger are the
energy gains for rs0.76, 0.84 and 0.92, for which
the electron shell is open. The values for the cases of
rs0.72, 0.80 and 0.88 with closed shell are smaller.
This shell dependence is a system-size effect and
indicates that the 10=10 lattice is not sufficiently
large when tX s0. It suggests also that the larger the
SC energy gain is, the smaller the sufficient system
size is. However, the average curve between the two
curves formed of the points of both kinds of shell
states is expected to be a highly probable approxima-
tion to the bulk limit and the model with tX s0 is
also probable to drive SC, although more extensive
calculation with large lattices is needed to remove
the room for doubt. Incidentally, for rs0.68, no
finite energy gain was obtained although the shell is
open.

In Fig. 1 of the precursive work of Giamarchi and
w xLhuillier 6 we find a corresponding value for the
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SC energy gain per site. It is for rs0.8125 on the
8=8 lattice with Us10 and tX s0. Our value for
rs0.80 on the 10=10 lattice with Us8 and
tX s0 should be close to the value. The shell struc-
ture for rs0.8125, or N s52, on the 8=8 latticee

is closed; so is the case with rs0.80 on the 10=10
lattice. However, our value is 3.38=10y4 , being
about 1r3 of the above-mentioned value, and if we
put it in their figure it is located in the lower end part
of the large error bar attached to the data point. In
the above-mentioned figure the energy gain vanishes
around r;0.56 but in Fig. 9 of the present work it
vanishes around r;0.72. We believe that the pre-
sent results are more improved than the results of
Giamarchi et al. because of improved accuracy of
computation.

4. Competition with the SDW state

4.1. Magnetic state of the 2D Hubbard model

When the density of doped holes is small or zero,
the 2D Hubbard model takes an antiferromagnetic
state as its ground state. With increase of doped hole
density, the magnetic order is destroyed and SC
appears. At what hole density does the SC state
start? We have investigated the transition between
the pure SC and the pure uniform SDW states by
computing the energy of the SDW state by means of
the variational Monte Carlo method. The trial SDW

w xwave function is written as 22,11

C sP c , 19Ž .SDW G SDW

c s u c† qÕ c†Ž .ŁSDW k k ≠ k kqQ ≠
k

† †
X X X X= u c yÕ c 0), 20Ž .Ž .Ł k k x k k qQ x

Xk

1r2
2 2(u s 1yw r w qM r2 , 21Ž .ž /k k k

1r2
2 2(Õ s 1qw r w qM r2 , 22Ž .ž /k k k

w s ´ y´ r2, 23Ž . Ž .k k kqQ

´ sj qm , 24Ž .k k

where P is the Gutzwiller projection operator de-G
Ž . Xfined by Eq. 5 . Summation over k and k in Eq.

Fig. 11. Energy gain per site D E rN in the SDW state againstg s
X Ž .electron density r is plotted for t s0 open diamond and for

X Ž .t sy0.10 closed diamond . Error bar is about 0.0003. D E rNg s

in the superconducting state is also plotted again with the same
symbols as in Fig. 9 with the diminished vertical scale.

Ž .20 is performed over the filled k-points, as in the
calculation of the normal state variational M.C. en-

Ž .ergy. Q is the SDW wave vector equal to p , p . M
is the SDW potential amplitude.

4.2. Phase boundary between SC and SDW states

As shown by the open diamonds in Fig. 11, the
energy gain per site in the SDW state rises very
sharply from r;0.84 in the case of tX s0. Already
at rs0.84 it takes 0.0023 and is slightly larger than
that in the SC state. However, at rs0.80 there is no
more stable SDW state. By extrapolating the sharply

Fig. 12. Optimized value of SDW gap parameter M is plotted as a
X Ž .function of r for two values of t s0 open diamond and y0.10

Ž .closed diamond , corresponding to two SDW curves in Fig. 11.
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Ž .Fig. 13. Phase diagram of superconducting SC and SDW phases
in cuprates high-T superconductors in the plane of temperature Tc

vs. electron and hole densities. The thick curve was decided as
written in the text. The dotted line is an extrapolation.

rising curve of the SDW energy gain per site as a
function of r, the boundary between the SDW and
the SC states is given at rs0.838. Optimized val-
ues of M are plotted in Fig. 12.

Since finite tX deteriorates the nesting property of
the Fermi surface, the energy gain per site in the
SDW state should decrease with introduction of neg-
ative tX. The calculated values for tX sy0.10 is
shown in Fig. 11 by closed diamonds. The energy
gain per site in the SC state given by closed circles
increases when tX sy0.10. The phase boundary be-
tween the two is estimated at about 0.873 as the
intersection of the extrapolation of the line linking
the two closed diamonds and the curve for the SC
energy gain per site with tX sy0.10. So the bound-
ary is pushed up by D rs0.035 but not enough as to
move the boundary up to rs0.95, the observed

w xboundary in La Sr CuO 23 . The obtained phase2yx x 4

diagram in the tX yr plane is shown in Fig. 13.

5. Comparison with experiments and other results

5.1. Energy gain per site in the SC state

By means of the cell-perturbation method, Feiner
w xet al. 24 were able to reduce the d–p model into an

effective one-band Hubbard model. In their result the
transfer energy t slightly depends on the occupancy
on the two related sites. Using typical parameter
values for the d–p model t is estimated at 0.51 eV

for hole transfer. U is estimated at 3.4 eV so that
Urts6.7. With this relatively small U the authors
derive an appropriate value of exchange interaction
constant J for the t–J model, appearing later, thanks
to the ferromagnetic interaction term and the
Coulomb interaction between nearest neighbor sites
in the effective one-band Hubbard model. These
values of t and U are common for the cuprate
high-T superconductors. The tX value was estimatedc

at around y0.06 eV, i.e., y0.12 in units of t, for
hole-type superconductors. They observed that its
weak dependence on each cuprate is correlated with
the values of T among the cuprates. Since thec

additional spin-dependent ferromagnetic term and
nearest neighbor Coulomb interactions are relatively
small, the 2D Hubbard model without these addi-
tional interaction but with the above-mentioned pa-
rameter values should give a right magnitude of the
SC energy gain if it actually gives a finite value.

For Us8 and tX s0 the maximum SC energy
gain per site is approximately given by the value at
rs0.84 in the neighborhood of the SC-SDW phase
boundary. It is about 0.0010 as the average of the
values for both shell states. For Uf6.7 this value
should diminish by a factor 3r4 according to Fig. 4
so that the calculated maximum SC energy gain per
site is 0.00038 eVrsite, if we take ts0.51 eV. The
value of tX for hole conduction was evaluated by

w xseveral authors at, e.g., y0.06 eV 25,24 , y0.124
Ž . w x w xeV for the La system 26 , and y0.17 eV 27 for

hole-doped cuprates. If we take tX sy0.06 eV(
w xy0.12 given by Feiner et al. 24 , the above energy

gain should be multiplied by a factor 2.0 and be-
comes 0.00076 eVrsite. Incidentally, this value of tX

is in the range of the optimal energy gain, tX (y0.1
to y0.15.

w xAccording to Hao et al. 28 the critical magnetic
Ž .field H 0 at zero temperature was estimated to bec

1.10 T for YBa Cu O . From the expression H 2r8p2 3 7 c

for the condensation energy in the SC state, the
experimental value for the SC energy gain per site is
equal to 0.00026 eV per Cu site in layers. Triscone

w xet al. 29 gave slightly larger values of H for twoc

samples of YBa Cu O , 1.231 and 1.364 T, corre-2 3 7

sponding to condensation energies 0.00033 and
Ž .0.00040 eVr Cu site , respectively.

Another source of information on the condensa-
tion energy is the specific heat reported by Loram et
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w xal. 30 on YBa Cu O . By numerically integrating2 3 7

the SC specific heat minus the normal-state one with
respect to temperature from zero to just T , thec

condensation energy was obtained as 0.000168
Ž .eVr Cu site . Since the appreciable fluctuation con-

tribution is observed at temperatures above T , whichc

is recognized as the maximum position of the spe-
cific heat, and since it was simply neglected, this
value is in fair agreement with the value given from
the critical field.

The above-mentioned calculated value of the
maximum SC energy gain per site is in reasonable
agreement with the experimental SC condensation
energy in view of simplifications and uncertainties in
the parameter values of the model. This agreement
strongly indicates that the 2D Hubbard model in-
cludes essential ingredients for the SC in the cuprate
superconductors.

The present results of the energy gain per site in
the SC state can be compared with the results for the
t–J model. For the value of exchange interaction
constant Js4 t 2rU s0.5 corresponding to Us8,

w xFig. 7 in Ref. 31 by Yokoyama and Ogata allows to
estimate the SC energy gain per site calculated for
the t–J model. At rs0.84 it is 0.026 t. This is 17
times larger than that obtained for the 2D Hubbard
model at the same electron density in Section 3. If
we take 0.0010 for the SC energy gain per site of the
2D Hubbard model, judging from the average of the
open and closed-shell curves, the ratio is 26. Since
the 2D Hubbard model has been found to give a
sound SC condensation energy as seen above, we
have to judge that the fault is on the 2D t–J model
as an effective Hamiltonian of the 2D Hubbard
model, i.e., it gives too large an SC condensation
energy at least in the parameter region where Jrt;

1r2. This means that the t–J model made of the
leading two terms in the expansion in powers of trU
of the canonical transformation of the Hubbard model
should be treated together with the higher-order terms
for it to give a realistic SC condensation energy.

The t–J model is derived also starting from the
d–p model or three-band Hubbard model. As such
its parameter values are derived in literatures. The
values are given in wide ranges, even by a single
group. The value of t is estimated at 0.224 eV by

w xTohyama and Maekawa 26 for the La system, at
w x0.51 eV by Feiner et al. 24 , in the range of 0.29–

w x0.98 eV by Batista and Aligia 32 . The value of J is
obtained at 0.13 eV for La CuO from Raman scat-2 4

w xtering data 33 . Theoretical values given by these
authors for typical cases are around this value. If we
take Js0.13 eV and ts2 J, the SC energy gain of
the 2D t–J model with rs0.84 is estimated at
0.026 ts0.0068 eVrsite by using the model in Ref.
w x31 ; it is 26 times larger than the value obtained
from Hao et al.’s H value. Around this value ofc

Jrts0.5 the SC energy gain of the t–J model is
considered to be roughly proportional to tPJrtsJ,
if the SC energy gain of the model with normalized
coupling constant Jrt is roughly proportional to
Jrt. Then, the above-mentioned large ratio applies to
the most parameter sets. Only when Jrt becomes so
small, e.g., with increase of t, that SC almost van-
ishes, the above ratio may decrease to unity. Thus
with plausible parameter sets, the t–J model is very
probable to give too large a SC condensation energy.
Again the higher order correction terms must not be
neglected, for the model to work properly at least
concerning the SC condensation energy, so that they

w xoppose to the occurrence to SC 32 ; the present
result does not support the correction terms of the

w xtype that facilitate SC 34 .

5.2. Phase diagram in the T -Õs.-r planec

According to our results in Section 4, in the case
of small negative tX the SC region extends from
r;0.76 to r;0.86 with smoothly increasing SC
condensation energy with increase of r. This sug-
gests that in this r region T is finite and smoothlyc

increases with increase of r. The range of this r

region and the expected smooth increase of T are inc
Žfair agreement with the features of the T -vs.-p psc

.1yr, doped-hole density phase diagram in the
optimal to overdoped region, i.e., 0.15FpF0.25 or
0.75FrF0.85, where T increases with increasingc

w xr 23 .
Corresponding to the underdoped region with

0.05FpF 0.15, the present results do not give an
SC region but give an SDW region. However, there
is a possibility that more elaborate calculations give
a kind of SC phase where SC and SDW coexist and
that the phase diagram in the underdoped region is
also provided by the 2D Hubbard model. The rea-

w xsons are as follows: Giamarchi and Lhuillier 6
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showed that a uniform wave function describing the
coexistence of SC and SDW gives a lower energy
than the pure SDW wave function in the system of
32 electrons on the 6=6 lattice. We have checked
on the 10=10 lattice that such a coexistence wave
function is possible only in the r region higher than
the above-mentioned boundary between SC and
SDW. Therefore, in the higher r region there may
be a coexistence phase in a certain region. However,
there are no experiments confirming a uniform coex-
istence except for recent reports suggesting a non-

w xuniform coexistence in La Nd Sr CuO 35 .1.6yx 0.4 x 4

Further, stripe-type solutions are known to give a
lower total energy for the SDW state in the low

w xhole-doping region 36 . Therefore, the above-men-
tioned uniform coexistence state may be dominated
by a more complicated non-uniform way of coexis-
tence of SC and SDW. Such a ground state could be
obtained only if we use sufficiently large sizes of the
system, as is the case with the SDW stripe solutions
w x36 . With this speculated coexistent SC state, we
expect that T is maximum at the above-mentionedc

phase boundary at r;0.86, since the plausible co-
existence state should have T lower than the valuec

of T at the boundary due to a smaller electronc

density carrying SC properties. At temperatures
higher than T , the SDW ordering without the SCc

one may remain. Such a coexistent SC state may be
consistent with the feature of the T –p phase dia-c

w xgram in the underdoped region 23 . Of course, all
these possibilities remain to be confirmed with actual
calculations.

5.3. Comments on the quantum Monte Carlo results

Whether the 2D Hubbard model drives SC or not
has been an important unsettled issue for theoretical
and computational physics. Although quantum M.C.
studies recognized the enhancement of the SC sus-
ceptibility, dominance of SC has not been confirmed.
However, the numerical studies have been under
severe restrictions to the parameter values in which
reliable results were obtainable, e.g., with respect to
the system size, value of Urt, temperature and so
on. Within these few years the occurrence of the SC

X w xwas strongly indicated when t is introduced 8,9,37 .
When the shell structure approaches to the open one,
even if it was closed, SC correlations were observed

w xto be much enhanced 38 . On the contrary, recently
Zhang et al. showed that SC features weaken with

w xincrease of the system size with U up to 8t 39 .
However, the state with rs0.85 and tX s0 with
which their main results are exhibited is located in
the SDW region according to our results. With this
value of r the dominant SDW is considered to have
diminished the SC correlations for some values of U.
Even in the case where the coexistence of SC and
SDW might have occurred, the SC features should
have been different from what we expect in the usual
uniform superconducting state. Therefore, their re-
sults do not disprove the existence of SC in the r

region where we find SC dominating. Further, the
quantum M.C. calculations were done for closed-shell
electron densities. This shell state must have led to a
very small energy gain and weakened the SC fea-
tures when the system size is not sufficiently large.
The distribution of the single particle energy ´k

around the Fermi energy are scarce in the cases they
treated. These reasons are suspected to have made
the SC features in their work very weak. A study
with an elaborate method allowing high precision is
under way searching enhanced SC correlations with

w xappropriate values of r 40 .

6. Summary

Using the variational Monte Carlo method we
have investigated the dependencies of the energy
gain per site in the SC state on important parameters
such as on-site Coulomb energy U, next nearest
neighbor transfer energy tX and electron density per
site r. We worked mainly with the 10=10 lattice.
The energy gain is maximized at about Us8. It is
maximized for tX sy0.10 to y0.15, reaching twice
the value at tX s0. This increase of the SC energy
gain was ascribed to the fact that a high density of
the one-electron levels around the van Hove singu-
larity go close to ´ due to an appropriate negativeF

value of tX. The SC pair correlation functions in-
creased correspondingly. With Us8 and tX sy0.10
or y0.15, the energy gain starts to be finite at
r;0.68, smoothly increasing with increase of r

from rs0.76 up to rs0.92 up to which we have
made calculation. The curves of the energy gain as a
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function of r have only a weak dependence on the
shell structure or on whether some of the k-points

Ž .are partially filled or not open or closed shell in the
Us0 limit electron distribution. This definitely sug-
gests that the curves are already close to the bulk
limit ones. On the other hand, with Us8 and tX s0,
the energy gain in the open shell state is sizable but
that in the closed shell state is rather suppressed so
that the obtained values seem to have still apprecia-
ble system size dependence, although the average
curve between the open- and closed-shell curves is
considered to be a fair approximation to the bulk
limit. We have also calculated the energy gain in the
commensurate SDW state. It sharply rises as a func-
tion of r starting at about r;0.84 for rs0,
making the SDW state the lower energy state in the
higher r region above this value. A finite value of
tX

;y0.1 brought about an upward shift of the
boundary by D tX

;0.035. Therefore, our calculations
confirmed that the electronic repulsive interaction
can drive SC by itself in the region from r;0.76 up
to the boundary at r;0.87 with tX

;y0.1. The
maximum SC energy gain per site in the SC region
was found to be close to the experimental SC con-
densation energy evaluated from H and the specificc

heat of YBa Cu O . On the other hand, the corre-2 3 7

sponding t–J model was pointed out to give a value
enormously larger by a factor exceeding 20, indicat-
ing that it is not quantitatively reliable as a model for
high-T cuprates without taking account of higher-c

order correction terms. The feature of the experimen-
tal phase diagram in the T –r plane in the region ofc

r lower than the r of the maximum T was assertedc

to be in a good agreement with our results. These
results strongly suggest that the simple 2D Hubbard
model includes essential ingredients of high-Tc

cuprates. A speculative argument on the higher r

region outside our SC region was given concerning
the coexistence of SC and SDW.
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