THE CORRESPONDENCE BETWEEN DonNaLD E.
KNuTH AND PETER VAN EMDE B0OAS ON PRIORITY
DEQUES DURING THE SPRING OF 1977

March 29 1977 Knuth mailed a copy of his classroom note on the van Emde Boas
construction of priority deques to Peter van Emde Boas in reply to a preprint 77-
05 of the University of Amsterdam. This report contains a solution to the problem
of the super-linear space consumption of the priority deque as originally described
in the paper presented at FOCS 1975.

Aside of the fact that this note is the source of the well known quotation by
Knuth on program correctness, it is the first document which describes these pri-
ority deques using the top-down recursive format which is common today.

This recursive approach which was suggested in the FOCS 1975 paper was not
explored in the original publications since it would involve the use of multiplica-
tive machine instructions for address calculations which, during this period were
considered to be inadmissible for the RAM model with uniform time measure.

These issues are discussed in the two letters which are included in the facsimile
edition: the cover letter by Knuth and the reply by van Emde Boas. An more
extensive discussion of the historical context can be found in [6]. Time has arrived
to make this document accessible on the Web.

References

[1] D.E. Knuth, Notes on the van Emde Boas construction of priority deques: an in-
structive use of recursion, Classroom notes Stanford University, March 1977.

[2] P. van Emde Boas, An O(nloglogn) On-line Algorithm for the Insert-
Extract Min problem, Report Cornell University Dept. of Com-
puter Science TR 74-221, december 1974; online accessible at
https://dspace.library.cornell.edu/bitstream/1813/6060/1/74-221.pdf .

(3]

(4]

(5]

(6]

STANEORD‘ UNIVEI{SITY
STANFéRD chSLEoﬁNIA o405

,,,,,,,,,,,,,,,,,

T 5 ; S Y Dr P van Emde. Boas s : l

; > “ CHAT g - B Instl‘tuut voor '.Do@assingen der W:Lskund.e A
“ ' imiversity of Amsterdam < A ¥ ;

- Roetersstraat 15 L TS B AR l

‘Amsterdam-C; ggherla.zlfl_s ;

“‘ﬂ““““““i

Figure 1: the cover of Knuth’s letter

P. van Emde Boas, Preserving order in a forest in less than logarithmic time, Proc.
IEEE FOCS 16, Berkeley, Oct 1975, pp. 75-84, preprint: Report Mathematical Cen-
tre Amsterdam, MC-ZW-55-75.

P. van Emde Boas, R. Kaas & E. Zijlstra, Design and implementation of an efficient
priority queue, Math. Syst. Theory 10 (1977) 99-128, preprint: Report Mathemati-
cal Centre Amsterdam, MC-ZW-60-75 .

P. van Emde Boas, Preserving order in a forest in less than logarithmic time and lin-
ear space, Inf. Proc. Letters 6 (1977) 80-82, preprint: Report dept. of Mathematics,
University of Amsterdam 77-05.

P. van Emde Boas, Thirty nine years of stratified trees, Proc. ISCIM 2013, Tirana,
Albania.

Notes on the van Emde Boas construction of priority deques: An instructive

use of recursion. D. Knuth, March 1977.

A. The problem is to represent subsets S- of '{0,1,...,n-1} , and to

implement the following operations when s is a pointer to such a

representation:
s.card: the cardinality of §
s.min: the smallest element of § (undefined if S is empty)
s.max: the largest element of S (undefined if § 'is empty)
s.insert(x): insert x into S (undefined if xe 8)
s.delete(x): delete x from §° (undefined if x§ 8)

s.successor(x): the smallest element > x in S (undefined if

X > s.max) .

A predecessor operation could be defined similé.rly.

If n is small, we can use bit manipulation techhiques in a standard
way. For larger n , let n = nyn, , and for 0 <x < n let q(x) = Lx/ne_] 3
r(x) = x mod n, . We can build a representation from ny priority deques
of order n, plus an additional priority deque of order n,y to keep track
of which of the others are nonempty. Thus the universe ismade up of n,
"galaxies" of smaller universes. Here is the recursive construction, using

SIMULA-like notation, emphasizing ease of verification rather than efficiency.

class pd;
begin internal integer size, least, greatest; comment |||, min(s), and max(S);

internal ref(pd) T; comment a priority deque of order n, for the nonempty
galaxies; '

internal ref(pd) array g[O:ri—l]; comment priority deques for the galaxies;

comment initially size = 0, least = «,.greatest = -», T points to an
initialized pd of order nl' and g[O]...g[nl-l] each point to disjoint
initialized pd's of order n,;

external integer procedure card; return (size); ‘

external integer procedure min; return (least);

external integer procedure max; return ’(grea‘test);

external procedure insert (integer x); = -

Figure 2: page 1 of classroom note

be_g___in size « size+1; :_Lf x < least then least « x; if x > greatest
then greatest « x;

if gla(x)].card = 0 then T.insert(q(x));

gla(x)].insert(r(x));

end;

external procedure delete (integer x);

begin size « size-1;
gla(x)].delete(r(x));

if glq(x)].card = 0 then T.delete(q(x));
if size = O then (least « =; greatest « -o)
else (least « g[T.min].min+n

2
greatest « g[T.max].max+ n, x T.max)

x T.minj

end ;

external integer procedure successor (integer x);
if r(x) > glq(x)].max then return (glT.successor(q(x))].min
+n,x T successor(q(x)))
else return (glq(x)].successor(r(x)) + n, X a(x));
end pd.

B. The running time,
The time for card, min, max is 0(1) .
For insert, T(n)
For delete, T(n)

1

o(1) + T(ne) + if trivial n, insertion then T(nl) R
o(1) + T(ne) + if trivial n, deletion then T(nl) .

For successor, T(n) < 0(1) + max(T(nl),T(ne)) .

1

Thus we get the best performance by taking n, = n, ~ '\/— . The solution
to the recurrence T(n) = 2T('\/;) +0(1) has T(n) X log n while the
solution to T(n) = T(«/;) +0(1) has T(n) ¥ log log n , hence for best
asymptotic growth we should try to improve the algorithm. [For small n
the difference is probably negligible and the "improved" algorithm might
even run slower if we aren't careful ... this should be studied on real
machines, but let us Think Big for now.] The desired improvement is to
ensure that trivial insertions and deletions always take O0(1) time.

The tricky thing is that trivial deletions don't have time to clean up
the data structure, and trivial insertions haven't the time to reinitialize

it. But we can solve the problem by making the work incremental in the

Figure 3: page 2 of classroom note

following way: Whenever size < 1, the galaxies are not used and all
the subsidiary pd's will be empty.

C. The revised program, which has O0(log log n) running time for all
operations.

class pd

begin ... same as before ...;

external procedure insert (integer x);

if size = O then (size « 1; least « greatest « x)
glse begin if size = 1 then (T.insert(q(least)); glq(least)].insert(r(least)));
if glq(x)].card = O then T.insert(q(x));
gla(x)].insert(r(x));
size « size+1;
if x < least then least « x
else if x > greatest then greatest « x;
E = —_—

external procedure delete (integer x);

begin size « size-1;
if size = O then (least « =; greatest « -)
else begin glq(x)].delete(r(x));
if gla(x)].card = 0 then T.delete(q(x));
if x = least then least « g[T.min].min+ n, x T.min
else if x = greatest then greatest « g[T.max] .max + nng.max;
if size = 1 then (T.delete(q(least)); gla(least)].delete(r(least)));
end;

external integer procedure successor (integer x);

begin if size < 1 then return (greatest)
else if r(x) ... as before...;
end;

end pd.

Figure 4: page 3 of classroom note

D. Elimination of class pointers, and storage allocation.

The construction will never go many levels before exceeding the size
of the real universe. For example, if we have a machine with 32-bit words,
the bottom level pd routine will use the computer's built-in operations,
the next level takes n wup to 32.32 = 210 ; the next level already takes
us to n = 220 (greater than a million), and the next level makes n
greater than the largest existing computer memories. ILet's suppose n = 220 .
We will have one pd of height 2 (it has three local variables: size,
least, greatest, of 20 bits each), 210+l pd's of height 1 (each with
three local varisbles of 10 bits each), and (25+1)(2]‘O+l) pd's of
height O (each with three local variables of 5 bits each and one
32-bit table). Rounding up to 32 , 16 , 8-bit variables, we see that the
memory requirements on the IBM 360 would be
5.0%+ 3. (210%1)2 4 7. (22+1) (27%1)2°) = 242,937 bytes. Note thav 220
bits is 131072 bytes, so the overhead is not substantial.

But let's assume a 16-bit computer word, so the calculations are
cleaner and nicer. Then n = 216 = 65536 , a reasonable size for applications.
For convenience we will be generous and allow 16 bits for all local variables
at all levels. This wastes memory by a factor of about 2 , but it speeds
up the programs since we can use x instead of r(x) in the galaxies.
Let us use three arrays size, least, greatest, B[0:4626] for these
tables; here B holds the 16-bit codes for the bottom level. A level-l
structure whose variables begin at location " f will have 17 bottom-level
structures whose variables begin at f+1,..., 4+17 respectively. The
following implementation of insert indicates how the rest of the implementation
can be carried out., The notation x r’k means X shifted right k, i.e.,

Lx/2]

Figure 5: page 4 of classroom note

procedure insertO (integer x);
if size[O0] = O then (size[0] « 1; least[0] « greatest[0] « x)
else begin if size[0] = 1 then (insertl(least[0][78,1);
insert 1(least[0], 18 x (least[0][> 8)+19));
if size[18 x (x[_)8) +19] = O then insertl(xr’ 8,1);
insertl(x, 18 x (xr)8) +19);
size[0] « size[O]+ 1;

if x < least[O] then least[0] « x

else if x > greatest[0] then greatest[0] « x;
end;
procedure insertl (integer x,1);
if size[s] = O then (size[1] « 1; least[] « greatest[s] « x)
else begin if size[4] = 1 then (inser’tz(least[l][—’ b, g+1);
insert2(least[s], (least[z]r)h) mod 16+ g+2));
if size[(x [”l;) mod 16+ g+2] = O then insertZ(xr)h, +1);
insert2(x, (xr}h) mod 16+ g+2);
size[1] « size[f]+1;
if x < least[s] then least[t] « x
else if x > greatest[4] then greatest[s] « x;
end;
procedure insert2 (integer x,)
begin B[£] « B[£]v (21 (x mod 16));
size[] « size[f]+1;
if x < least[t] then least[s] « x
else if x > greatest[£] then greatest[s] « x;

end;

The implementation of deletion would be similar. It is safe to use 0O
16
and 27 -1 for -« and +w ,

Beware of bugs in the above code; I have only proved it correct, not
tried it.

Figure 6: page 5 of classroom note

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305

COMPUTER SCIENCE DEPARTMENT Telephone:
415-321-2300

March 29, 1977

Dr. P. van Emde Boas

Instituut voor Toepassingen der Wiskunde
University of Amsterdam

Roetersstraat 15

Amsterdam-C, Netherlands

Dear Sir,

Thank you very much for report 77-05 which T recently received.

Since I have been working mostly on other parts of my book, I have
not yet found the chance to study your: papers as much as I should, but
I have some questions and perhaps you can help put me on the right track.

In your paper about the PASCAL implementation, you give the space
requirements as O(n log log n) , but as nearly as I can tell from your
proof this means O(n log log n) pointers rather than bits. Thus, an
additional factor of log n creeps in. On the other hand, I think your
approach yields 0(log log n) processing time and 0(n) space in bits
(on some appropriate machine model, e.g. Pratt and Stockmeyer in JCSS)
if you return to the idea expressed in your Cornell report that arithmetic
operations be used to get around in the tree. Here is my argument, and T
would appreciate your comments if you have time. :

Let f£(n) be any function which is 0(n/log n) . Then the solution
to the recurrence

8(n) = £(n) + s@) ++m s6h) , s(1) = £2(1)

is linear in n . Proof': Choose Ny and B so that

f(n)SB(n_, 2n -«/;1) for all n >n

0 * Then choose o > B
so that S(n) <a(n - n/(logn)) for 1<n< n, . We can now prove
that S(n) <a(n - n/log n) for all n , by induction:

S(1) = £(n) + 565) + v 56R) < o) + oV - 2L, 2o)

s log n " log n
n n 24n n
Sa(n-logn)' (a_ﬁ)(erETg—ﬁ'&)fo‘(n_logn) ‘

Thus, the storage requirements for a recursive universe-cluster-galaxy

logn logn

scheme will be linear if the storage f(n) at a given level of recursion

Figure 7: first page of Knuth’s letter

Dr. P. van Emde Boas -2 - March 29, 1977

is not too large. I have attached to this letter my current favorite

way to implement your scheme. (I use SIMULA classes instead of PASCAL;

I think SIMULA has a better approach to recursive data structures, although
I probably abuse its syntax.) Since the membership test is not used in
the other operations, I left it out; clearly it can also be done in

0(log log n) steps. Curiously, there seems to be no need for the
concepts of rank, canonical subtree, branch points, etc. when you view
the procedure "from the top down". Thus everything is simplified
including the job of proving correctness. If nobody has received the

$10 yet, I think this program is worth $5 anyway.

I will of course be referring to your method in my Wolume 4", and
for this purpose I need to know your full name inciuding any middle names;
this will appear in the index. (I have been alphabetizing Dutch names
like de Bruijn, van Emden, van Lint, etc. under the letters "d" and "v",
as is customary in America; but if you would like me to list you under E

as well please let me know!)

Cordially,
Donald E. Knuth i /«)
Professor

DEK/pw

Encl.

cc: J. Hoperoft
R. Tarjan

Figure 8: second page of Knuth’s letter

Foundation Mathematisch Centrum _ Phone (020) 947272

Telex 12571
Bank A dam-Ri dam Bank NV
2e Boerhaavestraat 49 Amsterdam-1005 M c Branch office Sarphatistraat, Amsterdam

Prof dr D.E.Knuth
Your reference

Dated March 29 1977
Our reference Stanford University

Date Stanford, CA 94305

Computer science department

April 15 1977

Dear Sir

Thanks for your letter of march 29. The problems concerning the space and

time requirements of my priority deque scheme (thank you for ihe name) have
kept my attention since the time the scheme was designed originally in 74.

The recent report UVA 05-77 is the last offspring of this research.

Before answer_ing your questions I like to mention that the final version of
the FOCS 16 paper will appear on short time in the forthcomming issue of
Mathematical Systems Theory. This paper contains the complete PASCAL program
and in it it is stated explicitly that the storage requirements are expressed
in RAM words and not in bits. On the other hand it can be read from the PASCAL
programs that no other arithmetic operations aré used than additions and
subtractions, this way legalizing the use of the uniform RAM time measure

(one step per instruction executed).

The idea of using arithmetic operations for computing adresses within the

tree was originally rejected since the needed instructions essentially

amount to decomposing a given bit string into two equal parts, which instruction
“is not available on a RAM, and which costs, if programmed , logarithmic time.
The instruction is available on a vector machine like proposed by Pratt and
Stockmeyer, but their results show that their machine, being not polyriomially
equivalent to Turing machines unless P = PSPACE, should be rejected as a reaso-
nable machine model. As a consequence,on base of the rules of the game as
Hopcroft has thought them to me, I was forced to loose my time efficiency

on behalf of the adress computations, or to use the intricate collection’

of pointers which ammdhts to an order loglogn overhead factor in the space
requirements plus an initialization time of order n.loglogn. This way the
structure has been described in the paper. The recent report 05-77 shows

that the loglogn factor can be eliminated by use of one more cluster-—

galaxy decomposition using two different priority deque schemes.

Figure 9: first page of van Emde Boas’ letter

-2-

If we agree on some restricted vector machine for which the Pratt-Stockmeyer
result no longer holds, but which is polynomially equivalent to Turing
machines clearly an order n.loglogn -time, order n space structure can

be obtained (assuming that the semingly innocent instruction of breaking

a bit string into equal parts by itself does not yield the full power -

of parallellism as'is the case for the complete vector machine). I have not

considered whether I should introduce such a machine model for this sbecific
application. Moreover the problems would return when one likes to use the
structire for storing O(n) distinct items since in this case space O(n.loglogn)

is needed anyhow.

I agree that by use of a recursive data structure both the algorithms
and the correctness proofs become easier. I have realised so at the time
the $10.-- prise was offered for a correctness proof of the algorithms
as given for the nonrecursive structure. I have realised however as well
that the structure as désqribed in the FOCS 16 or MST paper can not be
obtained by unwinding the recuréion from a structure as given in your
SIMULA text, because of»abéence of separate treatmént of left- and right-
hand subtrees. Coﬁsequentiy £ﬁe FOCS 16 structure is really too complex,
and I am looking forwards of pufting together a nonrecursive simplified
version for which I have to overcome several two year old prejudices.

As explained abovevl do not consider your note a legitimate solution’

for being awarded the still unclaimed $10.-- prize, but under separate
cover I will mail you some piece of typical Dutch furniture, approximating
the amount claimed.

For your bibliography in "Volume 4" I liké to mention that mybcbmplete
name reads : Peter van Emde Boas . This name which involves a single
first name and no middle name has caused gréat problems to many Americans
before. I have considered declaring a middle name "vanEmde" but I ‘consider
this to be an illegal‘action. Alphabétizinq7it under the V is OK to me.
In case you have been informed on applicationé of my scheme I would like
to hear about it. Most applications of priority qﬁeues either involve
real valued items, or a numbér of items whiqﬁ is much Smailer than the

n involved and for both types of applications the scheme can not be used.

Sincerely yours

Peter van Emde Boas

Figure 10: second page of van Emde Boas’ letter

