
Revised7 Report on the Algorithmic Language
Scheme

ALEX SHINN, JOHN COWAN, AND ARTHUR A. GLECKLER (Editors)

STEVEN GANZ ALEXEY RADUL OLIN SHIVERS

AARON W. HSU JEFFREY T. READ ALARIC SNELL-PYM

BRADLEY LUCIER DAVID RUSH GERALD J. SUSSMAN

EMMANUEL MEDERNACH BENJAMIN L. RUSSEL

RICHARD KELSEY, WILLIAM CLINGER, AND JONATHAN REES

(Editors, Revised5 Report on the Algorithmic Language Scheme)

MICHAEL SPERBER, R. KENT DYBVIG, MATTHEW FLATT, AND ANTON VAN STRAATEN

(Editors, Revised6 Report on the Algorithmic Language Scheme)

Dedicated to the memory of John McCarthy and Daniel Weinreb

February 13, 2021

2 Revised7 Scheme

SUMMARY

The report gives a defining description of the program-
ming language Scheme. Scheme is a statically scoped and
properly tail recursive dialect of the Lisp programming lan-
guage [23] invented by Guy Lewis Steele Jr. and Gerald
Jay Sussman. It was designed to have exceptionally clear
and simple semantics and few different ways to form ex-
pressions. A wide variety of programming paradigms, in-
cluding imperative, functional, and object-oriented styles,
find convenient expression in Scheme.

The introduction offers a brief history of the language and
of the report.

The first three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.

Chapters 4 and 5 describe the syntax and semantics of
expressions, definitions, programs, and libraries.

Chapter 6 describes Scheme’s built-in procedures, which
include all of the language’s data manipulation and in-
put/output primitives.

Chapter 7 provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.

Appendix A provides a list of the standard libraries and
the identifiers that they export.

Appendix B provides a list of optional but standardized
implementation feature names.

The report concludes with a list of references and an al-
phabetic index.

Note: The editors of the R5RS and R6RS reports are listed as

authors of this report in recognition of the substantial portions

of this report that are copied directly from R5RS and R6RS.

There is no intended implication that those editors, individually

or collectively, support or do not support this report.

CONTENTS
Introduction . 3

1 Overview of Scheme . 5

1.1 Semantics . 5

1.2 Syntax . 5

1.3 Notation and terminology 5

2 Lexical conventions . 7

2.1 Identifiers . 7

2.2 Whitespace and comments 8

2.3 Other notations . 8

2.4 Datum labels . 9

3 Basic concepts . 9

3.1 Variables, syntactic keywords, and regions 9

3.2 Disjointness of types 10

3.3 External representations 10

3.4 Storage model . 10

3.5 Proper tail recursion 11

4 Expressions . 12

4.1 Primitive expression types 12

4.2 Derived expression types 14

4.3 Macros . 22

5 Program structure . 25

5.1 Programs . 25

5.2 Import declarations . 25

5.3 Variable definitions . 25

5.4 Syntax definitions . 26

5.5 Record-type definitions 27

5.6 Libraries . 28

5.7 The REPL . 29

6 Standard procedures . 30

6.1 Equivalence predicates 30

6.2 Numbers . 32

6.3 Booleans . 40

6.4 Pairs and lists . 40

6.5 Symbols . 43

6.6 Characters . 44

6.7 Strings . 45

6.8 Vectors . 48

6.9 Bytevectors . 49

6.10 Control features . 50

6.11 Exceptions . 54

6.12 Environments and evaluation 55

6.13 Input and output . 55

6.14 System interface . 59

7 Formal syntax and semantics 61

7.1 Formal syntax . 61

7.2 Formal semantics . 65

7.3 Derived expression types 68

A Standard Libraries . 73

B Standard Feature Identifiers 77

Language changes . 77

Additional material . 80

Example . 81

References . 81

Alphabetic index of definitions of concepts,
keywords, and procedures 84

Introduction 3

INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first-class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail-
recursive procedure calls are essentially GOTOs that pass
arguments, thus allowing a programming style that is both
coherent and efficient. Scheme was the first widely used
programming language to embrace first-class escape proce-
dures, from which all previously known sequential control
structures can be synthesized. A subsequent version of
Scheme introduced the concept of exact and inexact num-
bers, an extension of Common Lisp’s generic arithmetic.
More recently, Scheme became the first programming lan-
guage to support hygienic macros, which permit the syntax
of a block-structured language to be extended in a consis-
tent and reliable manner.

Background

The first description of Scheme was written in 1975 [35]. A
revised report [31] appeared in 1978, which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler [32]. Three
distinct projects began in 1981 and 1982 to use variants
of Scheme for courses at MIT, Yale, and Indiana Univer-
sity [27, 24, 14]. An introductory computer science text-
book using Scheme was published in 1984 [1].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report, the RRRS [8], was published at MIT and In-
diana University in the summer of 1985. Further revision
took place in the spring of 1986, resulting in the R3RS [29].
Work in the spring of 1988 resulted in R4RS [10], which
became the basis for the IEEE Standard for the Scheme

Programming Language in 1991 [18]. In 1998, several ad-
ditions to the IEEE standard, including high-level hygienic
macros, multiple return values, and eval, were finalized as
the R5RS [20].

In the fall of 2006, work began on a more ambitious stan-
dard, including many new improvements and stricter re-
quirements made in the interest of improved portability.
The resulting standard, the R6RS, was completed in Au-
gust 2007 [33], and was organized as a core language and set
of mandatory standard libraries. Several new implementa-
tions of Scheme conforming to it were created. However,
most existing R5RS implementations (even excluding those
which are essentially unmaintained) did not adopt R6RS,
or adopted only selected parts of it.

In consequence, the Scheme Steering Committee decided in
August 2009 to divide the standard into two separate but
compatible languages — a “small” language, suitable for
educators, researchers, and users of embedded languages,
focused on R5RS compatibility, and a “large” language fo-
cused on the practical needs of mainstream software de-
velopment, intended to become a replacement for R6RS.
The present report describes the “small” language of that
effort: therefore it cannot be considered in isolation as the
successor to R6RS.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementers
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

Acknowledgments

We would like to thank the members of the Steering
Committee, William Clinger, Marc Feeley, Chris Hanson,
Jonathan Rees, and Olin Shivers, for their support and
guidance.

This report is very much a community effort, and we’d
like to thank everyone who provided comments and feed-
back, including the following people: David Adler, Eli
Barzilay, Taylan Ulrich Bayırlı/Kammer, Marco Benelli,
Pierpaolo Bernardi, Peter Bex, Per Bothner, John Boyle,
Taylor Campbell, Raffael Cavallaro, Ray Dillinger, Biep
Durieux, Sztefan Edwards, Helmut Eller, Justin Ethier,
Jay Reynolds Freeman, Tony Garnock-Jones, Alan Manuel
Gloria, Steve Hafner, Sven Hartrumpf, Brian Harvey,
Moritz Heidkamp, Jean-Michel Hufflen, Aubrey Jaffer,
Takashi Kato, Shiro Kawai, Richard Kelsey, Oleg Kiselyov,
Pjotr Kourzanov, Jonathan Kraut, Daniel Krueger, Chris-
tian Stigen Larsen, Noah Lavine, Stephen Leach, Larry D.
Lee, Kun Liang, Thomas Lord, Vincent Stewart Manis,
Perry Metzger, Michael Montague, Mikael More, Vitaly

4 Revised7 Scheme

Magerya, Vincent Manis, Vassil Nikolov, Joseph Wayne
Norton, Yuki Okumura, Daichi Oohashi, Jeronimo Pel-
legrini, Jussi Piitulainen, Alex Queiroz, Jim Rees, Grant
Rettke, Andrew Robbins, Devon Schudy, Bakul Shah,
Robert Smith, Arthur Smyles, Michael Sperber, John
David Stone, Jay Sulzberger, Malcolm Tredinnick, Sam
Tobin-Hochstadt, Andre van Tonder, Daniel Villeneuve,
Denis Washington, Alan Watson, Mark H. Weaver, Göran
Weinholt, David A. Wheeler, Andy Wingo, James Wise,
Jörg F. Wittenberger, Kevin A. Wortman, Sascha Zie-
mann.

In addition we would like to thank all the past editors, and
the people who helped them in turn: Hal Abelson, Nor-
man Adams, David Bartley, Alan Bawden, Michael Blair,
Gary Brooks, George Carrette, Andy Cromarty, Pavel Cur-
tis, Jeff Dalton, Olivier Danvy, Ken Dickey, Bruce Duba,
Robert Findler, Andy Freeman, Richard Gabriel, Yekta
Gürsel, Ken Haase, Robert Halstead, Robert Hieb, Paul
Hudak, Morry Katz, Eugene Kohlbecker, Chris Lindblad,
Jacob Matthews, Mark Meyer, Jim Miller, Don Oxley, Jim
Philbin, Kent Pitman, John Ramsdell, Guillermo Rozas,
Mike Shaff, Jonathan Shapiro, Guy Steele, Julie Sussman,
Perry Wagle, Mitchel Wand, Daniel Weise, Henry Wu, and
Ozan Yigit. We thank Carol Fessenden, Daniel Friedman,
and Christopher Haynes for permission to use text from the
Scheme 311 version 4 reference manual. We thank Texas
Instruments, Inc. for permission to use text from the TI
Scheme Language Reference Manual [37]. We gladly ac-
knowledge the influence of manuals for MIT Scheme [24],
T [28], Scheme 84 [15], Common Lisp [34], and Algol
60 [25], as well as the following SRFIs: 0, 1, 4, 6, 9, 11, 13,
16, 30, 34, 39, 43, 46, 62, and 87, all of which are available
at http://srfi.schemers.org.

1. Overview of Scheme 5

DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

1.1. Semantics

This section gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of chapters 3
through 6. For reference purposes, section 7.2 provides a
formal semantics of Scheme.

Scheme is a statically scoped programming language. Each
use of a variable is associated with a lexically apparent
binding of that variable.

Scheme is a dynamically typed language. Types are asso-
ciated with values (also called objects) rather than with
variables. Statically typed languages, by contrast, asso-
ciate types with variables and expressions as well as with
values.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 3.5.

Scheme procedures are objects in their own right. Proce-
dures can be created dynamically, stored in data structures,
returned as results of procedures, and so on.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 6.10.

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, regardless
of whether the procedure needs the result of the evaluation.

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction be-
tween integer and real arithmetic, so important to many
programming languages, does not appear in Scheme. In

its place is a distinction between exact arithmetic, which
corresponds to the mathematical ideal, and inexact arith-
metic on approximations. Exact arithmetic is not limited
to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized prefix notation for programs and other data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this
simple, uniform representation is that Scheme programs
and data can easily be treated uniformly by other Scheme
programs. For example, the eval procedure evaluates a
Scheme program expressed as data.

The read procedure performs syntactic as well as lexical
decomposition of the data it reads. The read procedure
parses its input as data (section 7.1.2), not as program.

The formal syntax of Scheme is described in section 7.1.

1.3. Notation and terminology

1.3.1. Base and optional features

Every identifier defined in this report appears in one or
more of several libraries. Identifiers defined in the base li-
brary are not marked specially in the body of the report.
This library includes the core syntax of Scheme and gener-
ally useful procedures that manipulate data. For example,
the variable abs is bound to a procedure of one argument
that computes the absolute value of a number, and the
variable + is bound to a procedure that computes sums.
The full list all the standard libraries and the identifiers
they export is given in Appendix A.

All implementations of Scheme:

• Must provide the base library and all the identifiers
exported from it.

• May provide or omit the other libraries given in this
report, but each library must either be provided in
its entirety, exporting no additional identifiers, or else
omitted altogether.

• May provide other libraries not described in this re-
port.

• May also extend the function of any identifier in this
report, provided the extensions are not in conflict with
the language reported here.

• Must support portable code by providing a mode of
operation in which the lexical syntax does not conflict
with the lexical syntax described in this report.

6 Revised7 Scheme

1.3.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the
phrase “an error is signaled” to indicate that implementa-
tions must detect and report the error. An error is signaled
by raising a non-continuable exception, as if by the proce-
dure raise as described in section 6.11. The object raised
is implementation-dependent and need not be distinct from
objects previously used for the same purpose. In addition
to errors signaled in situations described in this report, pro-
grammers can signal their own errors and handle signaled
errors.

The phrase “an error that satisfies predicate is signaled”
means that an error is signaled as above. Furthermore, if
the object that is signaled is passed to the specified predi-
cate (such as file-error? or read-error?), the predicate
returns #t.

If such wording does not appear in the discussion of an er-
ror, then implementations are not required to detect or
report the error, though they are encouraged to do so.
Such a situation is sometimes, but not always, referred
to with the phrase “an error.” In such a situation, an im-
plementation may or may not signal an error; if it does
signal an error, the object that is signaled may or may
not satisfy the predicates error-object?, file-error?,
or read-error?. Alternatively, implementations may pro-
vide non-portable extensions.

For example, it is an error for a procedure to be passed
an argument of a type that the procedure is not explicitly
specified to handle, even though such domain errors are
seldom mentioned in this report. Implementations may
signal an error, extend a procedure’s domain of definition
to include such arguments, or fail catastrophically.

This report uses the phrase “may report a violation of an
implementation restriction” to indicate circumstances un-
der which an implementation is permitted to report that
it is unable to continue execution of a correct program
because of some restriction imposed by the implementa-
tion. Implementation restrictions are discouraged, but im-
plementations are encouraged to report violations of im-
plementation restrictions.

For example, an implementation may report a violation of
an implementation restriction if it does not have enough
storage to run a program, or if an arithmetic operation
would produce an exact number that is too large for the
implementation to represent.

If the value of an expression is said to be “unspecified,”
then the expression must evaluate to some object without
signaling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
is returned.

Finally, the words and phrases “must,” “must not,”
“shall,” “shall not,” “should,” “should not,” “may,” “re-
quired,” “recommended,” and “optional,” although not

capitalized in this report, are to be interpreted as described
in RFC 2119 [3]. They are used only with reference to im-
plementer or implementation behavior, not with reference
to programmer or program behavior.

1.3.3. Entry format

Chapters 4 and 6 are organized into entries. Each entry
describes one language feature or a group of related fea-
tures, where a feature is either a syntactic construct or a
procedure. An entry begins with one or more header lines
of the form

template category

for identifiers in the base library, or

template name library category

where name is the short name of a library as defined in
Appendix A.

If category is “syntax,” the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syn-
tactic variables, which are written using angle brackets,
for example 〈expression〉 and 〈variable〉. Syntactic vari-
ables are intended to denote segments of program text; for
example, 〈expression〉 stands for any string of characters
which is a syntactically valid expression. The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.

If category is “auxiliary syntax,” then the entry describes
a syntax binding that occurs only as part of specific sur-
rounding expressions. Any use as an independent syntactic
construct or variable is an error.

If category is “procedure,” then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized .
Thus the header line

(vector-ref vector k) procedure

indicates that the procedure bound to the vector-ref

variable takes two arguments, a vector vector and an exact
non-negative integer k (see below). The header lines

(make-vector k) procedure
(make-vector k fill) procedure

indicate that the make-vector procedure must be defined
to take either one or two arguments.

It is an error for a procedure to be presented with an ar-
gument that it is not specified to handle. For succinctness,
we follow the convention that if an argument name is also

2. Lexical conventions 7

the name of a type listed in section 3.2, then it is an error if
that argument is not of the named type. For example, the
header line for vector-ref given above dictates that the
first argument to vector-ref is a vector. The following
naming conventions also imply type restrictions:

alist association list (list of pairs)
boolean boolean value (#t or #f)
byte exact integer 0 ≤ byte < 256
bytevector bytevector
char character
end exact non-negative integer
k, k1, . . . kj , . . . exact non-negative integer
letter alphabetic character
list, list1, . . . listj , . . . list (see section 6.4)
n, n1, . . . nj , . . . integer
obj any object
pair pair
port port
proc procedure
q, q1, . . . qj , . . . rational number
start exact non-negative integer
string string
symbol symbol
thunk zero-argument procedure
vector vector
x, x1, . . . xj , . . . real number
y, y1, . . . yj , . . . real number
z, z1, . . . zj , . . . complex number

The names start and end are used as indexes into strings,
vectors, and bytevectors. Their use implies the following:

• It is an error if start is greater than end .

• It is an error if end is greater than the length of the
string, vector, or bytevector.

• If start is omitted, it is assumed to be zero.

• If end is omitted, it assumed to be the length of the
string, vector, or bytevector.

• The index start is always inclusive and the index end
is always exclusive. As an example, consider a string.
If start and end are the same, an empty substring is
referred to, and if start is zero and end is the length
of string , then the entire string is referred to.

1.3.4. Evaluation examples

The symbol “=⇒” used in program examples is read “eval-
uates to.” For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that can be represented exter-
nally by the sequence of characters “40.” See section 3.3
for a discussion of external representations of objects.

1.3.5. Naming conventions

By convention, ? is the final character of the names of
procedures that always return a boolean value. Such pro-
cedures are called predicates. Predicates are generally un-
derstood to be side-effect free, except that they may raise
an exception when passed the wrong type of argument.

Similarly, ! is the final character of the names of proce-
dures that store values into previously allocated locations
(see section 3.4). Such procedures are called mutation pro-
cedures. The value returned by a mutation procedure is
unspecified.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

A command is a procedure that does not return useful val-
ues to its continuation.

A thunk is a procedure that does not accept arguments.

2. Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section 7.1.

2.1. Identifiers

An identifier is any sequence of letters, digits, and “ex-
tended identifier characters” provided that it does not have
a prefix which is a valid number. However, the . token (a
single period) used in the list syntax is not an identifier.

All implementations of Scheme must support the following
extended identifier characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

Alternatively, an identifier can be represented by a se-
quence of zero or more characters enclosed within vertical
lines (|), analogous to string literals. Any character, in-
cluding whitespace characters, but excluding the backslash
and vertical line characters, can appear verbatim in such
an identifier. In addition, characters can be specified using
either an 〈inline hex escape〉 or the same escapes available
in strings.

8 Revised7 Scheme

For example, the identifier |H\x65;llo| is the same iden-
tifier as Hello, and in an implementation that supports
the appropriate Unicode character the identifier |\x3BB;|
is the same as the identifier λ. What is more, |\t\t| and
|\x9;\x9;| are the same. Note that || is a valid identifier
that is different from any other identifier.

Here are some examples of identifiers:

... +

+soup+ <=?

->string a34kTMNs

lambda list->vector

q V17a

|two words| |two\x20;words|

the-word-recursion-has-many-meanings

See section 7.1.1 for the formal syntax of identifiers.

Identifiers have two uses within Scheme programs:

• Any identifier can be used as a variable or as a syn-
tactic keyword (see sections 3.1 and 4.3).

• When an identifier appears as a literal or within a
literal (see section 4.1.2), it is being used to denote a
symbol (see section 6.5).

In contrast with earlier revisions of the report [20], the
syntax distinguishes between upper and lower case in iden-
tifiers and in characters specified using their names. How-
ever, it does not distinguish between upper and lower case
in numbers, nor in 〈inline hex escapes〉 used in the syntax
of identifiers, characters, or strings. None of the identi-
fiers defined in this report contain upper-case characters,
even when they appear to do so as a result of the English-
language convention of capitalizing the first word of a sen-
tence.

The following directives give explicit control over case fold-
ing.

#!fold-case

#!no-fold-case

These directives can appear anywhere comments are per-
mitted (see section 2.2) but must be followed by a de-
limiter. They are treated as comments, except that
they affect the reading of subsequent data from the same
port. The #!fold-case directive causes subsequent iden-
tifiers and character names to be case-folded as if by
string-foldcase (see section 6.7). It has no effect on
character literals. The #!no-fold-case directive causes a
return to the default, non-folding behavior.

2.2. Whitespace and comments

Whitespace characters include the space, tab, and new-
line characters. (Implementations may provide additional
whitespace characters such as page break.) Whitespace is
used for improved readability and as necessary to separate
tokens from each other, a token being an indivisible lexi-
cal unit such as an identifier or number, but is otherwise
insignificant. Whitespace can occur between any two to-
kens, but not within a token. Whitespace occurring inside
a string or inside a symbol delimited by vertical lines is
significant.

The lexical syntax includes several comment forms. Com-
ments are treated exactly like whitespace.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears.

Another way to indicate a comment is to prefix a 〈datum〉
(cf. section 7.1.2) with #; and optional 〈whitespace〉. The
comment consists of the comment prefix #;, the space, and
the 〈datum〉 together. This notation is useful for “com-
menting out” sections of code.

Block comments are indicated with properly nested #| and
|# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

(if (= n 0)

#;(= n 1)

1 ;Base case: return 1

(* n (fact (- n 1))))))

2.3. Other notations

For a description of the notations used for numbers, see
section 6.2.

. + - These are used in numbers, and can also occur any-
where in an identifier. A delimited plus or minus sign
by itself is also an identifier. A delimited period (not
occurring within a number or identifier) is used in the
notation for pairs (section 6.4), and to indicate a rest-
parameter in a formal parameter list (section 4.1.4).
Note that a sequence of two or more periods is an
identifier.

() Parentheses are used for grouping and to notate lists
(section 6.4).

’ The apostrophe (single quote) character is used to indi-
cate literal data (section 4.1.2).

3. Basic concepts 9

` The grave accent (backquote) character is used to indi-
cate partly constant data (section 4.2.8).

, ,@ The character comma and the sequence comma at-
sign are used in conjunction with quasiquotation (sec-
tion 4.2.8).

" The quotation mark character is used to delimit strings
(section 6.7).

\ Backslash is used in the syntax for character constants
(section 6.6) and as an escape character within string
constants (section 6.7) and identifiers (section 7.1.1).

[] { } Left and right square and curly brackets (braces)
are reserved for possible future extensions to the lan-
guage.

The number sign is used for a variety of purposes de-
pending on the character that immediately follows it:

#t #f These are the boolean constants (section 6.3), along
with the alternatives #true and #false.

#\ This introduces a character constant (section 6.6).

#(This introduces a vector constant (section 6.8). Vector
constants are terminated by) .

#u8(This introduces a bytevector constant (section 6.9).
Bytevector constants are terminated by) .

#e #i #b #o #d #x These are used in the notation for
numbers (section 6.2.5).

#〈n〉= #〈n〉# These are used for labeling and referencing
other literal data (section 2.4).

2.4. Datum labels

#〈n〉=〈datum〉 lexical syntax
#〈n〉# lexical syntax

The lexical syntax #〈n〉=〈datum〉 reads the same as
〈datum〉, but also results in 〈datum〉 being labelled by 〈n〉.
It is an error if 〈n〉 is not a sequence of digits.

The lexical syntax #〈n〉# serves as a reference to some ob-
ject labelled by #〈n〉=; the result is the same object as the
#〈n〉= (see section 6.1).

Together, these syntaxes permit the notation of structures
with shared or circular substructure.

(let ((x (list ’a ’b ’c)))

(set-cdr! (cddr x) x)

x) =⇒ #0=(a b c . #0#)

The scope of a datum label is the portion of the outermost
datum in which it appears that is to the right of the label.
Consequently, a reference #〈n〉# can occur only after a la-
bel #〈n〉=; it is an error to attempt a forward reference. In
addition, it is an error if the reference appears as the la-
belled object itself (as in #〈n〉= #〈n〉#), because the object
labelled by #〈n〉= is not well defined in this case.

It is an error for a 〈program〉 or 〈library〉 to include circular
references except in literals. In particular, it is an error for
quasiquote (section 4.2.8) to contain them.

#1=(begin (display #\x) #1#)

=⇒ error

3. Basic concepts

3.1. Variables, syntactic keywords, and re-
gions

An identifier can name either a type of syntax or a location
where a value can be stored. An identifier that names a
type of syntax is called a syntactic keyword and is said to be
bound to a transformer for that syntax. An identifier that
names a location is called a variable and is said to be bound
to that location. The set of all visible bindings in effect at
some point in a program is known as the environment in
effect at that point. The value stored in the location to
which a variable is bound is called the variable’s value.
By abuse of terminology, the variable is sometimes said
to name the value or to be bound to the value. This is
not quite accurate, but confusion rarely results from this
practice.

Certain expression types are used to create new kinds of
syntax and to bind syntactic keywords to those new syn-
taxes, while other expression types create new locations
and bind variables to those locations. These expression
types are called binding constructs. Those that bind syn-
tactic keywords are listed in section 4.3. The most fun-
damental of the variable binding constructs is the lambda

expression, because all other variable binding constructs
can be explained in terms of lambda expressions. The
other variable binding constructs are let, let*, letrec,
letrec*, let-values, let*-values, and do expressions
(see sections 4.1.4, 4.2.2, and 4.2.4).

Scheme is a language with block structure. To each place
where an identifier is bound in a program there corresponds
a region of the program text within which the binding is
visible. The region is determined by the particular bind-
ing construct that establishes the binding; if the binding is
established by a lambda expression, for example, then its
region is the entire lambda expression. Every mention of
an identifier refers to the binding of the identifier that es-
tablished the innermost of the regions containing the use.

10 Revised7 Scheme

If there is no binding of the identifier whose region con-
tains the use, then the use refers to the binding for the
variable in the global environment, if any (chapters 4 and
6); if there is no binding for the identifier, it is said to be
unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predi-
cates:

boolean? bytevector?

char? eof-object?

null? number?

pair? port?

procedure? string?

symbol? vector?

and all predicates created by define-record-type.

These predicates define the types boolean, bytevector, char-
acter, the empty list object, eof-object, number, pair, port,
procedure, string, symbol, vector, and all record types.

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. As explained in section 6.3, all values
count as true in such a test except for #f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.

3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters “28”, and an external
representation of a list consisting of the integers 8 and 13
is the sequence of characters “(8 13)”.

The external representation of an object is not neces-
sarily unique. The integer 28 also has representations
“#e28.000” and “#x1c”, and the list in the previous para-
graph also has the representations “(08 13)” and “(8
. (13 . ()))” (see section 6.4).

Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may define
representations for them).

An external representation can be written in a program to
obtain the corresponding object (see quote, section 4.1.2).

External representations can also be used for input and
output. The procedure read (section 6.13.2) parses ex-
ternal representations, and the procedure write (sec-
tion 6.13.3) generates them. Together, they provide an
elegant and powerful input/output facility.

Note that the sequence of characters “(+ 2 6)” is not an
external representation of the integer 8, even though it is an
expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme’s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it is not
always obvious out of context whether a given sequence of
characters is intended to denote data or program, but it is
also a source of power, since it facilitates writing programs
such as interpreters and compilers that treat programs as
data (or vice versa).

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter 6.

3.4. Storage model

Variables and objects such as pairs, strings, vectors, and
bytevectors implicitly denote locations or sequences of lo-
cations. A string, for example, denotes as many locations
as there are characters in the string. A new value can be
stored into one of these locations using the string-set!

procedure, but the string continues to denote the same lo-
cations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section 6.1) to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in
use.

Whenever this report speaks of storage being newly allo-
cated for a variable or object, what is meant is that an
appropriate number of locations are chosen from the set
of locations that are not in use, and the chosen locations
are marked to indicate that they are now in use before the
variable or object is made to denote them. Notwithstand-
ing this, it is understood that the empty list cannot be
newly allocated, because it is a unique object. It is also
understood that empty strings, empty vectors, and empty
bytevectors, which contain no locations, may or may not
be newly allocated.

Every object that denotes locations is either mutable or
immutable. Literal constants, the strings returned by
symbol->string, and possibly the environment returned
by scheme-report-environment are immutable objects.
All objects created by the other procedures listed in this
report are mutable. It is an error to attempt to store a
new value into a location that is denoted by an immutable
object.

3. Basic concepts 11

These locations are to be understood as conceptual, not
physical. Hence, they do not necessarily correspond to
memory addresses, and even if they do, the memory ad-
dress might not be constant.

Rationale: In many systems it is desirable for constants (i.e.

the values of literal expressions) to reside in read-only memory.

Making it an error to alter constants permits this implementa-

tion strategy, while not requiring other systems to distinguish

between mutable and immutable objects.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are tail calls. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure might still return. Note that this in-
cludes calls that might be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [6].

Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in
a tail context. The same is true of all the bodies of
case-lambda expressions.

(lambda 〈formals〉
〈definition〉* 〈expression〉* 〈tail expression〉)

(case-lambda (〈formals〉 〈tail body〉)*)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from rules in the
grammar given in chapter 7 by replacing some occur-
rences of 〈body〉 with 〈tail body〉, some occurrences of
〈expression〉 with 〈tail expression〉, and some occur-
rences of 〈sequence〉 with 〈tail sequence〉. Only those
rules that contain tail contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(when 〈test〉 〈tail sequence〉)
(unless 〈test〉 〈tail sequence〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)
(let* (〈binding spec〉*) 〈tail body〉)
(letrec (〈binding spec〉*) 〈tail body〉)
(letrec* (〈binding spec〉*) 〈tail body〉)
(let-values (〈mv binding spec〉*) 〈tail body〉)
(let*-values (〈mv binding spec〉*) 〈tail body〉)

(let-syntax (〈syntax spec〉*) 〈tail body〉)
(letrec-syntax (〈syntax spec〉*) 〈tail body〉)

(begin 〈tail sequence〉)

(do (〈iteration spec〉*)
(〈test〉 〈tail sequence〉)

〈expression〉*)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

12 Revised7 Scheme

〈tail body〉 −→ 〈definition〉* 〈tail sequence〉
〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond or case expression is in a tail con-
text, and has a clause of the form (〈expression1〉 =>

〈expression2〉) then the (implied) call to the proce-
dure that results from the evaluation of 〈expression2〉
is in a tail context. 〈expression2〉 itself is not in a tail
context.

Certain procedures defined in this report are also re-
quired to perform tail calls. The first argument passed
to apply and to call-with-current-continuation, and
the second argument passed to call-with-values, must
be called via a tail call. Similarly, eval must evaluate its
first argument as if it were in tail position within the eval

procedure.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations may recognize that some non-tail calls,

such as the call to h above, can be evaluated as though they

were tail calls. In the example above, the let expression could

be compiled as a tail call to h. (The possibility of h return-

ing an unexpected number of values can be ignored, because

in that case the effect of the let is explicitly unspecified and

implementation-dependent.)

4. Expressions

Expression types are categorized as primitive or derived.
Primitive expression types include variables and procedure
calls. Derived expression types are not semantically primi-
tive, but can instead be defined as macros. Suitable syntax
definitions of some of the derived expressions are given in
section 7.3.

The procedures force, promise?, make-promise, and
make-parameter are also described in this chapter be-
cause they are intimately associated with the delay,
delay-force, and parameterize expression types.

4.1. Primitive expression types

4.1.1. Variable references

〈variable〉 syntax

An expression consisting of a variable (section 3.1) is a

variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is an error to reference an unbound variable.

(define x 28)

x =⇒ 28

4.1.2. Literal expressions

(quote 〈datum〉) syntax
’〈datum〉 syntax
〈constant〉 syntax

(quote 〈datum〉) evaluates to 〈datum〉. 〈Datum〉 can be
any external representation of a Scheme object (see sec-
tion 3.3). This notation is used to include literal constants
in Scheme code.

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

(quote 〈datum〉) can be abbreviated as ’〈datum〉. The
two notations are equivalent in all respects.

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

Numerical constants, string constants, character constants,
vector constants, bytevector constants, and boolean con-
stants evaluate to themselves; they need not be quoted.

’145932 =⇒ 145932

145932 =⇒ 145932

’"abc" =⇒ "abc"

"abc" =⇒ "abc"

’# =⇒ #

=⇒

’#(a 10) =⇒ #(a 10)

#(a 10) =⇒ #(a 10)

’#u8(64 65) =⇒ #u8(64 65)

#u8(64 65) =⇒ #u8(64 65)

’#t =⇒ #t

#t =⇒ #t

As noted in section 3.4, it is an error to attempt to alter
a constant (i.e. the value of a literal expression) using a
mutation procedure like set-car! or string-set!.

4.1.3. Procedure calls

(〈operator〉 〈operand1〉 . . .) syntax

A procedure call is written by enclosing in parentheses an
expression for the procedure to be called followed by ex-
pressions for the arguments to be passed to it. The op-
erator and operand expressions are evaluated (in an un-
specified order) and the resulting procedure is passed the
resulting arguments.

4. Expressions 13

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

The procedures in this document are available as the val-
ues of variables exported by the standard libraries. For ex-
ample, the addition and multiplication procedures in the
above examples are the values of the variables + and * in
the base library. New procedures are created by evaluating
lambda expressions (see section 4.1.4).

Procedure calls can return any number of values (see
values in section 6.10). Most of the procedures defined
in this report return one value or, for procedures such as
apply, pass on the values returned by a call to one of their
arguments. Exceptions are noted in the individual descrip-
tions.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the empty list, (), is a legiti-

mate expression evaluating to itself. In Scheme, it is an error.

4.1.4. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 is a formal arguments list as described
below, and 〈body〉 is a sequence of zero or more definitions
followed by one or more expressions.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, and the corresponding ac-
tual argument values will be stored in those locations. (A
fresh location is one that is distinct from every previously
existing location.) Next, the expressions in the body of the
lambda expression (which, if it contains definitions, repre-
sents a letrec* form — see section 4.2.2) will be evaluated
sequentially in the extended environment. The results of
the last expression in the body will be returned as the re-
sults of the procedure call.

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 have one of the following forms:

• (〈variable1〉 . . .): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the
arguments will be stored in fresh locations that are
bound to the corresponding variables.

• 〈variable〉: The procedure takes any number of argu-
ments; when the procedure is called, the sequence of
actual arguments is converted into a newly allocated
list, and the list is stored in a fresh location that is
bound to 〈variable〉.

• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n is
the number of formal arguments before the period (it
is an error if there is not at least one). The value stored
in the binding of the last variable will be a newly allo-
cated list of the actual arguments left over after all the
other actual arguments have been matched up against
the other formal arguments.

It is an error for a 〈variable〉 to appear more than once in
〈formals〉.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

Each procedure created as the result of evaluating a lambda

expression is (conceptually) tagged with a storage location,
in order to make eqv? and eq? work on procedures (see
section 6.1).

4.1.5. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 are expres-
sions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see section 6.3),
then 〈consequent〉 is evaluated and its values are returned.
Otherwise 〈alternate〉 is evaluated and its values are re-
turned. If 〈test〉 yields a false value and no 〈alternate〉 is
specified, then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

14 Revised7 Scheme

4.1.6. Assignments

(set! 〈variable〉 〈expression〉) syntax

Semantics: 〈Expression〉 is evaluated, and the resulting
value is stored in the location to which 〈variable〉 is bound.
It is an error if 〈variable〉 is not bound either in some region
enclosing the set! expression or else globally. The result
of the set! expression is unspecified.

(define x 2)

(+ x 1) =⇒ 3

(set! x 4) =⇒ unspecified
(+ x 1) =⇒ 5

4.1.7. Inclusion

(include 〈string1〉 〈string2〉 . . .) syntax
(include-ci 〈string1〉 〈string2〉 . . .) syntax

Semantics: Both include and include-ci take one or
more filenames expressed as string literals, apply an
implementation-specific algorithm to find corresponding
files, read the contents of the files in the specified order
as if by repeated applications of read, and effectively re-
place the include or include-ci expression with a begin

expression containing what was read from the files. The
difference between the two is that include-ci reads each
file as if it began with the #!fold-case directive, while
include does not.

Note: Implementations are encouraged to search for files in

the directory which contains the including file, and to provide

a way for users to specify other directories to search.

4.2. Derived expression types

The constructs in this section are hygienic, as discussed
in section 4.3. For reference purposes, section 7.3 gives
syntax definitions that will convert most of the constructs
described in this section into the primitive constructs de-
scribed in the previous section.

4.2.1. Conditionals

(cond 〈clause1〉 〈clause2〉 . . .) syntax
else auxiliary syntax
=> auxiliary syntax

Syntax: 〈Clauses〉 take one of two forms, either

(〈test〉 〈expression1〉 . . .)

where 〈test〉 is any expression, or

(〈test〉 => 〈expression〉)

The last 〈clause〉 can be an “else clause,” which has the
form

(else 〈expression1〉 〈expression2〉 . . .).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈clause〉s in order until
one of them evaluates to a true value (see section 6.3).
When a 〈test〉 evaluates to a true value, the remaining
〈expression〉s in its 〈clause〉 are evaluated in order, and the
results of the last 〈expression〉 in the 〈clause〉 are returned
as the results of the entire cond expression.

If the selected 〈clause〉 contains only the 〈test〉 and no
〈expression〉s, then the value of the 〈test〉 is returned as
the result. If the selected 〈clause〉 uses the => alternate
form, then the 〈expression〉 is evaluated. It is an error if
its value is not a procedure that accepts one argument.
This procedure is then called on the value of the 〈test〉 and
the values returned by this procedure are returned by the
cond expression.

If all 〈test〉s evaluate to #f, and there is no else clause,
then the result of the conditional expression is unspecified;
if there is an else clause, then its 〈expression〉s are evaluated
in order, and the values of the last one are returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #f)) =⇒ 2

(case 〈key〉 〈clause1〉 〈clause2〉 . . .) syntax

Syntax: 〈Key〉 can be any expression. Each 〈clause〉 has
the form

((〈datum1〉 . . .) 〈expression1〉 〈expression2〉 . . .),

where each 〈datum〉 is an external representation of some
object. It is an error if any of the 〈datum〉s are the same
anywhere in the expression. Alternatively, a 〈clause〉 can
be of the form

((〈datum1〉 . . .) => 〈expression〉)

The last 〈clause〉 can be an “else clause,” which has one of
the forms

(else 〈expression1〉 〈expression2〉 . . .)

or

(else => 〈expression〉).

Semantics: A case expression is evaluated as follows.
〈Key〉 is evaluated and its result is compared against each
〈datum〉. If the result of evaluating 〈key〉 is the same (in
the sense of eqv?; see section 6.1) to a 〈datum〉, then the
expressions in the corresponding 〈clause〉 are evaluated in
order and the results of the last expression in the 〈clause〉
are returned as the results of the case expression.

4. Expressions 15

If the result of evaluating 〈key〉 is different from every
〈datum〉, then if there is an else clause, its expressions are
evaluated and the results of the last are the results of the
case expression; otherwise the result of the case expres-
sion is unspecified.

If the selected 〈clause〉 or else clause uses the => alternate
form, then the 〈expression〉 is evaluated. It is an error if
its value is not a procedure accepting one argument. This
procedure is then called on the value of the 〈key〉 and the
values returned by this procedure are returned by the case
expression.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ unspecified
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else => (lambda (x) x))) =⇒ c

(and 〈test1〉 . . .) syntax

Semantics: The 〈test〉 expressions are evaluated from left
to right, and if any expression evaluates to #f (see sec-
tion 6.3), then #f is returned. Any remaining expressions
are not evaluated. If all the expressions evaluate to true
values, the values of the last expression are returned. If
there are no expressions, then #t is returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

(or 〈test1〉 . . .) syntax

Semantics: The 〈test〉 expressions are evaluated from left
to right, and the value of the first expression that evaluates
to a true value (see section 6.3) is returned. Any remaining
expressions are not evaluated. If all expressions evaluate
to #f or if there are no expressions, then #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or (memq ’b ’(a b c))

(/ 3 0)) =⇒ (b c)

(when 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

Syntax: The 〈test〉 is an expression.

Semantics: The test is evaluated, and if it evaluates to
a true value, the expressions are evaluated in order. The
result of the when expression is unspecified.

(when (= 1 1.0)

(display "1")

(display "2")) =⇒ unspecified
and prints 12

(unless 〈test〉 〈expression1〉 〈expression2〉 . . .) syntax

Syntax: The 〈test〉 is an expression.

Semantics: The test is evaluated, and if it evaluates to #f,
the expressions are evaluated in order. The result of the
unless expression is unspecified.

(unless (= 1 1.0)

(display "1")

(display "2")) =⇒ unspecified
and prints nothing

(cond-expand 〈ce-clause1〉 〈ce-clause2〉 . . .) syntax

Syntax: The cond-expand expression type provides a way
to statically expand different expressions depending on the
implementation. A 〈ce-clause〉 takes the following form:

(〈feature requirement〉 〈expression〉 . . .)
The last clause can be an “else clause,” which has the form

(else 〈expression〉 . . .)
A 〈feature requirement〉 takes one of the following forms:

• 〈feature identifier〉

• (library 〈library name〉)

• (and 〈feature requirement〉 . . .)

• (or 〈feature requirement〉 . . .)

• (not 〈feature requirement〉)

Semantics: Each implementation maintains a list of
feature identifiers which are present, as well as a list
of libraries which can be imported. The value of a
〈feature requirement〉 is determined by replacing each
〈feature identifier〉 and (library 〈library name〉) on the
implementation’s lists with #t, and all other feature iden-
tifiers and library names with #f, then evaluating the re-
sulting expression as a Scheme boolean expression under
the normal interpretation of and, or, and not.

A cond-expand is then expanded by evaluating the
〈feature requirement〉s of successive 〈ce-clause〉s in order
until one of them returns #t. When a true clause is found,
the corresponding 〈expression〉s are expanded to a begin,
and the remaining clauses are ignored. If none of the
〈feature requirement〉s evaluate to #t, then if there is an
else clause, its 〈expression〉s are included. Otherwise, the
behavior of the cond-expand is unspecified. Unlike cond,
cond-expand does not depend on the value of any vari-
ables.

The exact features provided are implementation-defined,
but for portability a core set of features is given in ap-
pendix B.

16 Revised7 Scheme

4.2.2. Binding constructs

The binding constructs let, let*, letrec, letrec*,
let-values, and let*-values give Scheme a block struc-
ture, like Algol 60. The syntax of the first four constructs
is identical, but they differ in the regions they establish
for their variable bindings. In a let expression, the initial
values are computed before any of the variables become
bound; in a let* expression, the bindings and evaluations
are performed sequentially; while in letrec and letrec*

expressions, all the bindings are in effect while their initial
values are being computed, thus allowing mutually recur-
sive definitions. The let-values and let*-values con-
structs are analogous to let and let* respectively, but
are designed to handle multiple-valued expressions, bind-
ing different identifiers to the returned values.

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈variable1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is a sequence
of zero or more definitions followed by a sequence of one
or more expressions as described in section 4.1.4. It is an
error for a 〈variable〉 to appear more than once in the list
of variables being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the values of
the last expression of 〈body〉 are returned. Each binding
of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also “named let,” section 4.2.4.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion 4.1.4.

Semantics: The let* binding construct is similar to let,
but the bindings are performed sequentially from left to
right, and the region of a binding indicated by (〈variable〉
〈init〉) is that part of the let* expression to the right of
the binding. Thus the second binding is done in an en-
vironment in which the first binding is visible, and so on.
The 〈variable〉s need not be distinct.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion 4.1.4. It is an error for a 〈variable〉 to appear more
than once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations
holding unspecified values, the 〈init〉s are evaluated in the
resulting environment (in some unspecified order), each
〈variable〉 is assigned to the result of the corresponding
〈init〉, the 〈body〉 is evaluated in the resulting environment,
and the values of the last expression in 〈body〉 are returned.
Each binding of a 〈variable〉 has the entire letrec expres-
sion as its region, making it possible to define mutually
recursive procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t

One restriction on letrec is very important: if it is not
possible to evaluate each 〈init〉 without assigning or refer-
ring to the value of any 〈variable〉, it is an error. The
restriction is necessary because letrec is defined in terms
of a procedure call where a lambda expression binds the
〈variable〉s to the values of the 〈init〉s. In the most com-
mon uses of letrec, all the 〈init〉s are lambda expressions
and the restriction is satisfied automatically.

(letrec* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈variable1〉 〈init1〉) . . .),

and 〈body〉 is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion 4.1.4. It is an error for a 〈variable〉 to appear more
than once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations,
each 〈variable〉 is assigned in left-to-right order to the re-
sult of evaluating the corresponding 〈init〉, the 〈body〉 is

4. Expressions 17

evaluated in the resulting environment, and the values of
the last expression in 〈body〉 are returned. Despite the left-
to-right evaluation and assignment order, each binding of a
〈variable〉 has the entire letrec* expression as its region,
making it possible to define mutually recursive procedures.

If it is not possible to evaluate each 〈init〉 without assigning
or referring to the value of the corresponding 〈variable〉
or the 〈variable〉 of any of the bindings that follow it in
〈bindings〉, it is an error. Another restriction is that it is
an error to invoke the continuation of an 〈init〉 more than
once.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

(let-values 〈mv binding spec〉 〈body〉) syntax

Syntax: 〈Mv binding spec〉 has the form

((〈formals1〉 〈init1〉) . . .),

where each 〈init〉 is an expression, and 〈body〉 is zero or
more definitions followed by a sequence of one or more
expressions as described in section 4.1.4. It is an error for
a variable to appear more than once in the set of 〈formals〉.

Semantics: The 〈init〉s are evaluated in the current en-
vironment (in some unspecified order) as if by invoking
call-with-values, and the variables occurring in the
〈formals〉 are bound to fresh locations holding the values
returned by the 〈init〉s, where the 〈formals〉 are matched
to the return values in the same way that the 〈formals〉
in a lambda expression are matched to the arguments in
a procedure call. Then, the 〈body〉 is evaluated in the ex-
tended environment, and the values of the last expression
of 〈body〉 are returned. Each binding of a 〈variable〉 has
〈body〉 as its region.

It is an error if the 〈formals〉 do not match the number of
values returned by the corresponding 〈init〉.

(let-values (((root rem) (exact-integer-sqrt 32)))

(* root rem)) =⇒ 35

(let*-values 〈mv binding spec〉 〈body〉) syntax

Syntax: 〈Mv binding spec〉 has the form

((〈formals〉 〈init〉) . . .),

and 〈body〉 is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion 4.1.4. In each 〈formals〉, it is an error if any variable
appears more than once.

Semantics: The let*-values construct is similar to
let-values, but the 〈init〉s are evaluated and bindings cre-
ated sequentially from left to right, with the region of the
bindings of each 〈formals〉 including the 〈init〉s to its right
as well as 〈body〉. Thus the second 〈init〉 is evaluated in
an environment in which the first set of bindings is visible
and initialized, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

4.2.3. Sequencing

Both of Scheme’s sequencing constructs are named begin,
but the two have slightly different forms and uses:

(begin 〈expression or definition〉 . . .) syntax

This form of begin can appear as part of a 〈body〉, or
at the outermost level of a 〈program〉, or at the REPL,
or directly nested in a begin that is itself of this form.
It causes the contained expressions and definitions to be
evaluated exactly as if the enclosing begin construct were
not present.

Rationale: This form is commonly used in the output of macros

(see section 4.3) which need to generate multiple definitions and

splice them into the context in which they are expanded.

(begin 〈expression1〉 〈expression2〉 . . .) syntax

This form of begin can be used as an ordinary expression.
The 〈expression〉s are evaluated sequentially from left to
right, and the values of the last 〈expression〉 are returned.
This expression type is used to sequence side effects such
as assignments or input and output.

(define x 0)

(and (= x 0)

(begin (set! x 5)

(+ x 1))) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

Note that there is a third form of begin used as a library
declaration: see section 5.6.1.

18 Revised7 Scheme

4.2.4. Iteration

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . .)

(〈test〉 〈expression〉 . . .)
〈command〉 . . .)

Syntax: All of 〈init〉, 〈step〉, 〈test〉, and 〈command〉 are
expressions.

Semantics: A do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on
each iteration. When a termination condition is met, the
loop exits after evaluating the 〈expression〉s.
A do expression is evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is
false (see section 6.3), then the 〈command〉 expressions are
evaluated in order for effect, the 〈step〉 expressions are eval-
uated in some unspecified order, the 〈variable〉s are bound
to fresh locations, the results of the 〈step〉s are stored in the
bindings of the 〈variable〉s, and the next iteration begins.

If 〈test〉 evaluates to a true value, then the 〈expression〉s
are evaluated from left to right and the values of the last
〈expression〉 are returned. If no 〈expression〉s are present,
then the value of the do expression is unspecified.

The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s. It is an error
for a 〈variable〉 to appear more than once in the list of do
variables.

A 〈step〉 can be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

(let 〈variable〉 〈bindings〉 〈body〉) syntax

Semantics: “Named let” is a variant on the syntax of
let which provides a more general looping construct than
do and can also be used to express recursion. It has the
same syntax and semantics as ordinary let except that
〈variable〉 is bound within 〈body〉 to a procedure whose
formal arguments are the bound variables and whose body

is 〈body〉. Thus the execution of 〈body〉 can be repeated
by invoking the procedure named by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

4.2.5. Delayed evaluation

(delay 〈expression〉) lazy library syntax

Semantics: The delay construct is used together with
the procedure force to implement lazy evaluation or call
by need. (delay 〈expression〉) returns an object called a
promise which at some point in the future can be asked (by
the force procedure) to evaluate 〈expression〉, and deliver
the resulting value. The effect of 〈expression〉 returning
multiple values is unspecified.

(delay-force 〈expression〉) lazy library syntax

Semantics: The expression (delay-force expression) is
conceptually similar to (delay (force expression)), with
the difference that forcing the result of delay-force will
in effect result in a tail call to (force expression), while
forcing the result of (delay (force expression)) might
not. Thus iterative lazy algorithms that might result in a
long series of chains of delay and force can be rewritten
using delay-force to prevent consuming unbounded space
during evaluation.

(force promise) lazy library procedure

The force procedure forces the value of a promise created
by delay, delay-force, or make-promise. If no value has
been computed for the promise, then a value is computed
and returned. The value of the promise must be cached
(or “memoized”) so that if it is forced a second time, the
previously computed value is returned. Consequently, a
delayed expression is evaluated using the parameter values
and exception handler of the call to force which first re-
quested its value. If promise is not a promise, it may be
returned unchanged.

(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

4. Expressions 19

=⇒ (3 3)

(define integers

(letrec ((next

(lambda (n)

(delay (cons n (next (+ n 1)))))))

(next 0)))

(define head

(lambda (stream) (car (force stream))))

(define tail

(lambda (stream) (cdr (force stream))))

(head (tail (tail integers)))

=⇒ 2

The following example is a mechanical transformation of
a lazy stream-filtering algorithm into Scheme. Each call
to a constructor is wrapped in delay, and each argument
passed to a deconstructor is wrapped in force. The use
of (delay-force ...) instead of (delay (force ...))

around the body of the procedure ensures that an ever-
growing sequence of pending promises does not exhaust
available storage, because force will in effect force such
sequences iteratively.

(define (stream-filter p? s)

(delay-force

(if (null? (force s))

(delay ’())

(let ((h (car (force s)))

(t (cdr (force s))))

(if (p? h)

(delay (cons h (stream-filter p? t)))

(stream-filter p? t))))))

(head (tail (tail (stream-filter odd? integers))))

=⇒ 5

The following examples are not intended to illustrate good
programming style, as delay, force, and delay-force

are mainly intended for programs written in the functional
style. However, they do illustrate the property that only
one value is computed for a promise, no matter how many
times it is forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise
(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Various extensions to this semantics of delay, force and
delay-force are supported in some implementations:

• Calling force on an object that is not a promise may
simply return the object.

• It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value. That is, expressions like the following
may evaluate to either #t or to #f, depending on the
implementation:

(eqv? (delay 1) 1) =⇒ unspecified
(pair? (delay (cons 1 2))) =⇒ unspecified

• Implementations may implement “implicit forcing,”
where the value of a promise is forced by procedures
that operate only on arguments of a certain type, like
cdr and *. However, procedures that operate uni-
formly on their arguments, like list, must not force
them.

(+ (delay (* 3 7)) 13) =⇒ unspecified
(car

(list (delay (* 3 7)) 13))=⇒ a promise

(promise? obj) lazy library procedure

The promise? procedure returns #t if its argument is a
promise, and #f otherwise. Note that promises are not
necessarily disjoint from other Scheme types such as pro-
cedures.

(make-promise obj) lazy library procedure

The make-promise procedure returns a promise which,
when forced, will return obj . It is similar to delay, but
does not delay its argument: it is a procedure rather than
syntax. If obj is already a promise, it is returned.

4.2.6. Dynamic bindings

The dynamic extent of a procedure call is the time be-
tween when it is initiated and when it returns. In Scheme,
call-with-current-continuation (section 6.10) allows
reentering a dynamic extent after its procedure call has re-
turned. Thus, the dynamic extent of a call might not be a
single, continuous time period.

This sections introduces parameter objects, which can be
bound to new values for the duration of a dynamic extent.
The set of all parameter bindings at a given time is called
the dynamic environment.

(make-parameter init) procedure
(make-parameter init converter) procedure

Returns a newly allocated parameter object, which is a pro-
cedure that accepts zero arguments and returns the value

20 Revised7 Scheme

associated with the parameter object. Initially, this value
is the value of (converter init), or of init if the conversion
procedure converter is not specified. The associated value
can be temporarily changed using parameterize, which is
described below.

The effect of passing arguments to a parameter object is
implementation-dependent.

(parameterize ((〈param1〉 〈value1〉) . . .) syntax
〈body〉)

Syntax: Both 〈param1〉 and 〈value1〉 are expressions.

It is an error if the value of any 〈param〉 expression is not a

parameter object.

Semantics: A parameterize expression is used to change
the values returned by specified parameter objects during
the evaluation of the body.

The 〈param〉 and 〈value〉 expressions are evaluated in an
unspecified order. The 〈body〉 is evaluated in a dynamic
environment in which calls to the parameters return the
results of passing the corresponding values to the conver-
sion procedure specified when the parameters were created.
Then the previous values of the parameters are restored
without passing them to the conversion procedure. The
results of the last expression in the 〈body〉 are returned as
the results of the entire parameterize expression.

Note: If the conversion procedure is not idempotent, the results

of (parameterize ((x (x))) ...), which appears to bind the

parameter x to its current value, might not be what the user

expects.

If an implementation supports multiple threads of execu-
tion, then parameterize must not change the associated
values of any parameters in any thread other than the cur-
rent thread and threads created inside 〈body〉.

Parameter objects can be used to specify configurable set-
tings for a computation without the need to pass the value
to every procedure in the call chain explicitly.

(define radix

(make-parameter

10

(lambda (x)

(if (and (exact-integer? x) (<= 2 x 16))

x

(error "invalid radix")))))

(define (f n) (number->string n (radix)))

(f 12) =⇒ "12"

(parameterize ((radix 2))

(f 12)) =⇒ "1100"

(f 12) =⇒ "12"

(radix 16) =⇒ unspecified

(parameterize ((radix 0))

(f 12)) =⇒ error

4.2.7. Exception handling

(guard (〈variable〉 syntax
〈cond clause1〉 〈cond clause2〉 . . .)

〈body〉)

Syntax: Each 〈cond clause〉 is as in the specification of
cond.

Semantics: The 〈body〉 is evaluated with an exception han-
dler that binds the raised object (see raise in section 6.11)
to 〈variable〉 and, within the scope of that binding, evalu-
ates the clauses as if they were the clauses of a cond ex-
pression. That implicit cond expression is evaluated with
the continuation and dynamic environment of the guard

expression. If every 〈cond clause〉’s 〈test〉 evaluates to #f

and there is no else clause, then raise-continuable is
invoked on the raised object within the dynamic environ-
ment of the original call to raise or raise-continuable,
except that the current exception handler is that of the
guard expression.

See section 6.11 for a more complete discussion of excep-
tions.

(guard (condition

((assq ’a condition) => cdr)

((assq ’b condition)))

(raise (list (cons ’a 42))))

=⇒ 42

(guard (condition

((assq ’a condition) => cdr)

((assq ’b condition)))

(raise (list (cons ’b 23))))

=⇒ (b . 23)

4.2.8. Quasiquotation

(quasiquote 〈qq template〉) syntax
`〈qq template〉 syntax
unquote auxiliary syntax
, auxiliary syntax
unquote-splicing auxiliary syntax
,@ auxiliary syntax

“Quasiquote” expressions are useful for constructing a list
or vector structure when some but not all of the desired
structure is known in advance. If no commas appear within
the 〈qq template〉, the result of evaluating `〈qq template〉
is equivalent to the result of evaluating ’〈qq template〉. If
a comma appears within the 〈qq template〉, however, the
expression following the comma is evaluated (“unquoted”)

4. Expressions 21

and its result is inserted into the structure instead of the
comma and the expression. If a comma appears followed
without intervening whitespace by a commercial at-sign
(@), then it is an error if the following expression does not
evaluate to a list; the opening and closing parentheses of
the list are then “stripped away” and the elements of the
list are inserted in place of the comma at-sign expression
sequence. A comma at-sign normally appears only within
a list or vector 〈qq template〉.

Note: In order to unquote an identifier beginning with @, it is

necessary to use either an explicit unquote or to put whitespace

after the comma, to avoid colliding with the comma at-sign

sequence.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

`((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

(let ((foo ’(foo bar)) (@baz ’baz))

`(list ,@foo , @baz))

=⇒ (list foo bar baz)

Quasiquote expressions can be nested. Substitutions are
made only for unquoted components appearing at the same
nesting level as the outermost quasiquote. The nesting
level increases by one inside each successive quasiquotation,
and decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)

A quasiquote expression may return either newly allocated,
mutable objects or literal structure for any structure that
is constructed at run time during the evaluation of the
expression. Portions that do not need to be rebuilt are
always literal. Thus,

(let ((a 3)) `((1 2) ,a ,4 ,’five 6))

may be treated as equivalent to either of the following ex-
pressions:

`((1 2) 3 4 five 6)

(let ((a 3))

(cons ’(1 2)

(cons a (cons 4 (cons ’five ’(6))))))

However, it is not equivalent to this expression:

(let ((a 3)) (list (list 1 2) a 4 ’five 6))

The two notations `〈qq template〉 and (quasiquote

〈qq template〉) are identical in all respects. ,〈expression〉
is identical to (unquote 〈expression〉), and ,@〈expression〉
is identical to (unquote-splicing 〈expression〉). The
write procedure may output either format.

(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ `(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))

It is an error if any of the identifiers quasiquote,
unquote, or unquote-splicing appear in positions within
a 〈qq template〉 otherwise than as described above.

4.2.9. Case-lambda

(case-lambda 〈clause〉 . . .) case-lambda library syntax

Syntax: Each 〈clause〉 is of the form (〈formals〉 〈body〉),
where 〈formals〉 and 〈body〉 have the same syntax as in a
lambda expression.

Semantics: A case-lambda expression evaluates to a pro-
cedure that accepts a variable number of arguments and
is lexically scoped in the same manner as a procedure re-
sulting from a lambda expression. When the procedure
is called, the first 〈clause〉 for which the arguments agree
with 〈formals〉 is selected, where agreement is specified as
for the 〈formals〉 of a lambda expression. The variables
of 〈formals〉 are bound to fresh locations, the values of
the arguments are stored in those locations, the 〈body〉
is evaluated in the extended environment, and the results
of 〈body〉 are returned as the results of the procedure call.

It is an error for the arguments not to agree with the
〈formals〉 of any 〈clause〉.

(define range

(case-lambda

((e) (range 0 e))

((b e) (do ((r ’() (cons e r))

(e (- e 1) (- e 1)))

((< e b) r)))))

(range 3) =⇒ (0 1 2)

(range 3 5) =⇒ (3 4)

4.3. Macros

Scheme programs can define and use new derived expres-
sion types, called macros. Program-defined expression
types have the syntax

(〈keyword〉 〈datum〉 ...)

22 Revised7 Scheme

where 〈keyword〉 is an identifier that uniquely determines
the expression type. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number of
the 〈datum〉s, and their syntax, depends on the expression
type.

Each instance of a macro is called a use of the macro. The
set of rules that specifies how a use of a macro is transcribed
into a more primitive expression is called the transformer
of the macro.

The macro definition facility consists of two parts:

• A set of expressions used to establish that certain iden-
tifiers are macro keywords, associate them with macro
transformers, and control the scope within which a
macro is defined, and

• a pattern language for specifying macro transformers.

The syntactic keyword of a macro can shadow variable
bindings, and local variable bindings can shadow syntac-
tic bindings. Two mechanisms are provided to prevent
unintended conflicts:

• If a macro transformer inserts a binding for an identi-
fier (variable or keyword), the identifier will in effect be
renamed throughout its scope to avoid conflicts with
other identifiers. Note that a global variable definition
may or may not introduce a binding; see section 5.3.

• If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regard-
less of any local bindings that surround the use of the
macro.

In consequence, all macros defined using the pattern lan-
guage are “hygienic” and “referentially transparent” and
thus preserve Scheme’s lexical scoping. [21, 22, 2, 9, 12]

Implementations may provide macro facilities of other
types.

4.3.1. Binding constructs for syntactic keywords

The let-syntax and letrec-syntax binding constructs
are analogous to let and letrec, but they bind syntactic
keywords to macro transformers instead of binding vari-
ables to locations that contain values. Syntactic keywords
can also be bound globally or locally with define-syntax;
see section 5.4.

(let-syntax 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 has the form

((〈keyword〉 〈transformer spec〉) . . .)

Each 〈keyword〉 is an identifier, each 〈transformer spec〉 is
an instance of syntax-rules, and 〈body〉 is a sequence of
one or more definitions followed by one or more expressions.
It is an error for a 〈keyword〉 to appear more than once in
the list of keywords being bound.

Semantics: The 〈body〉 is expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax expression with macros whose keywords
are the 〈keyword〉s, bound to the specified transformers.
Each binding of a 〈keyword〉 has 〈body〉 as its region.

(let-syntax ((given-that (syntax-rules ()

((given-that test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(given-that if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(letrec-syntax 〈bindings〉 〈body〉) syntax

Syntax: Same as for let-syntax.

Semantics: The 〈body〉 is expanded in the syntactic
environment obtained by extending the syntactic envi-
ronment of the letrec-syntax expression with macros
whose keywords are the 〈keyword〉s, bound to the speci-
fied transformers. Each binding of a 〈keyword〉 has the
〈transformer spec〉s as well as the 〈body〉 within its region,
so the transformers can transcribe expressions into uses of
the macros introduced by the letrec-syntax expression.

(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

4. Expressions 23

4.3.2. Pattern language

A 〈transformer spec〉 has one of the following forms:

(syntax-rules (〈literal〉 . . .) syntax
〈syntax rule〉 . . .)

(syntax-rules 〈ellipsis〉 (〈literal〉 . . .) syntax
〈syntax rule〉 . . .)

auxiliary syntax
. . . auxiliary syntax

Syntax: It is an error if any of the 〈literal〉s, or the 〈ellipsis〉
in the second form, is not an identifier. It is also an error
if 〈syntax rule〉 is not of the form

(〈pattern〉 〈template〉)

The 〈pattern〉 in a 〈syntax rule〉 is a list 〈pattern〉 whose
first element is an identifier.

A 〈pattern〉 is either an identifier, a constant, or one of the
following

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...

. 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

and a 〈template〉 is either an identifier, a constant, or one
of the following

(〈element〉 ...)

(〈element〉 〈element〉 〈template〉)
(〈ellipsis〉 〈template〉)
#(〈element〉 ...)

where an 〈element〉 is a 〈template〉 optionally followed by
an 〈ellipsis〉. An 〈ellipsis〉 is the identifier specified in the
second form of syntax-rules, or the default identifier ...
(three consecutive periods) otherwise.

Semantics: An instance of syntax-rules produces a new
macro transformer by specifying a sequence of hygienic
rewrite rules. A use of a macro whose keyword is associated
with a transformer specified by syntax-rules is matched
against the patterns contained in the 〈syntax rule〉s, be-
ginning with the leftmost 〈syntax rule〉. When a match is
found, the macro use is transcribed hygienically according
to the template.

An identifier appearing within a 〈pattern〉 can be an under-
score (), a literal identifier listed in the list of 〈literal〉s,
or the 〈ellipsis〉. All other identifiers appearing within a
〈pattern〉 are pattern variables.

The keyword at the beginning of the pattern in a
〈syntax rule〉 is not involved in the matching and is con-
sidered neither a pattern variable nor a literal identifier.

Pattern variables match arbitrary input elements and are
used to refer to elements of the input in the template. It

is an error for the same pattern variable to appear more
than once in a 〈pattern〉.
Underscores also match arbitrary input elements but are
not pattern variables and so cannot be used to refer to
those elements. If an underscore appears in the 〈literal〉s
list, then that takes precedence and underscores in the
〈pattern〉 match as literals. Multiple underscores can ap-
pear in a 〈pattern〉.
Identifiers that appear in (〈literal〉 . . .) are interpreted as
literal identifiers to be matched against corresponding el-
ements of the input. An element in the input matches a
literal identifier if and only if it is an identifier and either
both its occurrence in the macro expression and its occur-
rence in the macro definition have the same lexical binding,
or the two identifiers are the same and both have no lexical
binding.

A subpattern followed by 〈ellipsis〉 can match zero or
more elements of the input, unless 〈ellipsis〉 appears in the
〈literal〉s, in which case it is matched as a literal.

More formally, an input expression E matches a pattern P
if and only if:

• P is an underscore ().

• P is a non-literal identifier; or

• P is a literal identifier and E is an identifier with the
same binding; or

• P is a list (P1 . . . Pn) and E is a list of n elements
that match P1 through Pn, respectively; or

• P is an improper list (P1 P2 . . . Pn . Pn+1) and
E is a list or improper list of n or more elements that
match P1 through Pn, respectively, and whose nth tail
matches Pn+1; or

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . .
Pn) where E is a proper list of n elements, the first
k of which match P1 through Pk, respectively, whose
next m− k elements each match Pe, whose remaining
n−m elements match Pm+1 through Pn; or

• P is of the form (P1 . . . Pk Pe 〈ellipsis〉 Pm+1 . . .
Pn . Px) where E is a list or improper list of n el-
ements, the first k of which match P1 through Pk,
whose next m− k elements each match Pe, whose re-
maining n−m elements match Pm+1 through Pn, and
whose nth and final cdr matches Px; or

• P is a vector of the form #(P1 . . . Pn) and E is a
vector of n elements that match P1 through Pn; or

• P is of the form #(P1 . . . Pk Pe 〈ellipsis〉 Pm+1

. . . Pn) where E is a vector of n elements the first
k of which match P1 through Pk, whose next m − k
elements each match Pe, and whose remaining n−m
elements match Pm+1 through Pn; or

24 Revised7 Scheme

• P is a constant and E is equal to P in the sense of the
equal? procedure.

It is an error to use a macro keyword, within the scope of
its binding, in an expression that does not match any of
the patterns.

When a macro use is transcribed according to the template
of the matching 〈syntax rule〉, pattern variables that occur
in the template are replaced by the elements they match in
the input. Pattern variables that occur in subpatterns fol-
lowed by one or more instances of the identifier 〈ellipsis〉 are
allowed only in subtemplates that are followed by as many
instances of 〈ellipsis〉. They are replaced in the output by
all of the elements they match in the input, distributed as
indicated. It is an error if the output cannot be built up
as specified.

Identifiers that appear in the template but are not pattern
variables or the identifier 〈ellipsis〉 are inserted into the out-
put as literal identifiers. If a literal identifier is inserted as a
free identifier then it refers to the binding of that identifier
within whose scope the instance of syntax-rules appears.
If a literal identifier is inserted as a bound identifier then
it is in effect renamed to prevent inadvertent captures of
free identifiers.

A template of the form (〈ellipsis〉 〈template〉) is identical
to 〈template〉, except that ellipses within the template have
no special meaning. That is, any ellipses contained within
〈template〉 are treated as ordinary identifiers. In partic-
ular, the template (〈ellipsis〉 〈ellipsis〉) produces a single
〈ellipsis〉. This allows syntactic abstractions to expand into
code containing ellipses.

(define-syntax be-like-begin

(syntax-rules ()

((be-like-begin name)

(define-syntax name

(syntax-rules ()

((name expr (... ...))

(begin expr (... ...))))))))

(be-like-begin sequence)

(sequence 1 2 3 4) =⇒ 4

As an example, if let and cond are defined as in section 7.3
then they are hygienic (as required) and the following is not
an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the base iden-
tifier =>, which the macro transformer treats as a syntactic
keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))

instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in an invalid procedure call.

4.3.3. Signaling errors in macro transformers

(syntax-error 〈message〉 〈args〉 . . .) syntax

syntax-error behaves similarly to error (6.11) except
that implementations with an expansion pass separate from
evaluation should signal an error as soon as syntax-error
is expanded. This can be used as a syntax-rules

〈template〉 for a 〈pattern〉 that is an invalid use of the
macro, which can provide more descriptive error messages.
〈message〉 is a string literal, and 〈args〉 arbitrary expres-
sions providing additional information. Applications can-
not count on being able to catch syntax errors with excep-
tion handlers or guards.

(define-syntax simple-let

(syntax-rules ()

(((head ... ((x . y) val) . tail)

body1 body2 ...)

(syntax-error

"expected an identifier but got"

(x . y)))

((((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))))

5. Program structure 25

5. Program structure

5.1. Programs

A Scheme program consists of one or more import decla-
rations followed by a sequence of expressions and defini-
tions. Import declarations specify the libraries on which
a program or library depends; a subset of the identifiers
exported by the libraries are made available to the pro-
gram. Expressions are described in chapter 4. Definitions
are either variable definitions, syntax definitions, or record-
type definitions, all of which are explained in this chapter.
They are valid in some, but not all, contexts where expres-
sions are allowed, specifically at the outermost level of a
〈program〉 and at the beginning of a 〈body〉.
At the outermost level of a program, (begin

〈expression or definition1〉 . . .) is equivalent to the
sequence of expressions and definitions in the begin. Sim-
ilarly, in a 〈body〉, (begin 〈definition1〉 . . .) is equivalent
to the sequence 〈definition1〉 Macros can expand into
such begin forms. For the formal definition, see 4.2.3.

Import declarations and definitions cause bindings to be
created in the global environment or modify the value of
existing global bindings. The initial environment of a pro-
gram is empty, so at least one import declaration is needed
to introduce initial bindings.

Expressions occurring at the outermost level of a program
do not create any bindings. They are executed in order
when the program is invoked or loaded, and typically per-
form some kind of initialization.

Programs and libraries are typically stored in files, al-
though in some implementations they can be entered inter-
actively into a running Scheme system. Other paradigms
are possible. Implementations which store libraries in files
should document the mapping from the name of a library
to its location in the file system.

5.2. Import declarations

An import declaration takes the following form:

(import 〈import-set〉 . . .)

An import declaration provides a way to import identifiers
exported by a library. Each 〈import set〉 names a set of
bindings from a library and possibly specifies local names
for the imported bindings. It takes one of the following
forms:

• 〈library name〉

• (only 〈import set〉 〈identifier〉 . . .)

• (except 〈import set〉 〈identifier〉 . . .)

• (prefix 〈import set〉 〈identifier〉)

• (rename 〈import set〉
(〈identifier1〉 〈identifier2〉) . . .)

In the first form, all of the identifiers in the named library’s
export clauses are imported with the same names (or the
exported names if exported with rename). The additional
〈import set〉 forms modify this set as follows:

• only produces a subset of the given 〈import set〉 in-
cluding only the listed identifiers (after any renaming).
It is an error if any of the listed identifiers are not
found in the original set.

• except produces a subset of the given 〈import set〉,
excluding the listed identifiers (after any renaming).
It is an error if any of the listed identifiers are not
found in the original set.

• rename modifies the given 〈import set〉, replacing each
instance of 〈identifier1〉 with 〈identifier2〉. It is an error
if any of the listed 〈identifier1〉s are not found in the
original set.

• prefix automatically renames all identifiers in the
given 〈import set〉, prefixing each with the specified
〈identifier〉.

In a program or library declaration, it is an error to import
the same identifier more than once with different bindings,
or to redefine or mutate an imported binding with a defi-
nition or with set!, or to refer to an identifier before it is
imported. However, a REPL should permit these actions.

5.3. Variable definitions

A variable definition binds one or more identifiers and spec-
ifies an initial value for each of them. The simplest kind of
variable definition takes one of the following forms:

• (define 〈variable〉 〈expression〉)

• (define (〈variable〉 〈formals〉) 〈body〉)
〈Formals〉 are either a sequence of zero or more vari-
ables, or a sequence of one or more variables followed
by a space-delimited period and another variable (as
in a lambda expression). This form is equivalent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

• (define (〈variable〉 . 〈formal〉) 〈body〉)
〈Formal〉 is a single variable. This form is equivalent
to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

26 Revised7 Scheme

5.3.1. Top level definitions

At the outermost level of a program, a definition

(define 〈variable〉 〈expression〉)
has essentially the same effect as the assignment expres-
sion

(set! 〈variable〉 〈expression〉)

if 〈variable〉 is bound to a non-syntax value. However, if
〈variable〉 is not bound, or is a syntactic keyword, then
the definition will bind 〈variable〉 to a new location before
performing the assignment, whereas it would be an error
to perform a set! on an unbound variable.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

5.3.2. Internal definitions

Definitions can occur at the beginning of a 〈body〉 (that
is, the body of a lambda, let, let*, letrec, letrec*,
let-values, let*-values, let-syntax, letrec-syntax,
parameterize, guard, or case-lambda). Note that such a
body might not be apparent until after expansion of other
syntax. Such definitions are known as internal definitions
as opposed to the global definitions described above. The
variables defined by internal definitions are local to the
〈body〉. That is, 〈variable〉 is bound rather than assigned,
and the region of the binding is the entire 〈body〉. For
example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

An expanded 〈body〉 containing internal definitions can al-
ways be converted into a completely equivalent letrec*

expression. For example, the let expression in the above
example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

Just as for the equivalent letrec* expression, it is an er-
ror if it is not possible to evaluate each 〈expression〉 of
every internal definition in a 〈body〉 without assigning or
referring to the value of the corresponding 〈variable〉 or the
〈variable〉 of any of the definitions that follow it in 〈body〉.
It is an error to define the same identifier more than once
in the same 〈body〉.
Wherever an internal definition can occur, (begin

〈definition1〉 . . .) is equivalent to the sequence of defini-
tions that form the body of the begin.

5.3.3. Multiple-value definitions

Another kind of definition is provided by define-values,
which creates multiple definitions from a single expression
returning multiple values. It is allowed wherever define is
allowed.

(define-values 〈formals〉 〈expression〉) syntax

It is an error if a variable appears more than once in the
set of 〈formals〉.

Semantics: 〈Expression〉 is evaluated, and the 〈formals〉
are bound to the return values in the same way that the
〈formals〉 in a lambda expression are matched to the argu-
ments in a procedure call.

(define-values (x y) (integer-sqrt 17))

(list x y) =⇒ (4 1)

(let ()

(define-values (x y) (values 1 2))

(+ x y)) =⇒ 3

5.4. Syntax definitions

Syntax definitions have this form:

(define-syntax 〈keyword〉 〈transformer spec〉)

〈Keyword〉 is an identifier, and the 〈transformer spec〉 is an
instance of syntax-rules. Like variable definitions, syn-
tax definitions can appear at the outermost level or nested
within a body.

If the define-syntax occurs at the outermost level, then
the global syntactic environment is extended by binding
the 〈keyword〉 to the specified transformer, but previous
expansions of any global binding for 〈keyword〉 remain un-
changed. Otherwise, it is an internal syntax definition, and
is local to the 〈body〉 in which it is defined. Any use of a
syntax keyword before its corresponding definition is an
error. In particular, a use that precedes an inner definition
will not apply an outer definition.

(let ((x 1) (y 2))

(define-syntax swap!

(syntax-rules ()

((swap! a b)

(let ((tmp a))

(set! a b)

(set! b tmp)))))

(swap! x y)

(list x y)) =⇒ (2 1)

Macros can expand into definitions in any context that
permits them. However, it is an error for a definition to
define an identifier whose binding has to be known in or-
der to determine the meaning of the definition itself, or of

5. Program structure 27

any preceding definition that belongs to the same group
of internal definitions. Similarly, it is an error for an in-
ternal definition to define an identifier whose binding has
to be known in order to determine the boundary between
the internal definitions and the expressions of the body it
belongs to. For example, the following are errors:

(define define 3)

(begin (define begin list))

(let-syntax

((foo (syntax-rules ()

((foo (proc args ...) body ...)

(define proc

(lambda (args ...)

body ...))))))

(let ((x 3))

(foo (plus x y) (+ x y))

(define foo x)

(plus foo x)))

5.5. Record-type definitions

Record-type definitions are used to introduce new data
types, called record types. Like other definitions, they can
appear either at the outermost level or in a body. The val-
ues of a record type are called records and are aggregations
of zero or more fields, each of which holds a single loca-
tion. A predicate, a constructor, and field accessors and
mutators are defined for each record type.

(define-record-type 〈name〉 syntax
〈constructor〉 〈pred〉 〈field〉 . . .)

Syntax: 〈name〉 and 〈pred〉 are identifiers. The
〈constructor〉 is of the form

(〈constructor name〉 〈field name〉 . . .)

and each 〈field〉 is either of the form

(〈field name〉 〈accessor name〉)

or of the form

(〈field name〉 〈accessor name〉 〈modifier name〉)

It is an error for the same identifier to occur more than once
as a field name. It is also an error for the same identifier
to occur more than once as an accessor or mutator name.

The define-record-type construct is generative: each
use creates a new record type that is distinct from all exist-
ing types, including Scheme’s predefined types and other
record types — even record types of the same name or
structure.

An instance of define-record-type is equivalent to the
following definitions:

• 〈name〉 is bound to a representation of the record type
itself. This may be a run-time object or a purely syn-
tactic representation. The representation is not uti-
lized in this report, but it serves as a means to identify
the record type for use by further language extensions.

• 〈constructor name〉 is bound to a procedure that takes
as many arguments as there are 〈field name〉s in the
(〈constructor name〉 . . .) subexpression and returns
a new record of type 〈name〉. Fields whose names are
listed with 〈constructor name〉 have the corresponding
argument as their initial value. The initial values of
all other fields are unspecified. It is an error for a
field name to appear in 〈constructor〉 but not as a
〈field name〉.

• 〈pred〉 is bound to a predicate that returns #t when
given a value returned by the procedure bound to
〈constructor name〉 and #f for everything else.

• Each 〈accessor name〉 is bound to a procedure that
takes a record of type 〈name〉 and returns the cur-
rent value of the corresponding field. It is an error to
pass an accessor a value which is not a record of the
appropriate type.

• Each 〈modifier name〉 is bound to a procedure that
takes a record of type 〈name〉 and a value which be-
comes the new value of the corresponding field; an
unspecified value is returned. It is an error to pass a
modifier a first argument which is not a record of the
appropriate type.

For instance, the following record-type definition

(define-record-type <pare>

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

defines kons to be a constructor, kar and kdr to be ac-
cessors, set-kar! to be a modifier, and pare? to be a
predicate for instances of <pare>.

(pare? (kons 1 2)) =⇒ #t

(pare? (cons 1 2)) =⇒ #f

(kar (kons 1 2)) =⇒ 1

(kdr (kons 1 2)) =⇒ 2

(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) =⇒ 3

28 Revised7 Scheme

5.6. Libraries

Libraries provide a way to organize Scheme programs into
reusable parts with explicitly defined interfaces to the rest
of the program. This section defines the notation and se-
mantics for libraries.

5.6.1. Library Syntax

A library definition takes the following form:

(define-library 〈library name〉
〈library declaration〉 . . .)

〈library name〉 is a list whose members are identifiers and
exact non-negative integers. It is used to identify the li-
brary uniquely when importing from other programs or
libraries. Libraries whose first identifier is scheme are re-
served for use by this report and future versions of this
report. Libraries whose first identifier is srfi are reserved
for libraries implementing Scheme Requests for Implemen-
tation. It is inadvisable, but not an error, for identifiers
in library names to contain any of the characters | \ ? *

< " : > + [] / or control characters after escapes are
expanded.

A 〈library declaration〉 is any of:

• (export 〈export spec〉 . . .)

• (import 〈import set〉 . . .)

• (begin 〈command or definition〉 . . .)

• (include 〈filename1〉 〈filename2〉 . . .)

• (include-ci 〈filename1〉 〈filename2〉 . . .)

• (include-library-declarations 〈filename1〉
〈filename2〉 . . .)

• (cond-expand 〈ce-clause1〉 〈ce-clause2〉 . . .)

An export declaration specifies a list of identifiers which
can be made visible to other libraries or programs. An
〈export spec〉 takes one of the following forms:

• 〈identifier〉

• (rename 〈identifier1〉 〈identifier2〉)

In an 〈export spec〉, an 〈identifier〉 names a single bind-
ing defined within or imported into the library, where the
external name for the export is the same as the name of
the binding within the library. A rename spec exports the
binding defined within or imported into the library and

named by 〈identifier1〉 in each (〈identifier1〉 〈identifier2〉)
pairing, using 〈identifier2〉 as the external name.

An import declaration provides a way to import the iden-
tifiers exported by another library. It has the same syntax
and semantics as an import declaration used in a program
or at the REPL (see section 5.2).

The begin, include, and include-ci declarations are
used to specify the body of the library. They have the
same syntax and semantics as the corresponding expres-
sion types. This form of begin is analogous to, but not the
same as, the two types of begin defined in section 4.2.3.

The include-library-declarations declaration is sim-
ilar to include except that the contents of the file are
spliced directly into the current library definition. This
can be used, for example, to share the same export decla-
ration among multiple libraries as a simple form of library
interface.

The cond-expand declaration has the same syntax and se-
mantics as the cond-expand expression type, except that
it expands to spliced-in library declarations rather than
expressions enclosed in begin.

One possible implementation of libraries is as follows: Af-
ter all cond-expand library declarations are expanded,
a new environment is constructed for the library con-
sisting of all imported bindings. The expressions from
all begin, include and include-ci library declarations
are expanded in that environment in the order in which
they occur in the library. Alternatively, cond-expand and
import declarations may be processed in left to right order
interspersed with the processing of other declarations, with
the environment growing as imported bindings are added
to it by each import declaration.

When a library is loaded, its expressions are executed in
textual order. If a library’s definitions are referenced in
the expanded form of a program or library body, then that
library must be loaded before the expanded program or
library body is evaluated. This rule applies transitively. If
a library is imported by more than one program or library,
it may possibly be loaded additional times.

Similarly, during the expansion of a library (foo), if any
syntax keywords imported from another library (bar) are
needed to expand the library, then the library (bar) must
be expanded and its syntax definitions evaluated before the
expansion of (foo).

Regardless of the number of times that a library is loaded,
each program or library that imports bindings from a li-
brary must do so from a single loading of that library, re-
gardless of the number of import declarations in which it
appears. That is, (import (only (foo) a)) followed by
(import (only (foo) b)) has the same effect as (import
(only (foo) a b)).

5. Program structure 29

5.6.2. Library example

The following example shows how a program can be divided
into libraries plus a relatively small main program [16]. If
the main program is entered into a REPL, it is not neces-
sary to import the base library.

(define-library (example grid)

(export make rows cols ref each

(rename put! set!))

(import (scheme base))

(begin

;; Create an NxM grid.

(define (make n m)

(let ((grid (make-vector n)))

(do ((i 0 (+ i 1)))

((= i n) grid)

(let ((v (make-vector m #false)))

(vector-set! grid i v)))))

(define (rows grid)

(vector-length grid))

(define (cols grid)

(vector-length (vector-ref grid 0)))

;; Return #false if out of range.

(define (ref grid n m)

(and (< -1 n (rows grid))

(< -1 m (cols grid))

(vector-ref (vector-ref grid n) m)))

(define (put! grid n m v)

(vector-set! (vector-ref grid n) m v))

(define (each grid proc)

(do ((j 0 (+ j 1)))

((= j (rows grid)))

(do ((k 0 (+ k 1)))

((= k (cols grid)))

(proc j k (ref grid j k)))))))

(define-library (example life)

(export life)

(import (except (scheme base) set!)

(scheme write)

(example grid))

(begin

(define (life-count grid i j)

(define (count i j)

(if (ref grid i j) 1 0))

(+ (count (- i 1) (- j 1))

(count (- i 1) j)

(count (- i 1) (+ j 1))

(count i (- j 1))

(count i (+ j 1))

(count (+ i 1) (- j 1))

(count (+ i 1) j)

(count (+ i 1) (+ j 1))))

(define (life-alive? grid i j)

(case (life-count grid i j)

((3) #true)

((2) (ref grid i j))

(else #false)))

(define (life-print grid)

(display "\x1B;[1H\x1B;[J") ; clear vt100

(each grid

(lambda (i j v)

(display (if v "*" " "))

(when (= j (- (cols grid) 1))

(newline)))))

(define (life grid iterations)

(do ((i 0 (+ i 1))

(grid0 grid grid1)

(grid1 (make (rows grid) (cols grid))

grid0))

((= i iterations))

(each grid0

(lambda (j k v)

(let ((a (life-alive? grid0 j k)))

(set! grid1 j k a))))

(life-print grid1)))))

;; Main program.

(import (scheme base)

(only (example life) life)

(rename (prefix (example grid) grid-)

(grid-make make-grid)))

;; Initialize a grid with a glider.

(define grid (make-grid 24 24))

(grid-set! grid 1 1 #true)

(grid-set! grid 2 2 #true)

(grid-set! grid 3 0 #true)

(grid-set! grid 3 1 #true)

(grid-set! grid 3 2 #true)

;; Run for 80 iterations.

(life grid 80)

5.7. The REPL

Implementations may provide an interactive session called
a REPL (Read-Eval-Print Loop), where import declara-
tions, expressions and definitions can be entered and eval-
uated one at a time. For convenience and ease of use, the
global Scheme environment in a REPL must not be empty,
but must start out with at least the bindings provided by
the base library. This library includes the core syntax of
Scheme and generally useful procedures that manipulate
data. For example, the variable abs is bound to a proce-
dure of one argument that computes the absolute value of
a number, and the variable + is bound to a procedure that
computes sums. The full list of (scheme base) bindings
can be found in Appendix A.

Implementations may provide an initial REPL environ-
ment which behaves as if all possible variables are bound
to locations, most of which contain unspecified values. Top
level REPL definitions in such an implementation are truly

30 Revised7 Scheme

equivalent to assignments, unless the identifier is defined as
a syntax keyword.

An implementation may provide a mode of operation in
which the REPL reads its input from a file. Such a file
is not, in general, the same as a program, because it can
contain import declarations in places other than the begin-
ning.

6. Standard procedures

This chapter describes Scheme’s built-in procedures.

The procedures force, promise?, and make-promise are
intimately associated with the expression types delay and
delay-force, and are described with them in section 4.2.5.
In the same way, the procedure make-parameter is inti-
mately associated with the expression type parameterize,
and is described with it in section 4.2.6.

A program can use a global variable definition to bind any
variable. It may subsequently alter any such binding by
an assignment (see section 4.1.6). These operations do not
modify the behavior of any procedure defined in this report
or imported from a library (see section 5.6). Altering any
global binding that has not been introduced by a definition
has an unspecified effect on the behavior of the procedures
defined in this chapter.

When a procedure is said to return a newly allocated object,
it means that the locations in the object are fresh.

6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation;
it is symmetric, reflexive, and transitive. Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, equal? is the coarsest, and eqv?

is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation on
objects. Briefly, it returns #t if obj1 and obj2 are normally
regarded as the same object. This relation is left slightly
open to interpretation, but the following partial specifica-
tion of eqv? holds for all implementations of Scheme.

The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and are the same sym-
bol according to the symbol=? procedure (section 6.5).

• obj1 and obj2 are both exact numbers and are numer-
ically equal (in the sense of =).

• obj1 and obj2 are both inexact numbers such that they
are numerically equal (in the sense of =) and they yield
the same results (in the sense of eqv?) when passed as
arguments to any other procedure that can be defined
as a finite composition of Scheme’s standard arith-
metic procedures, provided it does not result in a NaN
value.

• obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 6.6).

• obj1 and obj2 are both the empty list.

• obj1 and obj2 are pairs, vectors, bytevectors, records,
or strings that denote the same location in the store
(section 3.4).

• obj1 and obj2 are procedures whose location tags are
equal (section 4.1.4).

The eqv? procedure returns #f if:

• obj1 and obj2 are of different types (section 3.2).

• one of obj1 and obj2 is #t but the other is #f.

• obj1 and obj2 are symbols but are not the same symbol
according to the symbol=? procedure (section 6.5).

• one of obj1 and obj2 is an exact number but the other
is an inexact number.

• obj1 and obj2 are both exact numbers and are numer-
ically unequal (in the sense of =).

• obj1 and obj2 are both inexact numbers such that ei-
ther they are numerically unequal (in the sense of =),
or they do not yield the same results (in the sense
of eqv?) when passed as arguments to any other pro-
cedure that can be defined as a finite composition of
Scheme’s standard arithmetic procedures, provided it
does not result in a NaN value. As an exception, the
behavior of eqv? is unspecified when both obj1 and
obj2 are NaN.

• obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

• one of obj1 and obj2 is the empty list but the other is
not.

• obj1 and obj2 are pairs, vectors, bytevectors, records,
or strings that denote distinct locations.

• obj1 and obj2 are procedures that would behave dif-
ferently (return different values or have different side
effects) for some arguments.

6. Standard procedures 31

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? 2 2.0) =⇒ #f

(eqv? ’() ’()) =⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? 0.0 +nan.0) =⇒ #f

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ #t

(eqv? #f ’nil) =⇒ #f

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified
(eqv? 1.0e0 1.0f0) =⇒ unspecified
(eqv? +nan.0 +nan.0) =⇒ unspecified

Note that (eqv? 0.0 -0.0) will return #f if negative zero
is distinguished, and #t if negative zero is not distin-
guished.

The next set of examples shows the use of eqv? with pro-
cedures that have local state. The gen-counter procedure
must return a distinct procedure every time, since each
procedure has its own internal counter. The gen-loser

procedure, however, returns operationally equivalent pro-
cedures each time, since the local state does not affect the
value or side effects of the procedures. However, eqv? may
or may not detect this equivalence.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) =⇒ #t

(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ #t

(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since it is an error to modify constant objects (those re-
turned by literal expressions), implementations may share
structure between constants where appropriate. Thus the
value of eqv? on constants is sometimes implementation-
dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified
(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

The above definition of eqv? allows implementations lati-
tude in their treatment of procedures and literals: imple-
mentations may either detect or fail to detect that two pro-
cedures or two literals are equivalent to each other, and can
decide whether or not to merge representations of equiv-
alent objects by using the same pointer or bit pattern to
represent both.

Note: If inexact numbers are represented as IEEE binary

floating-point numbers, then an implementation of eqv? that

simply compares equal-sized inexact numbers for bitwise equal-

ity is correct by the above definition.

(eq? obj1 obj2) procedure

The eq? procedure is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those
detectable by eqv?. It must always return #f when eqv?

also would, but may return #f in some cases where eqv?

would return #t.

On symbols, booleans, the empty list, pairs, and records,
and also on non-empty strings, vectors, and bytevectors,
eq? and eqv? are guaranteed to have the same behavior.
On procedures, eq? must return true if the arguments’ lo-
cation tags are equal. On numbers and characters, eq?’s
behavior is implementation-dependent, but it will always
return either true or false. On empty strings, empty vec-
tors, and empty bytevectors, eq? may also behave differ-
ently from eqv?.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ #t

(let ((n (+ 2 3)))

32 Revised7 Scheme

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ #t

Rationale: It will usually be possible to implement eq? much

more efficiently than eqv?, for example, as a simple pointer com-

parison instead of as some more complicated operation. One

reason is that it is not always possible to compute eqv? of two

numbers in constant time, whereas eq? implemented as pointer

comparison will always finish in constant time.

(equal? obj1 obj2) procedure

The equal? procedure, when applied to pairs, vectors,
strings and bytevectors, recursively compares them, return-
ing #t when the unfoldings of its arguments into (possibly
infinite) trees are equal (in the sense of equal?) as ordered
trees, and #f otherwise. It returns the same as eqv? when
applied to booleans, symbols, numbers, characters, ports,
procedures, and the empty list. If two objects are eqv?,
they must be equal? as well. In all other cases, equal?
may return either #t or #f.

Even if its arguments are circular data structures, equal?
must always terminate.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? ’#1=(a b . #1#)

’#2=(a b a b . #2#))=⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

Note: A rule of thumb is that objects are generally equal? if

they print the same.

6.2. Numbers

It is important to distinguish between mathematical num-
bers, the Scheme numbers that attempt to model them,
the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report
uses the types number, complex, real, rational, and integer
to refer to both mathematical numbers and Scheme num-
bers.

6.2.1. Numerical types

Mathematically, numbers are arranged into a tower of sub-
types in which each level is a subset of the level above it:

number
complex number
real number
rational number
integer

For example, 3 is an integer. Therefore 3 is also a rational,
a real, and a complex number. The same is true of the
Scheme numbers that model 3. For Scheme numbers, these
types are defined by the predicates number?, complex?,
real?, rational?, and integer?.

There is no simple relationship between a number’s type
and its representation inside a computer. Although most
implementations of Scheme will offer at least two different
representations of 3, these different representations denote
the same integer.

Scheme’s numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use multiple
internal representations of numbers, this ought not to be
apparent to a casual programmer writing simple programs.

6.2.2. Exactness

It is useful to distinguish between numbers that are repre-
sented exactly and those that might not be. For example,
indexes into data structures must be known exactly, as
must some polynomial coefficients in a symbolic algebra
system. On the other hand, the results of measurements
are inherently inexact, and irrational numbers may be ap-
proximated by rational and therefore inexact approxima-
tions. In order to catch uses of inexact numbers where ex-
act numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal
to the dimension of type.

A Scheme number is exact if it was written as an exact
constant or was derived from exact numbers using only ex-
act operations. A number is inexact if it was written as
an inexact constant, if it was derived using inexact ingre-
dients, or if it was derived using inexact operations. Thus
inexactness is a contagious property of a number. In par-
ticular, an exact complex number has an exact real part
and an exact imaginary part; all other complex numbers
are inexact complex numbers.

If two implementations produce exact results for a compu-
tation that did not involve inexact intermediate results, the
two ultimate results will be mathematically equal. This
is generally not true of computations involving inexact
numbers since approximate methods such as floating-point

6. Standard procedures 33

arithmetic may be used, but it is the duty of each imple-
mentation to make the result as close as practical to the
mathematically ideal result.

Rational operations such as + should always produce ex-
act results when given exact arguments. If the operation
is unable to produce an exact result, then it may either
report the violation of an implementation restriction or it
may silently coerce its result to an inexact value. How-
ever, (/ 3 4) must not return the mathematically incor-
rect value 0. See section 6.2.3.

Except for exact, the operations described in this section
must generally return inexact results when given any in-
exact arguments. An operation may, however, return an
exact result if it can prove that the value of the result is
unaffected by the inexactness of its arguments. For exam-
ple, multiplication of any number by an exact zero may
produce an exact zero result, even if the other argument is
inexact.

Specifically, the expression (* 0 +inf.0) may return 0, or
+nan.0, or report that inexact numbers are not supported,
or report that non-rational real numbers are not supported,
or fail silently or noisily in other implementation-specific
ways.

6.2.3. Implementation restrictions

Implementations of Scheme are not required to implement
the whole tower of subtypes given in section 6.2.1, but they
must implement a coherent subset consistent with both
the purposes of the implementation and the spirit of the
Scheme language. For example, implementations in which
all numbers are real, or in which non-real numbers are al-
ways inexact, or in which exact numbers are always integer,
are still quite useful.

Implementations may also support only a limited range of
numbers of any type, subject to the requirements of this
section. The supported range for exact numbers of any
type may be different from the supported range for inex-
act numbers of that type. For example, an implementa-
tion that uses IEEE binary double-precision floating-point
numbers to represent all its inexact real numbers may also
support a practically unbounded range of exact integers
and rationals while limiting the range of inexact reals (and
therefore the range of inexact integers and rationals) to the
dynamic range of the IEEE binary double format. Further-
more, the gaps between the representable inexact integers
and rationals are likely to be very large in such an imple-
mentation as the limits of this range are approached.

An implementation of Scheme must support exact in-
tegers throughout the range of numbers permitted as
indexes of lists, vectors, bytevectors, and strings or
that result from computing the length of one of these.
The length, vector-length, bytevector-length, and

string-length procedures must return an exact integer,
and it is an error to use anything but an exact integer as
an index. Furthermore, any integer constant within the
index range, if expressed by an exact integer syntax, must
be read as an exact integer, regardless of any implemen-
tation restrictions that apply outside this range. Finally,
the procedures listed below will always return exact inte-
ger results provided all their arguments are exact integers
and the mathematically expected results are representable
as exact integers within the implementation:

- *

+ abs

ceiling denominator

exact-integer-sqrt expt

floor floor/

floor-quotient floor-remainder

gcd lcm

max min

modulo numerator

quotient rationalize

remainder round

square truncate

truncate/ truncate-quotient

truncate-remainder

It is recommended, but not required, that implementations
support exact integers and exact rationals of practically
unlimited size and precision, and to implement the above
procedures and the / procedure in such a way that they
always return exact results when given exact arguments. If
one of these procedures is unable to deliver an exact result
when given exact arguments, then it may either report a
violation of an implementation restriction or it may silently
coerce its result to an inexact number; such a coercion can
cause an error later. Nevertheless, implementations that do
not provide exact rational numbers should return inexact
rational numbers rather than reporting an implementation
restriction.

An implementation may use floating-point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that imple-
mentations that use floating-point representations follow
the IEEE 754 standard, and that implementations using
other representations should match or exceed the preci-
sion achievable using these floating-point standards [17].
In particular, the description of transcendental functions
in IEEE 754-2008 should be followed by such implementa-
tions, particularly with respect to infinities and NaNs.

Although Scheme allows a variety of written notations for
numbers, any particular implementation may support only
some of them. For example, an implementation in which
all numbers are real need not support the rectangular and
polar notations for complex numbers. If an implementa-
tion encounters an exact numerical constant that it cannot
represent as an exact number, then it may either report a

34 Revised7 Scheme

violation of an implementation restriction or it may silently
represent the constant by an inexact number.

6.2.4. Implementation extensions

Implementations may provide more than one representa-
tion of floating-point numbers with differing precisions. In
an implementation which does so, an inexact result must
be represented with at least as much precision as is used
to express any of the inexact arguments to that operation.
Although it is desirable for potentially inexact operations
such as sqrt to produce exact answers when applied to
exact arguments, if an exact number is operated upon so
as to produce an inexact result, then the most precise rep-
resentation available must be used. For example, the value
of (sqrt 4) should be 2, but in an implementation that
provides both single and double precision floating point
numbers it may be the latter but must not be the former.

It is the programmer’s responsibility to avoid using inexact
number objects with magnitude or significand too large to
be represented in the implementation.

In addition, implementations may distinguish special num-
bers called positive infinity, negative infinity, NaN, and
negative zero.

Positive infinity is regarded as an inexact real (but not
rational) number that represents an indeterminate value
greater than the numbers represented by all rational num-
bers. Negative infinity is regarded as an inexact real
(but not rational) number that represents an indetermi-
nate value less than the numbers represented by all rational
numbers.

Adding or multiplying an infinite value by any finite real
value results in an appropriately signed infinity; however,
the sum of positive and negative infinities is a NaN. Posi-
tive infinity is the reciprocal of zero, and negative infinity is
the reciprocal of negative zero. The behavior of the tran-
scendental functions is sensitive to infinity in accordance
with IEEE 754.

A NaN is regarded as an inexact real (but not rational)
number so indeterminate that it might represent any real
value, including positive or negative infinity, and might
even be greater than positive infinity or less than negative
infinity. An implementation that does not support non-
real numbers may use NaN to represent non-real values
like (sqrt -1.0) and (asin 2.0).

A NaN always compares false to any number, including a
NaN. An arithmetic operation where one operand is NaN
returns NaN, unless the implementation can prove that the
result would be the same if the NaN were replaced by any
rational number. Dividing zero by zero results in NaN
unless both zeros are exact.

Negative zero is an inexact real value written -0.0 and is
distinct (in the sense of eqv?) from 0.0. A Scheme im-
plementation is not required to distinguish negative zero.
If it does, however, the behavior of the transcendental
functions is sensitive to the distinction in accordance with
IEEE 754. Specifically, in a Scheme implementing both
complex numbers and negative zero, the branch cut of the
complex logarithm function is such that (imag-part (log

-1.0-0.0i)) is −π rather than π.

Furthermore, the negation of negative zero is ordinary zero
and vice versa. This implies that the sum of two or more
negative zeros is negative, and the result of subtracting
(positive) zero from a negative zero is likewise negative.
However, numerical comparisons treat negative zero as
equal to zero.

Note that both the real and the imaginary parts of a com-
plex number can be infinities, NaNs, or negative zero.

6.2.5. Syntax of numerical constants

The syntax of the written representations for numbers is
described formally in section 7.1.1. Note that case is not
significant in numerical constants.

A number can be written in binary, octal, decimal, or hexa-
decimal by the use of a radix prefix. The radix prefixes
are #b (binary), #o (octal), #d (decimal), and #x (hexa-
decimal). With no radix prefix, a number is assumed to be
expressed in decimal.

A numerical constant can be specified to be either exact or
inexact by a prefix. The prefixes are #e for exact, and #i

for inexact. An exactness prefix can appear before or after
any radix prefix that is used. If the written representation
of a number has no exactness prefix, the constant is inexact
if it contains a decimal point or an exponent. Otherwise,
it is exact.

In systems with inexact numbers of varying precisions it
can be useful to specify the precision of a constant. For
this purpose, implementations may accept numerical con-
stants written with an exponent marker that indicates the
desired precision of the inexact representation. If so, the
letter s, f, d, or l, meaning short , single, double, or long
precision, respectively, can be used in place of e. The de-
fault precision has at least as much precision as double,
but implementations may allow this default to be set by
the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

The numbers positive infinity, negative infinity, and NaN
are written +inf.0, -inf.0 and +nan.0 respectively. NaN
may also be written -nan.0. The use of signs in the written

6. Standard procedures 35

representation does not necessarily reflect the underlying
sign of the NaN value, if any. Implementations are not re-
quired to support these numbers, but if they do, they must
do so in general conformance with IEEE 754. However, im-
plementations are not required to support signaling NaNs,
nor to provide a way to distinguish between different NaNs.

There are two notations provided for non-real complex
numbers: the rectangular notation a+bi, where a is the
real part and b is the imaginary part; and the polar no-
tation r@θ, where r is the magnitude and θ is the phase
(angle) in radians. These are related by the equation
a + bi = r cos θ + (r sin θ)i. All of a, b, r , and θ are real
numbers.

6.2.6. Numerical operations

The reader is referred to section 1.3.3 for a summary of
the naming conventions used to specify restrictions on the
types of arguments to numerical routines. The examples
used in this section assume that any numerical constant
written using an exact notation is indeed represented as
an exact number. Some examples also assume that cer-
tain numerical constants written using an inexact notation
can be represented without loss of accuracy; the inexact
constants were chosen so that this is likely to be true in
implementations that use IEEE binary doubles to repre-
sent inexact numbers.

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

If z is a complex number, then (real? z) is true if and
only if (zero? (imag-part z)) is true. If x is an inexact
real number, then (integer? x) is true if and only if (=
x (round x)).

The numbers +inf.0, -inf.0, and +nan.0 are real but not
rational.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0i) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? #e1e10) =⇒ #t

(real? +inf.0) =⇒ #t

(real? +nan.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(rational? 3.5) =⇒ #t

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

(integer? 8/4) =⇒ #t

Note: The behavior of these type predicates on inexact num-

bers is unreliable, since any inaccuracy might affect the result.

Note: In many implementations the complex? procedure will

be the same as number?, but unusual implementations may rep-

resent some irrational numbers exactly or may extend the num-

ber system to support some kind of non-complex numbers.

(exact? z) procedure
(inexact? z) procedure

These numerical predicates provide tests for the exactness
of a quantity. For any Scheme number, precisely one of
these predicates is true.

(exact? 3.0) =⇒ #f

(exact? #e3.0) =⇒ #t

(inexact? 3.) =⇒ #t

(exact-integer? z) procedure

Returns #t if z is both exact and an integer; otherwise
returns #f.

(exact-integer? 32) =⇒ #t

(exact-integer? 32.0) =⇒ #f

(exact-integer? 32/5) =⇒ #f

(finite? z) inexact library procedure

The finite? procedure returns #t on all real numbers ex-
cept +inf.0, -inf.0, and +nan.0, and on complex num-
bers if their real and imaginary parts are both finite. Oth-
erwise it returns #f.

(finite? 3) =⇒ #t

(finite? +inf.0) =⇒ #f

(finite? 3.0+inf.0i) =⇒ #f

(infinite? z) inexact library procedure

The infinite? procedure returns #t on the real numbers
+inf.0 and -inf.0, and on complex numbers if their real
or imaginary parts or both are infinite. Otherwise it re-
turns #f.

(infinite? 3) =⇒ #f

(infinite? +inf.0) =⇒ #t

(infinite? +nan.0) =⇒ #f

(infinite? 3.0+inf.0i) =⇒ #t

36 Revised7 Scheme

(nan? z) inexact library procedure

The nan? procedure returns #t on +nan.0, and on complex
numbers if their real or imaginary parts or both are +nan.0.
Otherwise it returns #f.

(nan? +nan.0) =⇒ #t

(nan? 32) =⇒ #f

(nan? +nan.0+5.0i) =⇒ #t

(nan? 1+2i) =⇒ #f

(= z1 z2 z3 . . .) procedure
(< x1 x2 x3 . . .) procedure
(> x1 x2 x3 . . .) procedure
(<= x1 x2 x3 . . .) procedure
(>= x1 x2 x3 . . .) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically non-decreasing, or monotonically
non-increasing, and #f otherwise. If any of the arguments
are +nan.0, all the predicates return #f. They do not dis-
tinguish between inexact zero and inexact negative zero.

These predicates are required to be transitive.

Note: The implementation approach of converting all argu-

ments to inexact numbers if any argument is inexact is not

transitive. For example, let big be (expt 2 1000), and assume

that big is exact and that inexact numbers are represented by

64-bit IEEE binary floating point numbers. Then (= (- big

1) (inexact big)) and (= (inexact big) (+ big 1)) would

both be true with this approach, because of the limitations of

IEEE representations of large integers, whereas (= (- big 1)

(+ big 1)) is false. Converting inexact values to exact num-

bers that are the same (in the sense of =) to them will avoid this

problem, though special care must be taken with infinities.

Note: While it is not an error to compare inexact numbers

using these predicates, the results are unreliable because a small

inaccuracy can affect the result; this is especially true of = and

zero?. When in doubt, consult a numerical analyst.

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure

These numerical predicates test a number for a particular
property, returning #t or #f. See note above.

(max x1 x2 . . .) procedure
(min x1 x2 . . .) procedure

These procedures return the maximum or minimum of their
arguments.

(max 3 4) =⇒ 4 ; exact

(max 3.9 4) =⇒ 4.0 ; inexact

Note: If any argument is inexact, then the result will also be

inexact (unless the procedure can prove that the inaccuracy is

not large enough to affect the result, which is possible only in

unusual implementations). If min or max is used to compare

numbers of mixed exactness, and the numerical value of the

result cannot be represented as an inexact number without loss

of accuracy, then the procedure may report a violation of an

implementation restriction.

(+ z1 . . .) procedure
(* z1 . . .) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(* 4) =⇒ 4

(*) =⇒ 1

(- z) procedure
(- z1 z2 . . .) procedure
(/ z) procedure
(/ z1 z2 . . .) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument.

It is an error if any argument of / other than the first is
an exact zero. If the first argument is an exact zero, an
implementation may return an exact zero unless one of the
other arguments is a NaN.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(abs x) procedure

The abs procedure returns the absolute value of its argu-
ment.

(abs -7) =⇒ 7

(floor/ n1 n2) procedure
(floor-quotient n1 n2) procedure
(floor-remainder n1 n2) procedure
(truncate/ n1 n2) procedure
(truncate-quotient n1 n2) procedure
(truncate-remainder n1 n2) procedure

These procedures implement number-theoretic (integer) di-
vision. It is an error if n2 is zero. The procedures ending
in / return two integers; the other procedures return an

6. Standard procedures 37

integer. All the procedures compute a quotient nq and re-
mainder nr such that n1 = n2nq + nr. For each of the
division operators, there are three procedures defined as
follows:

(〈operator〉/ n1 n2) =⇒ nq nr

(〈operator〉-quotient n1 n2) =⇒ nq

(〈operator〉-remainder n1 n2) =⇒ nr

The remainder nr is determined by the choice of integer
nq: nr = n1 − n2nq. Each set of operators uses a different
choice of nq:

floor nq = bn1/n2c
truncate nq = truncate(n1/n2)

For any of the operators, and for integers n1 and n2 with
n2 not equal to 0,

(= n1 (+ (* n2 (〈operator〉-quotient n1 n2))

(〈operator〉-remainder n1 n2)))

=⇒ #t

provided all numbers involved in that computation are ex-
act.

Examples:

(floor/ 5 2) =⇒ 2 1

(floor/ -5 2) =⇒ -3 1

(floor/ 5 -2) =⇒ -3 -1

(floor/ -5 -2) =⇒ 2 -1

(truncate/ 5 2) =⇒ 2 1

(truncate/ -5 2) =⇒ -2 -1

(truncate/ 5 -2) =⇒ -2 1

(truncate/ -5 -2) =⇒ 2 -1

(truncate/ -5.0 -2) =⇒ 2.0 -1.0

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure

The quotient and remainder procedures are equivalent
to truncate-quotient and truncate-remainder, respec-
tively, and modulo is equivalent to floor-remainder.

Note: These procedures are provided for backward compati-

bility with earlier versions of this report.

(gcd n1 . . .) procedure
(lcm n1 . . .) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

(lcm 32.0 -36) =⇒ 288.0 ; inexact

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return integers. The floor procedure
returns the largest integer not larger than x. The ceiling

procedure returns the smallest integer not smaller than x,
truncate returns the integer closest to x whose absolute
value is not larger than the absolute value of x, and round

returns the closest integer to x, rounding to even when x
is halfway between two integers.

Rationale: The round procedure rounds to even for consistency

with the default rounding mode specified by the IEEE 754 IEEE

floating-point standard.

Note: If the argument to one of these procedures is inexact,

then the result will also be inexact. If an exact value is needed,

the result can be passed to the exact procedure. If the argu-

ment is infinite or a NaN, then it is returned.

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0 ; inexact

(round 7/2) =⇒ 4 ; exact

(round 7) =⇒ 7

(rationalize x y) procedure

The rationalize procedure returns the simplest rational
number differing from x by no more than y. A rational
number r1 is simpler than another rational number r2 if
r1 = p1/q1 and r2 = p2/q2 (in lowest terms) and |p1| ≤ |p2|
and |q1| ≤ |q2|. Thus 3/5 is simpler than 4/7. Although not
all rationals are comparable in this ordering (consider 2/7
and 3/5), any interval contains a rational number that is

38 Revised7 Scheme

simpler than every other rational number in that interval
(the simpler 2/5 lies between 2/7 and 3/5). Note that
0 = 0/1 is the simplest rational of all.

(rationalize

(exact .3) 1/10) =⇒ 1/3 ; exact

(rationalize .3 1/10) =⇒ #i1/3 ; inexact

(exp z) inexact library procedure
(log z) inexact library procedure
(log z1 z2) inexact library procedure
(sin z) inexact library procedure
(cos z) inexact library procedure
(tan z) inexact library procedure
(asin z) inexact library procedure
(acos z) inexact library procedure
(atan z) inexact library procedure
(atan y x) inexact library procedure

These procedures compute the usual transcendental func-
tions. The log procedure computes the natural logarithm
of z (not the base ten logarithm) if a single argument is
given, or the base-z2 logarithm of z1 if two arguments are
given. The asin, acos, and atan procedures compute arc-
sine (sin−1), arc-cosine (cos−1), and arctangent (tan−1),
respectively. The two-argument variant of atan computes
(angle (make-rectangular x y)) (see below), even in
implementations that don’t support complex numbers.

In general, the mathematical functions log, arcsine, arc-
cosine, and arctangent are multiply defined. The value of
log z is defined to be the one whose imaginary part lies
in the range from −π (inclusive if -0.0 is distinguished,
exclusive otherwise) to π (inclusive). The value of log 0 is
mathematically undefined. With log defined this way, the
values of sin−1 z, cos−1 z, and tan−1 z are according to the
following formulæ:

sin−1 z = −i log(iz +
√

1− z2)

cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)

However, (log 0.0) returns -inf.0 (and (log -0.0) re-
turns -inf.0+πi) if the implementation supports infinities
(and -0.0).

The range of (atan y x) is as in the following table. The
asterisk (*) indicates that the entry applies to implemen-
tations that distinguish minus zero.

y condition x condition range of result r
y = 0.0 x > 0.0 0.0

∗ y = +0.0 x > 0.0 +0.0
∗ y = −0.0 x > 0.0 −0.0

y > 0.0 x > 0.0 0.0 < r < π
2

y > 0.0 x = 0.0 π
2

y > 0.0 x < 0.0 π
2 < r < π

y = 0.0 x < 0 π
∗ y = +0.0 x < 0.0 π
∗ y = −0.0 x < 0.0 −π

y < 0.0 x < 0.0 −π < r < −π2
y < 0.0 x = 0.0 −π2
y < 0.0 x > 0.0 −π2 < r < 0.0
y = 0.0 x = 0.0 undefined

∗ y = +0.0 x = +0.0 +0.0
∗ y = −0.0 x = +0.0 −0.0
∗ y = +0.0 x = −0.0 π
∗ y = −0.0 x = −0.0 −π
∗ y = +0.0 x = 0 π

2
∗ y = −0.0 x = 0 −π2

The above specification follows [34], which in turn
cites [26]; refer to these sources for more detailed discussion
of branch cuts, boundary conditions, and implementation
of these functions. When it is possible, these procedures
produce a real result from a real argument.

(square z) procedure

Returns the square of z. This is equivalent to (* z z).

(square 42) =⇒ 1764

(square 2.0) =⇒ 4.0

(sqrt z) inexact library procedure

Returns the principal square root of z. The result will
have either a positive real part, or a zero real part and a
non-negative imaginary part.

(sqrt 9) =⇒ 3

(sqrt -1) =⇒ +i

(exact-integer-sqrt k) procedure

Returns two non-negative exact integers s and r where k =
s2 + r and k < (s+ 1)2.

(exact-integer-sqrt 4) =⇒ 2 0

(exact-integer-sqrt 5) =⇒ 2 1

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1, this is

z1
z2 = ez2 log z1

6. Standard procedures 39

The value of 0z is 1 if (zero? z), 0 if (real-part z) is
positive, and an error otherwise. Similarly for 0.0z, with
inexact results.

(make-rectangular x1 x2) complex library procedure
(make-polar x3 x4) complex library procedure
(real-part z) complex library procedure
(imag-part z) complex library procedure
(magnitude z) complex library procedure
(angle z) complex library procedure

Let x1, x2, x3, and x4 be real numbers and z be a complex
number such that

z = x1 + x2i = x3 · eix4

Then all of

(make-rectangular x1 x2) =⇒ z
(make-polar x3 x4) =⇒ z
(real-part z) =⇒ x1
(imag-part z) =⇒ x2
(magnitude z) =⇒ |x3|
(angle z) =⇒ xangle

are true, where −π ≤ xangle ≤ π with xangle = x4 + 2πn
for some integer n.

The make-polar procedure may return an inexact complex
number even if its arguments are exact. The real-part

and imag-part procedures may return exact real numbers
when applied to an inexact complex number if the corre-
sponding argument passed to make-rectangular was ex-
act.

Rationale: The magnitude procedure is the same as abs for a

real argument, but abs is in the base library, whereas magnitude

is in the optional complex library.

(inexact z) procedure
(exact z) procedure

The procedure inexact returns an inexact representation
of z. The value returned is the inexact number that is nu-
merically closest to the argument. For inexact arguments,
the result is the same as the argument. For exact complex
numbers, the result is a complex number whose real and
imaginary parts are the result of applying inexact to the
real and imaginary parts of the argument, respectively. If
an exact argument has no reasonably close inexact equiv-
alent (in the sense of =), then a violation of an implemen-
tation restriction may be reported.

The procedure exact returns an exact representation of
z. The value returned is the exact number that is nu-
merically closest to the argument. For exact arguments,
the result is the same as the argument. For inexact non-
integral real arguments, the implementation may return a
rational approximation, or may report an implementation

violation. For inexact complex arguments, the result is a
complex number whose real and imaginary parts are the
result of applying exact to the real and imaginary parts
of the argument, respectively. If an inexact argument has
no reasonably close exact equivalent, (in the sense of =),
then a violation of an implementation restriction may be
reported.

These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range. See section 6.2.3.

Note: These procedures were known in R5RS as

exact->inexact and inexact->exact, respectively, but they

have always accepted arguments of any exactness. The new

names are clearer and shorter, as well as being compatible with

R6RS.

6.2.7. Numerical input and output

(number->string z) procedure
(number->string z radix) procedure

It is an error if radix is not one of 2, 8, 10, or 16.

The procedure number->string takes a number and a
radix and returns as a string an external representation
of the given number in the given radix such that

(let ((number number)
(radix radix))

(eqv? number

(string->number (number->string number

radix)

radix)))

is true. It is an error if no possible result makes this ex-
pression true. If omitted, radix defaults to 10.

If z is inexact, the radix is 10, and the above expression
can be satisfied by a result that contains a decimal point,
then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of exponent
and trailing zeroes) needed to make the above expression
true [4, 5]; otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

Note: The error case can occur only when z is not a complex

number or is a complex number with a non-rational real or

imaginary part.

Rationale: If z is an inexact number and the radix is 10, then

the above expression is normally satisfied by a result containing

a decimal point. The unspecified case allows for infinities, NaNs,

and unusual representations.

40 Revised7 Scheme

(string->number string) procedure
(string->number string radix) procedure

Returns a number of the maximally precise representation
expressed by the given string. It is an error if radix is not

2, 8, 10, or 16.

If supplied, radix is a default radix that will be overrid-
den if an explicit radix prefix is present in string (e.g.
"#o177"). If radix is not supplied, then the default radix
is 10. If string is not a syntactically valid notation for a
number, or would result in a number that the implemen-
tation cannot represent, then string->number returns #f.
An error is never signaled due to the content of string.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

Note: The domain of string->number may be restricted by im-
plementations in the following ways. If all numbers supported
by an implementation are real, then string->number is permit-
ted to return #f whenever string uses the polar or rectangular
notations for complex numbers. If all numbers are integers, then
string->number may return #f whenever the fractional nota-
tion is used. If all numbers are exact, then string->number

may return #f whenever an exponent marker or explicit exact-
ness prefix is used. If all inexact numbers are integers, then
string->number may return #f whenever a decimal point is
used.

The rules used by a particular implementation for

string->number must also be applied to read and to the

routine that reads programs, in order to maintain consistency

between internal numeric processing, I/O, and the processing

of programs. As a consequence, the R5RS permission to

return #f when string has an explicit radix prefix has been

withdrawn.

6.3. Booleans

The standard boolean objects for true and false are written
as #t and #f. Alternatively, they can be written #true and
#false, respectively. What really matters, though, are the
objects that the Scheme conditional expressions (if, cond,
and, or, when, unless, do) treat as true or false. The
phrase “a true value” (or sometimes just “true”) means
any object treated as true by the conditional expressions,
and the phrase “a false value” (or “false”) means any object
treated as false by the conditional expressions.

Of all the Scheme values, only #f counts as false in condi-
tional expressions. All other Scheme values, including #t,
count as true.

Note: Unlike some other dialects of Lisp, Scheme distinguishes

#f and the empty list from each other and from the symbol

nil.

Boolean constants evaluate to themselves, so they do not
need to be quoted in programs.

#t =⇒ #t

#f =⇒ #f

’#f =⇒ #f

(not obj) procedure

The not procedure returns #t if obj is false, and returns
#f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

The boolean? predicate returns #t if obj is either #t or #f
and returns #f otherwise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f

(boolean=? boolean1 boolean2 boolean3 . . .) procedure

Returns #t if all the arguments are booleans and all are #t

or all are #f.

6.4. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr. The car and cdr fields are assigned by the procedures
set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

6. Standard procedures 41

The empty list is a special object of its own type. It is not
a pair, it has no elements, and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

The most general notation (external representation) for
Scheme pairs is the “dotted” notation (c1 . c2) where c1
is the value of the car field and c2 is the value of the cdr
field. For example (4 . 5) is a pair whose car is 4 and
whose cdr is 5. Note that (4 . 5) is the external repre-
sentation of a pair, not an expression that evaluates to a
pair.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written (). For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field. When the set-cdr! procedure is used, an
object can be a list one moment and not the next:

(define x (list ’a ’b ’c))

(define y x)

y =⇒ (a b c)

(list? y) =⇒ #t

(set-cdr! x 4) =⇒ unspecified
x =⇒ (a . 4)

(eqv? x y) =⇒ #t

y =⇒ (a . 4)

(list? y) =⇒ #f

(set-cdr! x x) =⇒ unspecified
(list? x) =⇒ #f

Within literal expressions and representations of ob-
jects read by the read procedure, the forms ’〈datum〉,
`〈datum〉, ,〈datum〉, and ,@〈datum〉 denote two-ele-
ment lists whose first elements are the symbols quote,
quasiquote, unquote, and unquote-splicing, respec-
tively. The second element in each case is 〈datum〉. This
convention is supported so that arbitrary Scheme programs
can be represented as lists. That is, according to Scheme’s

grammar, every 〈expression〉 is also a 〈datum〉 (see sec-
tion 7.1.2). Among other things, this permits the use of
the read procedure to parse Scheme programs. See sec-
tion 3.3.

(pair? obj) procedure

The pair? predicate returns #t if obj is a pair, and other-
wise returns #f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair . Note that it
is an error to take the car of the empty list.

(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ error

(cdr pair) procedure

Returns the contents of the cdr field of pair . Note that it
is an error to take the cdr of the empty list.

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ error

(set-car! pair obj) procedure

Stores obj in the car field of pair .

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ unspecified
(set-car! (g) 3) =⇒ error

42 Revised7 Scheme

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair .

(caar pair) procedure
(cadr pair) procedure
(cdar pair) procedure
(cddr pair) procedure

These procedures are compositions of car and cdr as fol-
lows:

(define (caar x) (car (car x)))

(define (cadr x) (car (cdr x)))

(define (cdar x) (cdr (car x)))

(define (cddr x) (cdr (cdr x)))

(caaar pair) cxr library procedure
(caadr pair) cxr library procedure

...
...

(cdddar pair) cxr library procedure
(cddddr pair) cxr library procedure

These twenty-four procedures are further compositions of
car and cdr on the same principles. For example, caddr
could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions up to four deep are provided.

(null? obj) procedure

Returns #t if obj is the empty list, otherwise returns #f.

(list? obj) procedure

Returns #t if obj is a list. Otherwise, it returns #f. By
definition, all lists have finite length and are terminated by
the empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(let ((x (list ’a)))

(set-cdr! x x)

(list? x)) =⇒ #f

(make-list k) procedure
(make-list k fill) procedure

Returns a newly allocated list of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(make-list 2 3) =⇒ (3 3)

(list obj . . .) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()

(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . .) procedure

The last argument, if there is one, can be of any type.

Returns a list consisting of the elements of the first list
followed by the elements of the other lists. If there are no
arguments, the empty list is returned. If there is exactly
one argument, it is returned. Otherwise the resulting list
is always newly allocated, except that it shares structure
with the last argument. An improper list results if the last
argument is not a proper list.

(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure

It is an error if list has fewer than k elements.

Returns the sublist of list obtained by omitting the first k
elements. The list-tail procedure could be defined by

(define list-tail

(lambda (x k)

(if (zero? k)

x

(list-tail (cdr x) (- k 1)))))

(list-ref list k) procedure

The list argument can be circular, but it is an error if list has

fewer than k elements.

Returns the kth element of list . (This is the same as the
car of (list-tail list k).)

6. Standard procedures 43

(list-ref ’(a b c d) 2) =⇒ c

(list-ref ’(a b c d)

(exact (round 1.8)))

=⇒ c

(list-set! list k obj) procedure

It is an error if k is not a valid index of list .

The list-set! procedure stores obj in element k of
list .

(let ((ls (list ’one ’two ’five!)))

(list-set! ls 2 ’three)

ls)

=⇒ (one two three)

(list-set! ’(0 1 2) 1 "oops")

=⇒ error ; constant list

(memq obj list) procedure
(memv obj list) procedure
(member obj list) procedure
(member obj list compare) procedure

These procedures return the first sublist of list whose car
is obj , where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length
of list . If obj does not occur in list , then #f (not the empty
list) is returned. The memq procedure uses eq? to compare
obj with the elements of list , while memv uses eqv? and
member uses compare, if given, and equal? otherwise.

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(member "B"

’("a" "b" "c")

string-ci=?) =⇒ ("b" "c")

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure
(assoc obj alist compare) procedure

It is an error if alist (for “association list”) is not a list of pairs.

These procedures find the first pair in alist whose car field
is obj , and returns that pair. If no pair in alist has obj
as its car, then #f (not the empty list) is returned. The
assq procedure uses eq? to compare obj with the car fields
of the pairs in alist , while assv uses eqv? and assoc uses
compare if given and equal? otherwise.

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assoc 2.0 ’((1 1) (2 4) (3 9)) =)

=⇒ (2 4)

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

Rationale: Although they are often used as predicates, memq,

memv, member, assq, assv, and assoc do not have question

marks in their names because they return potentially useful

values rather than just #t or #f.

(list-copy obj) procedure

Returns a newly allocated copy of the given obj if it is a
list. Only the pairs themselves are copied; the cars of the
result are the same (in the sense of eqv?) as the cars of list .
If obj is an improper list, so is the result, and the final cdrs
are the same in the sense of eqv?. An obj which is not a
list is returned unchanged. It is an error if obj is a circular
list.

(define a ’(1 8 2 8)) ; a may be immutable

(define b (list-copy a))

(set-car! b 3) ; b is mutable

b =⇒ (3 8 2 8)

a =⇒ (1 8 2 8)

6.5. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eqv?) if and only
if their names are spelled the same way. For instance, they
can be used the way enumerated values are used in other
languages.

The rules for writing a symbol are exactly the same as the
rules for writing an identifier; see sections 2.1 and 7.1.1.

It is guaranteed that any symbol that has been returned
as part of a literal expression, or read using the read pro-
cedure, and subsequently written out using the write pro-
cedure, will read back in as the identical symbol (in the
sense of eqv?).

Note: Some implementations have values known as “unin-

terned symbols,” which defeat write/read invariance, and also

violate the rule that two symbols are the same if and only if

their names are spelled the same. This report does not specify

the behavior of implementation-dependent extensions.

44 Revised7 Scheme

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol=? symbol1 symbol2 symbol3 . . .) procedure

Returns #t if all the arguments are symbols and all have
the same names in the sense of string=?.

Note: The definition above assumes that none of the arguments

are uninterned symbols.

(symbol->string symbol) procedure

Returns the name of symbol as a string, but without adding
escapes. It is an error to apply mutation procedures like
string-set! to strings returned by this procedure.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(string->symbol string) procedure

Returns the symbol whose name is string . This procedure
can create symbols with names containing special charac-
ters that would require escaping when written, but does
not interpret escapes in its input.

(string->symbol "mISSISSIppi")

=⇒ mISSISSIppi

(eqv? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eqv? ’LollyPop

(string->symbol

(symbol->string ’LollyPop)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

6.6. Characters

Characters are objects that represent printed characters
such as letters and digits. All Scheme implementations
must support at least the ASCII character repertoire: that
is, Unicode characters U+0000 through U+007F. Imple-
mentations may support any other Unicode characters they

see fit, and may also support non-Unicode characters as
well. Except as otherwise specified, the result of applying
any of the following procedures to a non-Unicode character
is implementation-dependent.

Characters are written using the notation #\〈character〉 or
#\〈character name〉 or #\x〈hex scalar value〉.
The following character names must be supported by all
implementations with the given values. Implementations
may add other names provided they cannot be interpreted
as hex scalar values preceded by x.

#\alarm ; U+0007
#\backspace ; U+0008
#\delete ; U+007F
#\escape ; U+001B
#\newline ; the linefeed character, U+000A
#\null ; the null character, U+0000
#\return ; the return character, U+000D
#\space ; the preferred way to write a space
#\tab ; the tab character, U+0009

Here are some additional examples:

#\a ; lower case letter
#\A ; upper case letter
#\(; left parenthesis
#\ ; the space character
#\x03BB ; λ (if character is supported)
#\iota ; ι (if character and name are supported)

Case is significant in #\〈character〉, and in #\〈character
name〉, but not in #\x〈hex scalar value〉. If 〈character〉
in #\〈character〉 is alphabetic, then any character imme-
diately following 〈character〉 cannot be one that can ap-
pear in an identifier. This rule resolves the ambiguous case
where, for example, the sequence of characters “#\space”
could be taken to be either a representation of the space
character or a representation of the character “#\s” fol-
lowed by a representation of the symbol “pace.”

Characters written in the #\ notation are self-evaluating.
That is, they do not have to be quoted in programs.

Some of the procedures that operate on characters ignore
the difference between upper case and lower case. The pro-
cedures that ignore case have “-ci” (for “case insensitive”)
embedded in their names.

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char=? char1 char2 char3 . . .) procedure
(char<? char1 char2 char3 . . .) procedure

6. Standard procedures 45

(char>? char1 char2 char3 . . .) procedure
(char<=? char1 char2 char3 . . .) procedure
(char>=? char1 char2 char3 . . .) procedure

These procedures return #t if the results of passing their
arguments to char->integer are respectively equal, mono-
tonically increasing, monotonically decreasing, monotoni-
cally non-decreasing, or monotonically non-increasing.

These predicates are required to be transitive.

(char-ci=? char1 char2 char3 . . .)
char library procedure

(char-ci<? char1 char2 char3 . . .)
char library procedure

(char-ci>? char1 char2 char3 . . .)
char library procedure

(char-ci<=? char1 char2 char3 . . .)
char library procedure

(char-ci>=? char1 char2 char3 . . .)
char library procedure

These procedures are similar to char=? et cetera, but they
treat upper case and lower case letters as the same. For
example, (char-ci=? #\A #\a) returns #t.

Specifically, these procedures behave as if char-foldcase
were applied to their arguments before they were com-
pared.

(char-alphabetic? char) char library procedure
(char-numeric? char) char library procedure
(char-whitespace? char) char library procedure
(char-upper-case? letter) char library procedure
(char-lower-case? letter) char library procedure

These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper case, or lower case char-
acters, respectively, otherwise they return #f.

Specifically, they must return #t when applied to char-
acters with the Unicode properties Alphabetic, Nu-
meric Digit, White Space, Uppercase, and Lowercase re-
spectively, and #f when applied to any other Unicode char-
acters. Note that many Unicode characters are alphabetic
but neither upper nor lower case.

(digit-value char) char library procedure

This procedure returns the numeric value (0 to 9) of its
argument if it is a numeric digit (that is, if char-numeric?
returns #t), or #f on any other character.

(digit-value #\3) =⇒ 3

(digit-value #\x0664) =⇒ 4

(digit-value #\x0AE6) =⇒ 0

(digit-value #\x0EA6) =⇒ #f

(char->integer char) procedure
(integer->char n) procedure

Given a Unicode character, char->integer returns an ex-
act integer between 0 and #xD7FF or between #xE000 and
#x10FFFF which is equal to the Unicode scalar value of
that character. Given a non-Unicode character, it returns
an exact integer greater than #x10FFFF. This is true inde-
pendent of whether the implementation uses the Unicode
representation internally.

Given an exact integer that is the value returned by a char-
acter when char->integer is applied to it, integer->char
returns that character.

(char-upcase char) char library procedure
(char-downcase char) char library procedure
(char-foldcase char) char library procedure

The char-upcase procedure, given an argument that is
the lowercase part of a Unicode casing pair, returns the
uppercase member of the pair, provided that both charac-
ters are supported by the Scheme implementation. Note
that language-sensitive casing pairs are not used. If the
argument is not the lowercase member of such a pair, it is
returned.

The char-downcase procedure, given an argument that is
the uppercase part of a Unicode casing pair, returns the
lowercase member of the pair, provided that both charac-
ters are supported by the Scheme implementation. Note
that language-sensitive casing pairs are not used. If the
argument is not the uppercase member of such a pair, it is
returned.

The char-foldcase procedure applies the Unicode simple
case-folding algorithm to its argument and returns the re-
sult. Note that language-sensitive folding is not used. If
the argument is an uppercase letter, the result will be ei-
ther a lowercase letter or the same as the argument if the
lowercase letter does not exist or is not supported by the
implementation. See UAX #29 [11] (part of the Unicode
Standard) for details.

Note that many Unicode lowercase characters do not have
uppercase equivalents.

6.7. Strings

Strings are sequences of characters. Strings are written as
sequences of characters enclosed within quotation marks
("). Within a string literal, various escape sequences rep-
resent characters other than themselves. Escape sequences
always start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008

46 Revised7 Scheme

• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \r : return, U+000D

• \" : double quote, U+0022

• \\ : backslash, U+005C

• \| : vertical line, U+007C

• \〈intraline whitespace〉*〈line ending〉
〈intraline whitespace〉* : nothing

• \x〈hex scalar value〉; : specified character (note the
terminating semi-colon).

The result is unspecified if any other character in a string
occurs after a backslash.

Except for a line ending, any character outside of an escape
sequence stands for itself in the string literal. A line end-
ing which is preceded by \〈intraline whitespace〉 expands
to nothing (along with any trailing intraline whitespace),
and can be used to indent strings for improved legibility.
Any other line ending has the same effect as inserting a \n

character into the string.

Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text"

"Here’s text \

containing just one line"

"\x03B1; is named GREEK SMALL LETTER ALPHA."

The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
that is fixed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

Some of the procedures that operate on strings ignore the
difference between upper and lower case. The names of
the versions that ignore case end with “-ci” (for “case
insensitive”).

Implementations may forbid certain characters from ap-
pearing in strings. However, with the exception of #\null,
ASCII characters must not be forbidden. For example, an
implementation might support the entire Unicode reper-
toire, but only allow characters U+0001 to U+00FF (the
Latin-1 repertoire without #\null) in strings.

It is an error to pass such a forbidden character to
make-string, string, string-set!, or string-fill!, as
part of the list passed to list->string, or as part of the
vector passed to vector->string (see section 6.8), or in
UTF-8 encoded form within a bytevector passed to utf8->

string (see section 6.9). It is also an error for a procedure

passed to string-map (see section 6.10) to return a forbid-
den character, or for read-string (see section 6.13.2) to
attempt to read one.

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure

The make-string procedure returns a newly allocated
string of length k. If char is given, then all the characters
of the string are initialized to char , otherwise the contents
of the string are unspecified.

(string char . . .) procedure

Returns a newly allocated string composed of the argu-
ments. It is analogous to list.

(string-length string) procedure

Returns the number of characters in the given string .

(string-ref string k) procedure

It is an error if k is not a valid index of string .

The string-ref procedure returns character k of string
using zero-origin indexing. There is no requirement for
this procedure to execute in constant time.

(string-set! string k char) procedure

It is an error if k is not a valid index of string .

The string-set! procedure stores char in element k of
string . There is no requirement for this procedure to exe-
cute in constant time.

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ unspecified
(string-set! (g) 0 #\?) =⇒ error
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ error

(string=? string1 string2 string3 . . .) procedure

Returns #t if all the strings are the same length and contain
exactly the same characters in the same positions, other-
wise returns #f.

(string-ci=? string1 string2 string3 . . .)
char library procedure

Returns #t if, after case-folding, all the strings are the
same length and contain the same characters in the same

6. Standard procedures 47

positions, otherwise returns #f. Specifically, these proce-
dures behave as if string-foldcase were applied to their
arguments before comparing them.

(string<? string1 string2 string3 . . .) procedure
(string-ci<? string1 string2 string3 . . .)

char library procedure
(string>? string1 string2 string3 . . .) procedure
(string-ci>? string1 string2 string3 . . .)

char library procedure
(string<=? string1 string2 string3 . . .) procedure
(string-ci<=? string1 string2 string3 . . .)

char library procedure
(string>=? string1 string2 string3 . . .) procedure
(string-ci>=? string1 string2 string3 . . .)

char library procedure

These procedures return #t if their arguments are (respec-
tively): monotonically increasing, monotonically decreas-
ing, monotonically non-decreasing, or monotonically non-
increasing.

These predicates are required to be transitive.

These procedures compare strings in an implementation-
defined way. One approach is to make them the lexico-
graphic extensions to strings of the corresponding order-
ings on characters. In that case, string<? would be the
lexicographic ordering on strings induced by the ordering
char<? on characters, and if the two strings differ in length
but are the same up to the length of the shorter string, the
shorter string would be considered to be lexicographically
less than the longer string. However, it is also permitted
to use the natural ordering imposed by the implementa-
tion’s internal representation of strings, or a more complex
locale-specific ordering.

In all cases, a pair of strings must satisfy exactly one
of string<?, string=?, and string>?, and must satisfy
string<=? if and only if they do not satisfy string>? and
string>=? if and only if they do not satisfy string<?.

The “-ci” procedures behave as if they applied
string-foldcase to their arguments before invoking the
corresponding procedures without “-ci”.

(string-upcase string) char library procedure
(string-downcase string) char library procedure
(string-foldcase string) char library procedure

These procedures apply the Unicode full string uppercas-
ing, lowercasing, and case-folding algorithms to their ar-
guments and return the result. In certain cases, the result
differs in length from the argument. If the result is equal
to the argument in the sense of string=?, the argument
may be returned. Note that language-sensitive mappings
and foldings are not used.

The Unicode Standard prescribes special treatment of the
Greek letter Σ, whose normal lower-case form is σ but
which becomes ς at the end of a word. See UAX #29 [11]
(part of the Unicode Standard) for details. However, im-
plementations of string-downcase are not required to pro-
vide this behavior, and may choose to change Σ to σ in all
cases.

(substring string start end) procedure

The substring procedure returns a newly allocated string
formed from the characters of string beginning with index
start and ending with index end . This is equivalent to call-
ing string-copy with the same arguments, but is provided
for backward compatibility and stylistic flexibility.

(string-append string . . .) procedure

Returns a newly allocated string whose characters are the
concatenation of the characters in the given strings.

(string->list string) procedure
(string->list string start) procedure
(string->list string start end) procedure
(list->string list) procedure

It is an error if any element of list is not a character.

The string->list procedure returns a newly allocated list
of the characters of string between start and end . list->
string returns a newly allocated string formed from the
elements in the list list . In both procedures, order is pre-
served. string->list and list->string are inverses so
far as equal? is concerned.

(string-copy string) procedure
(string-copy string start) procedure
(string-copy string start end) procedure

Returns a newly allocated copy of the part of the given
string between start and end .

(string-copy! to at from) procedure
(string-copy! to at from start) procedure
(string-copy! to at from start end) procedure

It is an error if at is less than zero or greater than the length

of to. It is also an error if (- (string-length to) at) is less

than (- end start).

Copies the characters of string from between start and end
to string to, starting at at . The order in which characters
are copied is unspecified, except that if the source and des-
tination overlap, copying takes place as if the source is first
copied into a temporary string and then into the destina-
tion. This can be achieved without allocating storage by
making sure to copy in the correct direction in such cir-
cumstances.

48 Revised7 Scheme

(define a "12345")

(define b (string-copy "abcde"))

(string-copy! b 1 a 0 2)

b =⇒ "a12de"

(string-fill! string fill) procedure
(string-fill! string fill start) procedure
(string-fill! string fill start end) procedure

It is an error if fill is not a character.

The string-fill! procedure stores fill in the elements of
string between start and end .

6.8. Vectors

Vectors are heterogeneous structures whose elements are
indexed by integers. A vector typically occupies less space
than a list of the same length, and the average time needed
to access a randomly chosen element is typically less for the
vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created. The valid indexes of a
vector are the exact non-negative integers less than the
length of the vector. The first element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.

Vectors are written using the notation #(obj . . .). For
example, a vector of length 3 containing the number zero
in element 0, the list (2 2 2 2) in element 1, and the
string "Anna" in element 2 can be written as follows:

#(0 (2 2 2 2) "Anna")

Vector constants are self-evaluating, so they do not need
to be quoted in programs.

(vector? obj) procedure

Returns #t if obj is a vector; otherwise returns #f.

(make-vector k) procedure
(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj . . .) procedure

Returns a newly allocated vector whose elements contain
the given arguments. It is analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact in-
teger.

(vector-ref vector k) procedure

It is an error if k is not a valid index of vector .

The vector-ref procedure returns the contents of element
k of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(exact

(round (* 2 (acos -1)))))

=⇒ 13

(vector-set! vector k obj) procedure

It is an error if k is not a valid index of vector .

The vector-set! procedure stores obj in element k of
vector .

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ error ; constant vector

(vector->list vector) procedure
(vector->list vector start) procedure
(vector->list vector start end) procedure
(list->vector list) procedure

The vector->list procedure returns a newly allocated list
of the objects contained in the elements of vector between
start and end . The list->vector procedure returns a
newly created vector initialized to the elements of the list
list .

In both procedures, order is preserved.

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(vector->list ’#(dah dah didah) 1 2)

=⇒ (dah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector->string vector) procedure
(vector->string vector start) procedure
(vector->string vector start end) procedure
(string->vector string) procedure

6. Standard procedures 49

(string->vector string start) procedure
(string->vector string start end) procedure

It is an error if any element of vector between start and end is

not a character.

The vector->string procedure returns a newly allocated
string of the objects contained in the elements of vector
between start and end . The string->vector procedure
returns a newly created vector initialized to the elements
of the string string between start and end .

In both procedures, order is preserved.

(string->vector "ABC") =⇒ #(#\A #\B #\C)

(vector->string

#(#\1 #\2 #\3) =⇒ "123"

(vector-copy vector) procedure
(vector-copy vector start) procedure
(vector-copy vector start end) procedure

Returns a newly allocated copy of the elements of the given
vector between start and end . The elements of the new
vector are the same (in the sense of eqv?) as the elements
of the old.

(define a #(1 8 2 8)) ; a may be immutable

(define b (vector-copy a))

(vector-set! b 0 3) ; b is mutable

b =⇒ #(3 8 2 8)

(define c (vector-copy b 1 3))

c =⇒ #(8 2)

(vector-copy! to at from) procedure
(vector-copy! to at from start) procedure
(vector-copy! to at from start end) procedure

It is an error if at is less than zero or greater than the length

of to. It is also an error if (- (vector-length to) at) is less

than (- end start).

Copies the elements of vector from between start and end
to vector to, starting at at . The order in which elements
are copied is unspecified, except that if the source and des-
tination overlap, copying takes place as if the source is first
copied into a temporary vector and then into the destina-
tion. This can be achieved without allocating storage by
making sure to copy in the correct direction in such cir-
cumstances.

(define a (vector 1 2 3 4 5))

(define b (vector 10 20 30 40 50))

(vector-copy! b 1 a 0 2)

b =⇒ #(10 1 2 40 50)

(vector-append vector . . .) procedure

Returns a newly allocated vector whose elements are the
concatenation of the elements of the given vectors.

(vector-append #(a b c) #(d e f))

=⇒ #(a b c d e f)

(vector-fill! vector fill) procedure
(vector-fill! vector fill start) procedure
(vector-fill! vector fill start end) procedure

The vector-fill! procedure stores fill in the elements of
vector between start and end .

(define a (vector 1 2 3 4 5))

(vector-fill! a ’smash 2 4)

a

=⇒ #(1 2 smash smash 5)

6.9. Bytevectors

Bytevectors represent blocks of binary data. They are
fixed-length sequences of bytes, where a byte is an exact
integer in the range from 0 to 255 inclusive. A bytevector
is typically more space-efficient than a vector containing
the same values.

The length of a bytevector is the number of elements that
it contains. This number is a non-negative integer that is
fixed when the bytevector is created. The valid indexes of
a bytevector are the exact non-negative integers less than
the length of the bytevector, starting at index zero as with
vectors.

Bytevectors are written using the notation #u8(byte . . .).
For example, a bytevector of length 3 containing the byte
0 in element 0, the byte 10 in element 1, and the byte 5 in
element 2 can be written as follows:

#u8(0 10 5)

Bytevector constants are self-evaluating, so they do not
need to be quoted in programs.

(bytevector? obj) procedure

Returns #t if obj is a bytevector. Otherwise, #f is returned.

(make-bytevector k) procedure
(make-bytevector k byte) procedure

The make-bytevector procedure returns a newly allocated
bytevector of length k. If byte is given, then all elements
of the bytevector are initialized to byte, otherwise the con-
tents of each element are unspecified.

(make-bytevector 2 12) =⇒ #u8(12 12)

(bytevector byte . . .) procedure

Returns a newly allocated bytevector containing its argu-
ments.

50 Revised7 Scheme

(bytevector 1 3 5 1 3 5) =⇒ #u8(1 3 5 1 3 5)

(bytevector) =⇒ #u8()

(bytevector-length bytevector) procedure

Returns the length of bytevector in bytes as an exact inte-
ger.

(bytevector-u8-ref bytevector k) procedure

It is an error if k is not a valid index of bytevector .

Returns the kth byte of bytevector .

(bytevector-u8-ref ’#u8(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(bytevector-u8-set! bytevector k byte) procedure

It is an error if k is not a valid index of bytevector .

Stores byte as the kth byte of bytevector .

(let ((bv (bytevector 1 2 3 4)))

(bytevector-u8-set! bv 1 3)

bv)

=⇒ #u8(1 3 3 4)

(bytevector-copy bytevector) procedure
(bytevector-copy bytevector start) procedure
(bytevector-copy bytevector start end) procedure

Returns a newly allocated bytevector containing the bytes
in bytevector between start and end .

(define a #u8(1 2 3 4 5))

(bytevector-copy a 2 4)) =⇒ #u8(3 4)

(bytevector-copy! to at from) procedure
(bytevector-copy! to at from start) procedure
(bytevector-copy! to at from start end) procedure

It is an error if at is less than zero or greater than the length

of to. It is also an error if (- (bytevector-length to) at) is

less than (- end start).

Copies the bytes of bytevector from between start and end
to bytevector to, starting at at . The order in which bytes
are copied is unspecified, except that if the source and des-
tination overlap, copying takes place as if the source is first
copied into a temporary bytevector and then into the des-
tination. This can be achieved without allocating storage
by making sure to copy in the correct direction in such
circumstances.

(define a (bytevector 1 2 3 4 5))

(define b (bytevector 10 20 30 40 50))

(bytevector-copy! b 1 a 0 2)

b =⇒ #u8(10 1 2 40 50)

Note: This procedure appears in R6RS, but places the source

before the destination, contrary to other such procedures in

Scheme.

(bytevector-append bytevector . . .) procedure

Returns a newly allocated bytevector whose elements are
the concatenation of the elements in the given bytevectors.

(bytevector-append #u8(0 1 2) #u8(3 4 5))

=⇒ #u8(0 1 2 3 4 5)

(utf8->string bytevector) procedure
(utf8->string bytevector start) procedure
(utf8->string bytevector start end) procedure
(string->utf8 string) procedure
(string->utf8 string start) procedure
(string->utf8 string start end) procedure

It is an error for bytevector to contain invalid UTF-8 byte se-

quences.

These procedures translate between strings and bytevec-
tors that encode those strings using the UTF-8 encod-
ing. The utf8->string procedure decodes the bytes of
a bytevector between start and end and returns the corre-
sponding string; the string->utf8 procedure encodes the
characters of a string between start and end and returns
the corresponding bytevector.

(utf8->string #u8(#x41)) =⇒ "A"

(string->utf8 "λ") =⇒ #u8(#xCE #xBB)

6.10. Control features

This section describes various primitive procedures which
control the flow of program execution in special ways. Pro-
cedures in this section that invoke procedure arguments al-
ways do so in the same dynamic environment as the call of
the original procedure. The procedure? predicate is also
described here.

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t

(apply proc arg1 . . . args) procedure

The apply procedure calls proc with the elements of the list
(append (list arg1 . . .) args) as the actual arguments.

6. Standard procedures 51

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(map proc list1 list2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are lists and return a single value.

The map procedure applies proc element-wise to the ele-
ments of the lists and returns a list of the results, in order.
If more than one list is given and not all lists have the
same length, map terminates when the shortest list runs
out. The lists can be circular, but it is an error if all of
them are circular. It is an error for proc to mutate any of
the lists. The dynamic order in which proc is applied to
the elements of the lists is unspecified. If multiple returns
occur from map, the values returned by earlier returns are
not mutated.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6 7)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

(string-map proc string1 string2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are strings and return a single character.

The string-map procedure applies proc element-wise to
the elements of the strings and returns a string of the re-
sults, in order. If more than one string is given and not
all strings have the same length, string-map terminates
when the shortest string runs out. The dynamic order in
which proc is applied to the elements of the strings is un-
specified. If multiple returns occur from string-map, the
values returned by earlier returns are not mutated.

(string-map char-foldcase "AbdEgH")

=⇒ "abdegh"

(string-map

(lambda (c)

(integer->char (+ 1 (char->integer c))))

"HAL")

=⇒ "IBM"

(string-map

(lambda (c k)

((if (eqv? k #\u) char-upcase char-downcase)

c))

"studlycaps xxx"

"ululululul")

=⇒ "StUdLyCaPs"

(vector-map proc vector1 vector2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are vectors and return a single value.

The vector-map procedure applies proc element-wise to
the elements of the vectors and returns a vector of the
results, in order. If more than one vector is given and not
all vectors have the same length, vector-map terminates
when the shortest vector runs out. The dynamic order
in which proc is applied to the elements of the vectors is
unspecified. If multiple returns occur from vector-map,
the values returned by earlier returns are not mutated.

(vector-map cadr ’#((a b) (d e) (g h)))

=⇒ #(b e h)

(vector-map (lambda (n) (expt n n))

’#(1 2 3 4 5))

=⇒ #(1 4 27 256 3125)

(vector-map + ’#(1 2 3) ’#(4 5 6 7))

=⇒ #(5 7 9)

(let ((count 0))

(vector-map

(lambda (ignored)

(set! count (+ count 1))

count)

’#(a b))) =⇒ #(1 2) or #(2 1)

(for-each proc list1 list2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are lists.

The arguments to for-each are like the arguments to map,
but for-each calls proc for its side effects rather than for
its values. Unlike map, for-each is guaranteed to call proc
on the elements of the lists in order from the first ele-
ment(s) to the last, and the value returned by for-each

is unspecified. If more than one list is given and not all
lists have the same length, for-each terminates when the
shortest list runs out. The lists can be circular, but it is
an error if all of them are circular.

It is an error for proc to mutate any of the lists.

52 Revised7 Scheme

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(string-for-each proc string1 string2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are strings.

The arguments to string-for-each are like the arguments
to string-map, but string-for-each calls proc for its
side effects rather than for its values. Unlike string-map,
string-for-each is guaranteed to call proc on the ele-
ments of the lists in order from the first element(s) to
the last, and the value returned by string-for-each is
unspecified. If more than one string is given and not all
strings have the same length, string-for-each terminates
when the shortest string runs out. It is an error for proc
to mutate any of the strings.

(let ((v ’()))

(string-for-each

(lambda (c) (set! v (cons (char->integer c) v)))

"abcde")

v) =⇒ (101 100 99 98 97)

(vector-for-each proc vector1 vector2 . . .) procedure

It is an error if proc does not accept as many arguments as there

are vectors.

The arguments to vector-for-each are like the arguments
to vector-map, but vector-for-each calls proc for its
side effects rather than for its values. Unlike vector-map,
vector-for-each is guaranteed to call proc on the ele-
ments of the vectors in order from the first element(s) to
the last, and the value returned by vector-for-each is un-
specified. If more than one vector is given and not all vec-
tors have the same length, vector-for-each terminates
when the shortest vector runs out. It is an error for proc
to mutate any of the vectors.

(let ((v (make-list 5)))

(vector-for-each

(lambda (i) (list-set! v i (* i i)))

’#(0 1 2 3 4))

v) =⇒ (0 1 4 9 16)

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

It is an error if proc does not accept one argument.

The procedure call-with-current-continuation (or its
equivalent abbreviation call/cc) packages the current
continuation (see the rationale below) as an “escape pro-
cedure” and passes it as an argument to proc. The escape

procedure is a Scheme procedure that, if it is later called,
will abandon whatever continuation is in effect at that later
time and will instead use the continuation that was in ef-
fect when the escape procedure was created. Calling the
escape procedure will cause the invocation of before and
after thunks installed using dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation to the original call to
call-with-current-continuation. Most continuations
take only one value. Continuations created by the
call-with-values procedure (including the initializa-
tion expressions of define-values, let-values, and
let*-values expressions), take the number of val-
ues that the consumer expects. The continuations
of all non-final expressions within a sequence of ex-
pressions, such as in lambda, case-lambda, begin,
let, let*, letrec, letrec*, let-values, let*-values,
let-syntax, letrec-syntax, parameterize, guard,
case, cond, when, and unless expressions, take an ar-
bitrary number of values because they discard the values
passed to them in any event. The effect of passing no val-
ues or more than one value to continuations that were not
created in one of these ways is unspecified.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It can be
stored in variables or data structures and can be called as
many times as desired. However, like the raise and error

procedures, it never returns to its caller.

The following examples show only the simplest ways
in which call-with-current-continuation is used. If
all real uses were as simple as these examples, there
would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

6. Standard procedures 53

Rationale:

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is useful for imple-
menting a wide variety of advanced control structures. In fact,
raise and guard provide a more structured mechanism for non-
local exits.

Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation. If the
expression is evaluated at the REPL, for example, then the con-
tinuation might take the result, print it on the screen, prompt
for the next input, evaluate it, and so on forever. Most of the
time the continuation includes actions specified by user code,
as in a continuation that will take the result, multiply it by
the value stored in a local variable, add seven, and give the an-
swer to the REPL’s continuation to be printed. Normally these
ubiquitous continuations are hidden behind the scenes and pro-
grammers do not think much about them. On rare occasions,
however, a programmer needs to deal with continuations explic-
itly. The call-with-current-continuation procedure allows
Scheme programmers to do that by creating a procedure that
acts just like the current continuation.

(values obj . . .) procedure

Delivers all of its arguments to its continuation. The
values procedure might be defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure

Calls its producer argument with no arguments and a
continuation that, when passed some values, calls the
consumer procedure with those values as arguments. The
continuation for the call to consumer is the continuation
of the call to call-with-values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

(dynamic-wind before thunk after) procedure

Calls thunk without arguments, returning the result(s) of
this call. Before and after are called, also without ar-
guments, as required by the following rules. Note that,
in the absence of calls to continuations captured using
call-with-current-continuation, the three arguments
are called once each, in order. Before is called whenever
execution enters the dynamic extent of the call to thunk
and after is called whenever it exits that dynamic extent.
The dynamic extent of a procedure call is the period be-
tween when the call is initiated and when it returns. The

before and after thunks are called in the same dynamic
environment as the call to dynamic-wind. In Scheme, be-
cause of call-with-current-continuation, the dynamic
extent of a call is not always a single, connected time pe-
riod. It is defined as follows:

• The dynamic extent is entered when execution of the
body of the called procedure begins.

• The dynamic extent is also entered when exe-
cution is not within the dynamic extent and a
continuation is invoked that was captured (using
call-with-current-continuation) during the dy-
namic extent.

• It is exited when the called procedure returns.

• It is also exited when execution is within the dynamic
extent and a continuation is invoked that was captured
while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic
extent of the call to thunk and then a continuation is in-
voked in such a way that the afters from these two invoca-
tions of dynamic-wind are both to be called, then the after
associated with the second (inner) call to dynamic-wind is
called first.

If a second call to dynamic-wind occurs within the dy-
namic extent of the call to thunk and then a continua-
tion is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called,
then the before associated with the first (outer) call to
dynamic-wind is called first.

If invoking a continuation requires calling the before from
one call to dynamic-wind and the after from another, then
the after is called first.

The effect of using a captured continuation to enter or exit
the dynamic extent of a call to before or after is unspecified.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

54 Revised7 Scheme

6.11. Exceptions

This section describes Scheme’s exception-handling and
exception-raising procedures. For the concept of Scheme
exceptions, see section 1.3.2. See also 4.2.7 for the guard

syntax.

Exception handlers are one-argument procedures that de-
termine the action the program takes when an exceptional
situation is signaled. The system implicitly maintains a
current exception handler in the dynamic environment.

The program raises an exception by invoking the current
exception handler, passing it an object encapsulating in-
formation about the exception. Any procedure accepting
one argument can serve as an exception handler and any
object can be used to represent an exception.

(with-exception-handler handler thunk) procedure

It is an error if handler does not accept one argument. It is also

an error if thunk does not accept zero arguments.

The with-exception-handler procedure returns the re-
sults of invoking thunk . Handler is installed as the current
exception handler in the dynamic environment used for the
invocation of thunk .

(call-with-current-continuation

(lambda (k)

(with-exception-handler

(lambda (x)

(display "condition: ")

(write x)

(newline)

(k ’exception))

(lambda ()

(+ 1 (raise ’an-error))))))

=⇒ exception

and prints condition: an-error

(with-exception-handler

(lambda (x)

(display "something went wrong\n"))

(lambda ()

(+ 1 (raise ’an-error))))

prints something went wrong

After printing, the second example then raises another ex-
ception.

(raise obj) procedure

Raises an exception by invoking the current exception han-
dler on obj . The handler is called with the same dynamic
environment as that of the call to raise, except that the
current exception handler is the one that was in place when
the handler being called was installed. If the handler re-
turns, a secondary exception is raised in the same dynamic
environment as the handler. The relationship between obj

and the object raised by the secondary exception is unspec-
ified.

(raise-continuable obj) procedure

Raises an exception by invoking the current exception han-
dler on obj . The handler is called with the same dynamic
environment as the call to raise-continuable, except
that: (1) the current exception handler is the one that was
in place when the handler being called was installed, and
(2) if the handler being called returns, then it will again
become the current exception handler. If the handler re-
turns, the values it returns become the values returned by
the call to raise-continuable.

(with-exception-handler

(lambda (con)

(cond

((string? con)

(display con))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable "should be a number")

23)))

prints: should be a number

=⇒ 65

(error message obj . . .) procedure

Message should be a string.

Raises an exception as if by calling raise on a newly al-
located implementation-defined object which encapsulates
the information provided by message, as well as any obj s,
known as the irritants. The procedure error-object?

must return #t on such objects.

(define (null-list? l)

(cond ((pair? l) #f)

((null? l) #t)

(else

(error

"null-list?: argument out of domain"

l))))

(error-object? obj) procedure

Returns #t if obj is an object created by error or one
of an implementation-defined set of objects. Otherwise,
it returns #f. The objects used to signal errors, includ-
ing those which satisfy the predicates file-error? and
read-error?, may or may not satisfy error-object?.

(error-object-message error-object) procedure

Returns the message encapsulated by error-object .

6. Standard procedures 55

(error-object-irritants error-object) procedure

Returns a list of the irritants encapsulated by error-object .

(read-error? obj) procedure
(file-error? obj) procedure

Error type predicates. Returns #t if obj is an object raised
by the read procedure or by the inability to open an input
or output port on a file, respectively. Otherwise, it returns
#f.

6.12. Environments and evaluation

(environment list1 . . .) eval library procedure

This procedure returns a specifier for the environment that
results by starting with an empty environment and then
importing each list , considered as an import set, into it.
(See section 5.6 for a description of import sets.) The
bindings of the environment represented by the specifier
are immutable, as is the environment itself.

(scheme-report-environment version)
r5rs library procedure

If version is equal to 5, corresponding to R5RS,
scheme-report-environment returns a specifier for an en-
vironment that contains only the bindings defined in the
R5RS library. Implementations must support this value of
version.

Implementations may also support other values of version,
in which case they return a specifier for an environment
containing bindings corresponding to the specified version
of the report. If version is neither 5 nor another value
supported by the implementation, an error is signaled.

The effect of defining or assigning (through the use of eval)
an identifier bound in a scheme-report-environment (for
example car) is unspecified. Thus both the environment
and the bindings it contains may be immutable.

(null-environment version) r5rs library procedure

If version is equal to 5, corresponding to R5RS, the
null-environment procedure returns a specifier for an en-
vironment that contains only the bindings for all syntactic
keywords defined in the R5RS library. Implementations
must support this value of version.

Implementations may also support other values of version,
in which case they return a specifier for an environment
containing appropriate bindings corresponding to the spec-
ified version of the report. If version is neither 5 nor an-
other value supported by the implementation, an error is
signaled.

The effect of defining or assigning (through the use of eval)
an identifier bound in a scheme-report-environment (for
example car) is unspecified. Thus both the environment
and the bindings it contains may be immutable.

(interaction-environment) repl library procedure

This procedure returns a specifier for a mutable environ-
ment that contains an implementation-defined set of bind-
ings, typically a superset of those exported by (scheme

base). The intent is that this procedure will return the
environment in which the implementation would evaluate
expressions entered by the user into a REPL.

(eval expr-or-def environment-specifier)
eval library procedure

If expr-or-def is an expression, it is evaluated in the speci-
fied environment and its values are returned. If it is a defi-
nition, the specified identifier(s) are defined in the specified
environment, provided the environment is not immutable.
Implementations may extend eval to allow other objects.

(eval ’(* 7 3) (environment ’(scheme base)))

=⇒ 21

(let ((f (eval ’(lambda (f x) (f x x))

(null-environment 5))))

(f + 10))

=⇒ 20

(eval ’(define foo 32)

(environment ’(scheme base)))

=⇒ error is signaled

6.13. Input and output

6.13.1. Ports

Ports represent input and output devices. To Scheme, an
input port is a Scheme object that can deliver data upon
command, while an output port is a Scheme object that can
accept data. Whether the input and output port types are
disjoint is implementation-dependent.

Different port types operate on different data. Scheme
implementations are required to support textual ports and
binary ports, but may also provide other port types.

A textual port supports reading or writing of individual
characters from or to a backing store containing characters
using read-char and write-char below, and it supports
operations defined in terms of characters, such as read and
write.

A binary port supports reading or writing of individual
bytes from or to a backing store containing bytes using
read-u8 and write-u8 below, as well as operations defined

56 Revised7 Scheme

in terms of bytes. Whether the textual and binary port
types are disjoint is implementation-dependent.

Ports can be used to access files, devices, and similar things
on the host system on which the Scheme program is run-
ning.

(call-with-port port proc) procedure

It is an error if proc does not accept one argument.

The call-with-port procedure calls proc with port as an
argument. If proc returns, then the port is closed auto-
matically and the values yielded by the proc are returned.
If proc does not return, then the port must not be closed
automatically unless it is possible to prove that the port
will never again be used for a read or write operation.

Rationale: Because Scheme’s escape procedures have unlimited

extent, it is possible to escape from the current continuation

but later to resume it. If implementations were permitted to

close the port on any escape from the current continuation,

then it would be impossible to write portable code using both

call-with-current-continuation and call-with-port.

(call-with-input-file string proc)
file library procedure

(call-with-output-file string proc)
file library procedure

It is an error if proc does not accept one argument.

These procedures obtain a textual port obtained by
opening the named file for input or output as if by
open-input-file or open-output-file. The port and
proc are then passed to a procedure equivalent to
call-with-port.

(input-port? obj) procedure
(output-port? obj) procedure
(textual-port? obj) procedure
(binary-port? obj) procedure
(port? obj) procedure

These procedures return #t if obj is an input port, out-
put port, textual port, binary port, or any kind of port,
respectively. Otherwise they return #f.

(input-port-open? port) procedure
(output-port-open? port) procedure

Returns #t if port is still open and capable of performing
input or output, respectively, and #f otherwise.

(current-input-port) procedure
(current-output-port) procedure
(current-error-port) procedure

Returns the current default input port, output port, or
error port (an output port), respectively. These proce-
dures are parameter objects, which can be overridden with

parameterize (see section 4.2.6). The initial bindings for
these are implementation-defined textual ports.

(with-input-from-file string thunk)
file library procedure

(with-output-to-file string thunk)
file library procedure

The file is opened for input or output as if by
open-input-file or open-output-file, and the new port
is made to be the value returned by current-input-port

or current-output-port (as used by (read), (write

obj), and so forth). The thunk is then called with no
arguments. When the thunk returns, the port is closed
and the previous default is restored. It is an error if thunk
does not accept zero arguments. Both procedures return
the values yielded by thunk . If an escape procedure is used
to escape from the continuation of these procedures, they
behave exactly as if the current input or output port had
been bound dynamically with parameterize.

(open-input-file string) file library procedure
(open-binary-input-file string) file library procedure

Takes a string for an existing file and returns a textual
input port or binary input port that is capable of delivering
data from the file. If the file does not exist or cannot be
opened, an error that satisfies file-error? is signaled.

(open-output-file string) file library procedure
(open-binary-output-file string)

file library procedure

Takes a string naming an output file to be created and re-
turns a textual output port or binary output port that is
capable of writing data to a new file by that name. If a
file with the given name already exists, the effect is unspec-
ified. If the file cannot be opened, an error that satisfies
file-error? is signaled.

(close-port port) procedure
(close-input-port port) procedure
(close-output-port port) procedure

Closes the resource associated with port , rendering the port
incapable of delivering or accepting data. It is an error to
apply the last two procedures to a port which is not an
input or output port, respectively. Scheme implementa-
tions may provide ports which are simultaneously input
and output ports, such as sockets; the close-input-port

and close-output-port procedures can then be used to
close the input and output sides of the port independently.

These routines have no effect if the port has already been
closed.

6. Standard procedures 57

(open-input-string string) procedure

Takes a string and returns a textual input port that delivers
characters from the string. If the string is modified, the
effect is unspecified.

(open-output-string) procedure

Returns a textual output port that will accumulate char-
acters for retrieval by get-output-string.

(get-output-string port) procedure

It is an error if port was not created with open-output-string.

Returns a string consisting of the characters that have been
output to the port so far in the order they were output. If
the result string is modified, the effect is unspecified.

(parameterize

((current-output-port

(open-output-string)))

(display "piece")

(display " by piece ")

(display "by piece.")

(newline)

(get-output-string (current-output-port)))

=⇒ "piece by piece by piece.\n"

(open-input-bytevector bytevector) procedure

Takes a bytevector and returns a binary input port that
delivers bytes from the bytevector.

(open-output-bytevector) procedure

Returns a binary output port that will accumulate bytes
for retrieval by get-output-bytevector.

(get-output-bytevector port) procedure

It is an error if port was not created with

open-output-bytevector.

Returns a bytevector consisting of the bytes that have been
output to the port so far in the order they were output.

6.13.2. Input

If port is omitted from any input procedure, it defaults
to the value returned by (current-input-port). It is an
error to attempt an input operation on a closed port.

(read) read library procedure
(read port) read library procedure

The read procedure converts external representations of
Scheme objects into the objects themselves. That is, it is

a parser for the non-terminal 〈datum〉 (see sections 7.1.2
and 6.4). It returns the next object parsable from the
given textual input port , updating port to point to the
first character past the end of the external representation
of the object.

Implementations may support extended syntax to repre-
sent record types or other types that do not have datum
representations.

If an end of file is encountered in the input before any
characters are found that can begin an object, then an
end-of-file object is returned. The port remains open, and
further attempts to read will also return an end-of-file ob-
ject. If an end of file is encountered after the beginning of
an object’s external representation, but the external repre-
sentation is incomplete and therefore not parsable, an error
that satisfies read-error? is signaled.

(read-char) procedure
(read-char port) procedure

Returns the next character available from the textual input
port , updating the port to point to the following character.
If no more characters are available, an end-of-file object is
returned.

(peek-char) procedure
(peek-char port) procedure

Returns the next character available from the textual in-
put port , but without updating the port to point to the
following character. If no more characters are available, an
end-of-file object is returned.

Note: The value returned by a call to peek-char is the same as

the value that would have been returned by a call to read-char

with the same port . The only difference is that the very next call

to read-char or peek-char on that port will return the value

returned by the preceding call to peek-char. In particular, a

call to peek-char on an interactive port will hang waiting for

input whenever a call to read-char would have hung.

(read-line) procedure
(read-line port) procedure

Returns the next line of text available from the textual
input port , updating the port to point to the following
character. If an end of line is read, a string containing all
of the text up to (but not including) the end of line is re-
turned, and the port is updated to point just past the end
of line. If an end of file is encountered before any end of
line is read, but some characters have been read, a string
containing those characters is returned. If an end of file is
encountered before any characters are read, an end-of-file
object is returned. For the purpose of this procedure, an
end of line consists of either a linefeed character, a carriage

58 Revised7 Scheme

return character, or a sequence of a carriage return charac-
ter followed by a linefeed character. Implementations may
also recognize other end of line characters or sequences.

(eof-object? obj) procedure

Returns #t if obj is an end-of-file object, otherwise returns
#f. The precise set of end-of-file objects will vary among
implementations, but in any case no end-of-file object will
ever be an object that can be read in using read.

(eof-object) procedure

Returns an end-of-file object, not necessarily unique.

(char-ready?) procedure
(char-ready? port) procedure

Returns #t if a character is ready on the textual input
port and returns #f otherwise. If char-ready returns #t

then the next read-char operation on the given port is
guaranteed not to hang. If the port is at end of file then
char-ready? returns #t.

Rationale: The char-ready? procedure exists to make it pos-

sible for a program to accept characters from interactive ports

without getting stuck waiting for input. Any input editors as-

sociated with such ports must ensure that characters whose

existence has been asserted by char-ready? cannot be removed

from the input. If char-ready? were to return #f at end of

file, a port at end of file would be indistinguishable from an

interactive port that has no ready characters.

(read-string k) procedure
(read-string k port) procedure

Reads the next k characters, or as many as are available
before the end of file, from the textual input port into a
newly allocated string in left-to-right order and returns the
string. If no characters are available before the end of file,
an end-of-file object is returned.

(read-u8) procedure
(read-u8 port) procedure

Returns the next byte available from the binary input port ,
updating the port to point to the following byte. If no more
bytes are available, an end-of-file object is returned.

(peek-u8) procedure
(peek-u8 port) procedure

Returns the next byte available from the binary input port ,
but without updating the port to point to the following
byte. If no more bytes are available, an end-of-file object
is returned.

(u8-ready?) procedure
(u8-ready? port) procedure

Returns #t if a byte is ready on the binary input port and
returns #f otherwise. If u8-ready? returns #t then the
next read-u8 operation on the given port is guaranteed
not to hang. If the port is at end of file then u8-ready?

returns #t.

(read-bytevector k) procedure
(read-bytevector k port) procedure

Reads the next k bytes, or as many as are available before
the end of file, from the binary input port into a newly
allocated bytevector in left-to-right order and returns the
bytevector. If no bytes are available before the end of file,
an end-of-file object is returned.

(read-bytevector! bytevector) procedure
(read-bytevector! bytevector port) procedure
(read-bytevector! bytevector port start) procedure
(read-bytevector! bytevector port start end)

procedure

Reads the next end− start bytes, or as many as are avail-
able before the end of file, from the binary input port
into bytevector in left-to-right order beginning at the start
position. If end is not supplied, reads until the end of
bytevector has been reached. If start is not supplied, reads
beginning at position 0. Returns the number of bytes read.
If no bytes are available, an end-of-file object is returned.

6.13.3. Output

If port is omitted from any output procedure, it defaults
to the value returned by (current-output-port). It is an
error to attempt an output operation on a closed port.

(write obj) write library procedure
(write obj port) write library procedure

Writes a representation of obj to the given textual output
port . Strings that appear in the written representation
are enclosed in quotation marks, and within those strings
backslash and quotation mark characters are escaped by
backslashes. Symbols that contain non-ASCII characters
are escaped with vertical lines. Character objects are writ-
ten using the #\ notation.

If obj contains cycles which would cause an infinite loop
using the normal written representation, then at least the
objects that form part of the cycle must be represented
using datum labels as described in section 2.4. Datum
labels must not be used if there are no cycles.

Implementations may support extended syntax to repre-
sent record types or other types that do not have datum
representations.

6. Standard procedures 59

The write procedure returns an unspecified value.

(write-shared obj) write library procedure
(write-shared obj port) write library procedure

The write-shared procedure is the same as write, except
that shared structure must be represented using datum
labels for all pairs and vectors that appear more than once
in the output.

(write-simple obj) write library procedure
(write-simple obj port) write library procedure

The write-simple procedure is the same as write, except
that shared structure is never represented using datum la-
bels. This can cause write-simple not to terminate if obj
contains circular structure.

(display obj) write library procedure
(display obj port) write library procedure

Writes a representation of obj to the given textual output
port . Strings that appear in the written representation
are output as if by write-string instead of by write.
Symbols are not escaped. Character objects appear in the
representation as if written by write-char instead of by
write.

The display representation of other objects is unspecified.
However, display must not loop forever on self-referencing
pairs, vectors, or records. Thus if the normal write rep-
resentation is used, datum labels are needed to represent
cycles as in write.

Implementations may support extended syntax to repre-
sent record types or other types that do not have datum
representations.

The display procedure returns an unspecified value.

Rationale: The write procedure is intended for producing

machine-readable output and display for producing human-

readable output.

(newline) procedure
(newline port) procedure

Writes an end of line to textual output port . Exactly how
this is done differs from one operating system to another.
Returns an unspecified value.

(write-char char) procedure
(write-char char port) procedure

Writes the character char (not an external representation
of the character) to the given textual output port and re-
turns an unspecified value.

(write-string string) procedure
(write-string string port) procedure
(write-string string port start) procedure
(write-string string port start end) procedure

Writes the characters of string from start to end in left-to-
right order to the textual output port .

(write-u8 byte) procedure
(write-u8 byte port) procedure

Writes the byte to the given binary output port and returns
an unspecified value.

(write-bytevector bytevector) procedure
(write-bytevector bytevector port) procedure
(write-bytevector bytevector port start) procedure
(write-bytevector bytevector port start end)

procedure

Writes the bytes of bytevector from start to end in left-to-
right order to the binary output port .

(flush-output-port) procedure
(flush-output-port port) procedure

Flushes any buffered output from the buffer of output-port
to the underlying file or device and returns an unspecified
value.

6.14. System interface

Questions of system interface generally fall outside of the
domain of this report. However, the following operations
are important enough to deserve description here.

(load filename) load library procedure
(load filename environment-specifier)

load library procedure

It is an error if filename is not a string.

An implementation-dependent operation is used to trans-
form filename into the name of an existing file con-
taining Scheme source code. The load procedure reads
expressions and definitions from the file and evalu-
ates them sequentially in the environment specified by
environment-specifier . If environment-specifier is omitted,
(interaction-environment) is assumed.

It is unspecified whether the results of the expres-
sions are printed. The load procedure does not af-
fect the values returned by current-input-port and
current-output-port. It returns an unspecified value.

Rationale: For portability, load must operate on source files.

Its operation on other kinds of files necessarily varies among

implementations.

60 Revised7 Scheme

(file-exists? filename) file library procedure

It is an error if filename is not a string.

The file-exists? procedure returns #t if the named file
exists at the time the procedure is called, and #f otherwise.

(delete-file filename) file library procedure

It is an error if filename is not a string.

The delete-file procedure deletes the named file if it
exists and can be deleted, and returns an unspecified value.
If the file does not exist or cannot be deleted, an error that
satisfies file-error? is signaled.

(command-line) process-context library procedure

Returns the command line passed to the process as a list
of strings. The first string corresponds to the command
name, and is implementation-dependent. It is an error to
mutate any of these strings.

(exit) process-context library procedure
(exit obj) process-context library procedure

Runs all outstanding dynamic-wind after procedures, ter-
minates the running program, and communicates an exit
value to the operating system. If no argument is supplied,
or if obj is #t, the exit procedure should communicate
to the operating system that the program exited normally.
If obj is #f, the exit procedure should communicate to
the operating system that the program exited abnormally.
Otherwise, exit should translate obj into an appropriate
exit value for the operating system, if possible.

The exit procedure must not signal an exception or return
to its continuation.

Note: Because of the requirement to run handlers, this proce-

dure is not just the operating system’s exit procedure.

(emergency-exit) process-context library procedure
(emergency-exit obj) process-context library procedure

Terminates the program without running any outstanding
dynamic-wind after procedures and communicates an exit
value to the operating system in the same manner as exit.

Note: The emergency-exit procedure corresponds to the

exit procedure in Windows and Posix.

(get-environment-variable name)
process-context library procedure

Many operating systems provide each running process with
an environment consisting of environment variables. (This
environment is not to be confused with the Scheme envi-
ronments that can be passed to eval: see section 6.12.)
Both the name and value of an environment variable are

strings. The procedure get-environment-variable re-
turns the value of the environment variable name, or #f

if the named environment variable is not found. It may
use locale information to encode the name and decode the
value of the environment variable. It is an error if
get-environment-variable can’t decode the value. It is
also an error to mutate the resulting string.

(get-environment-variable "PATH")

=⇒ "/usr/local/bin:/usr/bin:/bin"

(get-environment-variables)

process-context library procedure

Returns the names and values of all the environment vari-
ables as an alist, where the car of each entry is the name
of an environment variable and the cdr is its value, both as
strings. The order of the list is unspecified. It is an error
to mutate any of these strings or the alist itself.

(get-environment-variables)

=⇒ (("USER" . "root") ("HOME" . "/"))

(current-second) time library procedure

Returns an inexact number representing the current time
on the International Atomic Time (TAI) scale. The value
0.0 represents midnight on January 1, 1970 TAI (equiva-
lent to ten seconds before midnight Universal Time) and
the value 1.0 represents one TAI second later. Neither
high accuracy nor high precision are required; in particu-
lar, returning Coordinated Universal Time plus a suitable
constant might be the best an implementation can do.

(current-jiffy) time library procedure

Returns the number of jiffies as an exact integer that
have elapsed since an arbitrary, implementation-defined
epoch. A jiffy is an implementation-defined fraction of
a second which is defined by the return value of the
jiffies-per-second procedure. The starting epoch is
guaranteed to be constant during a run of the program,
but may vary between runs.

Rationale: Jiffies are allowed to be implementation-dependent

so that current-jiffy can execute with minimum overhead. It

should be very likely that a compactly represented integer will

suffice as the returned value. Any particular jiffy size will be

inappropriate for some implementations: a microsecond is too

long for a very fast machine, while a much smaller unit would

force many implementations to return integers which have to be

allocated for most calls, rendering current-jiffy less useful for

accurate timing measurements.

(jiffies-per-second) time library procedure

Returns an exact integer representing the number of jiffies
per SI second. This value is an implementation-specified
constant.

7. Formal syntax and semantics 61

(define (time-length)

(let ((list (make-list 100000))

(start (current-jiffy)))

(length list)

(/ (- (current-jiffy) start)

(jiffies-per-second))))

(features) procedure

Returns a list of the feature identifiers which cond-expand

treats as true. It is an error to modify this list. Here is an
example of what features might return:

(features) =⇒
(r7rs ratios exact-complex full-unicode

gnu-linux little-endian

fantastic-scheme

fantastic-scheme-1.0

space-ship-control-system)

7. Formal syntax and semantics

This chapter provides formal descriptions of what has al-
ready been described informally in previous chapters of this
report.

7.1. Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF.

All spaces in the grammar are for legibility. Case
is not significant except in the definitions of 〈letter〉,
〈character name〉 and 〈mnemonic escape〉; for example,
#x1A and #X1a are equivalent, but foo and Foo and
#\space and #\Space are distinct. 〈empty〉 stands for the
empty string.

The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉; and 〈thing〉+ means at least one 〈thing〉.

7.1.1. Lexical structure

This section describes how individual tokens (identifiers,
numbers, etc.) are formed from sequences of characters.
The following sections describe how expressions and pro-
grams are formed from sequences of tokens.

〈Intertoken space〉 can occur on either side of any token,
but not within a token.

Identifiers that do not begin with a vertical line are termi-
nated by a 〈delimiter〉 or by the end of the input. So are
dot, numbers, characters, and booleans. Identifiers that
begin with a vertical line are terminated by another verti-
cal line.

The following four characters from the ASCII repertoire
are reserved for future extensions to the language: [] {

}

In addition to the identifier characters of the ASCII reper-
toire specified below, Scheme implementations may permit
any additional repertoire of Unicode characters to be em-
ployed in identifiers, provided that each such character has
a Unicode general category of Lu, Ll, Lt, Lm, Lo, Mn,
Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co,
or is U+200C or U+200D (the zero-width non-joiner and
joiner, respectively, which are needed for correct spelling
in Persian, Hindi, and other languages). However, it is an
error for the first character to have a general category of
Nd, Mc, or Me. It is also an error to use a non-Unicode
character in symbols or identifiers.

All Scheme implementations must permit the escape se-
quence \x<hexdigits>; to appear in Scheme identifiers
that are enclosed in vertical lines. If the character with the

62 Revised7 Scheme

given Unicode scalar value is supported by the implemen-
tation, identifiers containing such a sequence are equivalent
to identifiers containing the corresponding character.

〈token〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉
| (|) | #(| #u8(| ’ | ` | , | ,@ | .

〈delimiter〉 −→ 〈whitespace〉 | 〈vertical line〉
| (|) | " | ;

〈intraline whitespace〉 −→ 〈space or tab〉
〈whitespace〉 −→ 〈intraline whitespace〉 | 〈line ending〉
〈vertical line〉 −→ |

〈line ending〉 −→ 〈newline〉 | 〈return〉 〈newline〉
| 〈return〉

〈comment〉 −→ ; 〈all subsequent characters up to a
line ending〉
| 〈nested comment〉
| #; 〈intertoken space〉 〈datum〉

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈directive〉 −→ #!fold-case | #!no-fold-case

Note that it is ungrammatical to follow a 〈directive〉 with
anything but a 〈delimiter〉 or the end of file.

〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉 | 〈directive〉
〈intertoken space〉 −→ 〈atmosphere〉*

Note that +i, -i and 〈infnan〉 below are exceptions to the
〈peculiar identifier〉 rule; they are parsed as numbers, not
identifiers.

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈vertical line〉 〈symbol element〉* 〈vertical line〉
| 〈peculiar identifier〉

〈initial〉 −→ 〈letter〉 | 〈special initial〉
〈letter〉 −→ a | b | c | ... | z

| A | B | C | ... | Z
〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =

| > | ? | ^ | _ | ~
〈subsequent〉 −→ 〈initial〉 | 〈digit〉

| 〈special subsequent〉
〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉 | a | b | c | d | e | f
〈explicit sign〉 −→ + | -
〈special subsequent〉 −→ 〈explicit sign〉 | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+
〈mnemonic escape〉 −→ \a | \b | \t | \n | \r
〈peculiar identifier〉 −→ 〈explicit sign〉

| 〈explicit sign〉 〈sign subsequent〉 〈subsequent〉*
| 〈explicit sign〉 . 〈dot subsequent〉 〈subsequent〉*
| . 〈dot subsequent〉 〈subsequent〉*

〈dot subsequent〉 −→ 〈sign subsequent〉 | .

〈sign subsequent〉 −→ 〈initial〉 | 〈explicit sign〉 | @
〈symbol element〉 −→

〈any character other than 〈vertical line〉 or \〉
| 〈inline hex escape〉 | 〈mnemonic escape〉 | \|

〈boolean〉 −→ #t | #f | #true | #false

〈character〉 −→ #\ 〈any character〉
| #\ 〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ alarm | backspace | delete
| escape | newline | null | return | space | tab

〈string〉 −→ " 〈string element〉* "

〈string element〉 −→ 〈any character other than " or \〉
| 〈mnemonic escape〉 | \" | \\
| \〈intraline whitespace〉*〈line ending〉
〈intraline whitespace〉*
| 〈inline hex escape〉

〈bytevector〉 −→ #u8(〈byte〉*)
〈byte〉 −→ 〈any exact integer between 0 and 255〉

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉

The following rules for 〈num R〉, 〈complex R〉, 〈real R〉,
〈ureal R〉, 〈uinteger R〉, and 〈prefix R〉 are implicitly repli-
cated for R = 2, 8, 10, and 16. There are no rules for
〈decimal 2〉, 〈decimal 8〉, and 〈decimal 16〉, which means
that numbers containing decimal points or exponents are
always in decimal radix. Although not shown below, all
alphabetic characters used in the grammar of numbers can
appear in either upper or lower case.

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i

| 〈real R〉 + i | 〈real R〉 - i | 〈real R〉 〈infnan〉 i

| + 〈ureal R〉 i | - 〈ureal R〉 i

| 〈infnan〉 i | + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| 〈infnan〉

〈ureal R〉 −→ 〈uinteger R〉
| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉
〈infnan〉 −→ +inf.0 | -inf.0 | +nan.0 | -nan.0

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

7. Formal syntax and semantics 63

〈exponent marker〉 −→ e

〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉 | #i | #e
〈radix 2〉 −→ #b

〈radix 8〉 −→ #o

〈radix 10〉 −→ 〈empty〉 | #d
〈radix 16〉 −→ #x

〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈digit 10〉 | a | b | c | d | e | f

7.1.2. External representations

〈Datum〉 is what the read procedure (section 6.13.2) suc-
cessfully parses. Note that any string that parses as an
〈expression〉 will also parse as a 〈datum〉.

〈datum〉 −→ 〈simple datum〉 | 〈compound datum〉
| 〈label〉 = 〈datum〉 | 〈label〉 #

〈simple datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉 | 〈bytevector〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉 | 〈abbreviation〉
〈list〉 −→ (〈datum〉*) | (〈datum〉+ . 〈datum〉)
〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@
〈vector〉 −→ #(〈datum〉*)
〈label〉 −→ # 〈uinteger 10〉

7.1.3. Expressions

The definitions in this and the following subsections assume
that all the syntax keywords defined in this report have
been properly imported from their libraries, and that none
of them have been redefined or shadowed.

〈expression〉 −→ 〈identifier〉
| 〈literal〉
| 〈procedure call〉
| 〈lambda expression〉
| 〈conditional〉
| 〈assignment〉
| 〈derived expression〉
| 〈macro use〉
| 〈macro block〉
| 〈includer〉

〈literal〉 −→ 〈quotation〉 | 〈self-evaluating〉
〈self-evaluating〉 −→ 〈boolean〉 | 〈number〉 | 〈vector〉

| 〈character〉 | 〈string〉 | 〈bytevector〉
〈quotation〉 −→ ’〈datum〉 | (quote 〈datum〉)
〈procedure call〉 −→ (〈operator〉 〈operand〉*)
〈operator〉 −→ 〈expression〉
〈operand〉 −→ 〈expression〉

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)
〈formals〉 −→ (〈identifier〉*) | 〈identifier〉

| (〈identifier〉+ . 〈identifier〉)
〈body〉 −→ 〈definition〉* 〈sequence〉
〈sequence〉 −→ 〈command〉* 〈expression〉
〈command〉 −→ 〈expression〉

〈conditional〉 −→ (if 〈test〉 〈consequent〉 〈alternate〉)
〈test〉 −→ 〈expression〉
〈consequent〉 −→ 〈expression〉
〈alternate〉 −→ 〈expression〉 | 〈empty〉

〈assignment〉 −→ (set! 〈identifier〉 〈expression〉)

〈derived expression〉 −→
(cond 〈cond clause〉+)
| (cond 〈cond clause〉* (else 〈sequence〉))
| (case 〈expression〉
〈case clause〉+)

| (case 〈expression〉
〈case clause〉*
(else 〈sequence〉))

| (case 〈expression〉
〈case clause〉*
(else => 〈recipient〉))

| (and 〈test〉*)
| (or 〈test〉*)
| (when 〈test〉 〈sequence〉)
| (unless 〈test〉 〈sequence〉)
| (let (〈binding spec〉*) 〈body〉)
| (let 〈identifier〉 (〈binding spec〉*) 〈body〉)
| (let* (〈binding spec〉*) 〈body〉)
| (letrec (〈binding spec〉*) 〈body〉)
| (letrec* (〈binding spec〉*) 〈body〉)
| (let-values (〈mv binding spec〉*) 〈body〉)
| (let*-values (〈mv binding spec〉*) 〈body〉)
| (begin 〈sequence〉)
| (do (〈iteration spec〉*)

(〈test〉 〈do result〉)
〈command〉*)

| (delay 〈expression〉)
| (delay-force 〈expression〉)
| (parameterize ((〈expression〉 〈expression〉)*)
〈body〉)

| (guard (〈identifier〉 〈cond clause〉*) 〈body〉)
| 〈quasiquotation〉
| (case-lambda 〈case-lambda clause〉*)

〈cond clause〉 −→ (〈test〉 〈sequence〉)
| (〈test〉)
| (〈test〉 => 〈recipient〉)

〈recipient〉 −→ 〈expression〉
〈case clause〉 −→ ((〈datum〉*) 〈sequence〉)

| ((〈datum〉*) => 〈recipient〉)

64 Revised7 Scheme

〈binding spec〉 −→ (〈identifier〉 〈expression〉)
〈mv binding spec〉 −→ (〈formals〉 〈expression〉)
〈iteration spec〉 −→ (〈identifier〉 〈init〉 〈step〉)

| (〈identifier〉 〈init〉)
〈case-lambda clause〉 −→ (〈formals〉 〈body〉)
〈init〉 −→ 〈expression〉
〈step〉 −→ 〈expression〉
〈do result〉 −→ 〈sequence〉 | 〈empty〉

〈macro use〉 −→ (〈keyword〉 〈datum〉*)
〈keyword〉 −→ 〈identifier〉

〈macro block〉 −→
(let-syntax (〈syntax spec〉*) 〈body〉)
| (letrec-syntax (〈syntax spec〉*) 〈body〉)

〈syntax spec〉 −→ (〈keyword〉 〈transformer spec〉)

〈includer〉 −→
| (include 〈string〉+)
| (include-ci 〈string〉+)

7.1.4. Quasiquotations

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
infinite number of production rules. Imagine a copy of the
following rules for D = 1, 2, 3, . . ., where D is the nesting
depth.

〈quasiquotation〉 −→ 〈quasiquotation 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ `〈qq template D〉

| (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈simple datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| ’〈qq template D〉
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ ,〈qq template D − 1〉

| (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→ ,@〈qq template D − 1〉

| (unquote-splicing 〈qq template D − 1〉)

In 〈quasiquotation〉s, a 〈list qq template D〉 can some-
times be confused with either an 〈unquotation D〉 or
a 〈splicing unquotation D〉. The interpretation as an
〈unquotation〉 or 〈splicing unquotation D〉 takes prece-
dence.

7.1.5. Transformers

〈transformer spec〉 −→
(syntax-rules (〈identifier〉*) 〈syntax rule〉*)
| (syntax-rules 〈identifier〉 (〈identifier〉*)
〈syntax rule〉*)

〈syntax rule〉 −→ (〈pattern〉 〈template〉)
〈pattern〉 −→ 〈pattern identifier〉

| 〈underscore〉
| (〈pattern〉*)
| (〈pattern〉+ . 〈pattern〉)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*

. 〈pattern〉)
| #(〈pattern〉*)
| #(〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| 〈pattern datum〉

〈pattern datum〉 −→ 〈string〉
| 〈character〉
| 〈boolean〉
| 〈number〉

〈template〉 −→ 〈pattern identifier〉
| (〈template element〉*)
| (〈template element〉+ . 〈template〉)
| #(〈template element〉*)
| 〈template datum〉

〈template element〉 −→ 〈template〉
| 〈template〉 〈ellipsis〉

〈template datum〉 −→ 〈pattern datum〉
〈pattern identifier〉 −→ 〈any identifier except ...〉
〈ellipsis〉 −→ 〈an identifier defaulting to ...〉
〈underscore〉 −→ 〈the identifier 〉

7.1.6. Programs and definitions

〈program〉 −→
〈import declaration〉+
〈command or definition〉+

〈command or definition〉 −→ 〈command〉
| 〈definition〉
| (begin 〈command or definition〉+)

〈definition〉 −→ (define 〈identifier〉 〈expression〉)
| (define (〈identifier〉 〈def formals〉) 〈body〉)
| 〈syntax definition〉
| (define-values 〈formals〉 〈body〉)
| (define-record-type 〈identifier〉
〈constructor〉 〈identifier〉 〈field spec〉*)

| (begin 〈definition〉*)
〈def formals〉 −→ 〈identifier〉*

| 〈identifier〉* . 〈identifier〉
〈constructor〉 −→ (〈identifier〉 〈field name〉*)
〈field spec〉 −→ (〈field name〉 〈accessor〉)

| (〈field name〉 〈accessor〉 〈mutator〉)
〈field name〉 −→ 〈identifier〉

7. Formal syntax and semantics 65

〈accessor〉 −→ 〈identifier〉
〈mutator〉 −→ 〈identifier〉
〈syntax definition〉 −→

(define-syntax 〈keyword〉 〈transformer spec〉)

7.1.7. Libraries

〈library〉 −→
(define-library 〈library name〉
〈library declaration〉*)

〈library name〉 −→ (〈library name part〉+)
〈library name part〉 −→ 〈identifier〉 | 〈uinteger 10〉
〈library declaration〉 −→ (export 〈export spec〉*)

| 〈import declaration〉
| (begin 〈command or definition〉*)
| 〈includer〉
| (include-library-declarations 〈string〉+)
| (cond-expand 〈cond-expand clause〉+)
| (cond-expand 〈cond-expand clause〉+

(else 〈library declaration〉*))
〈import declaration〉 −→ (import 〈import set〉+)
〈export spec〉 −→ 〈identifier〉

| (rename 〈identifier〉 〈identifier〉)
〈import set〉 −→ 〈library name〉

| (only 〈import set〉 〈identifier〉+)
| (except 〈import set〉 〈identifier〉+)
| (prefix 〈import set〉 〈identifier〉)
| (rename 〈import set〉 (〈identifier〉 〈identifier〉)+)

〈cond-expand clause〉 −→
(〈feature requirement〉 〈library declaration〉*)

〈feature requirement〉 −→ 〈identifier〉
| 〈library name〉
| (and 〈feature requirement〉*)
| (or 〈feature requirement〉*)
| (not 〈feature requirement〉)

7.2. Formal semantics

This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built-in
procedures. The concepts and notation used here are de-
scribed in [36]; the definition of dynamic-wind is taken
from [39]. The notation is summarized below:

〈 . . . 〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t→ a, b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
x in D injection of x into domain D

x | D projection of x to domain D

The reason that expression continuations take sequences
of values instead of single values is to simplify the formal
treatment of procedure calls and multiple return values.

The boolean flag associated with pairs, vectors, and strings
will be true for mutable objects and false for immutable
objects.

The order of evaluation within a call is unspecified. We
mimic that here by applying arbitrary permutations per-
mute and unpermute, which must be inverses, to the argu-
ments in a call before and after they are evaluated. This is
not quite right since it suggests, incorrectly, that the order
of evaluation is constant throughout a program (for any
given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evalua-
tion would be.

The storage allocator new is implementation-dependent,
but it must obey the following axiom: if new σ ∈ L, then
σ (new σ | L) ↓ 2 = false.

The definition of K is omitted because an accurate defini-
tion of K would complicate the semantics without being
very interesting.

If P is a program in which all variables are defined before
being referenced or assigned, then the meaning of P is

E [[((lambda (I*) P’) 〈undefined〉 . . .)]]

where I* is the sequence of variables defined in P, P′ is the
sequence of expressions obtained by replacing every defini-
tion in P by an assignment, 〈undefined〉 is an expression
that evaluates to undefined, and E is the semantic function
that assigns meaning to expressions.

7.2.1. Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
Γ ∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) Γ* E0)

| (lambda (I* . I) Γ* E0)

| (lambda I Γ* E0)

| (if E0 E1 E2) | (if E0 E1)

| (set! I E)

66 Revised7 Scheme

7.2.2. Domain equations

α ∈ L locations
ν ∈ N natural numbers

T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L× L× T pairs
Ev = L*× T vectors
Es = L*× T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
φ ∈ F = L× (E*→ P→ K→ C) procedure values
ε ∈ E = Q + H + R + Ep + Ev + Es + M + F

expressed values
σ ∈ S = L→ (E× T) stores
ρ ∈ U = Ide→ L environments
θ ∈ C = S→ A command conts
κ ∈ K = E*→ C expression conts

A answers
X errors

ω ∈ P = (F× F× P) + {root} dynamic points

7.2.3. Semantic functions

K : Con→ E

E : Exp→ U→ P→ K→ C

E* : Exp*→ U→ P→ K→ C

C : Com*→ U→ P→ C→ C

Definition of K deliberately omitted.

E [[K]] = λρωκ . send (K[[K]])κ

E [[I]] = λρωκ . hold (lookup ρ I)
(single(λε . ε = undefined→

wrong “undefined variable”,
send ε κ))

E [[(E0 E*)]] =
λρωκ . E*(permute(〈E0〉 § E*))

ρ
ω
(λε* . ((λε* . applicate (ε* ↓ 1) (ε* † 1) ωκ)

(unpermute ε*)))

E [[(lambda (I*) Γ* E0)]] =
λρωκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*ω′κ′ .#ε* = #I*→
tievals(λα* . (λρ′ . C[[Γ*]]ρ′ω′(E [[E0]]ρ′ω′κ′))

(extends ρ I* α*))
ε*,

wrong “wrong number of arguments”〉
in E)

κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

E [[(lambda (I* . I) Γ* E0)]] =
λρωκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*ω′κ′ .#ε* ≥ #I*→
tievalsrest

(λα* . (λρ′ . C[[Γ*]]ρ′ω′(E [[E0]]ρ′ω′κ′))
(extends ρ (I* § 〈I〉) α*))

ε*
(#I*),

wrong “too few arguments”〉 in E)
κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

E [[(lambda I Γ* E0)]] = E [[(lambda (. I) Γ* E0)]]

E [[(if E0 E1 E2)]] =
λρωκ . E [[E0]] ρω (single (λε . truish ε→ E [[E1]]ρωκ,

E [[E2]]ρωκ))

E [[(if E0 E1)]] =
λρωκ . E [[E0]] ρω (single (λε . truish ε→ E [[E1]]ρωκ,

send unspecified κ))

Here and elsewhere, any expressed value other than undefined
may be used in place of unspecified.

E [[(set! I E)]] =
λρωκ . E [[E]] ρ ω (single(λε . assign (lookup ρ I)

ε
(send unspecified κ)))

E*[[]] = λρωκ . κ〈 〉

E*[[E0 E*]] =
λρωκ . E [[E0]] ρω (single(λε0 . E*[[E*]] ρω (λε* . κ (〈ε0〉 § ε*))))

C[[]] = λρωθ . θ

C[[Γ0 Γ*]] = λρωθ . E [[Γ0]] ρω (λε* . C[[Γ*]]ρωθ)

7.2.4. Auxiliary functions

lookup : U→ Ide→ L

lookup = λρI . ρI

extends : U→ Ide*→ L*→ U

extends =
λρI*α* .#I* = 0→ ρ,

extends (ρ[(α* ↓ 1)/(I* ↓ 1)]) (I* † 1) (α* † 1)

wrong : X→ C [implementation-dependent]

send : E→ K→ C

send = λεκ . κ〈ε〉

single : (E→ C)→ K

single =
λψε* .#ε* = 1→ ψ(ε* ↓ 1),

wrong “wrong number of return values”

new : S→ (L + {error}) [implementation-dependent]

hold : L→ K→ C

hold = λακσ . send (σα ↓ 1)κσ

7. Formal syntax and semantics 67

assign : L→ E→ C→ C

assign = λαεθσ . θ(update αεσ)

update : L→ E→ S→ S

update = λαεσ . σ[〈ε, true〉/α]

tievals : (L*→ C)→ E*→ C

tievals =
λψε*σ .#ε* = 0→ ψ〈 〉σ,

new σ ∈ L→ tievals (λα* . ψ(〈new σ | L〉 § α*))
(ε* † 1)
(update(new σ | L)(ε* ↓ 1)σ),

wrong “out of memory”σ

tievalsrest : (L*→ C)→ E*→ N→ C

tievalsrest =
λψε*ν . list (dropfirst ε*ν)

(single(λε . tievals ψ ((takefirst ε*ν) § 〈ε〉)))

dropfirst = λln . n = 0→ l, dropfirst (l † 1)(n− 1)

takefirst = λln . n = 0→ 〈 〉, 〈l ↓ 1〉 § (takefirst (l † 1)(n− 1))

truish : E→ T

truish = λε . ε = false→ false, true

permute : Exp*→ Exp* [implementation-dependent]

unpermute : E*→ E* [inverse of permute]

applicate : E→ E*→ P→ K→ C

applicate =
λεε*ωκ . ε ∈ F→ (ε | F ↓ 2)ε*ωκ,wrong “bad procedure”

onearg : (E→ P→ K→ C)→ (E*→ P→ K→ C)
onearg =
λζε*ωκ .#ε* = 1→ ζ(ε* ↓ 1)ωκ,

wrong “wrong number of arguments”

twoarg : (E→ E→ P→ K→ C)→ (E*→ P→ K→ C)
twoarg =
λζε*ωκ .#ε* = 2→ ζ(ε* ↓ 1)(ε* ↓ 2)ωκ,

wrong “wrong number of arguments”

threearg : (E→ E→ E→ P→ K→ C)→ (E*→ P→ K→ C)
threearg =
λζε*ωκ .#ε* = 3→ ζ(ε* ↓ 1)(ε* ↓ 2)(ε* ↓ 3)ωκ,

wrong “wrong number of arguments”

list : E*→ P→ K→ C

list =
λε*ωκ .#ε* = 0→ send null κ,

list (ε* † 1)(single(λε . cons〈ε* ↓ 1, ε〉κ))

cons : E*→ P→ K→ C

cons =
twoarg (λε1ε2κωσ . new σ ∈ L→

(λσ′ . new σ′ ∈ L→
send (〈new σ | L,new σ′ | L, true〉

in E)
κ
(update(new σ′ | L)ε2σ

′),
wrong “out of memory”σ′)

(update(new σ | L)ε1σ),
wrong “out of memory”σ)

less : E*→ P→ K→ C

less =
twoarg (λε1ε2ωκ . (ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R < ε2 | R→ true, false)κ,
wrong “non-numeric argument to <”)

add : E*→ P→ K→ C

add =
twoarg (λε1ε2ωκ . (ε1 ∈ R ∧ ε2 ∈ R)→

send ((ε1 | R + ε2 | R) in E)κ,
wrong “non-numeric argument to +”)

car : E*→ P→ K→ C

car =
onearg (λεωκ . ε ∈ Ep → car-internal εκ,

wrong “non-pair argument to car”)

car-internal : E→ K→ C

car-internal = λεωκ . hold (ε | Ep ↓ 1)κ

cdr : E*→ P→ K→ C [similar to car]

cdr-internal : E→ K→ C [similar to car-internal]

setcar : E*→ P→ K→ C

setcar =
twoarg (λε1ε2ωκ . ε1 ∈ Ep →

(ε1 | Ep ↓ 3)→ assign (ε1 | Ep ↓ 1)
ε2
(send unspecified κ),

wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)

eqv : E*→ P→ K→ C

eqv =
twoarg (λε1ε2ωκ . (ε1 ∈ M ∧ ε2 ∈ M)→

send (ε1 | M = ε2 | M→ true, false)κ,
(ε1 ∈ Q ∧ ε2 ∈ Q)→

send (ε1 | Q = ε2 | Q→ true, false)κ,
(ε1 ∈ H ∧ ε2 ∈ H)→

send (ε1 | H = ε2 | H→ true, false)κ,
(ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R = ε2 | R→ true, false)κ,
(ε1 ∈ Ep ∧ ε2 ∈ Ep)→

send ((λp1p2 . ((p1 ↓ 1) = (p2 ↓ 1)∧
(p1 ↓ 2) = (p2 ↓ 2))→ true,

false)
(ε1 | Ep)
(ε2 | Ep))
κ,

(ε1 ∈ Ev ∧ ε2 ∈ Ev)→ . . . ,
(ε1 ∈ Es ∧ ε2 ∈ Es)→ . . . ,
(ε1 ∈ F ∧ ε2 ∈ F)→

send ((ε1 | F ↓ 1) = (ε2 | F ↓ 1)→ true, false)
κ,

send false κ)

apply : E*→ P→ K→ C

apply =
twoarg (λε1ε2ωκ . ε1 ∈ F→ valueslist ε2(λε* . applicate ε1ε*ωκ),

wrong “bad procedure argument to apply”)

68 Revised7 Scheme

valueslist : E→ K→ C

valueslist =
λεκ . ε ∈ Ep →

cdr-internal ε
(λε* . valueslist

ε*
(λε* . car-internal

ε
(single(λε . κ(〈ε〉 § ε*))))),

ε = null→ κ〈 〉,
wrong “non-list argument to values-list”

cwcc: E*→ P→ K→ C

[call-with-current-continuation]
cwcc =

onearg (λεωκ . ε ∈ F→
(λσ . new σ ∈ L→

applicate ε
〈〈new σ | L,
λε*ω′κ′ . travel ω′ω(κε*)〉

in E〉
ω
κ
(update (new σ | L)

unspecified
σ),

wrong “out of memory”σ),
wrong “bad procedure argument”)

travel : P→ P→ C→ C

travel =
λω1ω2 . travelpath ((pathup ω1(commonancest ω1ω2)) §

(pathdown (commonancest ω1ω2)ω2))

pointdepth : P→ N

pointdepth =
λω . ω = root→ 0, 1 + (pointdepth (ω | (F× F× P) ↓ 3))

ancestors : P→ PP
ancestors =
λω . ω = root→ {ω}, {ω} ∪ (ancestors (ω | (F× F× P) ↓ 3))

commonancest : P→ P→ P

commonancest =
λω1ω2 . the only element of

{ω′ | ω′ ∈ (ancestors ω1) ∩ (ancestors ω2),
pointdepth ω′ ≥ pointdepth ω′′

∀ω′′ ∈ (ancestors ω1) ∩ (ancestors ω2)}

pathup : P→ P→ (P× F)*
pathup =
λω1ω2 . ω1 = ω2 → 〈〉,

〈(ω1, ω1 | (F× F× P) ↓ 2)〉 §
(pathup (ω1 | (F× F× P) ↓ 3)ω2)

pathdown : P→ P→ (P× F)*
pathdown =
λω1ω2 . ω1 = ω2 → 〈〉,

(pathdown ω1(ω2 | (F× F× P) ↓ 3)) §
〈(ω2, ω2 | (F× F× P) ↓ 1)〉

travelpath : (P× F)*→ C→ C

travelpath =

λπ*θ .#π* = 0→ θ,
((π* ↓ 1) ↓ 2)〈〉((π* ↓ 1) ↓ 1)

(λε* . travelpath (π* † 1)θ)

dynamicwind : E*→ P→ K→ C

dynamicwind =
threearg (λε1ε2ε3ωκ . (ε1 ∈ F ∧ ε2 ∈ F ∧ ε3 ∈ F)→

applicate ε1〈〉ω(λζ* .
applicate ε2〈〉((ε1 | F, ε3 | F, ω) in P)

(λε* . applicate ε3〈〉ω(λζ* . κε*))),
wrong “bad procedure argument”)

values : E*→ P→ K→ C

values = λε*ωκ . κε*

cwv : E*→ P→ K→ C [call-with-values]
cwv =

twoarg (λε1ε2ωκ . applicate ε1〈 〉ω(λε* . applicate ε2 ε*ω))

7.3. Derived expression types

This section gives syntax definitions for the derived ex-
pression types in terms of the primitive expression types
(literal, variable, call, lambda, if, and set!), except for
quasiquote.

Conditional derived syntax types:

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

(define-syntax case

(syntax-rules (else =>)

((case (key ...)

clauses ...)

(let ((atom-key (key ...)))

(case atom-key clauses ...)))

7. Formal syntax and semantics 69

((case key

(else => result))

(result key))

((case key

(else result1 result2 ...))

(begin result1 result2 ...))

((case key

((atoms ...) result1 result2 ...))

(if (memv key ’(atoms ...))

(begin result1 result2 ...)))

((case key

((atoms ...) => result))

(if (memv key ’(atoms ...))

(result key)))

((case key

((atoms ...) => result)

clause clauses ...)

(if (memv key ’(atoms ...))

(result key)

(case key clause clauses ...)))

((case key

((atoms ...) result1 result2 ...)

clause clauses ...)

(if (memv key ’(atoms ...))

(begin result1 result2 ...)

(case key clause clauses ...)))))

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

(define-syntax when

(syntax-rules ()

((when test result1 result2 ...)

(if test

(begin result1 result2 ...)))))

(define-syntax unless

(syntax-rules ()

((unless test result1 result2 ...)

(if (not test)

(begin result1 result2 ...)))))

Binding constructs:

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

body1 body2 ...)))

tag)

val ...))))

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 val1) (name2 val2) ...)

body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...)

body1 body2 ...)))))

The following letrec macro uses the symbol <undefined>
in place of an expression which returns something that
when stored in a location makes it an error to try to obtain
the value stored in the location. (No such expression is de-
fined in Scheme.) A trick is used to generate the temporary
names needed to avoid specifying the order in which the
values are evaluated. This could also be accomplished by
using an auxiliary macro.

(define-syntax letrec

(syntax-rules ()

((letrec ((var1 init1) ...) body ...)

(letrec "generate temp names"

(var1 ...)

()

((var1 init1) ...)

body ...))

((letrec "generate temp names"

()

(temp1 ...)

((var1 init1) ...)

body ...)

(let ((var1 <undefined>) ...)

(let ((temp1 init1) ...)

(set! var1 temp1)

...

body ...)))

((letrec "generate temp names"

(x y ...)

(temp ...)

((var1 init1) ...)

body ...)

(letrec "generate temp names"

(y ...)

(newtemp temp ...)

((var1 init1) ...)

body ...))))

70 Revised7 Scheme

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body0 body1 ...)

(let-values "bind"

(binding ...) () (begin body0 body1 ...)))

((let-values "bind" () tmps body)

(let tmps body))

((let-values "bind" ((b0 e0)

binding ...) tmps body)

(let-values "mktmp" b0 e0 ()

(binding ...) tmps body))

((let-values "mktmp" () e0 args

bindings tmps body)

(call-with-values

(lambda () e0)

(lambda args

(let-values "bind"

bindings tmps body))))

((let-values "mktmp" (a . b) e0 (arg ...)

bindings (tmp ...) body)

(let-values "mktmp" b e0 (arg ... x)

bindings (tmp ... (a x)) body))

((let-values "mktmp" a e0 (arg ...)

bindings (tmp ...) body)

(call-with-values

(lambda () e0)

(lambda (arg x)

(let-values "bind"

bindings (tmp ... (a x)) body))))))

(define-syntax let*-values

(syntax-rules ()

((let*-values () body0 body1 ...)

(let () body0 body1 ...))

((let*-values (binding0 binding1 ...)

body0 body1 ...)

(let-values (binding0)

(let*-values (binding1 ...)

body0 body1 ...)))))

(define-syntax define-values

(syntax-rules ()

((define-values () expr)

(define dummy

(call-with-values (lambda () expr)

(lambda args #f))))

((define-values (var) expr)

(define var expr))

((define-values (var0 var1 ... varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cadr var0)))

(set! var0 (car var0))

v))))

((define-values (var0 var1 varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cdr var0)))

(set! var0 (car var0))

v))))

((define-values var expr)

(define var

(call-with-values (lambda () expr)

list)))))

(define-syntax begin

(syntax-rules ()

((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. In any case, note that
these rules apply only if the body of the begin contains no
definitions.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda args

(begin exp2 ...))))))

The following syntax definition of do uses a trick to expand
the variable clauses. As with letrec above, an auxiliary
macro would also work. The expression (if #f #f) is used
to obtain an unspecific value.

7. Formal syntax and semantics 71

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

(if #f #f)

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)

((do "step" x y)

y)))

Here is a possible implementation of delay, force and
delay-force. We define the expression

(delay-force 〈expression〉)

to have the same meaning as the procedure call

(make-promise #f (lambda () 〈expression〉))

as follows

(define-syntax delay-force

(syntax-rules ()

((delay-force expression)

(make-promise #f (lambda () expression)))))

and we define the expression

(delay 〈expression〉)

to have the same meaning as:

(delay-force (make-promise #t 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(delay-force (make-promise #t expression)))))

where make-promise is defined as follows:

(define make-promise

(lambda (done? proc)

(list (cons done? proc))))

Finally, we define force to call the procedure expressions
in promises iteratively using a trampoline technique fol-
lowing [38] until a non-lazy result (i.e. a value created by
delay instead of delay-force) is returned, as follows:

(define (force promise)

(if (promise-done? promise)

(promise-value promise)

(let ((promise* ((promise-value promise))))

(unless (promise-done? promise)

(promise-update! promise* promise))

(force promise))))

with the following promise accessors:

(define promise-done?

(lambda (x) (car (car x))))

(define promise-value

(lambda (x) (cdr (car x))))

(define promise-update!

(lambda (new old)

(set-car! (car old) (promise-done? new))

(set-cdr! (car old) (promise-value new))

(set-car! new (car old))))

The following implementation of make-parameter and
parameterize is suitable for an implementation with no
threads. Parameter objects are implemented here as pro-
cedures, using two arbitrary unique objects <param-set!>
and <param-convert>:

(define (make-parameter init . o)

(let* ((converter

(if (pair? o) (car o) (lambda (x) x)))

(value (converter init)))

(lambda args

(cond

((null? args)

value)

((eq? (car args) <param-set!>)

(set! value (cadr args)))

((eq? (car args) <param-convert>)

converter)

(else

(error "bad parameter syntax"))))))

Then parameterize uses dynamic-wind to dynamically re-
bind the associated value:

(define-syntax parameterize

(syntax-rules ()

((parameterize ("step")

((param value p old new) ...)

()

body)

(let ((p param) ...)

(let ((old (p)) ...

(new ((p <param-convert>) value)) ...)

(dynamic-wind

(lambda () (p <param-set!> new) ...)

(lambda () . body)

(lambda () (p <param-set!> old) ...)))))

((parameterize ("step")

args

((param value) . rest)

body)

(parameterize ("step")

72 Revised7 Scheme

((param value p old new) . args)

rest

body))

((parameterize ((param value) ...) . body)

(parameterize ("step")

()

((param value) ...)

body))))

The following implementation of guard depends on an aux-
iliary macro, here called guard-aux.

(define-syntax guard

(syntax-rules ()

((guard (var clause ...) e1 e2 ...)

((call/cc

(lambda (guard-k)

(with-exception-handler

(lambda (condition)

((call/cc

(lambda (handler-k)

(guard-k

(lambda ()

(let ((var condition))

(guard-aux

(handler-k

(lambda ()

(raise-continuable condition)))

clause ...))))))))

(lambda ()

(call-with-values

(lambda () e1 e2 ...)

(lambda args

(guard-k

(lambda ()

(apply values args)))))))))))))

(define-syntax guard-aux

(syntax-rules (else =>)

((guard-aux reraise (else result1 result2 ...))

(begin result1 result2 ...))

((guard-aux reraise (test => result))

(let ((temp test))

(if temp

(result temp)

reraise)))

((guard-aux reraise (test => result)

clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test))

(or test reraise))

((guard-aux reraise (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test result1 result2 ...))

(if test

(begin result1 result2 ...)

reraise))

((guard-aux reraise

(test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(guard-aux reraise clause1 clause2 ...)))))

(define-syntax case-lambda

(syntax-rules ()

((case-lambda (params body0 ...) ...)

(lambda args

(let ((len (length args)))

(let-syntax

((cl (syntax-rules ::: ()

((cl)

(error "no matching clause"))

((cl ((p :::) . body) . rest)

(if (= len (length ’(p :::)))

(apply (lambda (p :::)

. body)

args)

(cl . rest)))

((cl ((p ::: . tail) . body)

. rest)

(if (>= len (length ’(p :::)))

(apply

(lambda (p ::: . tail)

. body)

args)

(cl . rest))))))

(cl (params body0 ...) ...)))))))

This definition of cond-expand does not interact with the
features procedure. It requires that each feature identifier
provided by the implementation be explicitly mentioned.

(define-syntax cond-expand

;; Extend this to mention all feature ids and libraries

(syntax-rules (and or not else r7rs library scheme base)

((cond-expand)

(syntax-error "Unfulfilled cond-expand"))

((cond-expand (else body ...))

(begin body ...))

((cond-expand ((and) body ...) more-clauses ...)

(begin body ...))

((cond-expand ((and req1 req2 ...) body ...)

more-clauses ...)

(cond-expand

(req1

(cond-expand

((and req2 ...) body ...)

more-clauses ...))

more-clauses ...))

((cond-expand ((or) body ...) more-clauses ...)

(cond-expand more-clauses ...))

Appendix A. Standard Libraries 73

((cond-expand ((or req1 req2 ...) body ...)

more-clauses ...)

(cond-expand

(req1

(begin body ...))

(else

(cond-expand

((or req2 ...) body ...)

more-clauses ...))))

((cond-expand ((not req) body ...)

more-clauses ...)

(cond-expand

(req

(cond-expand more-clauses ...))

(else body ...)))

((cond-expand (r7rs body ...)

more-clauses ...)

(begin body ...))

;; Add clauses here for each

;; supported feature identifier.

;; Samples:

;; ((cond-expand (exact-closed body ...)

;; more-clauses ...)

;; (begin body ...))

;; ((cond-expand (ieee-float body ...)

;; more-clauses ...)

;; (begin body ...))

((cond-expand ((library (scheme base))

body ...)

more-clauses ...)

(begin body ...))

;; Add clauses here for each library

((cond-expand (feature-id body ...)

more-clauses ...)

(cond-expand more-clauses ...))

((cond-expand ((library (name ...))

body ...)

more-clauses ...)

(cond-expand more-clauses ...))))

Appendix A. Standard Libraries

This section lists the exports provided by the standard li-
braries. The libraries are factored so as to separate features
which might not be supported by all implementations, or
which might be expensive to load.

The scheme library prefix is used for all standard libraries,
and is reserved for use by future standards.

Base Library

The (scheme base) library exports many of the proce-
dures and syntax bindings that are traditionally associated
with Scheme. The division between the base library and
the other standard libraries is based on use, not on con-
struction. In particular, some facilities that are typically
implemented as primitives by a compiler or the run-time
system rather than in terms of other standard procedures
or syntax are not part of the base library, but are defined in
separate libraries. By the same token, some exports of the
base library are implementable in terms of other exports.
They are redundant in the strict sense of the word, but
they capture common patterns of usage, and are therefore
provided as convenient abbreviations.

* +

- ...

/ <

<= =

=> >

>=

abs and

append apply

assoc assq

assv begin

binary-port? boolean=?

boolean? bytevector

bytevector-append bytevector-copy

bytevector-copy! bytevector-length

bytevector-u8-ref bytevector-u8-set!

bytevector? caar

cadr

call-with-current-continuation

call-with-port call-with-values

call/cc car

case cdar

cddr cdr

ceiling char->integer

char-ready? char<=?

char<? char=?

char>=? char>?

char? close-input-port

close-output-port close-port

complex? cond

cond-expand cons

current-error-port current-input-port

current-output-port define

define-record-type define-syntax

define-values denominator

do dynamic-wind

74 Revised7 Scheme

else eof-object

eof-object? eq?

equal? eqv?

error error-object-irritants

error-object-message error-object?

even? exact

exact-integer-sqrt exact-integer?

exact? expt

features file-error?

floor floor-quotient

floor-remainder floor/

flush-output-port for-each

gcd get-output-bytevector

get-output-string guard

if include

include-ci inexact

inexact? input-port-open?

input-port? integer->char

integer? lambda

lcm length

let let*

let*-values let-syntax

let-values letrec

letrec* letrec-syntax

list list->string

list->vector list-copy

list-ref list-set!

list-tail list?

make-bytevector make-list

make-parameter make-string

make-vector map

max member

memq memv

min modulo

negative? newline

not null?

number->string number?

numerator odd?

open-input-bytevector open-input-string

open-output-bytevector open-output-string

or output-port-open?

output-port? pair?

parameterize peek-char

peek-u8 port?

positive? procedure?

quasiquote quote

quotient raise

raise-continuable rational?

rationalize read-bytevector

read-bytevector! read-char

read-error? read-line

read-string read-u8

real? remainder

reverse round

set! set-car!

set-cdr! square

string string->list

string->number string->symbol

string->utf8 string->vector

string-append string-copy

string-copy! string-fill!

string-for-each string-length

string-map string-ref

string-set! string<=?

string<? string=?

string>=? string>?

string? substring

symbol->string symbol=?

symbol? syntax-error

syntax-rules textual-port?

truncate truncate-quotient

truncate-remainder truncate/

u8-ready? unless

unquote unquote-splicing

utf8->string values

vector vector->list

vector->string vector-append

vector-copy vector-copy!

vector-fill! vector-for-each

vector-length vector-map

vector-ref vector-set!

vector? when

with-exception-handler write-bytevector

write-char write-string

write-u8 zero?

Case-Lambda Library

The (scheme case-lambda) library exports the
case-lambda syntax.

case-lambda

Char Library

The (scheme char) library provides the procedures for
dealing with characters that involve potentially large ta-
bles when supporting all of Unicode.

char-alphabetic? char-ci<=?

char-ci<? char-ci=?

char-ci>=? char-ci>?

char-downcase char-foldcase

char-lower-case? char-numeric?

char-upcase char-upper-case?

char-whitespace? digit-value

string-ci<=? string-ci<?

string-ci=? string-ci>=?

string-ci>? string-downcase

string-foldcase string-upcase

Complex Library

The (scheme complex) library exports procedures which
are typically only useful with non-real numbers.

angle imag-part

magnitude make-polar

make-rectangular real-part

Appendix A. Standard Libraries 75

CxR Library

The (scheme cxr) library exports twenty-four procedures
which are the compositions of from three to four car and
cdr operations. For example caddar could be defined by

(define caddar

(lambda (x) (car (cdr (cdr (car x)))))).

The procedures car and cdr themselves and the four two-
level compositions are included in the base library. See
section 6.4.

caaaar caaadr

caaar caadar

caaddr caadr

cadaar cadadr

cadar caddar

cadddr caddr

cdaaar cdaadr

cdaar cdadar

cdaddr cdadr

cddaar cddadr

cddar cdddar

cddddr cdddr

Eval Library

The (scheme eval) library exports procedures for evalu-
ating Scheme data as programs.

environment eval

File Library

The (scheme file) library provides procedures for access-
ing files.

call-with-input-file call-with-output-file

delete-file file-exists?

open-binary-input-file open-binary-output-file

open-input-file open-output-file

with-input-from-file with-output-to-file

Inexact Library

The (scheme inexact) library exports procedures which
are typically only useful with inexact values.

acos asin

atan cos

exp finite?

infinite? log

nan? sin

sqrt tan

Lazy Library

The (scheme lazy) library exports procedures and syntax
keywords for lazy evaluation.

delay delay-force

force make-promise

promise?

Load Library

The (scheme load) library exports procedures for loading
Scheme expressions from files.

load

Process-Context Library

The (scheme process-context) library exports proce-
dures for accessing with the program’s calling context.

command-line emergency-exit

exit

get-environment-variable

get-environment-variables

Read Library

The (scheme read) library provides procedures for read-
ing Scheme objects.

read

Repl Library

The (scheme repl) library exports the
interaction-environment procedure.

interaction-environment

Time Library

The (scheme time) library provides access to time-related
values.

current-jiffy current-second

jiffies-per-second

Write Library

The (scheme write) library provides procedures for writ-
ing Scheme objects.

display write

write-shared write-simple

R5RS Library

The (scheme r5rs) library provides the identifiers
defined by R5RS, except that transcript-on and
transcript-off are not present. Note that the exact

and inexact procedures appear under their R5RS names
inexact->exact and exact->inexact respectively. How-
ever, if an implementation does not provide a particular
library such as the complex library, the corresponding iden-
tifiers will not appear in this library either.

76 Revised7 Scheme

* +

- /

< <=

= >

>= abs

acos and

angle append

apply asin

assoc assq

assv atan

begin boolean?

caaaar caaadr

caaar caadar

caaddr caadr

caar cadaar

cadadr cadar

caddar cadddr

caddr cadr

call-with-current-continuation

call-with-input-file call-with-output-file

call-with-values car

case cdaaar

cdaadr cdaar

cdadar cdaddr

cdadr cdar

cddaar cddadr

cddar cdddar

cddddr cdddr

cddr cdr

ceiling char->integer

char-alphabetic? char-ci<=?

char-ci<? char-ci=?

char-ci>=? char-ci>?

char-downcase char-lower-case?

char-numeric? char-ready?

char-upcase char-upper-case?

char-whitespace? char<=?

char<? char=?

char>=? char>?

char? close-input-port

close-output-port complex?

cond cons

cos current-input-port

current-output-port define

define-syntax delay

denominator display

do dynamic-wind

eof-object? eq?

equal? eqv?

eval even?

exact->inexact exact?

exp expt

floor for-each

force gcd

if imag-part

inexact->exact inexact?

input-port? integer->char

integer? interaction-environment

lambda lcm

length let

let* let-syntax

letrec letrec-syntax

list list->string

list->vector list-ref

list-tail list?

load log

magnitude make-polar

make-rectangular make-string

make-vector map

max member

memq memv

min modulo

negative? newline

not null-environment

null? number->string

number? numerator

odd? open-input-file

open-output-file or

output-port? pair?

peek-char positive?

procedure? quasiquote

quote quotient

rational? rationalize

read read-char

real-part real?

remainder reverse

round

scheme-report-environment

set! set-car!

set-cdr! sin

sqrt string

string->list string->number

string->symbol string-append

string-ci<=? string-ci<?

string-ci=? string-ci>=?

string-ci>? string-copy

string-fill! string-length

string-ref string-set!

string<=? string<?

string=? string>=?

string>? string?

substring symbol->string

symbol? tan

truncate values

vector vector->list

vector-fill! vector-length

vector-ref vector-set!

vector? with-input-from-file

with-output-to-file write

write-char zero?

Appendix B. Standard Feature Identifiers 77

Appendix B. Standard Feature Identi-
fiers

An implementation may provide any or all of the fea-
ture identifiers listed below for use by cond-expand and
features, but must not provide a feature identifier if it
does not provide the corresponding feature.

r7rs

All R7RS Scheme implementations have this feature.

exact-closed

All algebraic operations except / produce exact values
given exact inputs.

exact-complex

Exact complex numbers are provided.

ieee-float

Inexact numbers are IEEE 754 binary floating point
values.

full-unicode

All Unicode characters present in Unicode version 6.0
are supported as Scheme characters.

ratios

/ with exact arguments produces an exact result when
the divisor is nonzero.

posix

This implementation is running on a POSIX system.

windows

This implementation is running on Windows.

unix, darwin, gnu-linux, bsd, freebsd, solaris, ...

Operating system flags (perhaps more than one).

i386, x86-64, ppc, sparc, jvm, clr, llvm, ...

CPU architecture flags.

ilp32, lp64, ilp64, ...

C memory model flags.

big-endian, little-endian

Byte order flags.

〈name〉
The name of this implementation.

〈name-version〉
The name and version of this implementation.

LANGUAGE CHANGES

Incompatibilities with R5RS

This section enumerates the incompatibilities between this
report and the “Revised5 report” [20].

This list is not authoritative, but is believed to be cor-
rect and complete.

• Case sensitivity is now the default in symbols and
character names. This means that code written un-
der the assumption that symbols could be written
FOO or Foo in some contexts and foo in other con-
texts can either be changed, be marked with the new
#!fold-case directive, or be included in a library us-
ing the include-ci library declaration. All standard
identifiers are entirely in lower case.

• The syntax-rules construct now recognizes (under-
score) as a wildcard, which means it cannot be used
as a syntax variable. It can still be used as a literal.

• The R5RS procedures exact->inexact and
inexact->exact have been renamed to their
R6RS names, inexact and exact, respectively, as
these names are shorter and more correct. The former
names are still available in the R5RS library.

• The guarantee that string comparison (with string<?

and the related predicates) is a lexicographical exten-
sion of character comparison (with char<? and the
related predicates) has been removed.

• Support for the # character in numeric literals is no
longer required.

• Support for the letters s, f, d, and l as exponent mark-
ers is no longer required.

• Implementations of string->number are no longer
permitted to return #f when the argument contains
an explicit radix prefix, and must be compatible with
read and the syntax of numbers in programs.

• The procedures transcript-on and transcript-off

have been removed.

Other language changes since R5RS

This section enumerates the additional differences between
this report and the “Revised5 report” [20].

This list is not authoritative, but is believed to be cor-
rect and complete.

• Various minor ambiguities and unclarities in R5RS
have been cleaned up.

78 Revised7 Scheme

• Libraries have been added as a new program structure
to improve encapsulation and sharing of code. Some
existing and new identifiers have been factored out
into separate libraries. Libraries can be imported into
other libraries or main programs, with controlled ex-
posure and renaming of identifiers. The contents of a
library can be made conditional on the features of the
implementation on which it is to be used. There is an
R5RS compatibility library.

• The expressions types include, include-ci, and
cond-expand have been added to the base library;
they have the same semantics as the corresponding
library declarations.

• Exceptions can now be signaled explicitly with raise,
raise-continuable or error, and can be handled
with with-exception-handler and the guard syn-
tax. Any object can specify an error condition; the
implementation-defined conditions signaled by error

have a predicate to detect them and accessor functions
to retrieve the arguments passed to error. Conditions
signaled by read and by file-related procedures also
have predicates to detect them.

• New disjoint types supporting access to multiple fields
can be generated with the define-record-type of
SRFI 9 [19]

• Parameter objects can be created with
make-parameter, and dynamically rebound with
parameterize. The procedures current-input-port
and current-output-port are now param-
eter objects, as is the newly introduced
current-error-port.

• Support for promises has been enhanced based on
SRFI 45 [38].

• Bytevectors, vectors of exact integers in the range
from 0 to 255 inclusive, have been added as a new
disjoint type. A subset of the vector procedures is
provided. Bytevectors can be converted to and from
strings in accordance with the UTF-8 character en-
coding. Bytevectors have a datum representation and
evaluate to themselves.

• Vector constants evaluate to themselves.

• The procedure read-line is provided to make line-
oriented textual input simpler.

• The procedure flush-output-port is provided to al-
low minimal control of output port buffering.

• Ports can now be designated as textual or binary ports,
with new procedures for reading and writing binary
data. The new predicates input-port-open? and
output-port-open? return whether a port is open or

closed. The new procedure close-port now closes a
port; if the port has both input and output sides, both
are closed.

• String ports have been added as a way to read and
write characters to and from strings, and bytevector
ports to read and write bytes to and from bytevectors.

• There are now I/O procedures specific to strings and
bytevectors.

• The write procedure now generates datum labels
when applied to circular objects. The new procedure
write-simple never generates labels; write-shared
generates labels for all shared and circular structure.
The display procedure must not loop on circular ob-
jects.

• The R6RS procedure eof-object has been added.
Eof-objects are now required to be a disjoint type.

• Syntax definitions are now allowed wherever variable
definitions are.

• The syntax-rules construct now allows the ellipsis
symbol to be specified explicitly instead of the default
..., allows template escapes with an ellipsis-prefixed
list, and allows tail patterns to follow an ellipsis pat-
tern.

• The syntax-error syntax has been added as a way to
signal immediate and more informative errors when a
macro is expanded.

• The letrec* binding construct has been added, and
internal define is specified in terms of it.

• Support for capturing multiple values has been
enhanced with define-values, let-values, and
let*-values. Standard expression types which con-
tain a sequence of expressions now permit passing zero
or more than one value to the continuations of all non-
final expressions of the sequence.

• The case conditional now supports => syntax anal-
ogous to cond not only in regular clauses but in the
else clause as well.

• To support dispatching on the number of arguments
passed to a procedure, case-lambda has been added
in its own library.

• The convenience conditionals when and unless have
been added.

• The behavior of eqv? on inexact numbers now con-
forms to the R6RS definition.

• When applied to procedures, eq? and eqv? are per-
mitted to return different answers.

Language changes 79

• The R6RS procedures boolean=? and symbol=? have
been added.

• Positive infinity, negative infinity, NaN, and nega-
tive inexact zero have been added to the numeric
tower as inexact values with the written representa-
tions +inf.0, -inf.0, +nan.0, and -0.0 respectively.
Support for them is not required. The representation
-nan.0 is synonymous with +nan.0.

• The log procedure now accepts a second argument
specifying the logarithm base.

• The procedures map and for-each are now required
to terminate on the shortest argument list.

• The procedures member and assoc now take an op-
tional third argument specifying the equality predicate
to be used.

• The numeric procedures finite?, infinite?, nan?,
exact-integer?, square, and exact-integer-sqrt

have been added.

• The - and / procedures and the character and string
comparison predicates are now required to support
more than two arguments.

• The forms #true and #false are now supported as
well as #t and #f.

• The procedures make-list, list-copy, list-set!,
string-map, string-for-each, string->vector,
vector-append, vector-copy, vector-map,
vector-for-each, vector->string, vector-copy!,
and string-copy! have been added to round out the
sequence operations.

• Some string and vector procedures support processing
of part of a string or vector using optional start and
end arguments.

• Some list procedures are now defined on circular lists.

• Implementations may provide any subset of the full
Unicode repertoire that includes ASCII, but imple-
mentations must support any such subset in a way
consistent with Unicode. Various character and string
procedures have been extended accordingly, and case
conversion procedures added for strings. String com-
parison is no longer required to be consistent with
character comparison, which is based solely on Uni-
code scalar values. The new digit-value procedure
has been added to obtain the numerical value of a nu-
meric character.

• There are now two additional comment syntaxes: #;

to skip the next datum, and #| ... |# for nestable
block comments.

• Data prefixed with datum labels #<n>= can be refer-
enced with #<n>#, allowing for reading and writing of
data with shared structure.

• Strings and symbols now allow mnemonic and numeric
escape sequences, and the list of named characters has
been extended.

• The procedures file-exists? and delete-file are
available in the (scheme file) library.

• An interface to the system environment, command
line, and process exit status is available in the (scheme
process-context) library.

• Procedures for accessing time-related values are avail-
able in the (scheme time) library.

• A less irregular set of integer division operators is pro-
vided with new and clearer names.

• The load procedure now accepts a second argument
specifying the environment to load into.

• The call-with-current-continuation procedure
now has the synonym call/cc.

• The semantics of read-eval-print loops are now partly
prescribed, requiring the redefinition of procedures,
but not syntax keywords, to have retroactive effect.

• The formal semantics now handles dynamic-wind.

Incompatibilities with R6RS

This section enumerates the incompatibilities between
R7RS and the “Revised6 report” [33] and its accompanying
Standard Libraries document.

This list is not authoritative, and is possibly incom-
plete.

• R7RS libraries begin with the keyword
define-library rather than library in order
to make them syntactically distinguishable from
R6RS libraries. In R7RS terms, the body of an R6RS
library consists of a single export declaration followed
by a single import declaration, followed by commands
and definitions. In R7RS, commands and definitions
are not permitted directly within the body: they have
to be be wrapped in a begin library declaration.

• There is no direct R6RS equivalent of the include,
include-ci, include-library-declarations, or
cond-expand library declarations. On the other hand,
the R7RS library syntax does not support phase or
version specifications.

80 Revised7 Scheme

• The grouping of standardized identifiers into libraries
is different from the R6RS approach. In particular,
procedures which are optional in R5RS either ex-
pressly or by implication, have been removed from the
base library. Only the base library itself is an absolute
requirement.

• No form of identifier syntax is provided.

• Internal syntax definitions are allowed, but uses of a
syntax form cannot appear before its definition; the
even/odd example given in R6RS is not allowed.

• The R6RS exception system was incorporated as-is,
but the condition types have been left unspecified. In
particular, where R6RS requires a condition of a spec-
ified type to be signaled, R7RS says only “it is an
error”, leaving the question of signaling open.

• Full Unicode support is not required. Normalization
is not provided. Character comparisons are defined by
Unicode, but string comparisons are implementation-
dependent. Non-Unicode characters are permitted.

• The full numeric tower is optional as in R5RS,
but optional support for IEEE infinities, NaN, and
-0.0 was adopted from R6RS. Most clarifications on
numeric results were also adopted, but the R6RS
procedures real-valued?, rational-valued?, and
integer-valued? were not. The R6RS division
operators div, mod, div-and-mod, div0, mod0 and
div0-and-mod0 are not provided.

• When a result is unspecified, it is still required to be a
single value. However, non-final expressions in a body
can return any number of values.

• The semantics of map and for-each have been
changed to use the SRFI 1 [30] early termination be-
havior. Likewise, assoc and member take an optional
equal? argument as in SRFI 1, instead of the separate
assp and memp procedures of R6RS.

• The R6RS quasiquote clarifications have been
adopted, with the exception of multiple-argument
unquote and unquote-splicing.

• The R6RS method of specifying mantissa widths was
not adopted.

• String ports are compatible with SRFI 6 [7] rather
than R6RS.

• R6RS-style bytevectors are included, but only the un-
signed byte (u8) procedures have been provided. The
lexical syntax uses #u8 for compatibility with SRFI
4 [13], rather than the R6RS #vu8 style.

• The utility macros when and unless are provided, but
their result is left unspecified.

• The remaining features of the Standard Libraries doc-
ument were left to future standardization efforts.

ADDITIONAL MATERIAL

The Scheme community website at
http://schemers.org contains additional resources
for learning and programming, job and event postings,
and Scheme user group information.

A bibliography of Scheme-related research at
http://library.readscheme.org links to technical pa-
pers and theses related to the Scheme language, including
both classic papers and recent research.

On-line Scheme discussions are held using IRC on the
#scheme channel at irc.freenode.net and on the Usenet
discussion group comp.lang.scheme.

Example 81

EXAMPLE

The procedure integrate-system integrates the sys-
tem

y′k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . . . , yn) and produces a system derivative (the val-
ues y′1, . . . , y

′
n). The parameter initial-state provides

an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infi-
nite stream of system states.

(define (integrate-system system-derivative

initial-state

h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(delay (map-streams next

states)))))

states)))

The procedure runge-kutta-4 takes a function, f,
that produces a system derivative from a system state. It
produces a function that takes a system state and produces
a new system state.

(define (runge-kutta-4 f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state

(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3)))))))

(define (elementwise f)

(lambda vectors

(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors))))))

(define (generate-vector size proc)

(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0))))

(define add-vectors (elementwise +))

(define (scale-vector s)

(elementwise (lambda (x) (* x s))))

The map-streams procedure is analogous to map: it
applies its first argument (a procedure) to all the elements
of its second argument (a stream).

(define (map-streams f s)

(cons (f (head s))

(delay (map-streams f (tail s)))))

Infinite streams are implemented as pairs whose car
holds the first element of the stream and whose cdr holds
a promise to deliver the rest of the stream.

(define head car)

(define (tail stream)

(force (cdr stream)))

The following illustrates the use of integrate-system
in integrating the system

C
dvC
dt

= −iL −
vC
R

L
diL
dt

= vC

which models a damped oscillator.

(define (damped-oscillator R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L)))))

(define the-states

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01))

REFERENCES

[1] Harold Abelson and Gerald Jay Sussman with Julie
Sussman. Structure and Interpretation of Computer
Programs, second edition. MIT Press, Cambridge,
1996.

82 Revised7 Scheme

[2] Alan Bawden and Jonathan Rees. Syntactic closures.
In Proceedings of the 1988 ACM Symposium on Lisp
and Functional Programming, pages 86–95.

[3] S. Bradner. Key words for use in RFCs to In-
dicate Requirement Levels. http://www.ietf.org/
rfc/rfc2119.txt, 1997.

[4] Robert G. Burger and R. Kent Dybvig. Printing
floating-point numbers quickly and accurately. In
Proceedings of the ACM SIGPLAN ’96 Conference
on Programming Language Design and Implementa-
tion, pages 108–116.

[5] William Clinger. How to read floating point numbers
accurately. In Proceedings of the ACM SIGPLAN
’90 Conference on Programming Language Design
and Implementation, pages 92–101. Proceedings pub-
lished as SIGPLAN Notices 25(6), June 1990.

[6] William Clinger. Proper Tail Recursion and Space
Efficiency. In Proceedings of the 1998 ACM Confer-
ence on Programming Language Design and Imple-
mentation, June 1998.

[7] William Clinger. SRFI 6: Basic String Ports. http:
//srfi.schemers.org/srfi-6/, 1999.

[8] William Clinger, editor. The revised revised report
on Scheme, or an uncommon Lisp. MIT Artificial
Intelligence Memo 848, August 1985. Also published
as Computer Science Department Technical Report
174, Indiana University, June 1985.

[9] William Clinger and Jonathan Rees. Macros that
work. In Proceedings of the 1991 ACM Conference
on Principles of Programming Languages, pages 155–
162.

[10] William Clinger and Jonathan Rees, editors. The
revised4 report on the algorithmic language Scheme.
In ACM Lisp Pointers 4(3), pages 1–55, 1991.

[11] Mark Davis. Unicode Standard Annex #29, Unicode
Text Segmentation. http://unicode.org/reports/
tr29/, 2010.

[12] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in Scheme. Lisp and Symbolic
Computation 5(4):295–326, 1993.

[13] Marc Feeley. SRFI 4: Homogeneous Numeric Vector
Datatypes. http://srfi.schemers.org/srfi-45/,
1999.

[14] Carol Fessenden, William Clinger, Daniel P. Fried-
man, and Christopher Haynes. Scheme 311 version 4
reference manual. Indiana University Computer Sci-
ence Technical Report 137, February 1983. Super-
seded by [15].

[15] D. Friedman, C. Haynes, E. Kohlbecker, and
M. Wand. Scheme 84 interim reference manual. Indi-
ana University Computer Science Technical Report
153, January 1985.

[16] Martin Gardner. Mathematical Games: The fan-
tastic combinations of John Conway’s new solitaire
game “Life.” In Scientific American, 223:120–123,
October 1970.

[17] IEEE Standard 754-2008. IEEE Standard for
Floating-Point Arithmetic. IEEE, New York, 2008.

[18] IEEE Standard 1178-1990. IEEE Standard for the
Scheme Programming Language. IEEE, New York,
1991.

[19] Richard Kelsey. SRFI 9: Defining Record Types.
http://srfi.schemers.org/srfi-9/, 1999.

[20] Richard Kelsey, William Clinger, and Jonathan Rees,
editors. The revised5 report on the algorithmic lan-
guage Scheme. Higher-Order and Symbolic Compu-
tation, 11(1):7-105, 1998.

[21] Eugene E. Kohlbecker Jr. Syntactic Extensions in
the Programming Language Lisp. PhD thesis, Indi-
ana University, August 1986.

[22] Eugene E. Kohlbecker Jr., Daniel P. Friedman,
Matthias Felleisen, and Bruce Duba. Hygienic macro
expansion. In Proceedings of the 1986 ACM Con-
ference on Lisp and Functional Programming, pages
151–161.

[23] John McCarthy. Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part
I. Communications of the ACM 3(4):184–195, April
1960.

[24] MIT Department of Electrical Engineering and Com-
puter Science. Scheme manual, seventh edition.
September 1984.

[25] Peter Naur et al. Revised report on the algorith-
mic language Algol 60. Communications of the ACM
6(1):1–17, January 1963.

[26] Paul Penfield, Jr. Principal values and branch cuts
in complex APL. In APL ’81 Conference Proceed-
ings, pages 248–256. ACM SIGAPL, San Fran-
cisco, September 1981. Proceedings published as
APL Quote Quad 12(1), ACM, September 1981.

[27] Jonathan A. Rees and Norman I. Adams IV. T: A
dialect of Lisp or, lambda: The ultimate software
tool. In Conference Record of the 1982 ACM Sym-
posium on Lisp and Functional Programming, pages
114–122.

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://srfi.schemers.org/srfi-6/
http://srfi.schemers.org/srfi-6/
http://unicode.org/reports/tr29/
http://unicode.org/reports/tr29/
http://srfi.schemers.org/srfi-45/
http://srfi.schemers.org/srfi-9/

References 83

[28] Jonathan A. Rees, Norman I. Adams IV, and James
R. Meehan. The T manual, fourth edition. Yale
University Computer Science Department, January
1984.

[29] Jonathan Rees and William Clinger, editors. The
revised3 report on the algorithmic language Scheme.
In ACM SIGPLAN Notices 21(12), pages 37–79, De-
cember 1986.

[30] Olin Shivers. SRFI 1: List Library. http://srfi.

schemers.org/srfi-1/, 1999.

[31] Guy Lewis Steele Jr. and Gerald Jay Sussman. The
revised report on Scheme, a dialect of Lisp. MIT Ar-
tificial Intelligence Memo 452, January 1978.

[32] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme.
MIT Artificial Intelligence Laboratory Technical Re-
port 474, May 1978.

[33] Michael Sperber, R. Kent Dybvig, Mathew Flatt,
and Anton van Straaten, editors. The revised6 report
on the algorithmic language Scheme. Cambridge Uni-
versity Press, 2010.

[34] Guy Lewis Steele Jr. Common Lisp: The Language,
second edition. Digital Press, Burlington MA, 1990.

[35] Gerald Jay Sussman and Guy Lewis Steele Jr.
Scheme: an interpreter for extended lambda calcu-
lus. MIT Artificial Intelligence Memo 349, December
1975.

[36] Joseph E. Stoy. Denotational Semantics: The Scott-
Strachey Approach to Programming Language The-
ory. MIT Press, Cambridge, 1977.

[37] Texas Instruments, Inc. TI Scheme Language Ref-
erence Manual. Preliminary version 1.0, November
1985.

[38] Andre van Tonder. SRFI 45: Primitives for Ex-
pressing Iterative Lazy Algorithms. http://srfi.

schemers.org/srfi-45/, 2002.

[39] Martin Gasbichler, Eric Knauel, Michael Sperber
and Richard Kelsey. How to Add Threads to a Se-
quential Language Without Getting Tangled Up.
Proceedings of the Fourth Workshop on Scheme and
Functional Programming, November 2003.

http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-1/
http://srfi.schemers.org/srfi-45/
http://srfi.schemers.org/srfi-45/

84 Revised7 Scheme

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

The principal entry for each term, procedure, or keyword is
listed first, separated from the other entries by a semicolon.

! 7
’ 12; 41
* 36
+ 36; 67
, 21; 41
,@ 21
- 36
-> 7
. 7
... 23
/ 36
; 8
< 35; 66
<= 35
= 35; 36
=> 14; 15
> 35
>= 35
? 7
#!fold-case 8
#!no-fold-case 8

23
‘ 21

abs 36; 39
acos 37
and 15; 68
angle 38
append 42
apply 50; 12, 67
asin 37
assoc 43
assq 43
assv 43
atan 37

#b 34; 62
backquote 21
base library 5
begin 17; 25, 26, 28, 70
binary-port? 55
binding 9
binding construct 9
body 17; 26, 27
boolean=? 40
boolean? 40; 10
bound 10
byte 49
bytevector 49

bytevector-append 50
bytevector-copy 49
bytevector-copy! 49
bytevector-length 49; 33
bytevector-u8-ref 49
bytevector-u8-set! 49
bytevector? 49; 10
bytevectors 49

caaaar 41
caaadr 41
caaar 41
caadar 41
caaddr 41
caadr 41
caar 41
cadaar 41
cadadr 41
cadar 41
caddar 41
cadddr 41
caddr 41
cadr 41
call 13
call by need 18
call-with-current-continuation 52; 12, 53, 67
call-with-input-file 55
call-with-output-file 55
call-with-port 55
call-with-values 52; 12, 68
call/cc 52
car 41; 67
car-internal 67
case 14; 68
case-lambda 21; 26, 72
cdaaar 41
cdaadr 41
cdaar 41
cdadar 41
cdaddr 41
cdadr 41
cdar 41
cddaar 41
cddadr 41
cddar 41
cdddar 41
cddddr 41
cdddr 41
cddr 41
cdr 41
ceiling 37
char->integer 45

Index 85

char-alphabetic? 44
char-ci<=? 44
char-ci<? 44
char-ci=? 44
char-ci>=? 44
char-ci>? 44
char-downcase 45
char-foldcase 45
char-lower-case? 44
char-numeric? 44
char-ready? 57
char-upcase 45
char-upper-case? 44
char-whitespace? 44
char<=? 44
char<? 44
char=? 44
char>=? 44
char>? 44
char? 44; 10
close-input-port 56
close-output-port 56
close-port 56
comma 21
command 7
command-line 59
comment 8; 61
complex? 35; 32
cond 14; 24, 68
cond-expand 15; 16, 28
cons 41
constant 11
continuation 52
cos 37
current exception handler 53
current-error-port 56
current-input-port 56
current-jiffy 60
current-output-port 56
current-second 60

#d 34
define 25
define-library 28
define-record-type 27
define-syntax 26
define-values 26; 69
definition 25
delay 18; 19
delay-force 18; 19
delete-file 59
denominator 37
digit-value 45
display 58
do 18; 70

dotted pair 40
dynamic environment 20
dynamic extent 20
dynamic-wind 53; 52

#e 34; 62
else 14; 15
emergency-exit 59
empty list 40; 10, 41
environment 54; 60
environment variables 60
eof-object 57
eof-object? 57; 10
eq? 31; 13
equal? 32
equivalence predicate 30
eqv? 30; 10, 13, 67
error 6; 54
error-object-irritants 54
error-object-message 54
error-object? 54
escape procedure 52
escape sequence 45
eval 55; 12
even? 36
exact 39; 32
exact complex number 32
exact-integer-sqrt 38
exact-integer? 35
exact? 35
exactness 32
except 25
exception handler 53
exit 59
exp 37
export 28
expt 38

#f 40
false 10; 40
features 60
fields 27
file-error? 54
file-exists? 59
finite? 35
floor 37
floor-quotient 36
floor-remainder 36
floor/ 36
flush-output-port 59
for-each 51
force 19; 18
fresh 13

gcd 37
get-environment-variable 60

86 Revised7 Scheme

get-environment-variables 60
get-output-bytevector 56
get-output-string 56
global environment 29; 10
guard 20; 26

hygienic 22

#i 34; 62
identifier 7; 9, 61
if 13; 66
imag-part 38
immutable 10
implementation extension 33
implementation restriction 6; 33
import 25; 28
improper list 40
include 14; 28
include-ci 14; 28
include-library-declarations 28
inexact 39
inexact complex numbers 32
inexact? 35
infinite? 35
initial environment 29
input-port-open? 56
input-port? 55
integer->char 45
integer? 35; 32
interaction-environment 55
internal definition 26
internal syntax definition 26
irritants 54

jiffies 60
jiffies-per-second 60

keyword 22

lambda 13; 26, 65
lazy evaluation 18
lcm 37
length 42; 33
let 16; 18, 24, 26, 68
let* 16; 26, 69
let*-values 17; 26, 69
let-syntax 22; 26
let-values 17; 26, 69
letrec 16; 26, 69
letrec* 17; 26, 69
letrec-syntax 22; 26
libraries 5
list 40; 42
list->string 47
list->vector 48
list-copy 43

list-ref 42
list-set! 42
list-tail 42
list? 41
load 59
location 10
log 37

macro 22
macro keyword 22
macro transformer 22
macro use 22
magnitude 38
make-bytevector 49
make-list 42
make-parameter 20
make-polar 38
make-promise 19
make-rectangular 38
make-string 46
make-vector 48
map 50
max 36
member 42
memq 42
memv 42
min 36
modulo 37
mutable 10
mutation procedures 7

nan? 35
negative? 36
newline 58
newly allocated 30
nil 40
not 40
null-environment 55
null? 41
number 32
number->string 39
number? 35; 10, 32
numerator 37
numerical types 32

#o 34; 62
object 5
odd? 36
only 25
open-binary-input-file 56
open-binary-output-file 56
open-input-bytevector 56
open-input-file 56
open-input-string 56
open-output-bytevector 56
open-output-file 56

Index 87

open-output-string 56
or 15; 68
output-port-open? 56
output-port? 55

pair 40
pair? 41; 10
parameter objects 20
parameterize 20; 26
peek-char 57
peek-u8 58
polar notation 34
port 55
port? 55; 10
positive? 36
predicate 30
predicates 7
prefix 25
procedure 29
procedure call 13
procedure? 50; 10
promise 18; 19
promise? 19
proper tail recursion 11

quasiquote 21; 41
quote 12; 41
quotient 37

raise 54; 20
raise-continuable 54
rational? 35; 32
rationalize 37
read 57; 41, 62
read-bytevector 58
read-bytevector! 58
read-char 57
read-error? 54
read-line 57
read-string 57
read-u8 57
real-part 38
real? 35; 32
record types 27
record-type definitions 27
records 27
rectangular notation 34
referentially transparent 22
region 9; 14, 16, 17, 18
remainder 37
rename 25; 28
repl 29
reverse 42
round 37

scheme-report-environment 54

set! 14; 26, 66
set-car! 41
set-cdr! 41
setcar 67
simplest rational 37
sin 37
sqrt 38
square 38
string 46
string->list 47
string->number 39
string->symbol 43
string->utf8 50
string->vector 48
string-append 47
string-ci<=? 46
string-ci<? 46
string-ci=? 46
string-ci>=? 46
string-ci>? 46
string-copy 47
string-copy! 47
string-downcase 47
string-fill! 47
string-foldcase 47
string-for-each 51
string-length 46; 33
string-map 50
string-ref 46
string-set! 46; 43
string-upcase 47
string<=? 46
string<? 46
string=? 46
string>=? 46
string>? 46
string? 46; 10
substring 47
symbol->string 43; 11
symbol=? 43
symbol? 43; 10
syntactic keyword 9; 8, 22
syntax definition 26
syntax-error 24
syntax-rules 26

#t 40
tail call 11
tan 37
textual-port? 55
thunk 7
token 61
true 10; 14, 40
truncate 37
truncate-quotient 36

88 Revised7 Scheme

truncate-remainder 36
truncate/ 36
type 10

u8-ready? 58
unbound 10; 12, 26
unless 15; 68
unquote 41
unquote-splicing 41
unspecified 6
utf8->string 50

valid indexes 45; 47, 49
values 52; 13
variable 9; 8, 12
variable definition 25
vector 48
vector->list 48
vector->string 48
vector-append 49
vector-copy 48
vector-copy! 48
vector-fill! 49
vector-for-each 51
vector-length 48; 33
vector-map 51
vector-ref 48
vector-set! 48
vector? 47; 10

when 15; 68
whitespace 8
with-exception-handler 53
with-input-from-file 56
with-output-to-file 56
write 58; 21
write-bytevector 59
write-char 59
write-shared 58
write-simple 58
write-string 59
write-u8 59

#x 34; 62

zero? 36

	Introduction
	Overview of Scheme
	Semantics
	Syntax
	Notation and terminology

	Lexical conventions
	Identifiers
	Whitespace and comments
	Other notations
	Datum labels

	Basic concepts
	Variables, syntactic keywords, and regions
	Disjointness of types
	External representations
	Storage model
	Proper tail recursion

	Expressions
	Primitive expression types
	Derived expression types
	Macros

	Program structure
	Programs
	Import declarations
	Variable definitions
	Syntax definitions
	Record-type definitions
	Libraries
	The REPL

	Standard procedures
	Equivalence predicates
	Numbers
	Booleans
	Pairs and lists
	Symbols
	Characters
	Strings
	Vectors
	Bytevectors
	Control features
	Exceptions
	Environments and evaluation
	Input and output
	System interface

	Formal syntax and semantics
	Formal syntax
	Formal semantics
	Derived expression types

	Standard Libraries
	Standard Feature Identifiers
	Language changes
	Additional material
	Example
	References
	Alphabetic index of definitions of concepts, keywords, and procedures

