
Distributed Graph Coloring

Jane Bae

CME 323 Final Project

1 Introduction

In graph theory, graph coloring or vertex coloring is an assigned of labels called colors to graph

vertices such that no two adjacent vertices share the same color. More formally, we can define

graph coloring as

Definition 1.1 Given an undirected graph G = (V,E), a k-color coloring assigns a color cv ∈
{1, 2, ..., k} to each node v ∈ V such that for ∀(u, v) ∈ E, cu 6= cv.

There has been many results on the bounds on the chromatic number, χ(G) = minG(k) for a

given graph G. 1-coloring is possible if and only if G is edgeless; 2-coloring is possible if and only

if G is a bipartite graph. However, most generally, a greedy coloring shows that every graph can

be colored with one more color than the maximum vertex degree ∆(G),

χ(G) ≤ ∆(G) + 1.

There are many more studies on the lower bounds on the chromatic number; however, for the

purpose of this project, we focus on finding the (∆(G) + 1)-coloring of a graph. In the following

sections, we denote ∆ = ∆(G). We also assume ∆� n.

2 Näıve Algorithm

The most straight forward way of finding a (∆ + 1) coloring is the following näıve algorithm.

Algorithm 1 Näıve color-reduction algorithm

function ColorReduction(G = (V,E),∆)

n = |V |
for v = 1, n do

cv = v

end for

for v = ∆ + 2, n do

cv = min({1, ...,∆ + 1} \ {cu|(u, v) ∈ E})
end for

end function

1

Due to the existence of the (∆ + 1)-coloring, this algorithm will find the proper coloring. This

algorithm is called color reduction, because essentially, we start with n-coloring and we reduce

the number of colors down to ∆+1. The time complexity of this algorithm is O(n). This algorithm

cannot be parallelized in a straight forward way. So, the depth of the algorithm is D(n) = n, or

for a better bound, D(n) = n−∆.

3 Kuhn-Wattenhofer color-reduction

We can improve the color reduction algorithm by a divide an conquer method. Given a k-colored

graph G, we first divide the colors into bins of size 2(∆ + 1). The last bin can be of size between

2(∆ + 1) and 4(∆ + 1)− 1. We then apply the näıve color reduction in parallel to these bins to get

∆ + 1 colors in each bin. We then combine two bins at a time and repeat the process.

Algorithm 2 Kuhn-Wattenhofer color-reduction algorithm [1]

function KWColorReduction(G = (V,E),∆)

n = |V |
for v = 1, n do in parallel

cv = v

end for

k = unique elements in {cv : v ∈ V }
while k > ∆ + 1 do

Divide colors into bins of size 2(∆ + 1)

Let each bin be denoted as Gi = (Vi, Ei).

for i do in parallel

ColorReduction(Gi = (Vi, Ei),∆)

k ← k −∆ + 1

end for

end while

end function

Starting with the n-coloring, this gives a parallel depth of O
(
∆ log n

∆

)
as each call to the

ColorReduction function is of order O(∆), and we call this for al total of log n
∆ times.

4 Linial’s Algorithm

We started with the n-coloring and applied the Kuhn-Wattenhofer algorithm in the previous section.

However, if we can reduce the number of colors rapidly in parallel, we can achieve a better time-

complexity. We first state a combinatorial lemma due to Erdös et. al. [2]

Lemma 4.1 For two integers n and ∆, n > ∆ ≥ 4, there exists a family J of n subsets of the set

2

{1, 2, ...,m}, m = 5 · d∆2 · log ne, such taht if F0, F1, ..., F∆ ∈ J then

F0 6⊆
∆⋃
i=1

Fi.

Proof: We build a random collection J of subsets of {1, ...,m} in the following way. For every

element x ∈ {1, ...,m}, and for every index i ∈ {1, ..., n}, we insert x into the set Si with probability

1/∆ independently of the other pairs (x, i). For a fixed element x, and fixed distinct indices i0, ..., i∆,

it holds that

P

x ∈ Si0 \ ∆⋃
j=1

Sij

 =
1

∆
·
(

1− 1

∆

)∆

≥ 1

4∆
.

So, the probability that for every x, x 6∈ Si0 \ ∪∆
j=1Sij is

P

∀x, x 6∈ Si0 \ ∆⋃
j=1

Sij

 ≤ (1− 1

4∆

)m

≤ n−(5/4)∆,

which gives

P

Si0 ⊆ ∆⋃
j=1

Sij

 ≤ n−(5/4)∆.

The probability that there will be (∆ + 1) indices i0, ..., i∆, such that Si0 ⊆ ∪∆
j=1Sij is then, by

union-bound, (∆ + 1)
(

n
∆+1

)
· n−(5/4)∆, so

P

∀ distinct i0, ..., i∆Si0 6⊆
∆⋃
j=1

Sij

 ≥ 1− (∆ + 1)

(
n

∆ + 1

)
· n−(5/4)∆ > 0.

Therefore, such selection exists. If ∆ = 1, 2, 3, changing the coefficient 5 to 8 will produce the same

result.

We can use this lemma for coloring. Each vertex v ∈ V is assigned to a subset Fv from a

collection of J of subsets of {1, ...,m}, where m = 5d∆2 · log ne. Then, each vertex sends its set to

all its neighbors. Given its set Fv, and the sets Fu1 , ..., Fuh
, h ≤ ∆, we set the color of vertex v to

be the element that is in Fv \ ∪hi=1Fui .

Notice that this algorithm can be invoked iteratively. Within log∗ n rounds of iteration, the

resulting coloring gives a O(∆2 log ∆)-coloring. We then state another combinatorial lemma from

Linial’s paper [3].

Lemma 4.2 Let q be a prime power. Then, there is a collection J of q3 subsets of {1, ..., q2} such

that if F0, ..., Fm ∈ J , where m = d(q − 1)/2e, then

F0 6⊆
m⋃
i=1

Fi.

Using this lemma as the one before, we can reduce the coloring to O(∆2) with an additional O(1)

rounds of iteration. This gives a total time complexity of log∗ n+O(1) to achieve a O(∆2)-coloring.

3

5 Linial’s Algorithm with Kuhn-Wattenhofer color-reduction

Applying the Khun-Wattenhofer color-reduction algorithm to the result of Linial’s algorithm, we

can find a (∆ + 1) coloring in O(∆ log ∆) + log∗ n time.

Algorithm 3 Linial’s Algorithm with Kuhn-Wattenhofer color-reduction algorithm

function DistGraphColoring(G = (V,E),∆)

LinialAlgorithm(G,∆) in parallel

KWColorReduction(G,∆) in parallel

end function

6 Communication

We looked at the ideal time complexities without any communication costs. In this section, we

study what types of communication is required for each algorithm. For Linial’s algorithm, at each

iteration, each node has to communicate the subset that it has to its neighbors. So, worst-case, it

would be 2∆n communications for the entire graph. However, this is a one-to-one communication,

so assuming an abundance of parallel processors, the communication for each processor would

be O(∆). For the Kuhn-Wattenhofer algorithm, we also have the same type of communication.

Overall, the communication load for each processor is not too large.

7 Conclusion

Applying these two key algorithms to the graph coloring problem, we were able to reduce the depth

of the parallelization from O(n) to O(∆ log ∆)+log∗ n. For example, given a graph with one trillion

nodes with maximal degree of 10 thousand, O(n) ∼ 1012, whereas O(∆ log ∆) + log∗ n ∼ 105. The

difference between the two becomes larger and larger as ∆/n decrease and as n increase.

References

[1] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In Proceedings

of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, PODC

’06, pages 7–15. ACM, 2006.

[2] P. Frankl P. Erdös and Z. Füredi. Families of finite sets in which no set is covered by the union

of two others. Journal of Combinatorial Theory, Series A, 33(2):158–166, 1982.

[3] N. Linial. Distributive graph algorithms: Global solutions from local data. 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science, 0:331–335, 1987.

4

