
Lifted Arbitrary Constraint Solving for Lifted Probabilistic Inference

Rodrigo de Salvo Braz
SRI International

Shahin Saadati
SRI International

Hung Bui
SRI International

Ciaran O’Reilly
SRI International

Abstract

Lifted Probabilistic Inference is a class of tech-
niques for performing probabilistic inference on
compact, intensionally defined relational graph-
ical model representations without operating
solely on the propositional level. This requires
manipulating these representations and leaving
them on the intensional level, where sets of
parameterized random variables with the same
marginal distributions are grouped together and
manipulated all at once (and, as a result, more
efficiently). A key problem in lifted inference
is representing these groups compactly. This is
done by associating constraints with their param-
eters, also called logic variables. [1] has shown
that the ability to represent arbitrary groups
can greatly increase lifted inference efficiency,
even with constraint representation and algo-
rithms with time dependent on domain size. We
present the first constraint language and asso-
ciated algorithms that allow arbitrary groupings
with time complexity independent of the domain
size (making it a lifted algorithm itself). This
has the potential for even greater efficiency gains.
Moreover, the flexibility of the framework and its
ability to represent answers conditional on free
variables allow for efficiency gains as well as
much greater conceptual simplicity.

1 Introduction
Lifted Probabilistic Inference [2, 3, 4, 5, 6] is probabilis-
tic inference on compact, intensionally defined relational
graphical model representations without operating solely
on the propositional level. It makes use of constraints on
the parameters of parameterized random variable in order
to keep the model compact and inference more efficient.
We call the set of parameter value tuples a constraint rep-
resents its extension. To date, the representations used in
lifted inference are either limited in their expressivity (that
is, some extensions are not representable by a single con-

straint) [2, 3, 4, 5, 6], or can represent arbitrary extensions
but have manipulation time dependent on the domain size
(as in [1], who shows that arbitrary extensions allow greater
efficiency even at greater manipulation costs).

We propose to represent these constraints as a formula in
quantified, function-free equality logic, a logic with equal-
ity the only predicate. We then reduce the lifted inference
operations on these constraints to two problems in this lan-
guage: grounding size counting to model counting with free
variables, and projection to quantifier elimination with free
variables, and provide domain size-independent algorithms
for them. This combination is the first constraint frame-
work for lifted inference that can represent arbitrary exten-
sions and the manipulation of which does not depend on
domain size.

Model counting and quantifier elimination are problems
of interest in their own right, not only in the context of
lifted inference. In model counting, we compute the num-
ber of assignments to a given set of variables in the formula
(called indices), but allow the presence of free variables in
it as well, with a fixed but unknown value; thus, the num-
ber of models depends on these values. An example of this
type of problem is to compute the number of tuples (x, y)
where x, y belong to some fixed finite type of size T such
that

x = A ∧ y 6= z ∧ x 6= y

where x, y are the index variables, A is a constant, and z is
a free variable. It is easy to see that the number of solutions
for the above constraints is T − 1 if z = A, and is T − 2 if
z 6= A. Our goal is to compute this final expression given
a formula and its indices, and to do so with complexity
independent of T .

Quantifier elimination is the task of determining a non-
quantified formula equivalent to a quantified one. For ex-
ample, consider the formula ∃x(x 6= y ∧ y = A), where
the types of x and y are the same, and of size 10. Quantifier
elimination gives us the equivalent formula y = A. It can
be used to compute projections. For example, the projec-
tion of a tuple set {(x, y, z) : x 6= y ∧ y 6= z} into (x, y) is
described by {(x, y) : ∃z x 6= y ∧ y 6= z}, or more simply
by the equivalent quantifier-free {(x, y) : x 6= y}.

This paper is organized as follows: first, we explain the
link between lifted inference constraints, model counting,
and quantifier elimination. After that, we define the syntax
and semantics of our language. It is important to note that
we define a super language of equality logic for algorithm
description purposes, but solve model counting and quanti-
fier eliminalition only on equality logic formulas. We then
describe model counting by starting with the most basic
cases, and generalizing, until an algorithm for full equal-
ity logic formulas is described. We then use this algorithm
to define the quantifier elimination algorithm, followed by
related work comments and conclusion.

2 Basic Definitions
2.1 Lifted Inference and Necessary Operations on

Equality Logic
We assume reader familiarity with lifted inference and do
not provide detailed descriptions of its representation and
algorithms. We briefly outline the link between lifted infer-
ence and operations on equality logic.

The basic units in lifted inference are parfactors and pa-
rameterized random variables. Each parfactor and param-
eterized random variable has a grounding, which is the
set of regular propositional factors and random variables
they represent, respectively. Their representation involves
a template factor or random variable with parameters, and a
constraint determining the set of value tuples for these pa-
rameters. The grounding is defined as the set of factors or
random variables obtained by the substitution of accepted
parameter value tuples in the templates. We propose to rep-
resent this constraint as a formula in quantified, function-
free equality logic, a language rich enough to represent any
possible grounding, that is, what [1] call arbitrary con-
straints.

Lifted inference requires three key operations on con-
straints: counting, splitting, and normalization. Counting
refers to determining the size of a unit’s grounding in terms
of a subset of its parameters; splitting refers to replacing
units by sets of them with the same overall extensions, but
respecting the property that each pair of parameterized ran-
dom variables have either coinciding or mutually exclusive
extensions; finally, normalization is the task of replacing a
unit by a set of units, each of them with a constraint that
is count-normalized with respect to a subset of parameters,
that is, with a well-defined size for each possible assign-
ment to the remaining parameters.

We reduce these operations to two problems on our
Boolean formula language: grounding size counting to
model counting with free variables, and splitting to quan-
tifier elimination with free variables. It is not necessary to
solve normalization separately anymore, because the two
problems and their solutions accept free variables and pro-
vide answers conditioned on those free variables. In other
words, normalization is integrated with the other two op-
erations, a method which is both conceptually simpler and

more efficient.
We illustrate the reduction to model counting with the

following example. A common calculation performed by
lifted inference algorithms is of the sort:∏

x,y,z,w:x6=w∧y 6=x∧y 6=z

φ(p(x, z, w)),

where φ is an arbitrary non-negative real function on
boolean-valued function p. Note that the variable y does
not occur in p(x, z, w), so for every assignment to x, z, w,
the same value φ(p(x, z, w)) is multiplied as many times
as there are values of y compatible with x, z, w. This al-
lows us to exponentiate it by this number and keep a more
compact representation of the product:

=
∏
x,z,w

φ(p(x, z, w))|x6=w∧y 6=x∧y 6=z|y ,

where |x 6= w ∧ y 6= x ∧ y 6= z|y is the number of values
(models) of y satisfying x 6= w ∧ y 6= x∧ y 6= z. Note that
the remaining variables in the formula are free variables (in
the scope of the model counting problem) and the number
of models may depend on their values. Because, as we will
see, our model counting algorithm provides conditional so-
lutions, we obtain (assuming 10 possible values for each
variable):

=
∏
x,z,w

φ(p(x, z, w))(if x 6=w then if x=z then 9 else 8 else 0)

=
(∏
x,z,w:x 6=w

φ(p(x, z, w))(if x=z then 9 else 8)
)

(∏
x,z,w:x=w

φ(p(x, z, w))0
)

=
∏

x,z,w:x 6=w

φ(p(x, z, w))(if x=z then 9 else 8)

=
(∏
x,z,w:x 6=w∧x=z

φ(p(x, z, w))9
)

(∏
x,z:x6=w∧x 6=z

φ(p(x, z, w))8
)

=
(∏
x,w:x 6=w

φ(p(x, x, w))9
)(∏

x,z,w:x 6=w∧x 6=z

φ(p(x, z, w))8
)

=
(∏
x,w:x 6=w

φ3(p(x, x, w))
)(∏

x,z,w:x 6=w∧x 6=z

φ4(p(x, z, w))
)

Note that there is no need for count normalization (with
splitting of cases) of the constraints prior to counting. The
conditions that actually influence the count are returned as
part of the solution.

Another important lifted inference operation on con-
straints is splitting, which requires computing the instances
of a parameterized random variable that occur in the
grounding of a parfactor. For example, to compute the
set of groundings for p(x, y) occurring in the grounding

of a parfactor on (p(z,A), p(A,w)), z 6= B, we need to
compute whether there are values of z, w such that z 6=
B ∧ ((x, y) = (z,A) ∨ (x, y) = (A,w)) or, in equality
logic,

∃z, w : z 6= B ∧ ((x = z ∧ y = A) ∨ (x = A ∧ y = w))

which our quantifier elimination algorithm resolves to (x 6=
B ∧ y = A) ∨ x = A. Note that x, y are free variables, so
dealing with them is essential, and the solution may depend
on them, as in this case. Note also that the constraint for
the parfactor intersection with p(x, y) and its residual can
be calculated as

z 6= B ∧ ∃x, y : (x = z ∧ y = A) ∨ (x = A ∧ y = w)

and

z 6= B ∧ ¬∃x, y : (x = z ∧ y = A) ∨ (x = A ∧ y = w)

which is simple to do once we have an algorithm for solv-
ing arbitrary quantified equality logic formulas.

2.2 Language
We compute the number of models of formulas on equal-
ity. However our algorithms use a superset of the formula
language, defined as follows.

2.2.1 Syntax
We assume a variable symbol set and a constant symbol set
(including one for each natural number); constant symbols
start with a capitalized letter and variable symbols with a
small letter. Formulas, Boolean and numerical expressions
and expressions are inductively defined as follows (note
that any formula is a Boolean expression, and any Boolean
or numeric expression is also an expression).

• a variable symbol is an expression;

• a (numerical/Boolean/other) constant symbol is a (nu-
merical/Boolean/other) expression;

• the Boolean constants False and True are formulas;

• if α and β are variable or constant symbols of finite
types, then α = β is a formula and, more specifically,
an atom;

• if ϕ and ϕ′ are formulas, then ¬ϕ, ϕ ∧ ϕ′, ϕ ∨ ϕ′,
ϕ ⇔ ϕ′, ϕ ⇒ ϕ′ are formulas; in particular, a literal
is either an atom or its negation;

• if ϕ is a formula, then ∃xϕ and ∀xϕ are formulas;

• if α and β are expressions, then α = β is a Boolean
expression;

• ifα and β are numerical expressions, thenα+β, α×β,
α− β, α = β are numerical expressions;

• if α1, . . . , αn are expressions, then {α1, . . . , αn} is a
set expression;

• if α is a set expression, then |α| is a numerical expres-
sion;

• if ϕ is a formula, then |ϕ|x1,...,xn is a numerical ex-
pression;

• if ϕ is a formula and α and β are expressions of the
same type, then if ϕ thenα elseβ is an expression of
their type.

Note that not all numeric expressions are formulas.
Those using equality as the only predicate and finite types
are formulas, but others (using arithmetic operators) are
not.

The expression (or formula) α 6= β stands for ¬(α = β).
The expressions used to inductively form an expression as
shown above are its immediate sub-expressions. Sub-
expressions are defined by the transitive closure of im-
mediate sub-expressions. Sub-formulas are formula sub-
expressions.

2.2.2 Semantics
An interpretation is a function from an expression to an
element in a domain.1

Given a base interpretation I0 from variable and constant
symbols to the domain (which we assume to map numeric
constants to the corresponding numbers and the constants
False, True to the corresponding Boolean values), we de-
fine an interpretation function I based on I0 in the follow-
ing way (for lack of space, we only define the two less stan-
dard forms – the remaining ones are defined in the usual
way):

• I(|ϕ|x1,...,xn) = number of interpretations I ′ agree-
ing with I on all symbols but x1, . . . , xn such that
I ′(ϕ) is true (several examples are shown in Section
2.3);

• I(if ϕ thenα elseβ) =

{
I(α) if I(ϕ) is true
I(β) otherwise.

In summary, we define several types of expressions, in-
cluding Boolean formulas with quantifiers where all literals
are either equalities or disequalities on a set of variables and
constants (hence, function-free). There are multiple types,
or sorts, including, but not restricted to, Booleans and inte-
gers.

We assume that variables are only compared to constants
with interpretations in their own type, and to variables with
the same type. Distinct constants are assumed to have dis-
tinct interpretations (this does not incur in loss of general-
ity, because if we wish to treat a constant as possibly equal

1Our terminology for semantics follows that of higher-order
logic more closely than that of propositional or first-order logic.

to other constants, we can simply represent it with a vari-
able instead).

Besides formulas, we define other types of expressions,
such as arithmetic function applications, extensionally de-
fined sets, cardinality of sets, and an if-then-else expression
of the form “if ϕ thenα elseβ”, which has the same inter-
pretation as that of α if the formula ϕ is true in the current
interpretation, and β otherwise.

A free variable in an expression is a variable not quan-
tified in it by ∃,∀ or | · |x1,...,xn

. The substitution ϕ[x/φ]
of a symbol x in ϕ by an expression φ is the expression
obtained by replacing free occurrences of x in ϕ by φ, after
appropriately standardizing φ and ϕ apart.

Two expressions α and β are equivalent if for all inter-
pretations I, I(α) = I(β).

2.3 The Model Counting Problem

Our main problem is computing the number |ϕ|x1,...,xn of
solutions, or models, of a formula ϕ with respect to the
indices x1, . . . , xn as a function of the values of its free
variables. Given an interpretation I, a solution, or model
is an interpretation I’ agreeing with I on all symbols but
the indices (that is, a choice of assignment for the indices)
such that I ′(ϕ) is true. We assume that each variable x has
a type denoted type(x) of known finite size.

The number of models of ϕ on an empty set of variables
is denoted |ϕ|∅. Since there is only one interpretation of an
empty set of indices (the empty interpretation), |ϕ|∅ is 1 if
ϕ is true, and 0 otherwise.

A counting-solution is either a numeric constant ex-
pression, or an if-then-else expression “if ϕ thenα elseβ”
where ϕ is a formula and α and β are counting-solutions.
The model counting problem consists of determining a
counting-solution equivalent to |ϕ|x1,...,xn

. The main con-
tribution of this paper is an algorithm for the model count-
ing problem.

In the following examples of model counting problems
and their counting-solutions, we assume all variables have
the same type of size 10.

Problem Counting-solution
1 |x = A|x 1
2 |x 6= A|x 9
3 |x = A ∧ y = B|x,y 1
4 |x = A ∧ y 6= B|x,y 9
5 |x 6= A ∧ y 6= B|x,y 81
6 |y = B|x,y 10
7 |y 6= B|x,y 90
8 |True|x,y 100
9 |False|x,y 0

10 |x 6= A ∧ x 6= z|x if z = A then 9 else 8
11 |z = C ∧ y 6= B|x,y if z = C then 90 else 0
12 |z = C|∅ if z = C then 1 else 0
13 |x = A|∅ if x = A then 1 else 0
14 |∃x(x = y ∧ z = A)|y if z = A then 10 else 0

Note how z is a free variable in all problems in which it

appears, because it never shows in the indices. The num-
bers of models in the indices of Problems 11 and 12 depend
on the interpretation of z; if that is not C, then the formula
is false and the number of models is 0. x is an index in
Problems 1 to 11, and a free variable in Problem 13 (mak-
ing the solution dependent on its interpretation).

3 An Algorithm for the Model Counting
Problem

Algorithm 2 computes the counting-solution given a model
counting problem. This section explains it and delineates
its correctness proof.

We start by first discussing the important notion of sim-
plification, then indicating how to compute the cardinal-
ity of an extensionally defined set (that is, of the form
{α1, . . . , αn}), and finally showing how to solve increas-
ingly general cases of the model counting problem by re-
ducing them to simpler ones.

3.1 Simplification
Throughout the algorithms, whenever a new expression is
formed it is simplified. Most of the purpose of simplifica-
tion is just to keep expressions small, but it also has the
goal of keeping expressions in a normal form expected by
the algorithms. We present simplification steps below, and
comment on such normalization afterwards.

Simplification involves exhaustively applying the follow-
ing steps until no further changes are possible:

1. if-then-elses are externalized, that is, expressions of
the form

f(t1, . . . , ti−1, (if ϕ thenα elseβ), ti+1, . . . , tn)

with f any function other than if-then-else, are re-
placed by

if ϕ then f(t1, . . . , ti−1, α, ti+1, . . . , tn)

else f(t1, . . . , ti−1, β, ti+1, . . . , tn)

For example, 1 + (if x = A then 2 else 3) is replaced
by if x = A then 1 + 2 else 1 + 3.

2. Operations on constants are performed and replaced
by the result (for example, 2 + 2 is replaced by 4,
0 6= 1 is replaced by True, A = B is replaced by
False, ¬False is replaced by True, False ∧ True
is replaced by False, if True then 1 else 2 is replaced
by 1 etc.).

3. Operations whose results can be defined by a subset
of their arguments equal to certain constants (∨,∧,⇒
,⇔ +,×,−) are replaced by their results. This corre-
sponds to the notion of short-circuiting. For example,
False∧x = y is replaced by False and 0×|x 6= z|x
is replaced by 0, if True then |x = A|x else 2 is re-
placed by |x = A|x, if x 6= A thenTrue elseTrue is
replaced by True etc.

4. Equalities α = α are replaced by True. As a conse-
quence, disequalities α 6= α are replaced by False.

5. Conjunctions including conjuncts x = α and x = β,
where α, β are two distinct constants, are replaced by
False. The DeMorgan’s analog, disjunction of x 6= α
and x 6= β, is replaced by True.

6. Conjunctions including conjuncts x = α and x 6= α
where α is either a constant or variable are replaced by
False. The DeMorgan’s analog, disjunction of x 6= α
and x = α, is replaced by True.

7. Conjunctions including conjuncts x = α and x 6= β,
where α, β are two distinct constants, are replaced by
x = α. Disjunctions including disjuncts x = α and
x 6= β are replaced by x 6= β.

It is possible to show that simplification halts and pro-
duces an expression equivalent to the initial one. More-
over, the simplified expression exhibits a couple of normal
properties assumed by the algorithm’s operations. The first
one is that if-then-else operations are externalized, that is,
that no operations other than if-then-elses contain if-then-
elses as arguments. This ensures that counting-solutions
are either numbers or if-then-elses with counting-solutions
as their then and else branches. Another expected prop-
erty is that conjunctive clauses (conjunctions of literals) do
not contain equalities or disequalities of the type x = x or
x 6= x. We remark on the need for these properties at the
relevant point of the explanation of the algorithm.

3.2 Cardinality of extensionally defined sets
A basic problem we reduce the model counting prob-
lem to is the computation of the cardinality of exten-
sionally defined sets, that is, sets represented in the form
{α1, . . . , αn}, where each αi is either a variable or a con-
stant. This is done by Algorithm 1 by considering whether
each element α is equal to any of the subsequent ones. If
so, α is redundant and the answer is equal to the cardinality
of the remainder of the set. If α is distinct from all other
elements, the answer is equal to the cardinality of the re-
mainder of the set plus 1, since α will be an extra element.

|{A,B,C}| = 3

|{x, y}| = if x = y then 1 else 2

|{x, y, C}| = if x = y ∨ x = C

then if y = C then 1 else 2

else if y = C then 2 else 3

Now we show how to solve increasingly general cases
of the model counting problem by reducing it to simpler
cases.

3.3 Counting solutions of a formula with no indices
Let us consider solving |ϕ|∅. There is only one interpreta-
tion to the empty set of indices (the empty interpretation).

Algorithm 1 Compute the cardinality of an extensionally
defined set.
Require: S = {t1, . . . , tn}, possibly the empty set. Each

ti is a constant or a free variable.
1: function COMPUTECARDINALITY(S)
2: if S = {} then
3: return 0
4: else
5: α← computeCardinality({t2, . . . , tn})
6: return simplify(if t1 = t2 ∨ · · · ∨ t1 =
tn thenα elseα+ 1)

7: end if
8: end function

This interpretation does not change ϕ when applied to it,
and therefore will be a model if ϕ is true, and not be a
model if ϕ is false. That is to say, |ϕ|∅ = if ϕ then 1 else 0.
For example,

|x 6= y ∧ y 6= A|∅ = if x 6= y ∧ y 6= A then 1 else 0

3.4 Counting solutions of a formula with one index
We now consider how to compute |ϕ|x for a formula ϕ and
single index x.

If ϕ is a conjunctive clause of disequalities with a single
index (including the case with no disequalities at all, that
is, True), the number of models for the index is equal to
its type cardinality minus the cardinality of the extension-
ally defined set containing the values it is constrained to be
distinct from. In the following, we assume |type(x)| = 10:

|x 6= y ∧ x 6= z ∧ x 6= C|x
= |type(x)| − |{y, z, C}| (assuming {y, z, C} ⊆ type(x))
= 10− if y = z ∨ y = C

then if z = C then 1 else 2

else if z = C then 2 else 3

= if y = z ∨ y = C

then if z = C then 9 else 8

else if z = C then 8 else 7

Note that the correctness of this transformation depends
on the conjunctive clause being in normal form and there-
fore not containing disequalities of the form x 6= x. If it
did, we would rewrite |x 6= x ∧ x 6= A|x as |type(x)| −
|{x,A}|, which would incorrectly have x as a free variable.

If ϕ is a conjunctive clause including equalities on the
index, we replace the index by its value and remove it from
the index list.

|x = A ∧ x 6= y ∧ x 6= z ∧ x 6= C|x
= |A 6= y ∧A 6= z ∧A 6= C|∅
= |y 6= A ∧ z 6= A|∅
= if y 6= A ∧ z 6= A then 1 else 0

Note that the correctness of this transformation depends on
the conjunctive clause being in normal form and therefore
not containing equalities of the form x = x. If it did, we
would rewrite |x = x ∧ x 6= A|x as |x 6= A|∅, which
would incorrectly remove x as an index without eliminating
it from the formula.

If ϕ is a conjunctive clause including literals that do not
involve the index, we remove them from the formula and
condition the number of models on them:

|z 6= y ∧ y 6= B ∧ x 6= y ∧ x 6= z|x
= if z 6= y ∧ y 6= B then |x 6= y ∧ x 6= z|x else 0
= if z 6= y ∧ y 6= B

then if y = z then |type(x)| − 1 else |type(x)| − 2

else 0

If ϕ is a DNF (Disjunctive Normal Form, or a disjunction
of conjunctive clauses), it is either an empty disjunction
(False), or a disjunction of conjunctive clauses of the form
|ϕ1∨ϕ2∨ · · ·∨ϕn|x. If ϕ is False, the number of models
is 0. If it is in the latter form, we use the the fact that
|ϕ1 ∨ ϕ2|x = |ϕ1|x + |ϕ2|x − |ϕ1 ∧ ϕ2|x2, which in the
DNF case translates to

|ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn|x
= |ϕ1|x + |ϕ2 ∨ · · · ∨ ϕn|x − |ϕ1 ∧ (ϕ2 ∨ · · · ∨ ϕn)|x
= |ϕ1|x + |ϕ2 ∨ · · · ∨ ϕn|x − |(ϕ1 ∧ ϕ2) ∨ · · · ∨ (ϕ1 ∧ ϕn)|x

which is correct by induction on the number of disjuncts,
with the computation on conjunctive clauses being the base
case.

If ϕ is a quantifier-free formula but not a DNF, we com-
pute a DNF ϕ′ equivalent to it and return |ϕ′|x.3

If ϕ is a formula containing quantifiers, we compute a
quantifier-free formula ϕ′ equivalent to it and return |ϕ′|x.
We show how to eliminate quantifiers in Section 4.

3.5 Counting solutions of a formula with multiple
indices

We now consider the computation of |ϕ|x1,...,xn for multi-
ple indices x1, . . . , xn.

2This follows from the fact that, for any two sets A and B,
|A ∪ B| = |A|+ |B| − |A ∩ B|, applied to the sets of solutions
of each formula, and from the fact that the set of solutions of a
disjunction is the union of the sets of solutions of the disjuncts

3It is very important to note that, in practice, one should not
implement this algorithm by naively converting the entire formula
to a DNF, because it may be that solving only one sub-formula of
it is enough to solve the entire problem, in which case converting
the remaining sub-formulas to DNF would have been a waste.
One can clearly see this if the input is x 6= A∧x = A∧ϕ where ϕ
is a large formula; clearly one does not need to consider ϕ at all in
order to decide that the formula is equivalent to False. It is much
more efficient to only convert parts of the formula to DNF on the
fly, as they are needed for the procedure, in a technique known as
lazy case-splitting [7]. This technique is largely orthogonal to our
contribution, so we do not detail it here.

Before we do that, however, we show how to obtain
counting-solutions equivalent to summations of the type∑

x:ϕ

S

where ϕ is a formula constraining the value of the summa-
tion index x and S is a counting-solution. The summation
is over the values of x satisfying formula ϕ. We show how
to do this without iterating over all possible values of x, but
instead in time constant in its type size. If S is a number
N , we simply have ∑

x:ϕ

N = |ϕ|x ×N

which is simplified to a number, which is a counting-
solution. If S is of the form if ϕ′ thenS1 elseS2, where
ϕ′ is a formula and S1, S2 are counting-solutions, we have∑
x:ϕ

if ϕ′ thenS1 elseS2 =
(∑
x:ϕ∧ϕ′

S1

)
+
(∑
x:ϕ∧¬ϕ′

S2

)
with two summations on strictly smaller counting-solutions
that can be solved recursively. The simplification of an ad-
dition of two counting-solutions results in a single counting
solution.

Now that we know how to solve such summations, we
can solve model counting problems with more than one in-
dex by reducing them to a problem with one less index. Let
x be an index and y be a set of indices. Then we have

|ϕ|x,y =
∑
x

|ϕ|y

because the set of solutions for x,y is the union of the sets
of counting-solutions for y for each value of x, and those
sets are mutually exclusive because the solutions in each
of them have a distinct value for x. We can then solve the
summation as shown before.

Let us see a complete example, assuming |type(x)| =
|type(y)| = 10:

|y 6= x ∧ y 6= A|x,y
=
∑
x

|y 6= x ∧ y 6= A|y

=
∑
x

if x = A then |type(y)| − 1 else |type(y)| − 2

=
∑
x

if x = A then 9 else 8

=
(∑
x:x=A

9
)
+
(∑
x:x 6=A

8
)

= |x = A|x × 9 + |x 6= A|x × 8

= 1× 9 + (|type(x)| − 1)× 8

= 9 + 9× 8

= 81

Note how, in the subproblem indexed by y alone, x is a
free variable. Even when a problem does not contain any
free variables (not the case here), it is reduced to one with
free variables. Therefore, an algorithm for model counting
for formulas with free variables is not only more useful be-
cause it solves a more general problem than the one without
free variables, it also provides an elegant inductive reduc-
tion.

While the reduction to a summation shown above is
enough to solve all problems with more than one index,
a more efficient reduction applies when the formula is a
conjunction with a conjunct being an equality on an index:

|x = A ∧ (y 6= B ∨ z 6= x)|x,y,z = |y 6= B ∨ z 6= A|y,z

which is the same operation utilized to solve conjunctive
clauses with index equalities for the one-index case.

4 A Quantifier Elimination Algorithm
The previous section describes how to solve model count-
ing of quantifier-free formulas. When a formula has
quantifiers, first we eliminate them, finding an equivalent
quantifier-free formula, and then compute its (same) num-
ber of models. Therefore, we need to describe how to elim-
inate quantifiers from a formula ϕ. This is a problem in
itself and useful even in contexts other than model count-
ing (for example, it can be used for computing a projection
in relational algebra).

The method is described by Algorithm 3. If ϕ is an exis-
tential or universal quantification, we remove the top quan-
tifier by reducing the problem to a model counting prob-
lem. Using quantifier elimination for solving model count-
ing, and model counting for solving quantifier elimination
may seem circular at first, but is correct by induction on the
formula size.

If ϕ is an existential quantification ∃xϕ′, it is equivalent
to the simplification of |ϕ′|x 6= 0. For example:

∃xx = A ∧ x 6= A

⇔ |x = A ∧ x 6= A|x 6= 0

⇔ 0 6= 0

⇔ False

The comparison of an if-then-else counting solution
“if ψ thenS1 elseS2” to 0 is reduced to a comparison be-
tween numbers by if-then-else externalization, as seen in
the following example where |type(x)| = 2:

∃xx 6= A ∧ x 6= z ⇔ |x 6= A ∧ x 6= z|x 6= 0

⇔ 2− (if z = A then 1 else 2) 6= 0

⇔ (if z = A then 2− 1 else 2− 2) 6= 0

⇔ (if z = A then 1 else 0) 6= 0

⇔ if z = A then 1 6= 0 else 0 6= 0

⇔ if z = A thenTrue elseFalse

⇔ z = A

Algorithm 2 Computes a counting-solution for a given
formula. Assumes that simplification and conversion of
quantifier-free formulas to DNFs are already defined else-
where.

1: function COUNT(ϕ, indices)
2: if indices = {} then
3: return simplify(if ϕ then 1 else 0)
4: else if indices = {x} then . indices has exactly

one element
5: return countOfDNF(convertToDNF(ϕ), x)
6: else . indices are {x1, . . . , xn}, n > 1
7: return
8: computeSum(x1, T rue, count(ϕ, {x2, . . . , xn}))
9: end if

10: end function
11: function CONVERTTODNF(ϕ)
12: return
13: quantifierFreeFormToDNF(eliminateQuantifiers(ϕ))
14: end function
15: function COUNTOFDNF(ϕ, x)
16: if ϕ is False then
17: return 0
18: else if ϕ has the form ψ1 ∨ ψ2 then
19: return count(ψ1, x) + count(ψ2, x) −

count(ψ1 ∧ ψ2, {x})
20: else . ϕ is a conjunctive clause
21: return countOfConjunctiveClause(ϕ, x)
22: end if
23: end function
24: function COUNTOFCONJUNCTIVECLAUSE(ϕ, x)
25: ϕ1 ← conjunction of all conjuncts of ϕ containing

x (possibly empty)
26: ϕ2 ← conjunction of all conjuncts of ϕ not con-

taining x (possibly empty)
27: if ϕ1 has the form ψ ∧ (x = t) then . ψ may just

be True
28: α← count(ψ[x/t], ∅)
29: else. ϕ1 is x 6= t1 ∧ · · · ∧ x 6= tk (possibly empty)
30: α←
31: simplify(|type(x)|− computeCardinality({t1, . . . , tk}))
32: end if
33: return simplify(if ϕ2 thenα else 0)
34: end function
35: function COMPUTESUM(x, ψ, α) . computes∑

x:ψ α, where α is a counting-solution
36: if α has the form if ϕ then t1 else t2 then
37: return
38: simplify(computeSum(x, ψ ∧ ϕ, t1) +

computeSum(x, ψ ∧ ¬ϕ, t2))
39: else . α is a number
40: return simplify(count(ψ, {x})× α)
41: end if
42: end function

We eliminate a universal quantifier in the analogous man-
ner by using the equivalence ∀xϕ⇔ |ϕ|x = |type(x)|. In
the example below, |type(x)| is 10.

∀xx 6= A ∧ x 6= y ⇔ |x 6= A ∧ x 6= y|x = |type(x)|
⇔ (if y = A then 9 else 8) = 10

⇔ if y = A then 9 = 10 else 8 = 10

⇔ if y = A thenFalse elseFalse

⇔ False

If ϕ is not an existential or universal quantification, it
may be that its sub-expressions contain quantifiers. In
this case we replace them by quantifier-free versions re-
cursively computed. This is correct by induction on the
expression size, with a base case for variable and constant
symbols, which are already quantifier-free. For example:

x 6= A ∧ ∃y (y = B ∧ y 6= x) ⇔ x 6= A ∧ x 6= B

A very important observation regarding quantifier elim-
ination is that, even though it can be reduced to a model
counting problem, it is fundamentally easier than the latter,
because it is easier to decide that a formula has a number of
models distinct from 0 (or a type’s size) than to decide its
precise number of models. For example, if |type(x)| > 3,

|x 6= y ∧ x 6= z ∧ x 6= w|x = |type(x)| − |{y, z, w}| 6= 0

can be decided without computing the extensionally de-
fined set cardinality, since it has an upper bound of 3 and
the subtraction will be greater than 0. Another example is
the reduction for disjunctions. When trying to decide

|ϕ1 ∨ ϕ2|x = |ϕ1|x + |ϕ2|x − |ϕ1 ∧ ϕ2|x 6= 0

it is only necessary to compute |ϕ1|x and |ϕ2|x; if either
of them is distinct from 0, so is the total, and if they are
both 0, so are |ϕ1 ∧ ϕ2|x and, as a consequence, the total.
In general, one can write a version of the model counting
algorithm that takes an extra input indicating that we only
need to decide if the number of models is distinct from a
given number, and returns True as soon as that can be de-
termined, even before computing the exact counting solu-
tion.

5 Complexity
A complexity analysis shows that the model counting algo-
rithm isO(exp(exp(n))) for n the number of free variables
and indices. The double exponential comes from the fact
that counting the models of a disjunction with m disjuncts
requires two recursive calls on disjunctions withm−1 dis-
juncts. When eliminating quantifiers, only one such call is
needed and the complexity becomes O(exp(n)), the same
of satisfiability.4

4Note that certain classes of constraints, for example those that
contain an arbitrary half of elements in the domain, have a size

Algorithm 3 Computes a quantifier-free formula equiva-
lent to a given formula.

1: function ELIMINATEQUANTIFIERS(ϕ)
2: if ϕ has the form ∃x ψ then
3: return simplify(count(ψ, {x}) 6= 0)
4: else if ϕ has the form ∀x ψ then
5: return simplify(count(ψ, {x}) = |type(x)|)
6: end if
7: ϕ ← simplify(replace each sub-expression φ of ϕ

by eliminateQuantifiers(φ))
8: return ϕ
9: end function

6 Related Work

There has been work on the satisfiability of propositional
logic with equalities [8, 9, 10, 11], but it has not been ex-
tended to computing the number of models. Propositional
model counting [12, 13] (#SAT, an extension of SAT to also
compute the number of satisfying models) is a special case
of our problem where each proposition p can be represented
by an index Boolean variable p in an equality p = True
and the formula contains no free variables or quantifiers.
Our focus however is not just on Boolean variables, but on
handling variables of arbitrarily large finite types.

Our model counting problem can be reduced to #SAT by
creating a proposition to represent x = A for each vari-
able/value pair. However, this requires the encoding of
x = α ⇒ x 6= β for every pair of constants α, β, thus de-
pending on T . For this same reason, it seems unlikely that a
reduction to a model counting problem on Boolean-valued
variables can be found. We are not aware of an algorithm
proposed in the literature for model counting that does not
depend on the type size.

The closest contributions have been the ones proposed
by the lifted probabilistic inference community, particu-
larly [1, 6, 4]. Our contribution provides lifted inference
algorithms with a rich language that can compactly repre-
sent arbitrary constraints, that is, any set of assignments to
variables. It has been shown by [1] that this significantly
improves lifted inference performance. In the lifted infer-
ence literature so far, only [1] can represent arbitrary con-
straints, but their space and time complexities depend on
type size. Our solution is the first arbitrary constraint lan-
guage with time and space complexity independent of type
size. Another important advantage of our approach is the
ability of returning solutions conditional on free variables,
which does away with the need for normalizing constraints
in advance.

dependent on the domain size, and in those cases the algorithm is
dependent on the domain size. However, it remains true that the
algorithm is independent of the domain size given the constraint
size.

7 Conclusion
We presented two algorithms: one that solves model count-
ing for function-free, existentially and universally quanti-
fied Boolean formulas where the only predicate is equal-
ity, with free variables (in which case the answer depends
on those variables), and another, naturally derived from
the first one, that eliminates quantifiers from such formu-
las. They are implemented and available for downloading.
Model counting is relevant to any application in which a
set of objects is intensionally defined through a constraint
of this type, and the number of such objects needs to be
computed. In particular, it is relevant to lifted probabilistic
inference, a generalization of inference for graphical mod-
els that can take more expressive and compact logic-like
representations. Our solution is superior to previous so-
lutions from that community in that it represents and ma-
nipulates arbitrary constraints in space and time indepen-
dent of type size, and accepts quantifiers and free variables
that are not required to be previously pairwise constrained
for either equality or disequality. This makes its use both
more convenient and more efficient in that context. Fur-
thermore, it is an instance of symbolic evaluation, which
makes it easier to be integrated into other algorithms also
using symbolic evaluation. Future work includes empirical
evaluation, generalizing it to richer languages, including
uninterpreted functions, arithmetic operators on variables,
and interpreted predicates.

8 Acknowledgments
The authors gratefully acknowledge the support of the De-
fense Advanced Research Projects Agency (DARPA) Ma-
chine Reading Program under Air Force Research Labora-
tory (AFRL) prime contract no. FA8750-09-C-0181. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the view of DARPA, AFRL, or the
US government. Approved for Public Release, Distribution
Unlimited.

References
[1] Taghipour, N., Fierens, D., Davis, J., Blockeel, H.:

Lifted variable elimination with arbitrary constraints.
Journal of Machine Learning Research - Proceedings
Track 22 (2012) 1194–1202

[2] Poole, D.: First-order probabilistic inference. In: Pro-
ceedings of the 18th International Joint Conference
on Artificial Intelligence. (2003) 985–991

[3] de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-
order probabilistic inference. In: Proceedings of
IJCAI-05, 19th International Joint Conference on Ar-
tificial Intelligence. (2005)

[4] Milch, B., Zettlemoyer, L., Kersting, K., Haimes,
M., Kaelbling, L.P.: Lifted probabilistic inference
with counting formulas. In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intel-
ligence (AAAI-2008), Chicago, Illinois, USA (July
2008 2008)

[5] Singla, P., Domingos, P.: Lifted first-order belief
propagation. In: Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI-
2008), Chicago, Illinois, USA (July 2008 2008)

[6] Kisynski, J., Poole, D.: Constraint processing in lifted
probabilistic inference. In: UAI. (2009)

[7] Kroening, D., Strichman, O.: Decision Procedures:
An Algorithmic Point of View. 1 edn. Springer Pub-
lishing Company, Incorporated (2008)

[8] Meir, O., Strichman, O.: Yet another decision pro-
cedure for equality logic. In: Computer Aided Ver-
ification, 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005, Proceed-
ings. (2005) 307–320

[9] Gammer, I., Amir, E.: Solving satisfiability in ground
logic with equality by efficient conversion to propo-
sitional logic. In: Abstraction, Reformulation, and
Approximation, 7th International Symposium, SARA
2007, Whistler, Canada, July 18-21, 2007, Proceed-
ings. (2007) 169–183

[10] Tveretina, O.: Deciding satisfiability of equality logic
formulas with uninterpreted functions. In: Joint An-
nual Workshop of ERCIM/CoLogNet on Constraint
Solving and Constraint Logic Programming, Lau-
sanne, Switzerland. (2004)

[11] Zantema, H., Groote, J.F.: Transforming equality
logic to propositional logic. Electr. Notes Theor.
Comput. Sci. 86(1) (2003) 162–173

[12] Arora, S., Barak, B.: Computational Complexity -
A Modern Approach. Cambridge University Press
(2009)

[13] Roth, D.: On the hardness of approximate reasoning.
Artificial Intelligence 82(1-2) (Apr 1996) 273–302

