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Abstract

Using the theory of group action, we first in-
troduce the concept of the automorphism group
of an exponential family or a graphical model,
thus formalizing the general notion of symme-
try of a probabilistic model. This automorphism
group provides a precise mathematical frame-
work for lifted inference in the general exponen-
tial family. Its group action partitions the set
of random variables and feature functions into
equivalent classes (called orbits) having identical
marginals and expectations. Then the inference
problem is effectively reduced to that of com-
puting marginals or expectations for each class,
thus avoiding the need to deal with each individ-
ual variable or feature. We demonstrate the use-
fulness of this general framework in lifting two
classes of variational approximation for MAP in-
ference: local LP relaxation and local LP re-
laxation with cycle constraints; the latter yields
the first lifted inference that operate on a bound
tighter than local constraints. Initial experimen-
tal results demonstrate that lifted MAP inference
with cycle constraints achieved the state of the
art performance, obtaining much better objective
function values than local approximation while
remaining relatively efficient.

1 Introduction
Classical approaches to probabilistic inference – an area
now reasonably well understood – have traditionally ex-
ploited low tree-width and sparsity of the graphical model
for efficient exact and approximate inference. A more re-
cent approach known as lifted inference [3, 13, 7, 8] has
demonstrated the possibility to perform very efficient in-
ference in highly-connected, but symmetric models such
as those arising in the context of relational (or first-order)
probabilistic models. While it is clear that symmetry is
the essential element in lifted inference, there is currently
no formally defined notion of symmetry of a probabilis-

tic model, and thus no formal account of what “exploiting
symmetry” means in lifted inference.

The mathematical formulation of symmetry of an object
is typically defined via a set of transformations that pre-
serve the object of interest. Since this set forms a math-
ematical group (so-called the automorphism group of that
object), the theory of groups and group action are essential
in the study of symmetry.

In this paper, we first introduce the concept of the au-
tomorphism group of an exponential family or a graphi-
cal model, thus formalizing the notion of symmetry of a
general graphical model. This automorphism group pro-
vides a precise mathematical framework for lifted infer-
ence in graphical models. Its group action partitions the set
of random variables and feature functions into equivalent
classes (a.k.a. orbits) having identical marginals and ex-
pectations. The inference problem is effectively reduced to
that of computing marginals or expectations for each class,
thus avoiding the need to deal with each individual vari-
able or feature. We demonstrate the usefulness of this gen-
eral framework in lifting two classes of variational approx-
imation for MAP inference: local LP relaxation and local
LP relaxation with cycle constraints; the latter yields the
first lifted inference that operates on a bound tighter than
local constraints. Initial experimental results demonstrate
that lifted MAP inference with cycle constraints achieved
the state of the art performance, obtaining much better ob-
jective function values than local approximation while re-
maining relatively efficient.

For brevity, we omit the proofs of all theorems in this
paper. All the proofs can be found in the extended version
[2].

2 Background on Groups and Graph
Automorphisms

A partition ∆ = {∆1 . . .∆k} of a set V is a set of disjoint
nonempty subsets of V whose union is V . Each element
∆i is called a cell. A partition ∆ defines an equivalence
relation on V , denoted as ∆∼, by letting u ∆∼ v iff u and v
are in the same cell. A partition Λ is finer than ∆ if every



cell of Λ is a subset of some cell of ∆.
We now briefly review some important concepts in group

theory and graph automorphisms [6].
A group (G, ·) is a non-empty set G with a binary op-

eration · such that it is associative, closed in G; G con-
tains an identity element, denoted as 1, such that ∀g ∈ G,
1 · g = g · 1 = g and there exists an element g−1 such that
g · g−1 = g−1 · g = 1. A group containing 1 as its only el-
ement is called a trivial group. A subgroup of G is a subset
of G that forms a group with the same binary operation as
G. We write G1 ≤ G2 when G1 is a subgroup1 of G2.

A permutation on a set V is a bijective mapping from V
to itself. The set of all permutations of V together with
the mapping-composition operator forms a group named
the symmetric group S(V ). A symmetric group that plays
a central role in this paper is the symmetric group Sn, the
set of all permutations of {1, 2, . . . , n}. For a permutation
π ∈ Sn, π(i) is the image of i under π. For each vector
x ∈ Xn, the vector x permuted by π, denoted by xπ , is
(xπ(1) . . . xπ(n)); for a set A ⊂ Xn, the set A permuted by
π, denoted by Aπ is {xπ|x ∈ A}.

The action of a group G on a set V is a mapping that
assigns every g ∈ G to a permutation on V , denoted as
g() : V → V such that the identity element 1 is assigned
to the identity permutation, and the group product of two
elements g1 · g2 is assigned to the composition g1() ◦ g2().
The action of a group G on V induces an equivalence re-
lation on V defined as v ∼ v′ iff there exists g ∈ G such
that g(v) = v′ (the fact that ∼ is an equivalence relation
follows from the definition of group). The group action
therefore induces a partition on V called the orbit parti-
tion, denoted as OrbG(V ). The orbit of an element v ∈ V
under the action of G is the set of elements in V equivalent
to v: orbG(v) = {v′ ∈ V| v′ ∼ v}. Any subgroup G1 ≤ G
will also act on V and induces a finer equivalence relation
(and hence a more refined orbit partition). Given v ∈ V , if
under the group action, every element g ∈ G preserves v,
that is ∀g ∈ G, g(v)=v, then the group G is said to stabilize
v.

Next, we consider the action of a permutation group on
the vertex set of graph, which leads to the concept of graph
automorphisms.

An automorphism of a graph G on a set of vertices V is a
permutation π ∈ S(V ) that permutes the vertices of G but
preserves the structure (e.g., adjacency, direction, color) of
G. The set of all automorphisms of G forms a group named
the automorphism group of G, denoted as A(G). It is clear
that A(G) is a subgroup of S(V ). The cardinality of A(G)
indicates the level of symmetry in G; if A(G) is the trivial
group then G is asymmetric.

The action of A(G) on the vertex set V partitions V into
the node-orbits OrbA(G)(V ) where each node orbit is a set
of vertices equivalent to one another up to some node rela-

1We use the notation G1 � G2 to mean G1 is isomorphic to a
subgroup of G2.

beling. Furthermore, A(G) also acts on the set of graph
edges E by letting π({u, v}) = {π(u), π(v)} and this
action partitions E into a set of edge-orbits OrbA(G)(E).

Similarly, we also obtain the set of arc-orbits OrbA(G)(
→
E).

Computing the automorphism group of a graph is as dif-
ficult as determining whether two graphs are isomorphic,
a problem that is known to be in NP, but for which it is
unknown whether it has a polynomial time algorithm or is
NP-complete. In practice, there exists efficient computer
programs such as nauty2 [9] for computing automorphism
groups of graphs.

3 Symmetry of the Exponential Family
3.1 Exponential Family and Graphical Model
Consider an exponential family over n random variables
(xi)i∈V where V = {1 . . . n}, xi ∈ X with density func-
tion

F(x | θ) = h(x) exp (〈Φ(x), θ〉 −A(θ))

where h is the base density, Φ(x) = (φj(x))j∈I , I =
{1, 2, . . . ,m} is an m-dimensional feature vector, θ ∈ Rm
is the natural parameter, and A(θ) the log-partition func-
tion. Let Θ = {θ |A(θ) <∞} be the set of natural param-
eters,M = {µ ∈ Rm | ∃p, µ = EpΦ(x)} the set of realiz-
able mean parameters, A∗ :M→ R the convex dual of A,
and m : Θ → M the mean parameter mapping that maps
θ 7→ m(θ) = EθΦ(x). Note that m(Θ) = riM is the
relative interior ofM. For more details, see [16].

Often, a feature function φi depends only on a subset
of the variables in V . In this case we will write φi more
compactly in factorized form as φi(x) = fi(xi1 . . . xiK )
where the indices ij are distinct, i1 < i2 . . . < iK , and
fi cannot be reduced further, i.e., it must depend on all of
its arguments. To keep track of variable indices of argu-
ments of fi, we let scope(fi) denote its set of arguments,
ηi(k) = ik the k-th argument and |ηi| its number of ar-
guments. Factored forms of features can be encoded as a
hypergraph G [F ] of F (called the graph structure or graph-
ical model of F) with nodes V , and hyperedges (clusters)
{C|∃i, scope(fi) = C}. For models with pairwise features,
G is a standard graph.

For discrete random variables (i.e., X is finite), we of-
ten want to work with the overcomplete family Fo that
we now describe for the case with pairwise features. The
set of overcomplete features Io are indicator functions
on the nodes and edges of the graphical model G of
F : φou:t(x) = I {xu = t} , t ∈ X for each node u ∈
V (G); and φo{u:t,v:t′}(x) = I {xu = t, xv = t′} , t, t′ ∈ X
for each edge {u, v} ∈ E(G). The set of overcom-
plete realizable mean parameters Mo is also called the
marginal polytope since the overcomplete mean parame-
ter corresponds to node and edge marginal probabilities.
Given a parameter θ, the transformation of F(x|θ) to

2http://cs.anu.edu.au/people/bdm/nauty/



its overcomplete representation is done by letting θo be
the corresponding parameter in the overcomplete family:
θou:t =

∑
i s.t. scope(fi)={u} fi(t)θi and (assuming u < v)

θo{u:t,v:t′} =
∑
i s.t. scope(fi)={u,v} fi(t, t

′)θi. It is straight-
forward to verify that Fo(x|θo) = F(x|θ).

3.2 Automorphism Group of an Exponential Family

We define the symmetry of an exponential family F as the
group of transformations that preserve F (hence preserve
h and Φ). The kind of transformation used will be a pair of
permutations (π, γ) where π permutes the set of variables
and γ permutes the feature vector.
Definition 3.1. An automorphism of the exponential fam-
ily F is a pair of permutations (π, γ) where π ∈ Sn,
γ ∈ Sm such that for all vectors x: h(xπ) = h(x) and
Φγ
−1

(xπ) = Φ(x) (or equivalently, Φ(xπ) = Φγ(x)).
It is straightforward to show that the set of all auto-

morphisms of F , denoted by A[F ], forms a subgroup of
Sn × Sm. This group acts on I by the permuting action of
γ, and on V by the permuting action of π. In the remain-
der of this paper, h is always a symmetric function (e.g.,
h ≡ 1); therefore, the condition h(xπ) = h(x) automati-
cally holds.
Example. Let V = {1, 2, 3} and Φ = {f1, f2, f3} where
f1(x1, x2) = x1(1 − x2), f2(x1, x3) = x1(1 − x3), and
f3(x2, x3) = x2x3. The pair of permutations (π, γ) where
π = (1 7→ 1, 2 7→ 3, 3 7→ 2) and γ = (1 7→ 2, 2 7→
1, 3 7→ 3) is an automorphism of F , since Φγ

−1

(xπ) =
(φ2(x1, x3, x2), φ1(x1, x3, x2), φ3(x1, x3, x2)) =
(f2(x1, x2), f1(x1, x3), f3(x3, x2)) = (x1(1 − x2), x1(1 −
x3), x3x2) = Φ(x1, x2,x3).

An automorphism (π, γ) can be characterized in terms of
the factorized features fi as follows.
Proposition 3.1. (π, γ) is an automorphism of F if and
only if the following conditions are true for all i ∈ I: (1)
|ηi| = |ηγ(i)|; (2) π is a bijective mapping from scope(fi)

to scope(fγ(i)); (3) let α = η−1
γ(i) ◦π ◦ηi then α ∈ S|ηi| and

fi(t
α) = fγ(i)(t) for all t∈ X |ηi|.

Remark. Consider automorphisms of the type (1, γ): γ
must permute between the features having the same scope:
scope(fi) = scope(fγ(i)). Thus if the features do not have
redundant scopes (i.e., scope(fi) 6= scope(fj) when i 6= j)
then γ must be 1. More generally when features do not
have redundant scopes, π uniquely determines γ. Next,
consider automorphisms of the type (π,1): π must permute
among variables in a way that preserve all the features fi.
Thus if all features are asymmetric functions then π must
be 1; more generally, γ uniquely determines π. As a conse-
quence, if the features do not have redundant scopes and are
asymmetric functions then there exists a one-to-one corre-
spondence between π and γ that form an automorphism in
A[F ].

An automorphism defined above preserves a number of
key characteristics of the exponential family F (such as its

natural parameter space, its mean parameter space, its log-
partition function), as shown in the following theorem.
Theorem 3.1. If (π, γ) ∈ A[F ] then

1. π ∈ A(G[F ]), i.e. π is an automorphism of the graph-
ical model graph G[F ].

2. Θγ = Θ and A(θγ) = A(θ) for all θ ∈ Θ.

3. F(xπ|θγ) = F(x|θ) for all x ∈ Xn, θ ∈ Θ.

4. mγ(θ) = m(θγ) for all θ ∈ Θ.

5. Mγ =M and A∗(µγ) = A∗(µ) for all µ ∈M.

4 Lifted Variational Inference Framework
We now discuss the principle of how to exploit the sym-
metry of the exponential family graphical model for lifted
variational inference. In the general variational inference
framework [16], marginal inference is viewed as to com-
pute the mean parameter µ = m(θ) given a natural param-
eter θ by solving the optimization problem

sup
µ∈M

〈θ, µ〉 −A∗(µ). (4.1)

For discrete models, the variational problem is more con-
veniently posed using the overcomplete parameterization,
for marginal inference

sup
µo∈Mo

〈µo, θo〉 −Ao∗(µo) (4.2)

and for MAP inference

max
x∈Xn

lnF(x|θ) = sup
µo∈Mo

〈µo, θo〉+ const. (4.3)

We first focus on lifting the main variational problem in
(4.1) and leave discussions of the other problems to subsec-
tion 4.3.

4.1 Parameter Tying and Lifting Partition
Lifted inference in essence assumes a parameter-tying set-
ting where some components of θ are the same. More pre-
cisely, we assume a partition ∆ of I (called the parameter-
tying partition) such that j ∆∼ j

′ ⇒ θj = θj′ . Our goal
is to study how parameter-tying, coupled with the symme-
try of the family F , can lead to more efficient variational
inference.

Let Rm∆ denote the subspace{
r ∈ Rm | rj = rj′ if j ∆∼ j′

}
. For any set S ⊂ Rm,

let S∆ = S ∩ Rm∆ . Restricting the natural parameter to
Θ∆ is equivalent to parameter tying, and hence, equivalent
to working with a different exponential family with |∆|
aggregating features

(∑
j∈∆i

φj

)
i
. While this family

has fewer parameters, it is not obvious how it would
help inference; moreover, in working directly with the



aggregation features, the structure of the original family is
lost.

To investigate the effect parameter tying has on the com-
plexity of inference, we turn to the question of how to char-
acterize the image of Θ∆ under the mean mapping m. At
first, note that in general m(Θ∆) 6= M∆: taking ∆ to be
the singleton partition {I} will enforce all natural parame-
ters to be the same, but clearly this does not guarantee that
all mean parameters are the same. However, one can hope
that perhaps some mean parameters are forced to be the
same due to the symmetry of the graphical model. More
precisely, we ask the following question: is there a parti-
tion ϕ of I such that for all θ ∈ Θ∆ the mean parameter is
guaranteed to lie insideMϕ, and therefore the domain of
the variational problem (4.1) can be restricted accordingly
toMϕ? Such partitions are defined for general convex op-
timization problems below.
Definition 4.1. (Lifting partition) Consider the convex op-
timization infx∈S J(x) where S ⊂ Rm is a convex set
and J is a convex function. A partition ϕ of {1 . . .m}
is a lifting partition for the aforementioned problem iff
infx∈S J(x) = infx∈Sϕ

J(x), i.e., the constraint set S can
be restricted to Sϕ.
Theorem 4.1. Let G act on I = {1 . . .m}, so that ev-
ery g ∈ G corresponds to some permutation on {1 . . .m}.
If Sg = S and J(xg) = J(x) for every g ∈ G (i.e., G
stabilizes both S and J) then the induced orbit partition
OrbG(I) is a lifting partition for infx∈S J(x).

From theorem 3.1, we know that A[F ] stabilizes M
and A∗; however, this group does not take the parame-
ter θ into account. Given a partition ∆, a permutation
λ on I is consistent with ∆ iff λ permutes only among
elements of the same cell of ∆. Such permutations are
of special interest since for every θ ∈ Θ∆, θλ = θ.
If G is a group acting on I, we denote G∆ the set of
group elements whose actions are consistent with ∆, that is
G∆ =

{
g ∈ G|∀u ∈ I, g(u)

∆∼ u
}

. It is straightforward
to verify that G∆ is a subgroup of G. With this notation,
A∆(F) is the subgroup of A[F ] whose member’s action is
consistent with ∆. The group A∆(F) thus stabilizes not
just the family F , but also every parameter θ ∈ Θ∆. It
is straightforward to verify that A∆(F) stabilizes both the
constraint set and the objective function of (4.1). Therefore
by the previous theorem, its induced orbit yields a lifting
partition.
Corollary 4.1. Let ϕ = ϕ(∆) = OrbA∆[F ](I). Then for
all θ ∈ Θ∆, ϕ is a lifting partition for the variational prob-
lem (4.1), that is

sup
µ∈M

〈θ, µ〉 −A∗(µ) = sup
µ∈Mϕ

〈θ, µ〉 −A∗(µ) (4.4)

In (4.4), we call the LHS the ground formulation of the
variational problem, and the RHS the lifted formulation.
Let ` = |ϕ| be the number of cells of ϕ, the lifted con-
straint setMϕthen effectively lies inside an `-dimensional

subspace where ` ≤ m. This forms the core idea of the
principle of lifted variational inference: to perform opti-
mization over the lower dimensional (and hopefully easier)
constraint setMϕ instead ofM.
Remark. The above result also holds for any subgroup G
of A∆(F) since ϕG = OrbG(I) is finer than ϕ. Thus, it
is obvious that ϕG is also a lifting partition. However, the
smaller is the group G, the finer is the lifting partition ϕG,
and the less symmetry can be exploited. In the extreme,
G can be the trivial group, ϕG is the discrete partition on
I putting each element in its own cell, and MϕG = M,
which corresponds to no lifting.

4.2 Characterization ofMϕ

We now give a characterization ofMϕ in the case of dis-
crete random variables. Note that M is the convex hull
M = conv {Φ(x)|x ∈ Xn} which is a polytope in Rm,
and A[F ] acts on the set of configurations Xn by the per-
muting action of π which maps x 7→ xπ .
Theorem 4.2. Let O = OrbA∆[F ](Xn) be the set of X -
configuration orbits. For each orbit C ∈ O, let Φ̄(C) =
1
|C|
∑
x∈C Φ(x) be the feature-centroid of all the configura-

tions x in C. ThenMϕ(∆) = conv
{

Φ̄(C)|C ∈ O
}

.
As a consequence, the lifted polytope Mϕ can have at

most |O| extreme points. The number of configuration or-
bits |O| can be much smaller than the total number of con-
figurations |X |n when the model is highly symmetric. For
example, for a fully connected graphical model with iden-
tical pairwise and unary potentials and X = {0, 1} then ev-
ery permutation π ∈ Sn is part of an automorphism; thus,
every configuration with the same number of 1’s belongs to
the same orbit, and hence |O| = n+1. In general, however,
|O| often is still exponential in n. We discuss approxima-
tions ofMϕ in Section 5.

A representation of the lifted polytope Mϕ by a set
of constraints in R|ϕ| can be directly obtained from the
constraints of the polytope M. For each cell ϕj (j =
1, . . . , |ϕ|) of ϕ, let µ̄j be the common value of the vari-
ables µi, i ∈ ϕj . Let ρ be the orbit mapping function that
maps each element i ∈ I to the corresponding cell ρ(i) = j
that contains i. Substituting µi by µ̄ρ(i) in the constraints
ofM, we obtain a set of constraints in µ̄ (in vector form,
we substitute µ by Dµ̄ where Dij = 1 if i ∈ ϕj and 0
otherwise). In doing this, some constraints will become
identical and thus redundant. In general, the number of
non-redundant constraints can still be exponential.

4.3 Overcomplete Variational Problems
We now state analogous results in lifting the overcomplete
variational problems (4.2) and (4.3) when X is finite. To
simplify notation, we will consider only the case where fea-
tures are unary or pairwise. As before, the group A∆[F ]
will be used to induce a lifting partition. However, we need
to define the action of this group on the set of overcomplete



features Io.
Recall that if (π, γ) ∈ A[F ] then π is an automorphism of

the graphical model graph G. Since overcomplete features
naturally correspond to nodes and edges of G, π has a natu-
ral action on Io that maps v:t 7→ π(v):t and {u:t, v:t′} 7→
{π(u):t, π(v):t′}. Define ϕo = ϕo(∆) = OrbA∆[F ](Io)
to be the induced orbits of A∆[F ] on the set of overcom-
plete features.
Corollary 4.2. For all θ ∈ Θ∆, ϕo is a lifting partition for
the variational problems (4.2) and (4.3).

Thus, the optimization domain can be restricted toMo
ϕo

which we term the lifted marginal polytope. The cells of ϕo

are intimately connected to the node, edge and arc orbits of
the graph G induced by A∆[F ]. We now list all the cells of
ϕo in the case where X = {0, 1}: each node orbit v̄ cor-
responds to 2 cells {v : t|v ∈ v̄} , t ∈ {0, 1}; each edge or-
bit ē corresponds to 2 cells {{u : t, v : t} | {u, v} ∈ ē} , t ∈
{0, 1}; and each arc orbit ā corresponds to the cell
{{u : 0, v : 1} |(u, v) ∈ ā}. The orbit mapping function ρ
maps each element of Io to its orbit as follows: ρ(v:t) =
v̄:t, ρ({u:t, v:t}) = {u, v}:t, ρ({u:0, v:1}) = (u, v):01.

The total number of cells of ϕo is O(|V̄ | + |Ē|) where
|V̄ | and |Ē| are the number of node and edge orbits of G
(each edge orbit corresponds to at most 2 arc orbits). Thus,
in working with Mo

ϕo , the big-O order of the number of
variables is reduced from the number of nodes and edges
in G to the number of node and edge orbits.

5 Lifted Approximate MAP Inference
Approximate variational inference typically works with a
tractable approximation of M and a tractable approxima-
tion of A∗. In this paper, we focus only on lifted outer
bounds of Mo (and thus restrict ourselves to the discrete
case). We leave the problem of handling approximations
of A∗ to future work. Thus, our focus will be on the LP
relaxation of the MAP inference problem (4.3).

By corollary 4.2, (4.3) is equivalent to the lifted problem
supµo∈Mo

ϕo
〈θo, µo〉. Since any outer bound OUTER ⊃

Mo yields an outer bound OUTERϕo of Mo
ϕo , we can

always relax the lifted problem and replace Mϕo by
OUTERϕo . But is the relaxed lifted problem on OUTERϕo

equivalent to the relaxed ground problem on OUTER? This
depends on whether ϕo is a lifting partition for the relaxed
ground problem.
Theorem 5.1. If the set OUTER = OUTER(G) depends
only on the graphical model structure G of F , then for all
θ ∈ Θ∆, ϕo is a lifting partition for the relaxed MAP prob-
lem

sup
µo∈OUTER

〈θo, µo〉 = sup
µo∈OUTERϕo

〈θo, µo〉

The most often used outer bound of Mo is the local
marginal polytope LOCAL(G) [16], which enforces con-
sistency for marginals on nodes and between nodes and
edges of G. [14, 15] used CYCLE(G), which is a tighter
bound that also enforces consistency of edge marginals

on the same cycle of G. The Sherali-Adams hierarchy3

[12] provides a sequence of outer bounds ofMo, starting
from LOCAL(G) and progressively tightening it to the ex-
act marginal polytope Mo. All of these outer bounds de-
pend only on the structure of the graphical model G, and
thus the corresponding relaxed MAP problems admit ϕo

as a lifting partition. Note that with the exception when
OUTER = LOCAL, equitable partitions [6] of G such as
those used in [10] are not lifting partitions for the approxi-
mate variational problem in theorem 5.1.4

6 Lifted MAP Inference on the Local
Polytope

We now focus on lifted approximate MAP inference using
the local marginal polytope LOCAL. From this point on,
we also restrict ourselves to models where the features are
pairwise or unary, and variables are binary (X = {0, 1}).

We first aim to give an explicit characterization of the
constraints of the lifted local polytope LOCALϕo . The lo-
cal polytope LOCAL(G) is defined as the set of locally con-
sistent pseudo-marginals.τ ≥ 0

∣∣∣∣∣∣∣∣∣
τv:0 + τv:1 = 1 ∀v ∈ V(G)

τ{u:0,v:0} + τ{u:0,v:1} = τu:0

τ{u:0,v:0} + τ{v:0,u:1} = τv:0 ∀ {u, v} ∈ E(G)
τ{u:1,v:1} + τ{u:0,v:1} = τv:1

τ{u:1,v:1} + τ{v:0,u:1} = τu:1


Substituting τi by the corresponding τ̄ρ(i) where ρ() is

given in subsection 4.3, and by noting that constraints
generated by {u, v} in the same edge orbits are redun-
dant, we obtain the constraints for the lifted local polytope
LOCALϕo as follows.τ̄ ≥ 0

∣∣∣∣∣∣∣∣∣
τ̄v̄:0 + τ̄v̄:1 = 1 ∀ node orbit v̄

τ̄ē:00 + τ̄(u,v):01 = τ̄ū:0

τ̄ē:00 + τ̄(v,u):01 = τ̄v̄:0 ∀ edge orbit ē
τ̄ē:11 + τ̄(u,v):01 = τ̄v̄:1 (u, v), (v, u) : arc
τ̄ē:11 + τ̄(v,u):01 = τ̄ū:1 orbits of ē


Thus, the number of constraints needed to describe the

lifted local polytope LOCALϕo is O(|V̄ |+ |Ē|). Similar to
the ground problem, these constraints can be derived from
a graph representation of the node and edge orbits. Define
the lifted graph Ḡ be a graph whose nodes are the set of

3A note about terminology: Following the tradition in lifted
inference, this paper uses the term lift to refer to the exploitation
of symmetry for avoiding doing inference on the ground model.
It is unfortunate that the term lift has also been used in the con-
text of coming up with better bounds for the marginal polytopes.
There, lift (as in lift-and-project) means to move to a higher di-
mensional space where constraints can be more easily expressed
with auxiliary variables.

4As a counter example, consider a graphi-
cal model whose structure is the Frucht graph
(http://en.wikipedia.org/wiki/Frucht_graph). Since this is a
regular graph, LOCAL approximation yields identical constraints
for every node. However, the nodes on this graph participate in
cycles of different length, hence are subject to different cycle
constraints.



node orbits V̄ of G. For each edge orbit ē with a repre-
sentative {u, v} ∈ ē, there is a corresponding edge on Ḡ
that connects the two node orbits ū and v̄. Note that unlike
G, the lifted graph Ḡ in general is not a simple graph and
can contain self-loops and multi-edges between two nodes.
Figure 6.1 shows the ground graph G and the lifted graph
Ḡ for the example described in subsection 3.2.

1

2 3

a. Ground graph G

1

2,3

b. Lifted graph Ḡ
Figure 6.1: G and Ḡ of the example described in section 3.2

We now consider the linear objective function 〈θo, τ〉.
Substituting τi by the corresponding τ̄ρ(i), we can rewrite
the objective function in terms of τ̄ as

〈
θ̄, τ̄
〉

where the co-
efficients θ̄ are defined on nodes and edges of the lifted
graph Ḡ as follows. For each node orbit v̄, θ̄v̄:t =∑
v′∈v̄ θ

o
v′:t = |v̄|θov:t where t ∈ {0, 1} and v is any repre-

sentative of v̄. For each edge orbit ē with a representative
{u, v} ∈ ē, θ̄ē:tt =

∑
{u′,v′}∈ē θ

o
{u′:t,v′:t} = |ē|θo{u:t,v:t}

where t ∈ {0, 1}, θ̄(u,v):01 =
∑

(u′,v′)∈(u,v) θ
o
{u′:0,v′:1} =

|(u, v)|θo{u:0,v:1}. Note that typically the two arc-orbits
(u, v) and (v, u) are not the same, in which case |(u, v)| =
|(v, u)| = |ē|. However, in case (u, v) = (v, u) then
|(u, v)| = |(v, u)| = 2|ē|.

So, we have shown that the lifted formulation for MAP
inference on the local polytope can be described in terms
of the lifted variables τ̄ and the lifted parameters θ̄. These
lifted variables and parameters are associated with the or-
bits of the ground graphical model. Thus, the derived lifted
formulation can also be read out directly from the lifted
graph Ḡ. In fact, the derived lifted formulation is the lo-
cal relaxed MAP problem of the lifted graphical model
Ḡ. Therefore, any algorithm for solving the local relaxed
MAP problem on G can also be used to solve the derived
lifted formulation on Ḡ. From lifted inference point of
view, we can lift any algorithm for solving the local relaxed
MAP problem on G by constructing Ḡ and run the same al-
gorithm on Ḡ. This allows us to lift even asynchronous
message passing algorithms such as the max-product lin-
ear programming (MPLP) algorithm [5], which cannot be
lifted using existing lifting techniques.

7 Beyond Local Polytope: Lifted MAP
Inference with Cycle Inequalities

We now discuss lifting the MAP relaxation on CYCLE(G),
a bound obtained by tightening LOCAL(G) with an addi-
tional set of linear constraints that hold on cycles of the
graphical model structure G, called cycle constraints [14].
These constraints arise from the fact that the number of cuts
(transitions from 0 to 1 or vice versa) in any configuration

on a cycle of G must be even. Cycle constraints can be
framed as linear constraints on the mean vector µo as fol-
lows. For every cycle C (set of edges that form a cycle in
G) and every odd-sized subset F ⊆ C∑
{u,v}∈F

nocut({u, v}, τ) +
∑

{u,v}∈C\F

cut({u, v}, τ) ≥ 1

(7.1)
where nocut({u, v}, τ) = τ{u:0,v:0} + τ{u:1,v:1} and
cut({u, v}, τ) = τ{u:0,v:1} + τ{v:0,u:1}.

Theorem 5.1 guarantees that MAP inference on CYCLE
can be lifted by restricted the feasible domain to
CYCLEϕo , which we term the lifted cycle polytope. Sub-
stituting the original variables τ by the lifted variables τ̄ ,
we obtain the lifted cycle constraints in terms of τ̄∑
{u,v}∈F

nocut({u, v}, τ̄) +
∑

{u,v}∈C\F

cut({u, v}, τ̄) ≥ 1

(7.2)
where nocut({u, v}, τ̄) = τ̄{u,v}:00 + τ̄{u,v}:11 and
cut({u, v}, τ̄) = τ̄(u,v):01 + τ̄(v,u):01 where (u, v) and
(v, u) are the arc-orbits corresponding to the node-orbit
{u, v}.

7.1 Lifted Cycle Constraints on All Cycles Passing
Through a Fixed Node

Fix a node i in G, and let Cyc[i] be the set of cycle con-
straints generated from all cycles passing through i. A cy-
cle is simple if it does not intersect with itself or contain
repeated edges; [14] considers only simple cycles, but we
will also consider any cycle, including non-simple cycles
in Cyc[i]. Adding non-simple cycles to the mix does not
change the story since constraints on non-simple cycles of
G are redundant. We now give a precise characterization of
Cyc[i], the set of lifted cycle constraints obtained by lifting
all cycle constraints in Cyc[i] via the transformation from
(7.1) to (7.2).

The lifted graph fixing i, Ḡ[i] is defined as follows. Let
A∆[F , i] be the subgroup of A∆[F ] that fixes i, that is
π(i) = i. The set of nodes of Ḡ[i] is the set of node or-
bits V̄ [i] of G induced by A∆[F , i], and the set of edges is
the set of edge orbits Ē[i] of G. Each edge orbit connects
to the orbits of the two adjacent nodes (which could form
just one node orbit). Since i is fixed, {i} is a node orbit,
and hence is a node on Ḡ[i]. Note that Ḡ[i] in general is not
a simple graph: it can have multi-edges and loops.
Theorem 7.1. Let C̄ be a cycle (not necessarily simple) in
Ḡ[i] that passes through the node {i}. For any odd-sized
F̄ ⊂ C̄∑

e∈F̄

nocut(e, τ̄) +
∑

e∈C̄\F̄

cut(e, τ̄) ≥ 1 (7.3)

is a constraint in Cyc[i]. Furthermore, all constraints in
Cyc[i] can be expressed this way.



7.2 Separation of Lifted Cycle Constraints
While the number of cycle constraints may be reduced sig-
nificantly in the lifted space, it may still be computationally
expensive to list all of them. To address this issue, we fol-
low [14] and employ a cutting plane approach in which we
find and add only the most violated lifted cycle constraint
in each iteration (separation operation).

For finding the most violated lifted cycle constraint, we
propose a lifted version of the method presented by [14],
which performs the separation by iterating over the nodes
of the graph G and for each node i finds the most violated
cycle constraint from all cycles passing through i. Theo-
rem 7.1 suggests that all lifted cycle constraints in Cyc[i]
can be separated by mirroring Ḡ[i] and performing a short-
est path search from {i} to its mirrored node, similar to the
way separation is performed on ground cycle constraints
[14].

To find the most violated lifted cycle constraint, we could
first find the most violated lifted cycle constraint Ci in
Cyc[i] for each node i, and then take the most violated con-
straints over all Ci. However, note that if i and i′ are in
the same node orbit, then Cyc[i] = Cyc[i′]. Hence, we can
perform separation using the following algorithm:

1. For each node orbit v̄ ∈ V̄ , choose a representative
i ∈ v̄ and find its most violated lifted cycle constraint
Cv̄ ∈ Cyc[i] using a shortest path algorithm on the
mirror graph of Ḡ[i].

2. Return the most violated constraint over all Cv̄ .

Notice that both Ḡ[i] and its mirror graph have to be cal-
culated only once per graph. In each separation iteration
we can reuse these structures, provided that we adapt the
edge weights in the mirror graph according to the current
marginals.

8 Detecting Symmetries in Exponential
Families

8.1 Detecting Symmetries via Graph Automorphisms
We now discuss the computation of a subgroup of the au-
tomorphism group A∆(F). Our approach is to construct a
suitable graph whose automorphism group is guaranteed to
be a subgroup of A∆(F), and thus any tool and algorithm
for computing graph automorphism can be applied. The
constructed graph resembles a factor graph representation
of F . However, we also use colors of factor nodes to mark
feature functions that are identical and in the same cell of
∆, and colors of edges to encode symmetry of the feature
functions themselves.
Definition 8.1. The colored factor graph induced by F
and ∆, denoted by G∆[F ] is a bipartite graph with nodes
V (G) = {x1 . . . xn} ∪ {fi . . . fm} and edges E(G) ={{
xηi(k), fi

}
| i ∈ I, k = 1 . . . |ηi|

}
. Variable nodes are

assigned the same color which is different from the col-
ors of factor nodes. Factor nodes fi and fj have the same

color iff fi ≡ fj and i ∆∼ j. If the function fi is symmetric,
then all edges adjacent to fi have the same color; otherwise,
they are colored according to the argument number of fi,
i.e.,

{
xηi(k), fi

}
is assigned the k-th color.

Theorem 8.1. The automorphism group A[G∆] of G∆[F ]
is a subgroup of A∆(F), i.e., A[G∆] ≤ A∆[F ].

Finding the automorphism group A[G∆] of the graph
G∆[F ] therefore yields a procedure to compute a subgroup
of A∆[F ]. Thus, according to corollary 4.1, the induced
orbit partition on the factor node of G∆[F ] is a lifting par-
tition for the variational problems discussed earlier. Nauty,
for example, directly supports the operation of computing
the automorphism group of a graph and extracting the in-
duced node orbits.

8.2 Symmetries of Markov Logic Networks

A Markov Logic Network (MLN) [11] is prescribed by a
list of weighted formulas F1 . . . FK (consisting of a set of
predicates, logical variables, constants, and a weight vec-
tor w) and a logical domain D = {a1...a|D|}. Let D0 be
the set of objects appearing as constants in these formulas,
then D∗ = D\D0 is the set of objects in D that do not
appear in these formulas. Let Gr be the set of all ground
predicates p(a1 . . . a`)’s. If s is a substitution, Fi[s] de-
notes the result of applying the substitution s to Fi and is
a grounding of Fi if it does not contain any logical free
variables. The set of all groundings of Fi is GrFi, and let
GrF = GrF1 ∪ . . . ∪ GrFK . The MLN corresponds to an
exponential family FMLN where Gr is the variable index
set and each grounding Fi[s] ∈ GrFi is a feature function
φFi[s](ω) = I(ω � Fi[s]) with the associated parameter
θFi[s] = wi where ω is a truth assignment to all the ground
predicates in Gr and wi is the weight of the formula Fi.
Since all the ground features of the formula Fi have the
same parameter wi, the MLN also induces the parameter-
tying partition ∆MLN = {{φF1[s](ω)} . . . {φFK [s](ω)}}.

Let a renaming permutation r be a permutation over D
that fixes every object in D0, i.e., r only permutes ob-
jects in D∗. Thus, the set of all such renaming permuta-
tions is a group Gre that is isomorphic to the symmetric
group S(D∗). Consider the following actions of Gre on
Gr and GrF: πr : p(a1 . . . a`) 7→ p(r(a1) . . . r(a`)) and
γr : Fi[s] 7→ Fi[r(s)] where r(s = (x1/a1, ..., xk/ak)) =
(x1/r(a1), ..., xk/r(ak)). Basically, πr and γr rename the
constants in each ground predicate p(a1 . . . a`) and ground
formula Fi[s] according to the renaming permutation r.
The following theorem (a consequence of Lemma 1 from
Bui et al. [1]) shows that Gre is isomorphic to a subgroup
of A[FMLN ], the automorphism group of the exponential
family FMLN .
Theorem 8.2. For every renaming permutation r,
(πr, γr) ∈ A[FMLN ]. Thus, Gre � A[FMLN ].

Furthermore, observe that γr only maps between
groundings of a formula Fi, thus the action of Gre
on GrF is consistent with the parameter-tying partition



∆MLN = {{φF1[s](ω)} . . . {φFK [s](ω)}}. Thus, Gre �
A∆MLN

[FMLN ]. According to corollary 4.1, the orbit par-
tition induced by the action of Gre on GrF is a lifting parti-
tion for the variational inference problems associated with
the exponential family FMLN . In addition, this orbit par-
tition can be quickly derived from the first-order represen-
tation of an MLN; the size of this orbit partition depends
only on the number of observed constants |Do|, and does
not depend on actual domain size |D|.

9 Experiments
We experiment with several propositional and lifted meth-
ods for variational MAP inference by varying the domain
size of the following MLN:

w1 x 6= y ∧ x 6= z ∧ y 6= z ⇒ pred (x, y)⇔ pred (y, z)

w2 x 6=y ∧ obs (x, y)⇒ pred (x, y)

obs(A,B)

This MLN is designed to be a simplified version of mod-
els that enforce transitivity for the predicate pred, and will
be called the semi-transitive model.5 We set the weights
as w1 = −100 and w2 = 0.1. The negative w1 yields
a repulsive model with relatively strong interaction, while
the shared predicate and variables in the first formula are
known to be a difficult case for lifted inference. The third
formula is an observation with two constants A and B.

The ground Markov network of the above MLN is cor-
responding to an exponential family FMLN , and we use
the two methods described in Sections 8.1 and 8.2 to derive
lifting partitions. The first method (nauty) fully grounds the
MLN, then finds a lifting partition using nauty. The second
(renaming) works directly with the MLN, and uses the re-
naming group to find a lifting partition. We use two outer
bounds to the marginal polytope: LOCAL and CYCLE.
There are three variants of each method: propositional, lift-
ing using nauty orbit partition, and lifting using renaming
orbit partition. This yields a total of six methods to com-
pare. For reference, we also calculate the exact solution to
the MAP problem using ILP.

Figure 9.1a shows the runtime (in milliseconds) until
convergence for different domain sizes of the logical vari-
ables in our MLN. We can make a few observations. First,
in most cases lifting dramatically reduces runtime for larger
domains. Second, nauty-based methods suffer from larger
domain sizes. This is expected, as we perform automor-
phism finding on propositional graphs with increasing size.
Third, the renaming partition outperforms nauty partitions,
by virtue of working directly with the first-order represen-
tation. Notice in particular for lifted-via-renaming meth-
ods, we can still observe a dependency on domain size, but

5If pred(x, y) = 1 is interpreted as having a (directed) edge
from x to y, then this model represents a random graph whose
nodes are elements of the domain of the MLN. More specifically,
the model can be thought of as a 2-star Markov graph [4].

this is an artifact of our current implementation—in the fu-
ture these curves will be constant. Finally, all but the propo-
sitional cycle method are faster than ILP.

Figure 9.1b illustrates how the objective changes over
cutting plane iterations (and hence time), all for the case
of domain size 10. Both the local polytope and ILP ap-
proaches have no cutting plane iterations, and hence are
represented as single points. Given that ILP is exact, the
ILP point gives the optimal solution. Notice how all meth-
ods are based on outer/upper bounds on the variational ob-
jective, and hence are decreasing over time. First, we can
observe that the CYCLE methods converge to the (almost)
optimal solution, substantially better than the LOCAL
methods. However, in the propositional case the CYCLE
algorithm converges very slowly, and is only barely faster
than ILP.

Lifted CYCLE methods are the clear winners for this
problem. We can also see how the different lifting par-
titions affect CYCLE performance. The renaming par-
tition performs its first iteration much quicker than the
nauty-based partition, since nauty needs to work on the
full grounded network. Consequently, it converges much
earlier, too. However, we can also observe that the renam-
ing partition is more fine-grained than the nauty partition,
leading to larger orbit graphs and hence slower iterations.
Notably, working with lifted cycle constraints gives us sub-
stantial runtime improvements, and effectively optimal so-
lutions.

10 Conclusion

We presented a new general framework for lifted varia-
tional inference. In doing this, we introduce and study a
precise mathematical definition of symmetry of graphical
models via the construction of their automorphism groups.
Using the device of automorphism groups, orbits of ran-
dom variables are obtained, and lifted variational infer-
ence is materialized as performing the corresponding con-
vex variational optimization problem in the space of per-
orbit random variables. Our framework enables lifting a
large class of approximate variational MAP inference al-
gorithms, including the first lifted algorithm for MAP in-
ference with cycle constraints. We presented experimental
results demonstrating that lifted MAP inference with cycle
constraints achieved the state of the art performance, ob-
taining much better objective function values than LOCAL
approximation while remaining relatively efficient. Our fu-
ture work includes extending this approach to handle ap-
proximations of convex upper-bounds of A∗, which would
enable lifting the full class of approximate convex varia-
tional marginal inference.
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