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Abstract

Hybrid continuous-discrete models natu-
rally represent many real-world applications
in robotics, finance, and environmental en-
gineering. Inference with large-scale mod-
els is challenging because relational struc-
tures deteriorate rapidly during inference
with observations. The main contribution
of this paper is an efficient relational varia-
tional inference algorithm that factors large-
scale probability models into simpler varia-
tional models, composed of mixtures of iid
(Bernoulli) random variables. The algorithm
takes probability relational models of large-
scale hybrid systems and converts them to
close-to-optimal variational models. Then, it
efficiently calculates marginal probabilities
on the variational models by using a latent
(or lifted) variable elimination or a lifted
stochastic sampling. This inference is unique
because it maintains the relational structure
upon individual observations and during in-
ference steps.

1 Introduction

Many real-world systems can be described using con-
tinuous and discrete variables with relations among
them. Such examples include measurements in envi-
ronmental sensor networks, localizations in robotics,
and economic forecasting in finance. In such large sys-
tems, efficient and precise inference is essential. As an
example from environmental engineering, an infer-
ence algorithm can predict a posterior of unobserved
groundwater levels and contamination levels at differ-
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ent locations, and making such an inference precisely
is critical to decision makers.

Real-world systems have large numbers of variables
including both discrete and continuous. Probabilistic
first order languages, e.g. [3; 15; 24; 25; 14; 26; 28],
describe probability distributions at a relational level
with the purpose of capturing the structure of larger
models. A key challenge of inference procedures with
the languages is that they often result in intermediate
density functions involving many random variables
and complex relationship among them.

Lifted inference presently can address discrete mod-
els and continuous models, but not hybrid ones. For
(d-valued) discrete variables, lifted inference can take
an advantage of the insight which groups equivalent
models into histogram representations with an order
of poly(d) entries [12; 22; 17] (instead of exp(d) entries
in traditional ground models). For Gaussian potentials,
lifted inference can use an insight which enables main-
taining compact covariance matrices during (and af-
ter) inference, e.g. [5; 7; 1].

Nonparametric variational models, e.g. NP-BLOG [4]
and Latent Tree Models [32; 8], handle inference prob-
lems for discrete models and continuous Gaussian
models. Here, our model and algorithms provide a
solution for general (non-Gaussian) hybrid models.

In this paper, we first define Relational Hybrid Mod-
els (Section 2) and variational models (Section 3).
We presents pragmatic algorithms (Section 4, 5 and
6) based on a new insight, relational variational-
inference lemmas (Section 7), which accurately fac-
tors densities of relational models into mixtures of iid
random variables. These lemmas enable us to build
a variational approximation algorithm, which takes
large-scale graphical models with hybrid variables
and finds close to optimal relational variational mod-
els. Then, our inference algorithms, a variable elim-
ination and a stochastic sampling, efficiently solve
marginal inference problems on the variational mod-



els. We review the literature of statistical relational
models and variational inference (Section 8). We show
that the algorithm gives a better solution than solu-
tions with existing methods (Section 9).

2 Relational Hybrid Models (RHMs)1

A factor f = (A f , φ f ) is a pair, composed of a tuple of
random variables (rvs) A f and a potential functionφ f .
Here, φ f is an unnormalized probability density from
the range of A f to the nonnegative real numbers. The
range of a rv can be discrete or continuous, i.e., hybrid
domains. Given a valuation v of rvs, the potential of
f on v is φ f (v).

We define parameterized (indexed) rvs by using pred-
icates those are functions mapping parameter values
to rvs. A relational atom (or just atom) denotes a
parametrized rv with free parameter variable(s). For
example, an atom X(a) can be mapped to one of n rvs
{X(a1), · · ·,X(an)}when the free parameter variable a is
substituted by a value ai.

A parfactor g = [L,Ag, φg] is a tuple composed of a
set of parameters L, a tuple of relational atoms Ag
and a potential function φg. A substitution θ is an
assignment to L, and Agθ the relational atom (possibly
ground) resulting from replacing the logical variables
by their values in θ. gr(g) is a set of factors derived
from the parfactor g by substitutions.

Following example is a parfactor:

[ (a,b),︸︷︷︸
Parameter
variables

(X(a),Y(b)),︸        ︷︷        ︸
Relational

atoms

fN (X(a)−Y(b);µ, σ2)︸                    ︷︷                    ︸
A potential

(linear Gaussian)

]. (1)

The domains of the parameter variables (a and b) are
{a1, . . . , an} and {b1, . . . , bm}. Thus, any substitution (e.g.
a = ai,b = b j) let two rvs (e.g. X(ai), Y(bj)) hold the
linear Gaussian relationship fN .

A Relational Hybrid Model (RHM) is a compact rep-
resentation of graphical models with discrete and con-
tinuous rvs. An RHM is composed of a domain, the set
of possible parameter values, and a set of parfactors
G. The joint probability of an RHM G on a valuation
v of rvs is as follows:

1
z

∏
g∈G

∏
f∈gr(g)

φ f (v)

where z is the normalizing constant.

This representation is rather straightforward. How-
ever, inference procedures often result in complex

1Parts of our model representations in this section are
based on the previous works ([26; 12; 23; 6]).

models. For example, eliminating X(a1) in Equation
(1) makes all other rvs fully connected. To address
this problem, we focus on an important property of
RHMs such that ground rvs mapped from a relational
atom are exchangeable, defined as follows:
Definition (Exchangeable Random Variables). A se-
quence of rvs X(a1), · · ·,X(an) is exchangeable, when
for any finite permutation π() of the indices the
joint probability of the permuted sequence X(aπ(1)),
· · ·,X(aπ(n)) is the same as the joint probability of the
original sequence.

Note that RHMs may include atoms with non-
exchangeable rvs.2 In this case, our variational al-
gorithm grounds, or shatters, any atom including
non-exchangeable rvs. That is, the atom degener-
ates into a set of propositional rvs. The detail con-
ditions to determine exchangeable rvs, see [26; 21; 4;
12].

For convenience, we use Xn to refer to the set of
n rvs, which are mapped from a relational atom
X(a) by substitutions, i.e., Xn = {X(a1), · · · ,X(an)}. The
joint probability of the rvs mapped from two atoms
X(a) Y(b) can be represented as follows: P(Xn,Ym) =
P (X(a1), · · ·,X(an),Y(b1), · · ·,Y(bm)).

Potentials with a large number of rvs in RHMs in-
troduce several difficulties in representation, learn-
ing and inference. To address these difficulties, we
propose a model-factorization based on a variational
method and de Finetti’s theorem [11].

3 Background: Variational Inference

Variational methods are used to convert a complex
problem into a simpler problem, where the simpler
problem is charaterized by a decoupling of the degrees
of freedom in the original problem [19]. As an example
of ground models, one variational representation of
model P(x1, · · · , xn) can be as follows:

P(x1, · · · , xn) ≈
∑
θ

∏
i

P(xi, |θ)P(θ)

where θ is a latent random variable. Inference is a pro-
cedure which computes marginal probabilities, say
P(X′) (X′ ∈ {x1, · · · , xn}). This can be done by elimi-
nating (or summing out) all variables except ones in
X′. The variational representation (right-hand side)
allows efficient inference procedures because all ran-
dom variables are factorized.

De Finetti-Hewitt-Savage’s Theorem: For exchange-
able rvs, de Finetti’s theorem [11] showed that any

2Lifted inference for RHMs with non-exchangeable rvs
is out of scope of this paper. There are recent developments
to handle some of such cases, e.g. [17; 2].
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Figure 1: An illustration of factoring a potential φXY(Xn,Ym). Our algorithm converts an RHM (left) into a
variational (or factored) RHM (right) where the probability is represented by two latent variables LX and LY.

probability distribution P(Xn) of an infinite number
n of binary exchangeable rvs can be represented by
a mixture of independent and identically distributed
(iid) Bernoulli rvs PMiid(Xn) with a parameter θ:

lim
n→∞

P(Xn) =

∫ 1

0
θtn (1 − θ)n−tnΦX(θ) dθ = PMiid(Xn),

where tn =
∑

i X(ai), and 0≤θ≤1 is a latent variable.
This observation is extended to multi-valued and con-
tinuous rvs by [16].

lim
n→∞

P(Xn)=
∫ n∏

i=1

φX(X(ai)|LX)ΦX( dLX)=PMiid(Xn), (2)

where LX is a latent variable which chooses a distri-
bution φX(X(a)|LX) of the iid rvs.3 We represent the
variational form as PMiid(Xn) (or φMiid(Xn) for unnor-
malized potentials).4 Compared to the input distri-
bution P(Xn), the number of parameters of the varia-
tional form, e.g. entries of conditional density tables
in PMiid(Xn), can be substantially reduced by this fac-
torization. As shown in Figure 1, when the variational
models are applied to two sets of exchangeable rvs, the
variational model (the right hand side) requires pa-
rameters of φX(X(ai)|LX), φY(Y(b j)|LY) and ΦXY(LX,LY)
not parameters of φXY(X(ai), · · · ,Y(bm)).

We present variational representations for multiple
sets of finite, exchangeable rvs, and new error anaysis
(Section 7). Beforehand, we introduce our variational
learning and inference algorithms.

4 Algorithms: Lifted Variational Inference

This section outlines our pragmatic variational in-
ference algorithm, Lifted Relational Variational In-
ference (LRVI). LRVI is composed of two main sub-
routines: learning a variational approximation, Find-
Variational-RHM; and eliminating latent variables

3Here, we consider ΦX with a density. Thus ΦX( dLX) in
Equation (2) can be replaced by Φ(LX) dLX.

4Here, Miid stands for a mixture of iid rvs.

(inference) Latent-Variable-Elimination which can be
replaced by Lifted-MCMC (Section 6.3).

Input: G an RHM (a set of parfactors), Q a query (a set of
relational atoms), O observations

Output: P(Q) a (posterior) distribution of Q
begin
// (One-time) Variational Learning
if G < {Variational RHMs} then

G← Find-Variational-RHM(G);
// Main Inference Routine
P(Q)← Latent-Variable-Elimination (G, Q, O);
return P(Q);

Algorithm Lifted Relational Variational Inference: It
receives an RHM, a query and observations, then re-
turns a posterior of the query.

LRVI receives an RHM G, a query Q and observations
O as inputs. It outputs the conditional probability,
P(Q|O). In the routine, it examines that each poten-
tial in G is the variational form, a mixture of prod-
uct of iid rvs. If not, it calls Find-Variational-RHM(G)
and receives a variational RHM GMiid. The varia-
tional RHM is calculated once, and reused next time.
With the GMiid, Latent-Variable-Elimination(GMiid,Q,O)
solves the inference problem P(Q|O). This is done by
the variable elimination which iteratively eliminates
non-query atoms.

Input: G, an RHM
Output: GMiid, a variational RHM
begin

for g = (L,A, φ) ∈ G do
if A has no continuous atom then

φMiid ← Lifting-Discrete(φ) (Section 5.1);
else

φMiid ← Lifting-Continuous(φ) (Section 5.2);
GMiid ← GMiid

⋃
{(L,A, φMiid)};

return GMiid;

Algorithm Find-Variational-RHM: It finds a varia-
tional approximation for an input RHM (Section 5).

Find-Variational-RHM(G) converts the potential φ in
each parfactor into a variational potentialφMiid, a mix-
ture of iid rvs as shown in Equation (2). For potentials
with only discrete atoms, it calls Lifting-Discrete(φ) and



receives a variational potentialφMiid. For potentials in-
cluding at least one continuous atom, it calls Lifting-
Continuous(φ). After iterating and converting all par-
factors in G, a variational RHM GMiid is returned. Sec-
tion 5 explains the procedures in detail.

Input: GMiid a variational RHM, Q a query, O observations
Output: P(Q) a (posterior) distribution of Q
begin

GMiid ← Update-Obs(GMiid, O) ; // For observations
A← a set of atoms in GMiid;Φ← {φg|g ∈ GMiid};
for X ∈ A \Q do

ΦX ← {φ ∈Φ|X is argument of φ};
if X is discrete then
φ′ ← Inference-Discrete(ΦX) (Section 6.1);

else
φ′ ← Inference-Continuous(ΦX) (Section 6.2);

Φ← (Φ \ φX)
⋃
{φ′} ;

returnΦ;

Algorithm Latent-Variable-Elimination: It sums out
non-query latent variables, and returns a posterior of
the query (Section 6).

Latent-Variable-Elimination(GMiid,Q,O) call Update-
Obs(GMiid,O) to update the potentials of latent vari-
ables based on observations O. The intuition of Update-
Obs is that each rv is conditionally independent given
latent variables like the Naive Bayes models [18]. Vari-
ational RHMs allows a simple update algorithm to
maintain the relational structure upon individual ob-
servations.5 It iteratively eliminates all latent variables
except the query without referring to ground vari-
ables. Section 6 includes detail procedures.

5 Variational Learning for RHMs

This section elaborates a learning algorithm which
converts each potential in an RHM into a variational
potential. Here, the key procedure is to extract the
potential on latent variables (e.g. ΦX(LX)).

The potential on latent variables can be derived an-
alytically and exactly, when an input potential sat-
isfies some conditions such as ∞-extendible (ex-
plained in Section 7). It is also known that dis-
crete potentials6 and some Gaussian potentials (e.g.
pairwise Gaussian [5] and Gaussian processes [9;
31]) allow such derivations.

Unfortunately, it is hard to use such derivations in
general hybrid models because many real-world po-
tentials are neither ∞-extendible nor Gaussian. Here,
we present our solutions for (more intuitive) discrete
models first, and then for continuous models.

5Existing lifted inference methods degenerate relational
models upon observations. See Split [26] or Shatter [12].

6Section 8 includes an empirical comparison with exist-
ing lifted inference for discrete models

5.1 Lifting Discrete Potentials

For discrete potentials, we need to find the probabil-
ity density ΦX(LX) over the iid (Bernoulli) rvs where
LX is the Bernoulli parameter. To represent an input
potential φ(Xn) compactly, we group equivalent value
assignments according to the value-histogram repre-
sentation [12; 23], φ(Xn) = φh(hX).7 Learning varia-
tional parameters of Equation (2) with discrete rvs is
formulated as follows:

arg max
ΦX(p)

∥∥∥∥∥∥∥φ(Xn) −
∫

ΦX(p)
n∏

i=1

φX(X(ai)|p) dp

∥∥∥∥∥∥∥
= arg max

ΦX(p)

∥∥∥∥∥φh(hX) −
∫

ΦX(p) · fB/M(hX; n, p) dp
∥∥∥∥∥

≈ arg max
w,pX

∥∥∥∥∥∥∥φh(hX) −
k∑

l=1

wl · fB/M(hX; n, pXl )

∥∥∥∥∥∥∥ , (3)

where ‖P−Q‖ (or dTV(P,Q)) is the total variation dis-
tance8; fB/M(hX; n, p) is a binomial (or multinomial)
pdf; w = (w1, · · · ,wk) is a k-dimensional weight vec-
tor such that wl=ΦX(pXl ),

∑k
l=1 wl=1; and pX = (pX1 ,

· · · , pXk ) is a vector of k values chosen from [0, 1], the
domain of the latent variable p.

For binary exchangeable rvs, the iid potential
φX(X(ai)|p) is the Bernoulli distribution with a pa-
rameter p (i.e. P(X(ai)) = p). When equivalent models
in Xn are grouped into the histogram hX, the vari-
ational terms can be represented as a binomial dis-
tribution (the second line in Equation (3)) because( n

hX

)∏
i φX(X(ai)|p) = fB(hX; n, p). That is, the problem is

reduced to learn a mixture of k binomial distributions
where wl is a weight for each binomial fB(hX; n, pXl ).

For multi-valued exchangeable rvs, the iid potential
φX(X(ai)|p) is the Categorical distribution, i.e. multi-
valued Bernoulli. Thus, this problem is reduced to
learn a mixture of multinomial distributions fM:

arg max
w,pX

∥∥∥∥∥∥∥φh(hX) −
k∑

l=1

wl · fM(hX; n, pXl )

∥∥∥∥∥∥∥ . (4)

For potentials with two or more atoms, it can be for-
mulated as follows:

arg max
w,pX ,pY

∥∥∥∥∥∥∥φh(hX, hY) −
k∑

l=1

wl fB/M(hX; n, pXl ) fB/M(hY; m, pYl )

∥∥∥∥∥∥∥ ,
where pY is a k-dimensional vector, (pY1 , · · · , pYk ); and
f is either the binomial or the multinomial depending
on the domain of rvs.

We learn a mixture of binomials (or multinomials),
e.g. (w, pX) in Equation (3), from the original potential

7hX is a vector with hXv = |{i : X(ai) = v}|.
8
‖P−Q‖ = sup

A∈B
(P(A)−Q(A)) whenB is a class of Borel sets.



φ(Xn) using an incremental EM algorithm.9 Because
the k is not known or given, the incremental EM al-
gorithm increases k up to n until the variational error
converges. Assuming that the EM algorithm interates
up to a constant times given a fixed k, the compu-
tational complexity of the incremental EM algorithm
for n binary, exchangeable rvs is bounded by O(n3)(=∑n

k=1 c · O(kn)). Note that, the algorithm increases k
from 1 to n. In each EM step, k components visit n
histogram entries O(kn).

5.2 Lifting Continuous and Hybrid Potentials

For a potential φ(Xn) with continuous rvs, we use a
mixture of non-parametric densities to represent vari-
ational potentials. Here, we generate samples from the
input potential, then learn parameters for the mixture
of non-parametric densities.

Equation (2) is used to formulate the learning problem
as follows:

arg max
ΦX(LX)

∥∥∥∥∥∥∥φ(Xn)−
∫

ΦX(LX) ·
n∏

i=1

f̂LX (X(ai)) dLX

∥∥∥∥∥∥∥ (5)

≈ arg max
w, f̂X

∥∥∥∥∥∥∥φ(Xn) −
k∑

u=1

wu ·

n∏
i=1

f̂Xl (X(ai))

∥∥∥∥∥∥∥ , (6)

where f̂LX and f̂Xl refer to (non-parametric) probability
distributions. To solve the optimization problem, we
generate N samples v1, · · ·,vN from the input poten-
tial φ(Xn) where vt = (vt1 , · · ·, vtn ) is a n-dimensional
vector, value assignments for n rvs. Then, we solve
the following maximum likelihood estimation (MLE)
problem: arg maxw, f̂X

∑N
t=1 log

(∑k
l=1 wl ·

∏n
i=1 f̂Xl (vti )

)
,

where we denote the kernel density estimator by
f̂Xl (x)= 1

Sσ2

∑S
i=1 K

( x−µi

σ2

)
where (µ1, · · ·, µS) are S data

points that underlie the density, and σ2 is a pa-
rameter. For simplicity, we use the Gaussian Kernel,
K(x) = 1

√
2π

e−x2/2.

It is interesting to note that the kernel density estima-
tor is analogous to the value-histogram for discrete
rvs [12; 23] in a sense that frequently observed regions
(or bins) have the higher probability. This new insight
enables us to represent continuous models compactly.

For potentials with two or more atoms, the approach
can be formulated as follows:

arg max
w, f̂X, f̂Y

N∑
t=1

log

 k∑
l=1

wl ·

n∏
i=1

f̂Xl (v
X
ti

) ·
m∏

j=1

f̂Yl (v
Y
t j

)

 ,
where vX

t and vY
t are respectively the tth samples of Xn

and Ym.
9EM algorithms are common to learn parameters for mix-

ture models [30; 10; 27].

This MLE problem is also solved by an EM algorithm.
N samples are used to build k densities in the maxi-
mization (M) step, and the likelihood of each sample
is calculated in the expectation (E) step. variation error
converges.

6 Lifted Inference with RHMs

In this section we build on the result of previous sec-
tions and present lifted inference algorithms that uti-
lize the learned variational models to speed up rela-
tional inference. The lifted inference algorithms find
solutions without referring to ground rvs.

Latent-Variable-Elimination marginalizes relational
atoms with the following steps: (i) choosing an atom;
(ii) finding all potentials including the atom and mak-
ing the product of them; (iii) summing out the atom;
and (iv) repeating the steps until only query atoms
are left. We demonstrate the key step (iii) with two
variational potentials, φMiid(Xn,Ym) and φ′Miid(Ym).

6.1 Inference with Discrete Variables

The key intuition is that the variational form is main-
tained after eliminating an atom. We demonstrate the
intuition by an example. The marginal probability of
the latent variable LX is calculated by eliminating (or
summing) Ym out:

∑
hy
φh(hx, hy) · φ′h(hy)

≈

∑
hy

k∑
l=1

wl fB(hx; n, pXl ) fB(hy; m, pYl )
k′∑

l′=1

wl′ fB(hy; m, pYl′ )

=

k∑
l=1

k′∑
l′=1

wlwl′

∑
hy

fB(hy; m, pYl ) fB(hy; m, pYl′ )

 fB(hx; n, pXl )

≈

k∑
l=1

k′∑
l′=1

wlwl′

(∫
fN (hy;µl, σ

2
l ) fN (hy;µl′ , σ

2
l′ ) dhy

)
fB(hx; n, pXl )

=

k∑
l=1

wY,l· fB(hx; n, pXl ) = φ′′(Xn) (7)

when
∑k

l=1 wY,l=1 and fN (hy;µl, σ2
l ) is the Normal

approximation to binomial such that µl(=m·pYl ) and
σ2

l (=m·pYl ·(1−pYl )). It is important to note that bino-
mial pdfs are not closed under the product operation.
That is, a product of two binomial pdfs are not a bi-
nomial pdf unless the binomial parameters pXl pXl are
identical. For large n and m, the Normal approxima-
tion to Binomial is an important step to maintain the
variational structure during the inference procedure.
In this way, after eliminating Ym, the marginal po-
tential φ′′Miid(Xn) is still represented as the variational
form. The same principle is applied for potentials with
more than two atoms.

Now, we will show that the product of variational
forms in Step (iii) can also be represented as a vari-



ational form. Consider the following two variational
potentials φMiid(Xn) φ′Miid(Xn). The product operation
is common during the elimination step as shown in
Equation (7). The product of the two potentials is rep-
resented as follows: k∑

l=1

wl· fB(hx; n, pXl )

 ·
 k′∑

l′=1

w′l′ · f
′

B
(hx; n, pXl′ )


≈

k∑
l=1

k′∑
l′=1

wl·w′l′
∫

fN (hx;µl, σ
2
l )· f ′

N
(hx;µl′ , σ

2
l′ ) dhx

=

k∑
l=1

k′∑
l′=1

wl·w′l′ ·zl,l′ fN (hx;µnew, σ
2
new) = φ′′′Miid(Xn), (8)

zl,l′ is the inverse of the normalizing constant. This
derivation shows that a product of variational poten-
tials results in a variational potential as φ′′′Miid(Xn).10

6.2 Inference with Continuous Variables

For continuous variables, we also demonstrate
the intuition by an example with two potentials
φMiid(Xn,Ym) φ′Miid(Ym) where Xn and Ym are two sets
of continuous rvs. Each potential is represented as
shown in Section 5.2. When we eliminate Ym, it can be
formulated as follows:∫  k∑

l=1

wl

n∏
i=1

f̂Xl (X(ai))
m∏

j=1

f̂Yl (Y(b j))

φ′Miid(Ym) dY

=

k∑
l=1

k′∑
l′=1

wlwl′

n∏
i=1

f̂Xl (X(ai))
m∏

j=1

(∫
f̂Yl (Y(b j)) f̂Yl′ (Y(b j)) dY(b j)

)

=

k∑
l=1

k′∑
l′=1

wlwl′
1

zl,l′
m

n∏
i=1

f̂Xl (X(ai)) = φ′′Miid(Xn), (9)

zl,l′ is the normalizing constant calculated from the
product of two mixtures of Normals: f̂Yl (Y(b j)); and
f̂Yl′ (Y(b j)).

Finally, we show that the product of two vari-
ational potentials becomes a variational form:(∑k

l=1 wl·
∏n

i=1 f̂Xl (X(ai))
)
·

(∑k′
l′=1 w′l′ ·

∏n
i=1 f̂Xl′ (X(ai))

)
=

k∑
l=1

k′∑
l′=1

wlw′l′
n∏

i=1

f̂Xl (X(ai)) f̂Xl′ (X(ai))

=

k∑
l=1

k′∑
l′=1

wlw′l′
1

zl,l′
n ·

n∏
i=1

f̂ new
Xl,l′

(X(ai)) = φ′′′Miid(Xn). (10)

6.3 Lifted Markov chain Monte Carlo (MCMC)

When variational RHMs include a large number of
mixture compoments. The latent variable elimination

10φ′′′Miid(Xn) is a mixture of |k · k′| Normals. When |k · k′| is
large, it is possible to collapse the mixture into a mixture of
fewer components.

may take long time. In this case, we use a lifted MCMC
algorithm: (i) choosing a latent variable (e.g LX) ran-
domly; (ii) calculating the conditional probability of
the latent variable (e.g. ΦX(LX)) using assignment of
neighboring latent variables; (iii) choosing an assign-
ment from the probability (e.g. LX=pXl (1≤l≤k)); and
(iv) repeating until convergence.

Here, the steps (ii) and (iii) are main steps. Step (ii)
is a subset of the procedure in Equations (7) and (9),
because the values of neighboring latent variables (e.g.
LY=pYl′ (1≤l′≤k′)) can be simply assigned. Step (iii) is
a straightforward sampling procedure which chooses
one compoment based on its weight. For example,
wl·w′l′ ·zl,l′ in Equation (8) is a weight for one of |k| · |k′|
Normal distributions in φ′′′Miid(Xn).

7 Relational-Variational Lemmas

This section provides error analysis of our variational
approximations for a single atom, multiple atoms and
the general case (RHMs). Beforehand, we define a
term, n-extendible:

Definition (n-extendible). P(Xn), a probability with
n exchangeable rvs, is n-extendible when the follow-
ings hold: (1) there is P(Xn), a probability with n ex-
changeable rvs (n > n); and (2) P(Xn) is the marginal
distribution of P(Xn), i.e., eliminating (n − n) rvs.

Figure 2 explains the intuition of n-extendible po-
tentials for discrete models. If a potential is not ex-
tendible, it has rugged bars, e.g. a single peak. If a
potential is extendible to a large number n, the po-
tential has a smoothed histogram. If a potential is ∞-
extendible, it is represented by a mixture of binomials
exactly.

Lemma 1. [13] If P(Xn), a probability with n exchange-
able rvs, is n-extendible, then the total variation dis-
tance dTV(P(Xn),PMiid(Xn)) of the input probability P(Xn)
and the variational form PMiid(Xn) in Equation (2) is
bounded as follows: (i) when X(ai) are d-valued discrete
rvs, dTV(P(Xn),PMiid(Xn)) ≤ 2dn

n ; and (ii) when X(ai) are
continuous rvs, dTV(P(Xn),PMiid(Xn)) ≤ n(n−1)

n .

7.1 Our Results: Variational RHMs

Factoring Potentials with Multiple Atoms: De
Finetti-Heweitt-Savage’s theorem (Section 3) is ap-
plicable only to potentials with a single atom. Here,
we present our new theoretical results on variational
RHMs.

Lemma 2. [Existence of a Variational Form] For
P(Xn,Ym), a probability with two atoms in an RHM,
there are two new latent variables, LX and LY, and a
new potential ΦXY(LX,LY) such that the following holds,
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Figure 2: Illustrations of three different value-histograms of 10 exchangeable binary rvs. Dotted lines with
markers represent the best possible variational approximation, i.e., a mixture of binomials. (a), (b) and (c)
respectively present potentials extendible up to 10, 20 and 100 rvs. For the potential in (1), the variational
approximation has a high error, total variation, and thus is a poor approximation. When a potential is extendible
to the larger number, the variational approximation is smaller as shown in (2) and (3).

limn,m→∞ P(Xn,Ym)

=

∫
Φ(LX,LY)

n∏
i=1

φX(X(ai)|LX)
m∏

j=1

φY(Y(b j)|LY) dLXLY

= PMiid(Xn,Ym).

Sketch of proof. Assigning values to one atom is
fixed (e.g. Ym=v) results in a new potential with
one atom, φ(Xn), which can be factored into∫

Φ(LX|v)
∏

i φX(X(ai)|LX)dLX. Because Φ(LX|v) is con-
ditioned on v, Φ(LX|Ym) can be factored into∫

Φ(LX,LY)
∏

j φY(Y(b j)|LY)dLY. �

To analyze variational error of potentials with mul-
tiple atoms, we introduce another term (n,m)-
extendible.

Definition ((n,m)-extendible). P(Xn,Ym) is (n,m)-
extendible when (1) there is P(Xn,Ym), a probability
with two sets of exchangeable rvs (n>n,m>m); and (2)
P(Xn,Ym) is the marginal distribution of P(Xn,Ym).

Lemma 3 (Error of the Variational Parfactor). If
P(Xn,Ym), a probability with two exchangeable rvs in
an RHM, is (n,m)-extendible, then the total variation
dTV(P(Xn,Ym),PMiid(Xn,Ym)) is bounded as follows: (i)
when Xn and Ym are respectively dx-valued and dy-valued

discrete rvs, dTV(P,PMiid) ≤ 2dxn
n +

2dym
m ; (ii) when Xn are

dx-valued discrete and Ym are continuous, dTV(P,PMiid)
≤

2dxn
n +

m(m−1)
m ; (iii) when Xn and Ym are continuous,

dTV(P,PMiid) ≤ n(n−1)
n +

m(m−1)
m .

proof. The intuition is that the error of a variational
model is additive with an additional atom. We used
the principle in [13] such that a n̄-extendible pdf,
P(Xn), can be represented by a mixture of extreme
pdfs (e.g. P(Xn) =

∑
e wepe). Here, an extreme pdf pe

is a probability of n draws made at random without
replacement from an urn, U, which contains n̄ balls
marked by one of c colors. Let e a unique marking in
U. The variation distance of each extreme point pe and
its variational form PMiid(Xn

|e) is bounded ≤ 2cn
n̄ for

discrete rvs.

For a distribution with the multiple atoms, each ex-
treme point corresponds to the joint distribution of
n draws from UX of n̄ balls, and m draws from UY
of m̄ balls. Because the draws can be done indepen-
dently for each urn, an extreme pdf (e.g. pex,ey ) can be
represented as the product of independent extreme
pdfs (e.g. pex · pey ). From the Lemma 1, the variation
distances of variational forms of pex and pey are respec-
tively bounded. WLOG, we can represent the errors
with εx and εy,

dTV(pex , φiidx) ≤ εx, dTV(pey , φiidy) ≤ εy.

Note that,

dTV(pex pey , φiidxφiidy)
≤ dTV(pex pey , pexφiidy) + dTV(φiidypex , φiidyφiidx) ∗
≤ dTV(pey , φiidy) + dTV(pex , φiidx) ∗ ∗ = εx + εy.

The second step (marked as ∗) is derived from the
following equations (Here, A is pexφiidy):

pex pey − φiidxφiidy = pex pey − φiidxφiidy − A + A
= (pex pey − A) + (A − φiidxφiidy).

The third step (marked as ∗∗) is derived from the fact
that pex and φiidy are pdfs, e.g.

∑
Xn pex (Xn) = 1. That is,

dTV(pex pey , pexφiidy) ≤ dTV(pey , φiidy). The derivation can
be applied to φiidy and continuous cases.

Thus, the total variation distance between two proba-
bilities, P(Xn,Ym) and PMiid(Xn,Ym) is bounded by the
sum of two error bounds. �

Now, we present error analsys for RHMs with more
than two atoms, e.g. P(Xn,Ym,Zu).

Theorem 4 (Error of Variational RHMs). Let Xg
and XG is respectively the set of all rvs in a parfac-
tor g and an RHM G. Let P(Xg)(= 1

zg

∏
f∈gr(g) w f (X f ));

and P(XG)(= 1
z
∏

g∈G P(Xg)). The total variation
dTV (P(XG) − PMiid(XG)) is bounded by 1

z
∑

g∈G εg where εg
= dTV(P(Xg)−PMiid(Xg)) and z is the normalizing constant.



Sketch of proof. We can build a fully joint probability of
all relational atoms with the RHM. Then, Lemma 3 can
be used to prove the total variation of the variational
RHM. �

8 Related Work

Nonparametric Bayesian Logic (NP-BLOG) [4]
presents a new variational representation for rela-
tional discrete models using the Dirichlet Process. In
principle, the NP-BLOG and the variational RHMs
have in common: compact representations for ex-
changeable rvs. The difference is that NP-BLOG han-
dles ∞-extendible exchangeable, discrete rvs. Here,
we investigated further for several new directions:
model learning, continuous domains, and approxi-
mation errors. Our error bounds provide an in-depth
understanding for models with finite exchangeable
discrete rvs.

For discrete models, the value-histogram [12; 23] rep-
resents potentials with polynomial numbers of his-
togram entries. When aggregate operators are given,
[6] shows that the histgram representations can be ap-
proximately replaced by a Normal with linear con-
straints. We generalize and expand the concept to
compress general-purpose histogram representations.

For continuous potentials, unfortunately, the his-
togram representation is not applicable because it is
not clear how to discretize continuous domains to
build up such histograms. Thus, most existing lifted
inference for continuous models are limited to Gaus-
sian potentials [5; 7; 1]. Thus, our representation is a
unique lifted inference for non-Gaussian continuous
potentials.

Lifted Belief Propagation (LBP) [29] solves inference
problems in many practial models by grouping rvs.
Here, rvs in an atom send the same messages to neigh-
boring rvs, and are not constrained among rvs in an
atom. Instead, our lifted MCMC sends a distribution,
has more expressive power, and requires fewer sam-
ples until the convergence. The advance promises that
our variational models and the lifted MCMC method
can be a good complement to existing sampling meth-
ods such as LBP.

9 Experimental Results

We provide experimental results regarding the varia-
tional approximations and the efficiency and the accu-
racy of our LRVI in a real-world groundwater model.

First, we analyze variational approximations on the
competing workshops models C-FOVE [23] which
includes two parfactors, φ1(attends(X), hot(W)) and

φ2(attends(X), series). We can exactly represent φ2 with
a Binomial:

φ2(#X[attends(X)], series)
= w(series) fB(#X[attends(X)]; n, p(series)),

Here, n is the number of people; w and l are func-
tions: {>,⊥} → R; and #X[attends(X)] is a histogram
representation in [23] such that |{i|attends(Xi) = >}|.
φ1 is also represented by a mixture of |W|. φ1
is the bivariate multiplicative binomial [20] and
conditionally binomial. E.g., when #W[hot(W)] is
fixed to 5, φ1(#X[attends(X)], #W[hot(W)] = 5) = w5
fB(#X[attends(X)]; n, l5) .

When using the same parameters in [23],
φ1(attends(X), hot(W)) is represented by a single
binomial distribution accurately because weights
of other |W − 1| binomials are small with -9 orders
of magnitude. We make similar observations with
different parameters. When we randomly choose
parameters (50 times), a single binomial was enough
to represent φ1 with a small total variation (< 0.001)
for more than 90% (46 times). For other parameters,
at most three binomials can represent φ1 with a very
small error (<0.0001).

Second, we apply our variational learning algorithm
to a real-world groundwater dataset shown in Fig-
ure 3 (a) Republican River Compact Administration
(RRCA). The dataset is composed of measurements
(water levels) at over 10,000 wells and baseflow ob-
servations at 65 gages from 1918 until 2007.11 Af-
ter calibration, the training dataset is a set of partial
observations in a 480 (months) by 3420 (wells) ma-
trix. First, we cluster the 3420 wells by k-means into
10 groups based on means and variances (approxi-
mately exchangeable).12 From the dataset, the EM al-
gorithm directly learns a variational model until the
log-likelihood converges. As a result, from 6 to 14 mix-
tures of Gaussians (MoGs) are learned for each cluster.
Figure 3 (b) shows some learned empirical distribu-
tions, cdfs of MoGs, with high weights from two clus-
tered area, A and B. To represent the joint distribution
over the clusters, we convert the 480X3240 input ma-
trix into a 480 (months) by 92 (MoGs) matrix.

For each test month, we compute the empirical dis-
tribution of the query variables given the partial ob-
servations. Our lifted VE returns queries in average
0.3 secs and a ground VE inference returns in average
37.9 secs. In fact, ground and variational inference al-
gorithms use different sizes of matrices 480X3420 and

11Head predictions are available via the RRCA official
website, http://www.republicanrivercompact.org.

12Although the means and variances do not guarantee the
exchangeability in the clusters, here we focus on measuring
the computational efficiency of our variational method.
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Figure 4: (a) The accuracy of the lifted MCMC and the ground MCMC with various numbers of houses. Here,
() indicates the number of houses, e.g., Ground(16) is the ground MCMC with 16 houses. (b) The average time
to generate samples in each MCMC step.

480X92, respectively. That explains the reason why
the variational inference is efficient. The average to-
tal variations are 0.35 (ground) and 0.29 (variational),
where smaller is more accurate.

Third, we compare the accuracy and the efficiency of
our lifted MCMC algorithm with a vanilla (ground)
MCMC algorithm on an already factored variational
model. The model is composed of two relational
atoms: a binary atom Jobn, saying whether each in-
dividual has a job, and a continuous atom HPm, say-
ing the price change of each house. pJob is a latent
variable, which represents the Bernoulli parameters
of φMiid(Jobn). pD is a latent variable (probability of
market down), which represents the mixture of two
Gaussians, φMiid(HPm) =

pD

m∏
j=1

fN (HP(h j);−0.3, σ2
D)+(1−pD)

m∏
j=1

fN (HP(h j); 0.1, σ2
UP).

Here, we assume that the two latent variables follows
a linear Gaussian: Φ(pJob, pD) = fN (pJob−pD; 0, σ2

JobHouse).
Figure 4 (a) shows the accuracy of the two algo-
rithms after generating the same number of sam-
ples. That is, it measure the ratio of error to estimate
a probability of a randomly chosen variable HP(h j),
|pexact(HP(h j))−pMCMC(HP(h j))|/pexact(HP(h j)). It shows
that our lifted MCMC converges to the true density
much faster than the ground MCMC.13 Figure 4 (b)

13The lifted Belief Propagation (LBP) [29] is not directly

shows the average sampling time (per step) with dif-
ferent number of rvs, i.e. the number of houses.

10 Conclusions

We propose new lifted relational variational inference
algorithms for relational hybrid models. Our main
contributions are two folds: (1) in theory, we show
that a relational model, which can represent large-
scale systems, is accurately represented by a varia-
tional relational model; (2) our lifted algorithms are
the first to solve inference problems without referring
ground rvs for non-Gaussian continuous models.
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