
A Dynamic Programming Algorithm for Inference
in Recursive Probabilistic Programs

Andreas Stuhlmüller
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

Noah D. Goodman
Department of Psychology

Stanford University

Abstract

We describe a dynamic programming algo-
rithm for computing the marginal distri-
bution of discrete probabilistic programs.
This algorithm takes a functional inter-
preter for an arbitrary probabilistic program-
ming language and turns it into an effi-
cient marginalizer. Because direct caching
of sub-distributions is impossible in the pres-
ence of recursion, we build a graph of de-
pendencies between sub-distributions. This
factored sum-product network makes (poten-
tially cyclic) dependencies between subprob-
lems explicit, and corresponds to a system of
equations for the marginal distribution. We
solve these equations by fixed-point iteration
in topological order. We illustrate this algo-
rithm on examples used in teaching proba-
bilistic models, computational cognitive sci-
ence research, and game theory.

1 INTRODUCTION

Probabilistic programming allows rapid prototyping
of complexly structured probabilistic models without
requiring the design of model-specific inference algo-
rithms. This makes probabilistic programs attractive
for scientific research: when hypotheses are formalized
as programs, it is possible to quickly explore the space
of hypotheses. The same features make probabilistic
programs compelling for education: students can fo-
cus on understanding modeling and inference patterns
before they need to learn about inference implementa-
tions.

However, the performance of current inference algo-
rithms for generic probabilistic programs can vary
greatly between models, even for models with a very
small number of random choices. This presents an ob-
stacle to the use of probabilistic programs in research

and teaching. In fact, many of the models used in these
domains are small enough that exact computation is
feasible in principle, but they often exhibit patterns,
such as nested conditioning, that make naive enumer-
ation intractable.

In this paper we develop a generic dynamic program-
ming algorithm, which expands the applicability of ex-
act inference for probabilistic programs. Given an in-
terpreter for an arbitrary probabilistic programming
language and a discrete probabilistic program, this
algorithm computes the marginal distribution of the
program—i.e., its distribution on return values—while
sharing subcomputations where possible. By viewing
conditioning as marginalization of a rejection sampler,
this captures the full range of probabilistic operations
over arbitrary models.

The key obstacle to dynamic programming, which is
neither present in caching deterministic interpreters
nor in dynamic programming algorithms for more re-
stricted model classes, is the possibility of stochastic
self-recursion: an interpreter call with particular ar-
guments can result in a call with the same arguments.
Figure 1a shows a program that exhibits this prop-
erty. This is not a corner case: for instance, all mod-
els that implement conditioning via rejection sampling
have this property (Figure 1b).

To make dynamic programming possible in the pres-
ence of recursion, we first compile the given probabilis-
tic program to an intermediate representation that rei-
fies dependencies between sub-distributions. We then
compute the marginal distribution from this represen-
tation. Our intermediate representation is a general-
ization of sum-product networks (Poon and Domingos,
2011) that makes dependencies—including recursive
dependencies—explicit: a factored sum-product net-
work (FSPN). While computing the distribution im-
plied by a sum-product network is linear in the size of
the network, FSPNs are more difficult to solve in gen-
eral. We solve FSPNs by clustering their vertices into
strongly connected components and by solving each

(define (game player)
(if (flip .6)

(not (game (not player)))
(if player

(flip .2)
(flip .7)))))

(a) A simple game

(define (rejection joint condition ?)
(let ([sample (joint)])

(if (condition? sample)
sample
(rejection joint condition ?))))

(b) Conditioning

Figure 1: Recursive probabilistic programs

component using fixed-point iteration.

In the following, we first describe the structures our al-
gorithm operates on: probabilistic programs, their in-
terpreters, and FSPNs. We then present the two steps
of our algorithm, compilation of programs to FSPNs
and computation of marginal distributions given a
FSPN. We demonstrate the algorithm on examples
used in teaching, cognitive science research, and game
theory, and explain what makes it attractive in each
case. We relate the algorithm to the literature and
conclude with future research directions.

2 PROBABILISTIC PROGRAMS

A probabilistic program is a program in a language
with primitives for sampling from distributions such
as Bernoulli and multinomial. Probabilistic programs
describe generative models and thus denote distribu-
tions. An interpreter specifies this denotation by im-
plementing a process that, given a program, generates
samples from the program’s distribution. For exam-
ple, an interpreter for the Church language (Goodman
et al., 2008) takes a program expression and environ-
ment, and returns a sample from the program’s dis-
tribution on Church values. This sample is generated
using recursive calls to the interpreter, with each sub-
call defining a distribution on values and resulting in
a sample from this sub-distribution.

The problem of inference for generative models is com-
monly formulated in terms of a conditioning. However,
for any conditional distribution there is an equivalent
unconditioned model that samples outcomes with the
same probabilities. Inference can be understood as the
problem of marginalization of this new model.

A simple way to construct a generative model which
samples from some conditional distribution is via rejec-
tion sampling. Figure 1b shows how this works in the

Church language. Assume that the procedure joint
draws samples from some joint distribution and that
condition? is a predicate which checks whether some
condition holds for each sample. The recursive proce-
dure rejection draws samples from joint conditional
on condition?. Crucially, this procedure makes use of
no special conditioning operator but samples directly
from the conditional distribution of interest.

Of course, drawing conditional samples using
rejection is very inefficient: In general, we may have
to tolerate an exponential number of rejected samples
before the condition is satisfied. However, if we could
efficiently marginalize the rejection procedure, elim-
inating all zero-probability paths, then we would have
solved our target inference problem.

For many probabilistic programs, efficient marginal-
ization of this sort is possible. We are interested in
programs for which many different executions share
substructure. Problems with this character are clas-
sically amenable to dynamic programming. Recursive
programs, like rejection, which involve multiple ex-
ecutions of the same procedure application, provide
a particularly rich opportunity to exploit shared sub-
structure. We will focus on these cases in the examples
below.

3 FACTORED SUM-PRODUCT
NETWORKS

In the process of computing the marginal distribu-
tion for a given probabilistic program, we use factored
sum-product networks as an intermediate representa-
tion between original program and marginal distribu-
tion. Like sum-product networks (Poon and Domin-
gos, 2011), this representation factors out all “deter-
ministic” computation, leaving only probability calcu-
lations, i.e., sums and products. In addition, it makes
explicit the dependencies between the distributions re-
sulting from subcomputations.

Definition 1. A factored sum-product network
(FSPN) over variables x1, . . . , xd is a directed graph
with a uniquely labeled root node r. The internal
nodes are sums and products. The leaves are indicators
x1, . . . , xd and x̄1, . . . , x̄d, and reference nodes (y, ~x),
where y is another node and ~x a vector of indicator
values. Each edge (i, j) from a sum node i has a non-
negative weight wij.

Let Ch(y) denote the children of node y. The value
V(y, ~x) of a node y is defined as

∑
z∈Ch(y) wyzV(z, ~x)

if y is a sum, as
∏

z∈Ch(y) V(z, ~x) if y is a prod-
uct, as 1~xj=xj

if y is an indicator xj , and as V(z, ~w)
if y is a reference (z, ~w). This defines a system of
equations. We denote the factored sum-product net-

(game true)

�

�

false true

�

�

true

�

false

0.4 0.6

0.8
0.2 1.0 1.0

(game false)

�

�

false true

�

�

true

�

false

0.4 0.6

0.3
0.7 1.0 1.0

P ((game false)= false)P ((game false)= true) P ((game true)= false)P ((game true)= true)

Figure 2: The factored sum-product network corresponding to the game program (Figure 1a), showing sums,
products, indicators, and reference nodes. P (r = v) references the probability of value v under node r.

work F as a function of the indicator variables ~x =
(x1, . . . , xd, x̄1, . . . , x̄d) by F (~x) = V(r, ~x). For any
given ~x, the value of the FSPN is the solution to the
system of equations F (~x) (if a unique solution exists).

4 ALGORITHM

4.1 Overview

Our algorithm solves the following problem: Given a
functional interpreter for a probabilistic programming
language, how can we build an efficient marginalizer?
In other words: How can we turn a universal sampler
into a generic dynamic programming algorithm?

If the interpreter were deterministic, we could just
memoize it. If it were an interpreter for a stochas-
tic language that does not allow self-recursion, i.e.,
where an interpreter call can never result in an in-
terpreter call with the same arguments, we could use
the interpreter to recursively compute and cache the
distribution for each unique interpreter call. For lan-
guages that allow self-recursion, direct caching is no
longer feasible, since it could lead to infinite regress.

On a high level, our approach is this: our algorithm
takes as input the interpreter and a program, and
builds a factored sum-product network, which can then
be solved using methods such as fixed-point iteration.
We intercept any recursive calls the interpreter makes
to itself and any calls it makes to its source of random-
ness, and build network structure that reflects these
calls. The FSPN constructed in this way describes the
marginal distribution of the interpreted program.

4.2 Interpreters as Factored Coroutines

As a prerequisite for the description of our algorithm,
we now present mathematical objects that formalize
the idea of an interpreter as a coroutine.

Let V be a countable domain of values that a proba-
bilistic program can return, and let P(V) be the do-

main of probability measures on V.

Let C, R, S, and X denote the (as yet undefined) do-
mains of continuations, random choices, subcalls, and
partial results. Loosely speaking, (1) continuations are
functions from values to partial results, (2) random
choices are pairs of continuations and distributions on
values, (3) subcalls are pairs of continuations and par-
tial results, and (4) partial results are either values,
random choices, or subcalls.

Formally, let C,R,S, and X be the smallest domains
satisfying the recursive domain equations:

C = V → X (1)
R = C × P(V) (2)
S = C × X (3)

X = V ∪R ∪ S (4)

An interpreter is a function from partial results to par-
tial results.

4.3 Compiling Programs to FSPNs

BuildFSPN, shown in Algorithm 1, takes as arguments
an interpreter in factored coroutine form and an ini-
tial interpreter argument xinit. The algorithm steps
through all possible execution paths while building
the corresponding factored sum-product network, but
avoiding duplicate evaluation of subproblems. We first
describe three ingredients for this procedure—the task
queue, constant-time subcall identification, and factor-
ization grain—then the algorithm BuildFSPN.

Task queue. In programs with self-recursive calls,
the exploration order of different execution paths can
be highly constrained. For example, in order to eval-
uate the first if-branch of (game true) in Figure 1a,
we need to know at least one of the return values of
(game (not true)), but these in turn depend on the
return values of (game true). In order to let pro-
gram exploration be guided by what return values are
known, we maintain a map terminals, which maps

each root node to all known terminal values reachable
from it, and a map callbacks, which maps each root
node to a list of callbacks. A callback is a pair of a
node n and a continuation c. When a new terminal
v is found below a root node associated with callback
(n, c), the call c(v) is used to continue evaluation and
network building in the original context.

Constant-time subcall identification. At each
subcall, we need to determine whether the subcall is
new or whether it has already been assigned a FSPN
node. For the algorithm to have constant-time over-
head over steps of the underlying interpreter, it is cru-
cial that this computation takes place in constant time,
i.e., it must not depend on the size of the interpreter
arguments. This suggests the use of an underlying in-
terpreter that represents values in a compressed way,
e.g., using the value-number technique described in
Aho et al. (2007). In Algorithm 1, subproblem maps
interpreter arguments to network nodes.

Factorization grain. There are two ways to deter-
mine how much information sharing takes place: (1)
While the interpreter may cede control at all recursive
calls, it does not need to for our algorithm to be valid.
There is a continuum between building a fully factored
FSPN and building a tree of random choices without
factorization. In our experiments, we have found it
advantageous to factor at all calls that correspond to
function applications. (2) What information the un-
derlying interpreter passes to its recursive calls affects
sharing. In Church, where interpreter arguments con-
sist of expressions and environments, restricting envi-
ronments to relevant environments is critical for effi-
cient dynamic programming.

Algorithm. Our algorithm maintains a queue of
tasks, initialized to a single task for the first inter-
preter call. Each task is a tuple of a thunk f (a func-
tion without arguments), a previous node nprev, and
an edge weight wprev (a probability). While the queue
is not empty, the algorithm takes the first task in the
queue and evaluates the function call f(). There are
three types of return values (partial results): subcalls,
random choices, and terminal values. We process the
value according to its type:

Subcalls are pairs of a continuation c and an interpreter
argument s. At subcalls, we build a sum node ncur that
will have one child for each return value of the subcall.

If this is a new subcall, we add a new root node to the
network and add to the queue the task of exploring
this subcall, starting from the root node.

If this is a known subcall, we look up what root node
it corresponds to and process all return values known
for this subcall. For each such value, we add a product

Algorithm 1: Compiling probabilistic programs
to factored sum-product networks

procedure BuildFSPN(I, xinit)
G = Graph()
r = G.addNode(root)
Q = [(λ.I(xinit), r, 1.0)]
terminals, callbacks, subproblem = {}, {}, {}
while Q is not empty do

(f, nprev, wprev) = Q.pop()
x = f()
if x is a value v then

ncur = G.addNode(indicator, v)
r = G.root[nprev]
if v /∈ terminals[r] then

for all (n′, c) in callbacks[r] do
processTerminal(G, Q, r, v, n′, c)

terminals[r].add(v)

else if x is a random choice (c, ~v, ~p) then
ncur = G.addNode(sum)
for all v, p ∈ ~v, ~p do

Q.enqueue(λ.c(v), ncur, p)

else if x is a subcall (c, s) then
ncur = G.addNode(sum)
if s /∈ subproblem.keys() then

r = G.addNode(root)
subproblem[s] = r
Q.enqueue(λ.I(s), r, 1.0)

else
r = subproblem[s]
for all v ∈ terminals[r] do

processTerminal(G, Q, r, v, ncur, c)

callbacks[r].add((ncur, c))

G.addEdge(nprev, ncur, wprev)
return G

end procedure

procedure ProcessTerminal(G, Q, nroot, v, nprev, c)
nprod = G.addNode(product)
nref = G.addNode(ref, nroot, v)
G.addEdge(nprev, nprod, 1.0)
G.addEdge(nprod, nref , 1.0)
Q.enqueue(λ.c(v), nprod, 1.0)

end procedure

and reference node, and add to the queue the task of
continuing evaluation using the continuation c.

Finally, we store in callbacks for the root node r the
continuation c together with ncur such that, when new
return values for the subcall are found, we can continue
building the network in the current context.

Random choices are tuples of a continuation c, values
~v, and probabilities ~p. We add a sum node ncur and
enqueue a call to the continuation for each value in ~v.

Terminal values cause indicator nodes to be built. If
a value is new for the current subproblem r, we no-
tify all contexts waiting for return values under r by
calling ProcessTerminal once for each callback asso-
ciated with r.

4.4 Solving FSPNs

A FSPN corresponds to a system of equations (Section
3). For probabilistic programs, this system tends to be
sparse, reflecting the fact that, in general, most inter-
preter calls that occur in the process of enumerating
a given program do not depend on most other calls.
We therefore cluster the equations into strongly con-
nected components and solve the clusters of equations
in topological order. Computing a topological order
of strongly connected components is linear in the size
of the graph (Tarjan, 1972). By solving in topological
order we know that all probabilities required to com-
pute the solution of a component have been computed
once we reach this component.

In our examples, we use a simple substitution-based
equation simplifier, fixed-point iteration, and New-
ton’s method to solve these equations. Exploring the
use of other solution methods is a potential venue for
future performance improvements.

5 EMPIRICAL EVALUATION

In this section, we describe three situations where we
have found generic dynamic programming to be use-
ful: teaching probabilistic models, research in compu-
tational cognitive science, and analysis of multi-agent
reasoning in game-theoretic situations. We present an
example for each of these situations and compare dy-
namic programming to other inference algorithms.

In teaching probabilistic models, we usually aim
to present modeling and inference patterns before we
discuss the internals of inference algorithms, since the
former provide motivation for the latter. The Proba-
bilistic Models of Cognition tutorial by Goodman et al.
(2011) follows this approach and has been used in grad-
uate classes at MIT and Stanford. Since implemen-
tations of probabilistic programming languages sup-
ply universal inference algorithms, it is possible to
nonetheless allow students to experiment with mod-
els and solve exercises.

However, the performance of existing “universal” algo-
rithms strongly depends on the structure of the models
they are applied to, even for models with a very small
number of variables. Rejection sampling is only feasi-
ble as long as we do not condition on low-probability
events; MCMC requires that the distribution does not
have modes that are isolated with respect to the pro-
posal structure of the algorithm.

Even in cases where sampling is feasible, it poses a
challenge to students: it can be difficult to distin-
guish approximation noise from systematic inference
patterns. For Metropolis-Hastings in the space of pro-

(query

;; Generative model
(define team1 (list 0 1))
(define team2 (list 2 3))
(define strengths

(repeat 4 (λ () (if (flip) 10 5))))
(define (strength person)

(list-ref strengths person))
(define (lazy person)

(flip (/ 1 3)))
(define (total-pulling team)

(sum
(map (λ (person)

(if (lazy person)
(/ (strength person) 2)
(strength person)))

team)))
(define (winner team1 team2)

(if (< (total-pulling team1)
(total-pulling team2))
'team2
'team1))

;; Query expression
(list (strength 0) (strength 1))

;; Condition
(and

(eq? 'team1 (winner team1 team2))
. . .
(eq? 'team2 (winner team1 team2))))

Figure 3: The rope-pulling game, a simple generative
model used in teaching probabilistic modeling.

gram traces (Goodman et al., 2008; Wingate et al.,
2011), quantitative analysis of mixing times does not
exist, hence analysis of convergence can be difficult
even for experts; students’ lack of background knowl-
edge exacerbates this effect.

For example, consider the rope-pulling game (Figure
3), a simple probabilistic program without nested con-
ditioning. Figure 4 shows how the L1 error between
the estimated and true posterior distribution devel-
ops over time for rejection, MCMC, and dynamic pro-
gramming. While MCMC has difficulty mixing be-
tween modes, and while rejection computes estimates
using very few samples due to a low-probability condi-
tion, dynamic programming deterministically returns
the exact answer after about 6 seconds.

In cognitive science research, we wish to quickly
explore a wide range of model variations. While the
model prototypes used in research have a tiny num-
ber of variables compared to the state of the art in
machine learning, they are structurally complex and
use features such as mutual recursion, nested condi-
tioning, and stochastic higher-order functions. Proba-

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

Time (s)

E
rr

or

Rejection
MCMC
DP

Figure 4: Convergence to true distribution for the rope-pulling model. Each point represents the L1
error between the estimated and true distribution for a given runtime and algorithm. While all algorithms
eventually converge to the correct distribution for this model used in teaching, the only algorithm that quickly
provides a precise answer is dynamic programming. In this example, MCMC has difficulty mixing between
modes. Rejection computes estimates using very few samples due to a low-probability condition.

bilistic programming makes it possible to explore this
space without building custom inference algorithms.

The caveat that the performance of current sampling-
based algorithms strongly depends on models, even in
small state spaces, applies here as well. For example,
Goodman and Stuhlmüller (2012) proposed a model of
language understanding based on the idea that listen-
ers assume that speakers choose their utterances ap-
proximately optimally, and that listeners interpret an
utterance by using Bayesian inference to “invert” this
model of the speaker. Figure 5 shows part of a model
of this type that predicts an interaction between the
speaker’s state of knowledge and the listener’s inter-
pretation of scalar implicatures (e.g., “some” implies
“not all”). Using dynamic programming, the time it
takes to compute the marginal distribution for this
model grows linearly in the depth of recursive reason-
ing, whereas for current sampling techniques, inference
time grows exponentially.

Moreover, some of the model features that are of
research interest do not easily fit into the sampling
framework. For example, in softmax-optimal decision-
making, an action a is chosen according to exponenti-
ated expected utility under a belief distribution P (s),
i.e., P (a) ∝ exp

(
αEP (s)[U(a; s)]

)
. A direct transla-

tion into a probabilistic language with sampling se-
mantics seems to require additional programming con-
structs that reify distributions. Such constructs can be
provided more easily in the setting of exact inference.

The analysis of multi-agent reasoning in game-
theoretic situations shares many properties with

cognitive science research, but places even more em-
phasis on multiply nested conditioning. This com-
monly rules out existing sampling-based algorithms.
At the same time, enumeration is often not an option
either, since exploiting shared structure is critical in
reducing the state space to tractable size: in the anal-
ysis of multiple agents thinking about one another, we
can share computation between all agents, actual and
counterfactual, that are modeled as being in the same
state of mind.

As a particularly difficult example, consider the “blue-
eyed islanders” puzzle, a well-known problem in epis-
temic logic (Tao, 2008). The setup is as follows: There
is a tribe on a remote island. Out of the n people in
this tribe, m have blue eyes. Their religion forbids
them to know their own eye color, or even to discuss
the topic. Therefore, everyone sees the eye color of
every other islander, but does not know their own eye
color. If an islander discovers their color, they have
to publicly announce this at noon and leave the is-
land. All islanders are highly logical. One day, a
foreigner comes to the islander and—speaking to the
entire tribe—he says: “At least one of you has blue
eyes.” What happens next? Results for a stochastic
version of this puzzle are shown in Figure 6.

The difficulty of this model stems from the fact that
each day, every islander reasons about the reasoning of
all of the other islanders on the previous day, and that
their reasoning must again include all islanders’ rea-
soning on the day before the previous day, etc. How-
ever, due to the symmetry of the setup, all islanders

(define (speaker access state depth)
(query
(define sentence (sentence-prior))
sentence
(equal? (belief state access)

(listener access sentence depth))))

(define (listener sp-access sentence depth)
(query
(define state (state-prior))
state
(if (= 0 depth)

(sentence state)
(equal? sentence

(speaker sp-access state
(- depth 1))))))

1 2 3 4 5 6 7

1
2

3
4

5

Depth of recursive reasoning

T
im

e
(s

)

Figure 5: Increase in dynamic programming inference time as a function of nested conditioning
depth. For this model used in cognitive science research, dynamic programming makes it possible to explore
nested recursive conditioning with linear growth of inference time in the depth of recursion. Each point on the
plot corresponds to a run of our algorithm on the model with a given depth. For rejection and MCMC over
rejection, expected inference time grows exponentially.

with blue eyes and all islanders without blue eyes do
the same computation on any given day. Their com-
putations are merged by our algorithm, which makes
exact inference feasible for small populations.

6 RELATED WORK

Our algorithm is related to and inspired by a long tra-
dition of algorithms which use dynamic programming
to exploit reusable structure in the natural language
processing, logic programming, and functional pro-
gramming literatures. For example, it is known that,
in general, exactly solving problems such as marginal-
ization for arbitrary recursive programs leads to sys-
tems of nonlinear equations (see, e.g., comments in
Eisner et al., 2005). Klein and Manning (2001) exploit
strongly connected components of the computation
graph for PCFGs to perform efficient exact marginal-
ization in a way similar to the present algorithm. It is
beyond the scope of this paper to review the many
connections with individual algorithms presented in
the literature. Instead, we focus on three systems
which attempt use dynamic programming to provide
general inference algorithms for universal, probabilis-
tic (or, more generally, weighted) programming lan-
guages: IBAL, PRISM, and Dyna.

The most closely related system to the present work is
the functional programming language IBAL, a prob-
abilistic variant of ML (Pfeffer, 2001). IBAL pro-
vides an exact marginalization algorithm for discrete

probabilistic models, which is based on a generaliza-
tion of variable elimination applied to computation
graphs. The graph used by this algorithm also ex-
ploits sharable subcomputations across the evaluation
of the probabilistic program. However, the present
algorithm is more general than the IBAL algorithm
in an important way. The IBAL algorithm relies on
acyclic computation graphs; this is equivalent to the
requirement that the computation be evidence-finite
(Koller et al., 1997)—there must only be a finite num-
ber of computations which can give rise to the ob-
served evidence. By contrast, our algorithm handles
many cases of evidence-infinite computation. For ex-
ample, the simple recursive program shown in Figure
1a, which has finite support {true, false} but an in-
finite number of computations which give rise to each
support value, cannot be marginalized by IBAL, but
is correctly handled by our algorithm. Practical exam-
ples of such evidence-infinite computations include the
nested-query models for multi-agent reasoning that we
have described above.

Another system which is similar to the present work is
PRISM, a probabilistic generalization of Prolog, which
also makes use of dynamic programming to provide
a general inference algorithm. Although PRISM is
able to recover many standard algorithms for problems
such as PCFG estimation (e.g., the inside-outside al-
gorithm), like IBAL, it cannot handle evidence-infinite
computations (Sato, 2009).

A somewhat different approach is Dyna (Eisner

Number of islanders leaving (with announcement)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

Day 1

0 1 2 3 4

Day 2

0 1 2 3 4

Day 3

0 1 2 3 4

Day 4

Figure 6: While the blue-eyed islanders puzzle is challenging for all generic inference algorithms, dynamic
programming allows predictions for small population sizes that are already intractable for MCMC and rejection.
The figure shows results for population size 4, all islanders blue-eyed: on the 4th day, it is highly likely that all
islanders decide to leave.

et al., 2005), a programming language for expressing
weighted deductive logic programs. Dyna makes use of
generalizations of parsing-as-deduction (Shieber et al.,
1995) and semi-ring parsing (Goodman, 1999) to com-
pile weighted logic programs into highly optimized dy-
namic programs. Dyna differs from our algorithm in
the target level of abstraction. Our algorithm is fo-
cused on the problem of rapid prototyping of mod-
els for which no standard dynamic programming al-
gorithm exists. The programmer simply provides an
interpreter, and our algorithm automatically exploits
whatever sharing is exposed by the structure of the
recursive calls made in the process of computing the
marginal distribution for a particular model. By con-
trast, Dyna is a language for abstractly expressing spe-
cific dynamic programming algorithms and compiling
these algorithms to highly efficient code. It allows the
programmer lower-level control over algorithm specifi-
cation, but it also requires the programmer to specify
these algorithmic details.

7 CONCLUSION

We have developed a dynamic programming algorithm
for exact inference in probabilistic programs. We have
illustrated how this algorithm aids the use of prob-
abilistic programs in teaching and research. Future
work includes incorporating techniques from other ap-
proaches to dynamic programming (such as evidence
propagation from IBAL, and efficient code generation
from Dyna) and exploring techniques for approximate
dynamic programming.

Acknowledgements

The authors would like to thank Daniel Roy and Tim-
othy O’Donnell for helpful discussions and contribu-
tions to early stages of this project. This work was
supported by ONR grant N00014-09-0124.

References

A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: principles,
techniques, and tools. 1009, 2007.

J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp ling:
Practical weighted dynamic programming and the dyna language.
In Proceedings of Human Language Technologies and the Con-
ference on Empirical Methods in Natural Language Processing
(HLT/EMNLP), 2005.

J. Goodman. Semiring parsing. Computational Linguistics, 25(4),
1999.

N. D. Goodman and A. Stuhlmüller. Knowledge and implicature:
Modeling language understanding as social cognition. In Proceed-
ings of the Thirty-Fourth Annual Conference of the Cognitive
Science Society, 2012.

N. D. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and
J. B. Tenenbaum. Church: a language for generative models.
Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence, pages 220–229, 2008.

N. D. Goodman, J. B. Tenenbaum, T. J. O’Donnell, and the Church
Working Group. Probabilistic models of cognition, 2011. URL
http://projects.csail.mit.edu/church/wiki/Church.

D. Klein and C. D. Manning. An O(n3) agenda–based chart parser
for arbitrary probabilistic context–free grammars. Technical re-
port, Stanford University, 2001.

D. Koller, D. McAllester, and A. Pfeffer. Effective bayesian infer-
ence for stochastic programs. In Proceedings of the National
Conference on Artificial Intelligence, pages 740–747, 1997.

A. Pfeffer. IBAL: A probabilistic rational programming language. In
Proceedings of the International Joint Conferences on Artificial
Intelligence, 2001.

H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. Proc. 12th Conf. on Uncertainty in Artificial In-
telligence, pages 337–346, 2011.

T. Sato. Generative Modeling by PRISM. In P. Hill and D. War-
ren, editors, Logic Programming, volume 5649 of Lecture Notes
in Computer Science, chapter 4, pages 24–35. Springer, Berlin,
Heidelberg, 2009. ISBN 978-3-642-02845-8. doi: 10.1007/978-3-
642-02846-5\ 4.

S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and
implementation of deductive parsing. The Journal of Logic Pro-
gramming, 24(1-2):3–36, 1995.

T. Tao. The blue-eyed islanders puzzle, 2008. URL http://terrytao.
wordpress.com/2008/02/05/the-blue-eyed-islanders-puzzle/.

R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight
Implementations of Probabilistic Programming Languages Via
Transformational Compilation. In Uncertainty in Artificial In-
telligence, pages 1–9, mar 2011.

