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1 Implementation details

In this section we provide the architectural details of

the TriGAN generator G and the discriminator DP .

Instance Whitening Transform (IWT) blocks. As

shown in Fig 1 (a), each IWT block is a sequence com-

posed of: Convolutionk×k−IWT−ReLU−AvgPoolm×m,

where k and m denote the kernel sizes. There are two

IWT blocks in E . In the first IWT block, we use k = 5

and m = 2, while in the second we use k = 3 and m = 2.
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Fig. 1: A schematic representation of (a) the IWT

block; (b) the AdaIWT block; and (c) the Style Path.

Adaptive Instance Whitening (AdaIWT) blocks.

The AdaIWT blocks are analogous to the IWT blocks,

except from the IWT layers which are replaced with

AdaIWT layers. Specifically, the AdaIWT block is a

sequence: Upsamplingm×m−Convolutionk×k−AdaIWT−
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ReLU , where m = 2 and k = 3. AdaIWT also takes as

input the coloring parameters (Γ , β) (see Sec. 3.2.3 of

the main paper and Fig. 1 (b)). Two AdaIWT blocks

are consecutively used in D. The last AdaIWT block

is followed by a Convolution5×5 layer.

Style Path. The Style Path is composed of: Convo-

lution 5×5 − (IWT −MLP )−ReLU − AvgPool2×2 −
Convolution3×3−(IWT−MLP ) (Fig. 1 (c)). The out-

put of the Style Path is (β1‖Γ 1) and (β2‖Γ 2), which

are input to the second and the first AdaIWT blocks,

respectively (see Fig. 1 (b)). The MLP is composed of

five fully-connected layers with 256, 128, 128, 256 neu-

rons, with the last fully-connected layer having a num-

ber of neurons equal to the cardinality of the coloring

parameters (β‖Γ ).
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Fig. 2: A schematic representation of (a) the DWT

block; and (b) the cDWT block.

Domain Whitening Transform (DWT) blocks. The

schematic representation of a DWT block is shown in

Fig. 2 (a). For the DWT blocks we adopt a residual-

like structure [3]: DWT − ReLU − Convolution3×3 −
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DWT − ReLU − Convolution3×3. We also add iden-

tity shortcuts in the DWT residual blocks to aid the

training process.

Conditional Domain Whitening Transform (cDWT)

blocks. The proposed cDWT blocks are schematically

shown in Fig. 2 (b). Similarly to a DWT block, a

cDWT block contains the following layers: cDWT −
ReLU−Convolution3×3−cDWT−ReLU−Convolution3×3.

Identity shortcuts are also used in the cDWT residual

blocks.

All the above blocks are assembled to construct G,

as shown in Fig. 3. Specifically, G contains two IWT

blocks, one DWT block, one cDWT block and two

AdaIWT blocks. It also contains the Style Path and

2 Convolution5×5 (one before the first IWT block and

another after the last AdaIWT block), which is omit-

ted in Fig. 3 for the sake of clarity. {Γ 1,β1,Γ 2,β2} are

computed using the Style Path.

IWT
block

DWT
block

cDWT
block

Adaptive

IWT
block

IWT
block

Adaptive

IWT
block

Γ2  β2 Γ1  β1

Fig. 3: A schematic representation of the Generator G.
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Fig. 4: A schematic representation of the Discriminator

DP .

For the discriminator DP , we use a Projection Dis-

criminator architecture [7]. In DP we use projection

shortcuts instead of identity shortcuts. In Fig 4 we

schematically show a discriminator block. DP is com-

posed of 2 such blocks. We use spectral normalization

[7] in DP .

2 Experiments for single-source UDA

Since TriGAN has can handle N -source domain transla-

tions, we also conduct experiments for a Single-Source

UDA scenario where N = 1 and the source domain

is grayscale MNIST. Below we describe the adopted

UDA settings with the Digits-Five dataset and the cor-

responding results.

2.1 Datasets

MNIST→USPS. The MNIST dataset contains grayscale

images of handwritten digits from 0 to 9. The image

resolution in MNIST is 28 × 28. USPS contains similar

grayscale handwritten digits, except from the resolu-

tion which is 16 × 16. We up-sample the images of both

domains to 32 × 32 during training. For training Tri-

GAN, 50000 MNIST and 7438 USPS samples are used.

For evaluation, we use 1860 test samples from USPS.

MNIST → MNIST-M. MNIST-M is a coloured ver-

sion of the grayscale MNIST digits. MNIST-M has RGB

images with resolution 28 × 28. For the TriGAN train-

ing, all the 50000 training samples from both MNIST

and MNIST-M are used, and the dedicated 10000 MNIST-

M test samples are used for evaluation. Training images

are up-sampled to 32 × 32.

MNIST → SVHN. SVHN is the short form of Street

View House Number and contains real-world images of

digits, ranging from 0 to 9. The samples in SVHN are

RGB images, with a resolution of 32 × 32. SVHN has

non-centered digits with varying colour intensities. One

challenging characteristic of the SVHN images is the

presence of other digits, partially shown in the back-

ground. For the TriGAN training, 60000 MNIST and

73257 SVHN samples are used. During the evaluation,

all the 26032 SVHN test samples are utilized.

2.2 Comparison with generation-based state-of-the-art

methods

In this section we compare our proposed TriGAN with

generation-based state-of-the-art UDA methods, either

based on GANs or based reconstruction approaches.

Tab. 1 reports the performance of our TriGAN along-

side the results obtained from the following baselines:

Domain Adversarial Neural Network [2] (DANN), Cou-

pled generative adversarial networks [6] (CoGAN), Ad-

versarial discriminative domain adaptation [11] (ADDA),

Pixel-level domain adaptation [1] (PixelDA), Unsu-

pervised image-to-image translation networks [5] (UNIT),

Symmetric bi-directional adaptive gan [9] (SBADA-

GAN), Generate to adapt [10] (GenToAdapt), Cycle-

consistent adversarial domain adaptation [4] (CyCADA)

and Image to image translation for domain adaptation
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Methods
Source
Target

MNIST
USPS

MNIST
MNIST-M

MNIST
SVHN

Source Only 78.9 63.6 26.0
DANN [2] 85.1 77.4 35.7
CoGAN [6] 91.2 62.0 -
ADDA [11] 89.4 - -
PixelDA [1] 95.9 98.2 -
UNIT [5] 95.9 - -
SBADA-GAN [9] 97.6 99.4 61.1
GenToAdapt [10] 92.5 - 36.4
CyCADA [4] 94.8 - -
I2I Adapt [8] 92.1 - -
TriGAN (Ours) 98.0 95.7 66.3

Table 1: Classification Accuracy (%) of generation-based methods on the single-source UDA scenario for digit

recognition. The best value is in bold and the second best is underlined.

[8] (I2I Adapt). Tab. 1 shows that TriGAN outper-

forms all the other generative methods in two out of the

three adaptation settings. In the MNIST → MNIST-M

setting, TriGAN is the third best. It is interesting to

note that TriGAN achieves significantly better results

in the MNIST→ SVHN setting, which is considered as

a hard setting, where TriGAN is 5.2% better than the

second best method SBADA-GAN.
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