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This supporting information is a longer version of the printed paper. It contains the

proof of Eq. (18), some details associated with the ECME estimating equations together

with a small simulation study to demonstrate the adaptability and flexibility when using

the SMSTN distribution.

A. Proof of Eq. (18)

From (10), we have
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where uj = (yj − ξ)/σ. After some algebraic operations, the complete data log-likelihood

function, excluding additive constants not related to parameters, is given by
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This completes the proof. �

B. Some details associated with the ECME estimating

equations

(a) Differentiating the Q-function with respect to ξ leads to
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On equating (S.1) to zero and substituting σ with the current estimate σ̂(k+1), this

gives
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(b) Differentiating the Q-function with respect to σ leads to
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Fixing ξ = ξ̂(k+1) and equating (S.2) to zero gives

σ2 + bσ − c = 0,

where b = n−1
∑n

j=1(yj − ξ̂(k+1))ŝ
(k)
3j and c = n−1
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Therefore, we can get
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√
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2
.

Note that the above solution always remains positive.
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(c) Differentiating the Q-function with respect to λ leads to
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On equating (S.3) to zero gives
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(d) Differentiating the Q-function with respect to α leads to
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Fixing λ = λ̂(k+1) and equating (S.4) to zero gives
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Substituting
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1j = nλ̂(k+1) into (S.5) yields the desired result
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(e) Differentiating the Q-function with respect to ν leads to
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Then, ν̂(k+1) can be obtained as the solution of
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where DG(x) = d log Γ(x)/dx is the digamma function.

C. An illustration with simulated data

In this experiment, 300 samples of size n = 500 are generated from the SMSTN distribution

with ξ = 1, σ = 2, λ = 3, α = 10 and ν = 4. Then, we fit each simulated dataset with the
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Table S.1: Simulation results, based on 300 replications, for comparing the perfor-

mance of four skew models.

Criterion SN ST STN SMSTN

ℓmax

Mean –1155.52 –1102.00 –1105.18 –1097.41

Std 37.73 23.97 24.61 24.09

Freq 0 5 0 295

Mean 2317.04 2212.00 2218.36 2204.82

AIC Std 75.46 47.94 49.22 48.18

Freq 0 25 1 274

Mean 2329.69 2228.86 2235.22 2225.90

BIC Std 75.46 47.94 49.22 48.18

Freq 0 109 1 190

SN, ST, STN and SMSTN distributions. Table S.1 summarizes the average log-likelihood

maxima, AIC and BIC values and their standard deviations together with the frequencies

(Freq) supported by criteria as a guide to select the most plausible model. Observing the

table, all criteria tend to select the SMSTN model, indicating that it cannot be replaced

by other competitive models. Figure S.1 displays 300 empirical fitted density curves. It is

clearly seen that only the SMSTN model adapt the true underlying distribution well. This

gives further evidence that the SMSTN distribution can be taken a prominent alternative

to several other skew distributions as it is more capable of capturing distinct non-normal

features.
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Figure S.1: The true density of the SMSTN distribution (solid line) and 300 esti-

mated densities (grey lines).
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