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This supplementary appendix is structured as follows. Section A.1 presents details of our
approach to solving the standard quantile regression problem without regularization via
alternating direction method of multipliers (ADMM), majorize-minimization (MM), and
coordinate descent (CD) algorithms. For the sake of comparison, we also introduce a basic
interior point (IP) approach. Section A.2 gives details on the generalization from quantile
to composite quantile regression, again without regularization.

A.1 Non-Regularized Quantile Regression

The following Subsections A.1.1 through A.1.3 detail our approach to non-regularized quan-
tile regression using the ADMM, MM, and CD algorithms. We place particular emphasis on
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the ADMM approach and first review its general setup. Subsection A.1.4 introduces a basic
IP method and a reformulation of the quantile regression problem accessible to the Rmosek

optimization package for R (Friberg, 2013). We use the notation presented in the main text
throughout.

A.1.1 Alternating Direction Method of Multipliers Algorithm

Before proceeding with an application to quantile regression, we review the general ADMM
algorithm, which decomposes a given additively separable convex optimization problem into
a number of sub-convex optimization problems. The general formulation of the ADMM
problem is

min
xxx,zzz

f(xxx) + g(zzz)

subject to AAAxxx+BBBzzz = ccc,

where f and g are convex, real-valued functions of xxx and zzz, AAA and BBB are matrices, and ccc is a
constant vector. The augmented Lagrangian (Powell, 1967) of the above problem is written
as

Lρ(xxx, zzz, yyy) = f(xxx) + g(zzz) + yyyT (AAAxxx+BBBzzz − ccc) +
ρ

2
||AAAxxx+BBBzzz − ccc||22,

where ρ is a tuning parameter. Setting u = 1
ρ
y and uk = 1

ρ
yk, we can obtain the (more

convenient) scaled augmented Lagrangian

Ls
ρ(xxx, zzz, yyy) = f(xxx) + g(zzz) +

ρ

2
||AAAxxx+BBBzzz − ccc+uuu||22 − ρ

2
uuu2.

The ADMM method optimizes the scaled augmented Lagrangian using the iterative scheme

xxx(t+1) = argmin
xxx

[

f(xxx) +
ρ

2
||AAAxxx+BBBzzz(t) − ccc+ uuu(t)||22

]

,

zzz(t+1) = argmin
zzz

[

g(zzz) +
ρ

2
||AAAxxx(t+1) +BBBzzz − ccc+uuu(t)||22

]

,

uuu(t+1) = uuu(t) +AAAxxx(t+1) +BBBzzz(t+1) − ccc.

A generic stopping condition for the algorithm can be defined in terms of the primal and

dual residuals, given by rrr
(t+1)
primal = AAAxxx(t+1) +BBBzzz(t+1) − c and rrr

(t+1)
dual = ρAAATBBB(zzz(t+1) −zzz(t)).

The program can be made to terminate if both

||rrr(t)primal||2 ≤ εprimal =
√
pεabs + εrel max{||AAAxxx(t)||2, ||BBBzzz(t)||2, ||ccc||2}

||rrr(t)dual||2 ≤ εdual =
√
nεabs + εrel||AAATyyy(t)||2,

where p and n are the length of c and AAATyyy(t), respectively. In our applications, we set
εabs = 10−2 and εrel = 10−4.

We apply the ADMM algorithm (Boyd et al., 2011) by reformulating quantile regression
as the convex optimization problem

min
βββ∈Rp+1

n
∑

i=1

ρτ (ri)

subject to XXXβββ + rrr = YYY ,

where rrr is a vector of residuals. The intercept term is accounted for in both βββ and XXX . Using
the general procedure of ADMM, taking f = 0 and g as a function of rrr to be the entire
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objective function, we obtain the iterative scheme

βββ(t+1) = argmin
βββ∈Rp+1

ρ

2
||YYY − rrr(t) −XXXβββ + uuu(t)/ρ||22,

rrr(t+1) = argmin
rrr∈Rn

n
∑

i=1

ρτ (ri) +
ρ

2
||YYY − rrr −XXXβββ(t+1) + uuu(t)/ρ||22,

uuu(t+1) = uuu(t) + ρ(YYY − rrr(t+1) −XXXβββ(t+1)),

where uuu is the rescaled Lagrange multiplier and ρ > 0 is a penalty parameter. The update
for rrr can be written in a closed form as S1/ρ

(

ccc − (2τττn×1 − 111n×1)/ρ
)

, where ccc = YYY −
XXXβββ(t) + uuu(t)/ρ and, for real a, the function Sa : R

m → R
m is defined component-wise

via (Sa(vvv))i = (vi − a)+ − (−vi − a)+. The closed form for the update of βββ is given by
(XXXTXXX)−1XXXT (YYY − rrr(t) +uuu(t)/ρ). For reference, ρ is chosen to be 1.2 by Boyd et al. (2011).
In the quantile regression setting, we have that

rrr
(t+1)
primal = YYY −XXXβββ(t+1) − rrr(t+1),

rrr
(t+1)
dual = ρXXXT (rrr(t+1) − rrr(t)),

εprimal =
√
nεabs + εrel max{||XXXβ(t+1)||22, ||rrr(t+1)||22, ||YYY ||22},

εdual =
√
pεabs + εrel||XXXTuuu(t+1)||22.

A.1.2 Majorize-Minimization Algorithm

We use the MM algorithm developed by Hunter and Lange (2000) and Hunter and Li (2005)
to solve the quantile regression problem without regularization. Our approach is exactly the
same as in the main text, but we instead ignore the majorization of the penalty term in the
quantile regression objective function. Construct a function ρετ (r) based on some pertur-
bation parameter ε > 0 that will be used to approximate the quantile regression objective
function L(βββ). For any residual r, define ρετ (r) = ρτ (r) − ε

2
ln(ε+ |r|), and the subsequent

approximation of L(βββ) by Lε(βββ) =
∑n

i=1 ρ
ε
τ (ri). At the t-th iteration of the algorithm, for

each current residual value r
(t)
i = r

(t)
i (βββ(t)), ρετ (r) is majorized by the quadratic function

ξετ (r|r
(t)
i ) =

1

4

[

r2

ε+ |r(t)i |
+ (4τ − 2)r + c

]

,

for some solvable constant c that satisfies the equation ξ(r
(t)
i |r(t)) = ρετ (r

(t)). The MM
algorithm minimizes the majorizer of Lε(βββ), namely,

Qε(βββ|βββ(t)) =
n
∑

i=1

ξετ (ri|r
(t)
i ),

with the argument minimum taken as the updated value βββ(t+1) of βββ. For the t-th iteration of
the algorithm, given an updated value βββ(t) for βββ, we generate and minimize a new majorized
quadratic function Qε(·|βββ(t)) and implement a Newton-Raphson iterative method to obtain
an updated value βββ(t+1) for βββ.

A.1.3 Coordinate Descent Algorithm

To implement quantile regression, we use an extended version of the greedy CD method
put forward by Edgeworth and, more recently, further developed by Wu and Lange (2008).
In each iteration, for fixed βββ ∈ R

p, replace b0 by the τ -th sample quantile of the residuals
yi −XXXT

i βββ for i = 1, . . . , n: this will necessarily decrease the value of the objective function.
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Define Θi = ρτ (ri) for i = 1, . . . , n. For each element βm for m = 1, . . . , p of βββ, rewrite the
loss function as

L(b0, βββ) = Lm(b0, βββ) =
n
∑

i=1

|xim|
∣

∣

∣

∣

∣

yi − b0 −
∑p

j=1, j 6=m
xijβj

xim

− βm

∣

∣

∣

∣

∣

· Θi,

so that the CD algorithm applies. For each fixed m, sort the values of

zi =
yi − b0 −

∑p
j=1, j 6=m

xijβj

xim

for i = 1, . . . , n and update βm to be the i∗-th order statistic z(i∗) satisfying both

i∗−1
∑

j=1

w(j) <
1

2

n
∑

j=1

w(j) and
i∗
∑

j=1

w(j) ≥ 1

2

n
∑

j=1

w(j),

where wi = |xim| ·Θi. In other words, using the weights wi, the selected z(i∗) is the weighted
median of all zi (for the fixed value of m). At the end of each iteration, we check for the
convergence of βββ and stop the algorithm using an absolute value difference threshold of
10−3.

A.1.4 Interior Point Algorithm

Interior point (IP) methods generally reach an optimal solution by travelling within rather
than on the boundary of the feasible set. Though studied as early as the 1950s and 1960s, IP
methods arguably first gained widespread interest with the landmark paper by Karmarkar
(1984), who proposed an efficient, polynomial time IP algorithm for linear programs with
performance rivalling the existing simplex method. Nesterov and Nemirovskii (1994) later
extended these results to a range of convex optimization problems while maintaining polyno-
mial time. In the present day, advanced IP methods and code for both linear and non-linear
programs are widely available and well-studied in the literature (Roos et al., 2006). IP algo-
rithms have also received considerable attention and success in applications to non-linear,
non-convex optimization problems (Byrd et al., 1999).

We can implement quantile regression using an IP algorithm by reformulating the op-
timization problem as a linear program and making use of existing optimization packages
such as Rmosek (Friberg, 2013). Rmosek can implement an IP algorithm to solve problems of
the form

min
xxx∈Rn

cccTxxx+ c0

subject to lllc ≤ AAAxxx ≤ uuuc

lllx ≤ x ≤ uuux,

whereAAA ∈ R
m×n is a constraint matrix; ccc ∈ R

n and c0 ∈ R the objective function coefficients
and constant; lllc, uuuc ∈ R

m the lower and upper constraint bounds; and lllx, uuux ∈ R
n the lower

and upper variable bounds. For notational simplicity, ≤ is taken to mean component-wise
comparison of vectors. Alternatively, other R packages such as quantreg exist specifically for
quantile regression and make use of IP methods. The IP approach for quantile regression in
quantreg is based on the method of Portnoy and Koenker (1997), with recent modifications
including the prediction-correction algorithm of Mehrotra (1992). Lasso penalized quantile
regression in quantreg uses a Frisch-Newton method.

Let uuu,vvv ∈ R
n
≥0 be a vector of the positive and negative parts, respectively, of the

residuals rrr = (r1, . . . , rn), and βββ ∈ R
p+1 a vector of parameters including the intercept. The
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quantile regression problem without regularization can be formulated for use in existing IP
optimization routines such as Rmosek via

min
βββ∈Rp+1, uuu,vvv∈Rn

τ111Tn×1uuu+ (1− τ)111Tn×1vvv

subject to YYY = XXXβββ +uuu− vvv

000n×1 ≤ uuu ≤∞∞∞n×1

000n×1 ≤ vvv ≤∞∞∞n×1.

As an aside, to incorporate an adaptive lasso penalty into the problem, we can rewrite
the problem as a linear program accessible to existing IP routines via

min
βββ∈Rp+1, uuu,vvv∈Rn

τ111Tn×1uuu+ (1− τ)111Tn×1vvv + pλ(|βββ|)

subject to βββ ≤ βββ∗

− βββ ≤ βββ∗

000n×1 ≤ βββ∗ ≤ ∞∞∞n×1

000n×1 ≤ uuu ≤∞∞∞n×1

000n×1 ≤ vvv ≤∞∞∞n×1.

A.2 Composite Quantile Regression

This section shows details of the extension from quantile to composite quantile regression
without regularization. Subsections A.2.1, A.2.2, and A.2.3 extend the above non-regularized
quantile regression procedures using ADMM, MM, and CD algorithms, respectively. Sub-
section A.2.4 formulates the problem for use in Rmosek (Friberg, 2013) or other IP methods
for linear programs. We use the notation presented in the main text throughout.

A.2.1 Alternating Direction Method of Multipliers Algorithm

Written in the ADMM form, the composite quantile regression problem can be expressed as

min
β∈Rp+1

K
∑

k=1

n
∑

i=1

ρτk (rik)

subject to XXX∗βββ + rrr = YYY ∗,

where we assume that the intercept term is accounted for in both βββ and XXX. The ADMM
approach is applied in exactly the same way as in Subsection A.1.1, yielding the iterative
update scheme

βββ(t+1) = argmin
βββ∈Rp+K

ρ

2
||YYY ∗ − rrr(t) −XXX∗βββ +uuu(t)/ρ||22,

rrr(t+1) = argmin
rrr∈RnK

K
∑

k=1

n
∑

i=1

ρτk (rik) +
ρ

2
||YYY ∗ − rrr −XXX∗βββ(t+1) +uuu(t)/ρ||22,

uuu(t+1) = uuu(t) + ρ(YYY ∗ − rrr(t+1) −XXX∗βββ(t+1)),

where ccc = YYY ∗ −XXX∗βββ(t) + uuu(t)/ρ; and residuals

rrr
(t+1)
primal = YYY ∗ −XXX∗βββ(t+1) − rrr(t+1),

rrr
(t+1)
dual = ρXXX∗T (rrr(t+1) − rrr(t)),

εprimal =
√
nεabs + εrel max{||XXX∗βββ(t+1)||22, ||rrr(t+1)||22, ||YYY ∗||22},

εdual =
√
pεabs + εrel||XXX∗Tuuu(t+1)||22.
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A generic stopping condition requiring ||rrr(t)primal|| ≤ εprimal and ||rrr(t)dual|| ≤ εdual for termi-

nation can be imposed. We again take uuu as the rescaled Lagrange multiplier and ρ > 0 as a
penalty parameter. Generalizing from quantile regression, the update for rrr can be written
in a closed form as S1/ρ

(

ccc− (2τττ∗ − 111n×1)/ρ
)

, with Sa as defined previously for real a. The

closed form update for βββ is given by (XXX∗TXXX∗)−1XXX∗T (YYY ∗ − rrr(t) +uuu(t)/ρ).

A.2.2 Majorize-Minimization Algorithm

An extension of the MM algorithm from quantile to composite quantile regression simply
involves the incorporation of additional quantile levels. We use the same function ρετ (r) =
ρτ (r)− ε

2
ln(ε+ |r|) to approximate the composite quantile regression objective function via

Lε(βββ) =
∑K

k=1

∑n
i=1 ρ

ε
τk

(rik). We also use the same function ξ as defined in Subsection
A.1.2 to majorize ρετ . At the t-th iteration of the algorithm, for each current residual value

r
(t)
ik = r

(t)
ik (βββ(t)), we have that ρετk (r) is majorized by the quadratic function

ξετk (r|r
(t)
ik ) =

1

4

[

r2

ε+ |r(t)ik |
+ (4τk − 2)r + c

]

,

for some solvable constant c that satisfies the equation ξ(r
(t)
ik |r(t)ik ) = ρετk (r

(t)
ik ). The MM

algorithm minimizes the majorizer of Lε(βββ), namely,

Qε(βββ|βββ(t)) =
K
∑

k=1

n
∑

i=1

ξετk (rik |r
(t)
ik ),

with the argument minimum taken as the updated value βββ(t+1) of βββ. In practice, for the
t-th iteration of the algorithm, given an updated value βββ(t) for βββ, we generate and minimize
a new majorized quadratic function Qε(·|βββ(t)) using a Newton-Raphson iterative method.
The argument minimum is taken as the updated value βββ(t+1) for βββ.

A.2.3 Coordinate Descent Algorithm

To apply the CD method to composite quantile regression, we rewrite the composite quantile
regression objective function in the required CD form. For any m = 1, . . . , p, we have

Lm(b1, . . . , bk, βββ) =
K
∑

k=1

n
∑

i=1

|xim|
∣

∣

∣

∣

∣

yi − bk −
∑p

j=1, j 6=m xijβj

xim
− βm

∣

∣

∣

∣

∣

·Θik,

with Θik = ρτk (rik) for i = 1, . . . , n and k = 1, . . . ,K. In each iteration, and for fixed βββ,
replace bk , for k = 1, . . . , K, with the τ -th sample quantile of the residuals yi −XXXT

i βββ for
i = 1, . . . , n. To update βm for m = 1, . . . , p, sort the numbers

zik =
yi − bk −

∑p
j=1, j 6=m xijβj

xim
,

for i = 1, . . . , n and k = 1, . . . ,K. Update βm with the value of the i∗-th order statistic
z(i∗) satisfying both

i∗−1
∑

j=1

w(j) <
1

2

nK
∑

j=1

w(j) and
i∗
∑

j=1

w(j) ≥ 1

2

nK
∑

j=1

w(j),

where wik = |xim| ·Θik. At the end of each iteration, we check for the convergence of βββ and
stop the algorithm using an absolute value difference threshold of 10−3.
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A.2.4 Interior Point Algorithm

The extension of the previous IP method from quantile to composite quantile regression
simply requires us to account for the extra quantile levels in the objective function and the
resulting extra residuals. The problem can be formulated as a linear program via

min
βββ∈Rp+K , uuuk,vvvk∈Rn

K
∑

k=1

τk111
T
n×1uuuk + (1− τk)111

T
n×1vvvk

subject to YYY =XXXβββ + uuuk − vvvk

000 ≤ uuuk ≤∞∞∞
000 ≤ vvvk ≤ ∞∞∞,

where each constraint is to hold for all k = 1, . . . ,K.

B Composite Quantile Regression with Adaptive Lasso

Regularization

Here we give explicit details regarding the ADMM, MM, and CD methods for composite
quantile regression with adaptive lasso regularization. An IP approach is also given for
comparison.

B.1 Alternating Direction Method of Multipliers Algorithm

Applying ADMM in the composite quantile setting with adaptive lasso regularization, we
obtain the iterative update scheme

rrr(t+1) = argmin
rrr∈RnK

K
∑

k=1

n
∑

i=1

ρτk (rik) +
ρ

2
||YYY ∗ − rrr −XXX∗βββ(t) +uuu(t)/ρ||22,

βββ(t+1) = argmin
βββ∈Rp+K

ρ

2
||YYY ∗ − rrr(t+1) −XXX∗βββ +uuu(t)/ρ||22 + λ

p
∑

j=1

|βj|/|βCQR

j
|
2,

uuu(t+1) = uuu(t) + ρ(YYY ∗ − rrr(t+1) −XXX∗βββ(t+1)),

where ccc = YYY ∗ −XXX∗βββ(t) + uuu(t)/ρ; and residuals

rrr
(t+1)
primal = YYY ∗ −XXX∗βββ(t+1) − rrr(t+1),

rrr
(t+1)
dual = ρXXX∗

∗
T (rrr(t+1) − rrr(t)),

εprimal =
√
nεabs + εrel max{||XXX∗

∗βββ
(t+1)
∗ ||22, ||rrr(t+1)||22, ||bbb∗ −YYY ||22},

εdual =
√
pεabs + εrel||XXX∗Tuuu(t+1)||22.

We again take uuu as the rescaled Lagrange multiplier and ρ > 0 as a penalty parameter. As
before, the update for rrr can be written in a closed form as S1/ρ

(

ccc− (2τττ∗ − 111n×1)/ρ
)

, with
Sa as defined previously for real a. With adaptive lasso regularization, the update for βββ
does not have a closed form but can be viewed as a least squares optimization problem with
adaptive lasso penalty. We implement existing numerical methods to solve this problem and
update βββ.
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B.2 Majorize-Minimization Algorithm

An extension of the MM method for adaptive lasso regularized quantile regression to reg-
ularized composite quantile regression involves a minor change to incorporate multiple
quantile levels into the majorized objective function. Using the same function ρετ (r) =
ρτ (r)− ε

2
ln(ε+ |r|) as before with perturbation parameter ε > 0 to approximate ρτ (r), we

can approximate the regularized quantile regression objective function via

K
∑

k=1

n
∑

i=1

ρετk (rik) + +λ

p
∑

j=1

1

|βCQR
j |2

[

|β(t)
j |+

(

β2
j − (β

(t)
j )2

)

sgn(β
(t)
j )

2|β(t)
j

+ ε|

]

.

Define, as before,

ξετk (r|r
(t)
ik

) =
1

4

[

r2

ε+ |r(t)
ik

|
+ (4τk − 2)r + c

]

.

In the t-th iteration of the MM algorithm, the (approximated) objective function is majorized
by

Qε(βββ|βββ(t)) =
K
∑

k=1

n
∑

i=1

ξετk (rik|r
(t)
ik

) + λ

p
∑

j=1

1

|βCQR
j |2

[

|β(t)
j |+

(

β2
j − (β

(t)
j )2

)

sgn(β
(t)
j )

2|β(t)
j

+ ε|

]

.

Given an updated value βββ(t) for βββ, we generate a new majorizing function Qε(·|βββ(t)) and
implement a Gauss-Newton iterative method to estimate and update the value of βββ.

B.3 Coordinate Descent Algorithm

As discussed in the main text, the CD method for regularized composite quantile regression
simply adjusts the objective function to account for the extra quantile levels as

Lm(b1, . . . , bk, βββ) =
K
∑

k=1

n
∑

i=1

|xim|
∣

∣

∣

∣

∣

yi − bk −
∑p

j=1, j 6=m
xijβj

xim

− βm

∣

∣

∣

∣

∣

· Θik + pλ(|βββ|).

In each iteration, for k = 1, . . . ,K, replace each bk with the τ -th sample quantile of the
residuals yi −XXXT

i βββ for i = 1, . . . , n. Define zik = 1
xim

(

yi − bk −
∑p

j=1, j 6=m
xijβj

)

if rik ≥ 0

and zik = 0 if rik < 0. Update βm to the value of the i∗-th order statistic z(i∗) satisfying
both

i∗−1
∑

j=1

w(j) <
1

2

nK
∑

j=1

w(j) and
i∗
∑

j=1

w(j) ≥ 1

2

nK
∑

j=1

w(j),

where wik = |xim| · Θik if rik ≥ 0 and wik = λ/|βCQR

m
|2 if rik < 0. At the end of each

iteration, check for the convergence of βββ and stop the algorithm using an absolute value
difference threshold of 10−3.

B.4 Interior Point Algorithm

Adaptive lasso regularized composite quantile regression is formulated by incorporating
an appropriate penalty term into the linear program of Subsection A.2.4. This form is
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appropriate for the IP implementation in the Rmosek package (Friberg, 2013) and is given
by

min
βββ∈Rp+K , uuuk,vvvk∈Rn

K
∑

k=1

τk111
T
n×1uuuk + (1 − τk)111

T
n×1vvvk + pλ(|βββ|)

subject to YYY =XXXβββ + uuuk − vvvk

βββ ≤ βββ∗

− βββ ≤ βββ∗

000 ≤ uuuk ≤∞∞∞
000 ≤ vvvk ≤∞∞∞,

where constraints are to hold for all k = 1, . . . , K.
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