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Online Appendices

A Proof of Lemma 1.

Consider an arbitrary facility i ∈ {1, 2, ..., N}, and let gi(T,W ) denote
the expected long-run average reward under a threshold policy with threshold
T ∈ N0 and admission charge W ∈ R. Then:

gi(T,W ) = λ(1− πi(T, T ))(αi −W )− βi
T∑
y=0

yπi(y, T ). (34)

It follows that, given any fixed T ∈ N0, the average reward gi(T,W ) is a
linear, strictly decreasing function of W , and its gradient is:

∂gi
∂W

= −λ(1− πi(T, T )). (35)

Given some admission charge W ∈ R, let T ∗i (W ) be the optimal threshold
referred to in Definition 1; hence, gi(T

∗
i (W ),W ) ≥ gi(T,W ) for all T ∈ N0.

It can be verified using standard formulae for finite-capacity M/M/c queues
(see Gross and Harris (1998), p. 74) that the steady-state probability πi(T, T )
is strictly decreasing with T ; hence, the gradient in (35) is also strictly de-
creasing with T (see Figure 3). Given that gi(T

∗
i (W ),W ) ≥ gi(T ∗i (W )+n,W )

for arbitrary n ≥ 1, it must therefore be the case that gi(T
∗
i (W ),W ′) >

gi(T
∗
i (W ) + n,W ′) for any W ′ > W , and therefore the policy with threshold

T + n cannot be optimal under an admission charge W ′, since it does not
maximize the average reward. It follows that T ∗i (W ′) ≤ T ∗i (W ) for any two
admission charges W,W ′ ∈ R with W < W ′, which verifies the first of the
indexability conditions.

Using similar arguments, for any state x ∈ N there must exist some value
Wi(x) ∈ R such that gi(x,W ) ≥ gi(x−n,W ) for all n ∈ {1, 2, ..., x} if and only
if W ≤ Wi(x). This is due to the fact that the linear functions gi(x − n,W )
have larger gradients than that of gi(x,W ). Hence, it must be the case that
T ∗i (W ) > x if and only if W < Wi(x), since this is the only scenario in
which a threshold policy with threshold greater than x performs better than
an x-threshold policy. This completes the proof that the conditions stated in
Definition 1 are both satisfied.

In order to derive an expression for Wi(x), we note that Wi(x) must be
the unique value of W which results in the thresholds T = x and T = x + 1
both yielding the same expected long-run average reward in a single-facility
problem. By equating long-run average rewards under the thresholds x and
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Fig. 3: The linear dependence of the functions gi(x,W ) on the admission charge
W .

x+ 1, we find that Wi(x) satisfies the equation

λ(1− πi(x, x))(αi −Wi(x))− βi
x∑
y=0

yπi(y, x)

= λ(1− πi(x+ 1, x+ 1))(αi −Wi(x))− βi
x+1∑
y=0

yπi(y, x+ 1),

Solving this equation directly for Wi(x) yields (13). �

B Proof of the lower bound S◦ ⊆ Sθ∗ .

Here we prove the claim that any optimal stationary policy θ∗ satisfies
the relationship S◦ ⊆ Sθ∗ , where S◦ is defined in (16) as the set of states with
no customers waiting in queues.

We will begin by showing that an optimal stationary policy θ∗ cannot
choose to balk at any state x ∈ Sθ∗ with xi < ci for some i ∈ {1, 2, ..., N}.
Since the state 0 (with no customers present at any facilities) is positive re-
current under all stationary policies, there must be some point in time at
which the system finds itself in a state x ∈ Sθ∗ with xi < ci for at least one
i ∈ {1, 2, ..., N} while operating under θ∗. In the first part of this proof, x will
denote a fixed state in Sθ∗ with xi < ci for a particular facility i.

We will use a sample path argument. Let ψ denote a non-stationary policy
which operates by ‘copying’ the actions of policy θ∗ at all times, unless either
of the following scenarios apply:
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1. θ∗ chooses to balk at the state x (with xi < ci), in which case ψ chooses
to join facility i if the process following policy ψ is also in state x, and
otherwise chooses to balk;

2. θ∗ chooses to join facility i at some point in time at which the process
following policy ψ has more customers at i than the process following θ∗,
in which case ψ chooses to balk.

Let (xn)n∈N0 and (yn)n∈N0 denote the state evolutions of two processes
Υ1 and Υ2 which follow policies θ∗ and ψ respectively. Then, in notation, ψ
operates as follows:

ψ(yn) =


i, if xn = yn = x,

0, if θ∗(xn) = i and (xn)i < (yn)i,

θ∗(xn), otherwise,

where (xn)i and (yn)i denote the ith components of xn and yn respectively.
Suppose that both of the processes Υ1 and Υ2 are initialized in the regenerative
state 0 and evolve according to the same sequence of random events. Let n0 ≥ 0
denote the first discrete time step at which both processes are in state x and
an arrival occurs. Then n0 + 1 is the first step at which the two processes
differ. Noting that xi < ci, it follows from the reward formulation (2) that
the process Υ2 following ψ earns a strictly greater single-state reward at step
n0 + 1 than the process Υ1, since it has an extra customer being served at
facility i. Furthermore, let n1 denote the next time epoch (after n0) at which
the processes Υ1 and Υ2 are once again in the same state; this may occur as a
result of a service completion at facility i being ‘seen’ by Υ2 but not by Υ1, or
as a result of θ∗ choosing to join facility i while the process Υ2 already has an
extra customer present at i. In either case, it can easily be checked using the
definition of policy ψ that

(xn)i < (yn)i ≤ ci ∀n ∈ [n0 + 1, n1 − 1].

Noting that n1 ≥ n0 + 2 (since the two processes must first diverge from
each other before meeting again), it follows from (2) that Υ2 earns a strictly
greater total reward than Υ1 over the interval [n0, n1]. Since the state x (be-
ing accessible from 0) is positive recurrent under θ∗, the two processes make
infinitely many visits to x with probability one. It follows that the policy ψ is
superior to θ∗ with respect to the average reward criterion, which contradicts
the fact that θ∗ is an optimal policy.

The sample path argument given above proves that if x ∈ Sθ∗ is a state with
xi < ci for some facility i, then the optimal stationary policy θ∗ cannot choose
to balk at x. To complete the proof, we must show that all states with xi ≤ ci
for all i ∈ {1, 2, ..., N} are included in Sθ∗ . Indeed, suppose the system is in
the regenerative state 0 and a sequence of B̃+ 1 consecutive customer arrivals
occurs (without any service completions), where B̃ =

∑N
i=1 B̃i and B̃i =

bβi/(αiciµi)c. Since it is proved in Shone et al. (2016) that Sθ∗ is contained in
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the selfish state space S̃, it follows from the definition of S̃ in (5) that θ∗ must
choose to balk at least once during the sequence of B̃+1 arrivals, otherwise the
process would pass outside S̃. Due to our previous sample path argument, we
know that θ∗ will not choose to balk at a state which has any servers idle, so
therefore it must balk at some state x ∈ Sθ∗ which has xi ≥ ci for all facilities
i. The state x in question is positive recurrent under θ∗ (since it is accessible
from 0), and therefore all states y which satisfy the componentwise inequality
yi ≤ xi for all i ∈ {1, 2, ..., N} are also positive recurrent under θ∗ since they
are accessible from x via service completions. This completes the proof. �

C Proof of Lemma 2.

The proof is accomplished using dynamic programming (DP) arguments.
Let θ∗ be an optimal stationary policy. It is useful to note that, due to Theorem
2 in (Shone et al. (2016)), θ∗ can be obtained as an optimal solution to a finite-
state problem with state space S̃ defined in (5). In this finite-state problem we
assume that the set of actions Ax available at state x ∈ S̃ excludes any facilities
i ∈ {1, 2, ..., N} for which xi = bβi/(αiciµi)c. Results for finite-state MDPs
(see Puterman (1994)) imply that there exist a constant g∗ and a real-valued
function h satisfying the average reward optimality equations

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 (x ∈ S̃). (36)

In these equations, g∗ is the optimal average reward and h is the relative
value function, which is unique up to an additive constant. For states x in the
recurrent set Sθ∗ it must be the case that θ∗ chooses an action which attains
the maximum on the right-hand side of (36); otherwise, one would be able to
obtain a policy superior to θ∗ using policy iteration.

In this proof we consider two different problems simultaneously. The first
is the N -facility problem formulated in Section 2, and the second is a single-
facility problem involving only facility i ∈ {1, 2, ..., N}, where (throughout this
proof) we regard the facility i as fixed but arbitrary. For the single-facility
problem we will write the optimality equations as

G∗ +H(x) = max
a∈Ax

R(x) +
∑
y∈S̃i

P (x, a, y)H(y)

 (y ∈ S̃i), (37)

where G∗, H(·), R(·) and P (·) are the analogues of g∗, h(·), r(·) and p(·) per-
taining to a single-facility problem with facility i and S̃i = {0, 1, ..., T̃i}, where
T̃i = bβi/(αiciµi)c}. We will use induction based on dynamic programming
(DP) value iteration and consider the functions h and H obtained as limits of
the finite-stage iterates hk and Hk as k → ∞. We will suppose that, in both
problems, the discrete-time step size is ∆ := (λ +

∑N
j=1 cjµj)

−1. (This step
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size can be used in the single-facility problem because it is smaller than the
maximum step size of (λ + ciµi)

−1.) Our aim is to show that, given an arbi-
trary state x ∈ S̃, the following holds for all integers y satisfying xi ≤ y < T̃i
(where xi is the ith component of x):

hk(xi+)− hk(x) ≥ Hk(y + 1)−Hk(y) ∀k ∈ N0. (38)

We note that (38) holds trivially when k = 0 because h0(x) = 0 for all
x ∈ S̃ and Hk(x) = 0 for all x ≤ T̃i. We assume that it holds for arbitrary
k ∈ N0 and aim to show that it holds with k replaced by k+1. By enumerating
transition probabilities, we obtain the following:

hk+1(xi+)− hk+1(x)−Hk+1(y + 1) +Hk+1(y)

= r(xi+)− r(x)−R(y + 1) +R(y) (39)

+ λ∆
(
hk((xi+)a1+)− hk(xa0+)−Hk(y + 1 + b1) +Hk(y + b0)

)
(40)

+
∑
j 6=i

min(xj , cj)µj∆
(
hk((xi+)j−)− hk(xj−)−Hk(y + 1) +Hk(y)

)
(41)

+ min(xi, ci)µi∆
(
hk(x)− hk(xi−)−Hk(y) +Hk(y − 1)

)
(42)

+ I(xi < ci and xi < y)µi∆ (hk(x)− hk(x)−Hk(y) +Hk(y − 1)) (43)

+ I(xi = y < ci)µi∆ (hk(x)− hk(x)−Hk(y) +Hk(y)) (44)

+ I(xi < y − 1 and xi < ci − 1)(min(y, ci)− (xi + 1))µi∆

×
(
hk(xi+)− hk(x)−Hk(y) +Hk(y − 1)

)
(45)

+ I(xi < y < ci)µi∆
(
hk(xi+)− hk(x)−Hk(y) +Hk(y)

)
(46)

+

max(ci − (y + 1), 0)µi∆+
∑
j 6=i

max(cj − xj , 0)µj∆


×
(
hk(xi+)− hk(x)−Hk(y + 1) +Hk(y)

)
, (47)

where a0, a1 ∈ {0, 1, ..., N} are optimal actions at states x and xi+ in a (k+1)-
stage problem withN facilities, and similarly b0, b1 ∈ {0, 1} are optimal actions
at states y and y+1 in the single-facility problem with k+1 stages. (We adopt
the notational convention that x0+ = x for x ∈ S.)

In order to make sense of the above equation, the reader may wish to
think of a sample path argument, in which the proof essentially works in an
analogous way. One may consider 4 random processes, denoted by Υ1, Υ2, Υ3

and Υ4. Processes Υ1 and Υ2 are initialized at states xi+ and x respectively in
a system with N facilities, while Υ3 and Υ4 are initialized at states y + 1 and
y respectively in a single-facility system. All four processes evolve according
to the same sequence of random events and follow optimal decision-making
policies in a finite-stage problem with k+1 stages. Line (40) represents all four
processes receiving an arrival, while line (41) represents service completions
at facilities j 6= i ‘seen’ by Υ1 and Υ2, but not seen by Υ3 or Υ4 (because
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the facilities in question do not exist in the single-facility system). Line (42)
represents all four processes seeing a service completion at facility i (which,
in the case of Υ3 and Υ4, is the only facility). Line (43) represents a service
completion seen by all processes except Υ2, which is possible if xi < ci and
xi < y (in which case Υ2 has the smallest number of services in progress at i).
Line (44) represents a service completion at i seen by Υ1 and Υ3, but not by
Υ2 or Υ4 (which is possible only if xi = y < ci, so that Υ1 and Υ3 jointly have
the greatest number of services in progress at i). Line (45) represents service
completions at i seen by Υ3 and Υ4 but not by Υ1 or Υ2, which requires xi+1 to
be smaller than both y and ci. Line (46) represents a service completion seen
by Υ3 only, which requires xi < y < ci (so that Υ3 has the greatest number
of services in progress at i). Line (47) represents service completions seen by
none of the four processes.

The objective is to show that the sum of the terms in lines (39)-(47) is
non-negative. Using (2), the reward terms in line (39) reduce to:

r(xi+)− r(x)−R(y + 1) +R(y) =

{
αiµi, if xi < ci ≤ y,
0, otherwise.

(48)

Hence, line (39) is non-negative. Since x is a state whose ith component
is bounded above by y, the same also applies to the state xj− (where j ∈
{1, 2, ..., N} \ {i}), and hence line (41) is non-negative due to the inductive
assumption (38). Using similar reasoning, xi− is a state whose ith component
is bounded above by y − 1 (due to the inequality xi ≤ y) and therefore line
(42) is non-negative by the inductive assumption. Line (44) is trivially equal
to zero. The indicator term I(xi < y−1 and xi < ci−1) can only be non-zero
if xi < y, in which case the inequality xi ≤ y−1 holds, implying that line (45)
is also non-negative by the inductive assumption. Line (47) is obviously also
non-negative, again due to the inductive assumption.

Summarizing the arguments given thus far, in order to complete the in-
ductive proof that (38) holds with k replaced by k = 1 it remains only to
show that lines (40), (43) and (46) cannot cause the sum of the terms in
lines (39)-(47) to be negative. Consider line (46) first. The indicator term
I(xi < y < ci) can only be non-zero if the indicator I(xi < ci and xi < y) in
line (43) is also non-zero, in which case the sum of lines (46) and (43) is equal
to µi∆

(
hk(xi+)− hk(x)−Hk(y) +Hk(y − 1)

)
, which is again non-negative

by the inductive assumption due to the fact that (in this particular case) the
inequality xi ≤ y − 1 holds.

Next, consider line (43) and assume xi < ci and xi < y to avoid triviality.
If y < ci then, as explained in the paragraph above, the sum of lines (43) and
(46) is non-negative. On the other hand, suppose y ≥ ci. In this case (48)
implies that the reward terms in line (39) yield a positive term αiµi. Hence,
summing lines (43) and (39) gives:

αiµi + µi∆ (Hk(y − 1)−Hk(y)) . (49)
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However, the upper boundedness property (72) shown in the proof of The-
orem 4 (which applies to any single-facility system) implies that the difference
Hk(y)−Hk(y − 1) satisfies:

Hk(y)−Hk(y − 1) ≤ αiµi − βi
µi∆

,

which immediately implies that the expression in (49) is bounded below by
the positive quantity βi.

These arguments show that the sum of the terms in lines (39), (43) and
(46) is always non-negative. In order to complete the proof that (38) is valid, it
remains only to show that the ‘arrival terms’ in line (40) sum to a non-negative
value. This may be done by considering all possibilities for the actions a0 and
b1 and showing, in each case, that there exists some choice for the actions a1

and b0 such that line (40) is non-negative (this approach is valid because, in
practice, a1 and b0 are maximizing actions). These possibilities are considered
below.

– If a0 = b1 = 0, we consider a1 = b0 = 0, in which case line (40) is non-
negative by the inductive assumption.

– Similarly, if a0 = i and b1 = 1 then we consider a1 = i and b0 = 1, in
which case line (40) is again non-negative by the inductive assumption
since xi + 1 ≤ y + 1.

– If a0 = i and b1 = 0 then we consider a1 = 0 and b0 = 1, in which case line
(40) is trivially equal to zero.

– If a0 = j for some j ∈ {1, 2, ..., N}\{i} and b1 = 0 then we consider a1 = j
and b0 = 0, in which case line (40) is again non-negative by the inductive
assumption since xj+ is a state whose ith component is bounded above by
y.

– If a0 = j for some j ∈ {1, 2, ..., N}\{i} and b1 = 1 then we consider a1 = j
and b0 = 1, with the result that line (40) is non-negative by the inductive
assumption since xj+ is a state whose ith component is bounded above by
y + 1.

– Finally, if a0 = 0 and b1 = 1, then this implies hk(xi+) ≤ hk(x) and Hk(y+
2) ≥ Hk(y+1). The latter inequality implies Hk(y+1) ≥ Hk(y) due to the
concavity property (73) shown in the proof of Theorem 4 (which applies to
any single-facility system). However, due to the inductive assumption (38),
we then have Hk(y+ 2)−Hk(y+ 1) = hk(xi+)− hk(x) = 0. Therefore, by
considering a1 = 0 and b0 = 1, we find that line (40) is bounded below by
zero.

Thus, it has been verified that line (40) is non-negative in all possible
cases. In view of the previous arguments, this establishes that the sum of the
terms in lines (39)-(47) must be non-negative, which completes the inductive
proof that (38) holds for all k ∈ N0. By the limiting properties of hn(·) and
Hn(·) as n→∞, this implies that

h(xi+)− h(x) ≥ H(y + 1)−H(y) (50)
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for all x ∈ S̃ and y ∈ N0 with xi ≤ y < T̃i, where i ∈ {1, 2, ..., N} is arbitrary.
We now complete the proof by appealing to the decision-making properties of
θ∗ and θ[W ]. Given that θ∗ balks at the recurrent state x ∈ Sθ∗ , the optimality
equations (36) imply h(x) ≤ h(xi+) for any facility i ∈ {1, 2, ..., N} such
that xi+ ∈ S̃. Due to (50), we therefore have H(y) ≤ H(y + 1) for all y ∈
{xi, xi+1, ..., T̃i−1} and therefore the single-facility optimality equations imply
the existence of an optimal policy which balks under these states. By definition
of the Whittle indices, it follows that Wi(y) ≤ 0 for y ∈ {xi, xi + 1, ..., T̃i− 1},
and so the Whittle policy θ[W ] declines to join facility i under state x. Since the
facility i was arbitrary, we conclude that θ[W ] balks at state x. This completes
the proof. �

D Proof of Theorem 2.

In this proof we will use Wi(x, λ) to denote the Whittle index Wi(x)
(defined in (13)) given a demand rate λ. We begin by considering the light-
traffic scenario. Let 0 denote the state in S with no customers present at
any facility. By setting x = 0 in (13) and using standard formulae for the
probabilities πi(y, x) one can verify that

Wi(0, λ) = αi −
βi
µi
. (51)

This states, logically, that a 0-threshold policy is preferred to a 1-threshold
policy at facility i if and only if the admission charge is greater than a cus-
tomer’s expected net reward for joining when a server is available. It then
follows from (51) (and the assumption that αi − βi/µi > 0 for each facility
i) that, regardless of the demand rate λ, the Whittle policy θ[W ](λ) always
chooses a facility at state 0 which maximizes αi − βi/µi.

Recall that we are considering a uniformized system with step size (λ +∑N
i=1 ciµi)

−1 = 1, and therefore λ can be interpreted as the probability that a
customer arrives in any particular discrete time step. This implies that we can
express the long-run average reward gθ under an arbitrary stationary policy θ
as

gθ = λ
∑
x∈S

πθ(x)wθ(x)(x), (52)

where πθ(x) is the stationary probability for state x under θ and wa(x) is
a customer’s expected net reward for choosing action a ∈ {0, 1, ..., N} under
state x, defined in (4). Indeed, it is shown rigorously in (Shone et al. (2016))
(Lemma 1) that one can replace the reward function (2) with an alternative,
action-dependent function r̂(x, a) = λwa(x) in the MDP formulation for the
problem without affecting the performance measure gθ under any stationary
policy θ. Using (52), we can write

g∗(λ)− g[W ](λ)

g∗(λ)
=

∑
x∈S πθ∗(x)wθ∗(x)(x)−

∑
x∈S πθ[W ](x)wθ[W ](x)(x)∑

x∈S πθ∗(x)wθ∗(x)(x)
,

(53)
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where θ∗ denotes an optimal stationary policy. Trivially, one can show that
limλ→0 πθ(0) = 1 for any θ ∈ Θ and hence the quantity on the right-hand side
of (53) tends to

wθ∗(0)− wθ[W ](0)

wθ∗(0)
(54)

as λ→ 0. We note that, for any λ > 0,

g[W ](λ)

λ
≤ g∗(λ)

λ
≤ max

i

{
αi −

βi
µi

}
,

where the first inequality is by definition of an optimal policy and the second
is due to the fact that no policy can earn an average reward greater than
λmaxi {αi − βiµi}, as shown by (52). By taking limits as λ→ 0, we obtain

wθ[W ](0) ≤ wθ∗(0) ≤ max
i

{
αi −

βi
µi

}
. (55)

By the previous arguments, wθ[W ](0) is equal to maxi {αi − βi/µi}, so it
follows from (55) that wθ∗(0) − wθ[W ](0) tends to zero as λ → 0. In view of
(54), this establishes the result.

In the heavy-traffic case, we recall that the Whittle policy is based on
an optimal policy for a relaxation of the problem, which involves applying
optimal, independent threshold policies at the N facilities individually. By
analogy to (2), we can say that the reward function for the single-facility
problem represented in Figure 2 is

ri(x) = (αi −W ) min(x, ci)µi − βix. (56)

Under an n-threshold policy, it is trivial to show that the stationary prob-
ability for state n tends to 1 as λ → ∞. Suppose we apply an x-threshold
policy at facility i, where x < ci. As λ → ∞, we approach a situation where
the system is always in state x and therefore, by (56), the long-run average
reward under this policy approaches

x[(αi −W )µi − βi].

By the arguments in Section 3, the Whittle index Wi(x, λ) (in the heavy-
traffic limit) is obtained by solving the equation

x[(αi −W )µi − βi] = (x+ 1)[(αi −W )µi − βi]

for W and hence we obtain

lim
λ→∞

Wi(x, λ) = αi − βi/µi,

which is positive by the assumptions of our model. This states that, in the
heavy-traffic limit, the Whittle policy (with respect to facility i) always directs
a customer to join rather than balk if there is an idle server available. On the
other hand, if we consider a state y ≥ ci, then it can easily be seen from (56)
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that ri(y) is strictly greater than ri(y+ 1), and therefore (in the heavy-traffic
limit) a y-threshold policy will always earn a strictly greater average reward
than a (y+ 1)-threshold policy, regardless of the value of W . This means that
the Whittle index Wi(y, λ) tends to minus infinity, since balking is preferred
to joining at state y for all y ≥ ci.

Since these arguments apply to all facilities i ∈ {1, 2, ..., N} it follows that,
as λ → ∞, we obtain a Whittle heuristic policy which directs a customer to
balk if and only if xi ≥ ci for all i ∈ {1, 2, ..., N} (i.e. all servers are busy at
all facilities). As λ→∞, the average reward under this policy tends to

N∑
i=1

ci(αiµi − βi). (57)

However, examining the reward function (2) in our MDP formulation for
the problem, we see that it is uniformly bounded above by the expression
in (57) and therefore (57) also represents the limiting value for the optimal
average reward as λ→∞. Thus, we have established that the Whittle heuristic
attains optimality in a heavy-traffic limit. �

E Proof of Theorem 3 (Statement 2).

We will use an inductive proof, based on the average reward optimality
equations (19), to show that the function h found by value iteration possesses
the properties of concavity, submodularity and diagonal submissiveness in the
special case of two facilities with a single server at each. The inductive method
is based on the relative value functions hn(x) = vn(x)− vn(0) (for x ∈ S and
n ∈ N0), where vn satisfies the finite-horizon optimality equations:

vn+1(x) = max
a∈A

r(x) +
∑
y∈S

p(x, a,y)vn(y)

 (x ∈ S). (58)

For ease of notation, let us define the first-order differences Dj(x, f) for
real-valued functions f , facilities j ∈ {1, 2} and states x ∈ S as follows:

Dj(x, f) := f(xj+)− f(x).

We will also define the second-order differences Djj(x, f) and Dij(x, f) as
follows:

Djj(x, f) := Dj(x, Dj(x, f)) = f((xj+)j+)− f(xj+)− f(xj+) + f(x),

Dij(x, f) := Di(x, Dj(x, f)) = f((xi+)j+)− f(xi+)− f(xj+) + f(x).

It is sufficient to show that for states x ∈ S, i, j ∈ {1, 2} with i 6= j and
n ∈ N0:

Djj(x, hn) ≤ 0, (59)

Dij(x, hn) ≤ 0, (60)

Djj(x, hn)−Dij(x, hn) ≤ 0. (61)
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We define v0(x) = 0 for all x ∈ S, and hence all three properties hold
trivially when n = 0. Assume that they also hold when n = k, where k ∈ N0 is
arbitrary. The submodularity property (60) will be considered first. At stage
n = k + 1, one has (after simplifications):

Dij(x, hk+1) = Dij(x, r) + λ∆
(
hk(((xi+)j+)a1+)− hk((xi+)a0+)− hk((xj+)b1+) + hk(xb0+)

)
+

2∑
m=1

min(xm, 1)µm∆Dij(x
m−, hk)

+

(
1− λ∆−

2∑
m=1

min(xm, 1)µm∆− I(xi = 0)µi∆− I(xj = 0)µj∆

)
Dij(x, hk),

where a0, a1, b0, b1 are optimal actions at states xi+, (xi+)j+, x and xj+

respectively in a (k + 1)-stage problem. It can easily be checked (using (2))
that Dij(x, r) = 0. Also, Dij(x, hk) and Dij(x

m−, hk) (for m ∈ {1, 2}) are
non-positive by the inductive assumption. Hence, it suffices to show:

hk(((xi+)j+)a1+)− hk((xi+)a0+)− hk((xj+)b1+) + hk(xb0+) ≤ 0. (62)

One may proceed by considering all possible cases for the actions a1, b0 ∈
{0, 1, 2}. For each possible case, it suffices to find only one possible choice for
a0 and b1 such that (62) holds. This is because a0 and b1 are defined as actions
which maximize hk((xi+)a0+) and hk((xj+)b1+) respectively. Also, the number
of cases to consider for (a1, b0) may be reduced by noting that the expression
for Dij(x, hk) is symmetric in i and j (that is, Dij(x, hk)=Dji(x, hk)), so (for
example) it is not necessary to treat a1 = b0 = i and a1 = b0 = j as separate
cases.

After reductions, five possibilities remain for a1 and b0. These are consid-
ered below.

– If a1 = b0 = 0, one may consider a0 = b1 = 0, then (62) holds since the
left-hand side is equal to Dij(x, hk) ≤ 0.

– If a1 = b0 = j for some j ∈ {1, 2}, then similarly we consider a0 = b1 = j, in
which case (62) holds since the left-hand side is equal to Dij(x

j+, hk) ≤ 0.
– If a1 = 0 and b0 = j for some j ∈ {1, 2}, then we consider a0 = j and
b1 = 0, in which case (62) holds since the left-hand side is equal to zero.

– If a1 = j and b0 = i for some i, j ∈ {1, 2} with i 6= j, we consider a0 = j
and b1 = i, in which case (62) holds since the left-hand side is equal to
Djj(x

i+, hk) ≤ 0.
– If a1 = j for some j ∈ {1, 2} and b0 = 0 then, since these actions attain

the maximum in (58) at states (xi+)j+ and x respectively, it must be the
case that Dj((x

i+)j+, hk) ≥ 0 and Dj(x, hk) ≤ 0. However, the induc-
tive assumptions of concavity and submodularity imply Dj((x

i+)j+, hk) ≤
Dj(x

i+, hk) ≤ Dj(x, hk), so we conclude thatDj((x
i+)j+, hk) = Dj(x

i+, hk) =
Dj(x, hk) = 0 in this case. By considering a0 = j and b1 = 0, we find that
the left-hand side of (62) simplifies to

Dj((x
i+)j+, hk)−Dj(x, hk),
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which is equal to zero by our previous arguments.

The conclusion is that Dij(x, hk+1) is non-positive in all possible cases, as
required. Next, the diagonal submissiveness property will be considered. After
some simplifications, one may derive the following expression for Djj(x, hk+1):

Djj(x, hk+1)−Dij(x, hk+1) = Djj(x, r)−Dij(x, r)

+ λ∆
(
hk(((xj+)j+)a1+)− hk(((xi+)j+)a0+)− hk((xj+)b1+) + hk((xi+)b0+)

)
+

2∑
m=1

min(xm, 1)µm∆
(
Djj(x

m−, hk)−Dij(x
m−, hk)

)
+ I(xj = 0)µj∆Dj(x, hk) + I(xi = 0)µi∆Djj(x, hk)

+

(
1− λ∆−

2∑
m=1

min(xm, 1)µm∆− I(xj = 0)µj∆− I(xi = 0)µi∆

)(
Djj(x, hk)−Dij(x, hk)

)
,

(63)

where a0, a1, b0 and b1 are optimal actions at states (xi+)j+, (xj+)j+, xi+

and xj+ respectively in a (k+ 1)-stage problem. Using (2) one can verify that
Djj(x, r)−Dij(x, r) ≤ 0, where the inequality is strict only if x is a state with
no customers present at facility j. In addition, Djj(x, hk) − Dij(x, hk) ≤ 0
and Djj(x

m−, hk) − Dij(x
m−, hk) ≤ 0 (for m ∈ {1, 2}) due to the inductive

assumption. To continue the proof, it will be useful to show:

hk(((xj+)j+)a1+)−hk(((xi+)j+)a0+)−hk((xj+)b1+)+hk((xi+)b0+) ≤ 0. (64)

Again, this may be done by considering the possible cases for the actions
a1, b0 ∈ {0, 1, 2}. This time, there are nine possibilities. These are considered
below.

– If a1 = b0 = 0, then one may consider a0 = b1 = 0. Then (64) holds because
the left-hand side is equal to Djj(x, hk)−Dij(x, hk) ≤ 0.

– If a1 = b0 = j, then similarly we may consider a0 = b1 = j. Then (64) holds
because the left-hand side is equal to Djj(x

j+, hk)−Dij(x
j+, hk) ≤ 0.

– If a1 = b0 = i then we consider a0 = b1 = i. Then (64) holds because the
left-hand side is equal to Djj(x

i+, hk)−Dij(x
i+, hk) ≤ 0.

– If a1 = i and b0 = j then we consider a0 = j and b1 = i, in which case (64)
holds trivially because the left-hand side is equal to zero.

– If a1 = 0 and b0 = j then we consider a0 = 0 and b1 = j, in which case
(64) again holds trivially since the left-hand side is equal to zero.

– If a1 = 0 and b0 = i then we consider a0 = 0 and b1 = i and aim to show:

hk((xj+)j+)− hk((xi+)j+)− hk((xi+)j+) + hk((xi+)i+) ≤ 0. (65)

Due to the inductive assumption, the left-hand side of (65) is bounded
above by:

hk(xj+)− hk(xi+)− hk((xi+)j+) + hk((xi+)i+)

= hk((xi+)i+)− hk((xi+)j+)− hk(xi+) + hk(xj+),
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which is equal to Dii(x, hk)−Dij(x, hk) and is therefore non-positive due
to the same inductive assumption (with components i and j interchanged).

– If a1 = j and b0 = 0, one may choose a0 = j and b1 = 0. Then, due to the
inductive assumption of diagonal submissiveness again, one may write:

hk(((xj+)j+)j+)− hk(((xi+)j+)j+)− hk(xj+) + hk(xi+)

≤ hk((xj+)j+)− hk((xi+)j+)− hk(xj+) + hk(xi+),

which is equal to Djj(x, hk)−Dij(x, hk) ≤ 0.
– If a1 = i and b0 = 0 then we consider a0 = 0 and b1 = i. Then the left-hand

side of (64) is equal to Djj(x
i+, hk), which is non-positive due to concavity

of hk.
– Finally, if a1 = j and b0 = i, then the finite-stage optimality equa-

tions (58) imply Dj((x
j+)j+, hk) ≥ Di((x

j+)j+, hk) and Dj(x
i+, hk) ≤

Di(x
i+, hk). The former inequality implies Dj(x

j+, hk) ≥ Di(x
j+, hk) due

to the inductive assumption of diagonal submissiveness at stage k, which
in turn implies Dj(x, hk) ≥ Di(x, hk). By the same reasoning, the in-
equality Dj(x

i+, hk) ≤ Di(x
i+, hk) implies Dj(x, hk) ≤ Di(x, hk). Hence,

Dj(x, hk) ≤ Di(x, hk) and Dj(x, hk) ≥ Di(x, hk) are both true, implying
Dj(x, hk) = Di(x, hk) ≥ 0; that is, the actions i and j are both optimal at
state x. It has already been shown that (64) holds when a1 = b0 = j, so
it must also hold when a1 = j and b0 = i given that hk(xj+) and hk(xi+)
are equal.

These arguments confirm that (64) holds in all possible cases for the actions
a1 and b0. It follows that the sum of the second, third and fifth lines on the
right-hand side of (63) is non-positive. Hence, Djj(x, hk+1)−Dij(x, hk+1) may
be bounded above as follows:

Djj(x, hk+1)−Dij(x, hk+1) ≤ Djj(x, r)−Dij(x, r)

+ I(xj = 0)µj∆Dj(x, hk) + I(xi = 0)µi∆Djj(x, hk). (66)

The term I(xi = 0)µi∆Djj(x, hk) is always non-positive due to the induc-
tive assumption. If xj ≥ 1, then I(xj = 0) = 0 and Djj(x, r)−Dij(x, r) = 0,
so the right-hand side of (66) is non-positive as required. It remains only to
consider the case xj = 0. In this case, we will need to show that the following
upper bound holds for all n ∈ N0:

Dj(x, hn) ≤ αjµj − βj
µj∆

. (67)

Indeed, property (67) may be established using a separate induction proof.
It holds trivially when n = 0 since we define v0(x) = 0 for x ∈ S and αjµj−βj
is assumed positive in our model formulation. Proceeding by induction, we
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consider n = k + 1 and write:

Dj(x, hk+1) = Dj(x, r) + λ∆
(
hk((xj+)a1+)− hk(xa0+)

)
+

2∑
i=1

min(xi, ci)µi∆Dj(x
i−, hk)

+

(
1− λ∆−

2∑
i=1

min(xi, ci)µi∆− I(xj = 0)µj∆

)
Dj(x, hk),

(68)

where a0 and a1 are optimal actions at states x and xj+ respectively in a
(k+1)-stage problem. Then, using the definition of a0 as a maximizing action,
we can write

hk((xj+)a1+)−hk(xa0+) ≤ hk((xj+)a1+)−hk(xa1+) = Dj(x
a1+, hk) ≤ αjµj − βj

µj∆
,

where the last inequality follows from the inductive assumption that (67) holds
for n = k. Similarly, Dj(x

i−, hk) is bounded above by (αjµj − βj)/(µj∆) for
any i ∈ {1, 2, ..., N}, again due to the inductive assumption. To proceed, it
will be convenient to consider the cases xj ≥ 1 and xj = 0 separately. If
xj ≥ 1, then Dj(x, r) = −βj < 0 and I(xj = 0) = 0. Hence, due to the
previous arguments, the right-hand side of (68) may be bounded above by
a convex combination of terms bounded above by (αjµj − βj)/(µj∆), which
establishes that Dj(x, hk+1) ≤ (αjµj − βj)/(µj∆) as required. On the other
hand, if xj = 0, then Dj(x, r) = αjµj − βj > 0. However, since I(xj = 0) = 1
in this case, (68) implies (again making use of the inductive assumption):

Dj(x, hk+1) ≤ αjµj − βj + (1− µj∆)
αjµj − βj
µj∆

=
αjµj − βj
µj∆

.

This completes the inductive proof that (67) holds for all n ∈ N0. Returning
to the main part of our proof, we need to confirm that the left-hand side of
(66) is non-positive in the case xj = 0. In this case we have I(xj = 0) = 1 and
Djj(x, r)−Dij(x, r) = −αjµj . Hence, using (67), we can write

Djj(x, hk+1)−Dij(x, hk+1) ≤ −αjµj + µj∆

(
αjµj − βj
µj∆

)
= −βj < 0. (69)

This confirms that Djj(x, hk+1) − Dij(x, hk+1) ≤ 0 for all states x ∈ S.
Since it was shown earlier that Dij(x, hk+1) ≤ 0, it follows automatically that
Djj(x, hk+1) ≤ 0, which completes the inductive proof that all three of the
properties (59)-(61) hold for integers n ∈ N0. Since h(x) = limn→∞ hn(x) for
all x ∈ S, the function h in (19) also shares these properties.

To complete the proof, we note that the existence of a monotone optimal
policy can easily be proved if the function h satisfying the average reward
optimality equations (19) is known to have the properties of concavity, sub-
modularity and diagonal submissiveness. We simply need to define a policy



Rob Shone et al.

θ∗ which always chooses an action attaining the maximum on the right-hand
side of (19), and settles ties in a consistent way if two or more actions are
tied. For example, suppose θ∗ always prefers facility i to facility j if these two
actions are tied, and never chooses to balk unless balking is the only action
which attains the maximum. Then balking is chosen at state x ∈ S if and only
if Di(x, h) and Dj(x, h) are both negative. If this is the case, then we can use
the concavity property to show Di(x

i+, h) and Dj(x
j+, h) are also negative,

while submodularity implies that Dj(x
i+, h) and Di(x

j+, h) are also negative.
Therefore θ∗ must choose to balk at states xi+ and xj+, and property (a) in
the statement of the theorem is satisfied. Similar arguments can be used to
show that properties (b) and (c) are also satisfied and we omit the details here.
�

F Proof of Theorem 4 (Statement 2).

In this proof we consider optimal policies in the single-facility case (N =
1). Let Ti denote the largest integer n such that an n-threshold policy is
optimal at facility i ∈ {1, 2, ..., N} given a demand rate λ′ > 0. Our aim is
to show that, given a demand rate λ > λ′ and an arbitrary integer m > Ti,
it is impossible for an m-threshold policy to be optimal at facility i. We do
this using the well-known technique of induction based on DP value iteration.
For convenience, we will drop the facility index i from our notation since the
facility is arbitrary. Given a demand rate λ > 0, let vk(x) denote the maximum
achievable total reward in a finite-horizon problem consisting of k discrete time
steps, given an initial state x ∈ N0, and let

hk(x) := vk(x)− vk(0)

for all k ∈ N0 and x ∈ N0. In average reward problems, we must use rel-
ative value iteration in order to obtain finite values as k → ∞ and this is
accomplished by defining hk(x) as the relative benefit of starting in state x as
opposed to starting at a fixed reference state (see Puterman (1994)); we use
state 0 as the reference state here. The Bellman equation is

vk(x) = r(x) + max
a∈{0,1}

∑
y∈N0

p(x, a, y)vk−1(y) (k ≥ 1), (70)

where the single-step rewards r(x) and transition probabilities p(x, a, y) are
defined in (2) and (1) respectively (using scalars instead of vectors for the
system state since we are considering a single facility). The corresponding
finite-horizon values under demand rate λ′ < λ will be denoted by v′k(x) and
h′k(x). Our aim is to show that, for all k ∈ N0 and x ∈ N0:

h′k(x+ 1)− h′k(x) ≥ hk(x+ 1)− hk(x). (71)

In order to complete the proof, we will also need to show the properties

hk(x+ 1)− hk(x) ≤ αµ− β
µ∆

(72)
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and
hk(x+ 2)− hk(x+ 1) ≤ hk(x+ 1)− hk(x) (73)

hold for k ∈ N0 and x ∈ N0. (Note that, since the demand rate λ is arbitrary,
we can replace hk(·) with h′k(·) in (72) and (73) without loss of generality.) It
will also simplify our notation to define

D(x, f) = f(x+ 1)− f(x)

for an arbitrary real-valued function f . We assume that h0(x) = h′0(x) = 0 for
all x ∈ N0 and therefore (71), (72) and (73) hold trivially when k = 0. The
principle of uniformization (see Serfozo (1979)) implies that, given a demand
rate λ, we can choose the discrete-time step size to be any positive value less
than or equal to (λ+ciµi)

−1. In particular, we can use the step size (λ+ciµi)
−1

under both of the demand rates λ and λ′ < λ. We will therefore define the
step size to be ∆ = (λ+ ciµi)

−1 under both of these demand rates.
Our next task will be to show that (71), (72) and (73) hold with k replaced

by k + 1, under the assumption that they hold for an arbitrary k ∈ N0. We
will begin with (72). By enumerating transition probabilities, we obtain

D(x, hk+1) =D(x, r) + λ∆(hk(x+ 1 + a1)− hk(x+ a0))

+ min(x, c)µ∆D(x− 1, hk)

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)D(x, hk), (74)

where I denotes the indicator function and a0, a1 ∈ {0, 1} are actions which
maximize hk(x+a0) and hk(x+1+a1) respectively. We note that, although the
value function hk only takes non-negative arguments, the term min(x, c)µ∆D(x−
1, hk) can be ignored in the x = 0 case since min(0, c) = 0.

We proceed by considering the possible cases for actions a0 and a1. If
a0 = a1 = 0, then the expression

hk(x+ 1 + a1)− hk(x+ a0) (75)

is equal to D(x, hk), which is bounded above by (αµ−β)/(µ∆) by the inductive
assumption. Similarly, if a0 = a1 = 1 then (75) is equal to D(x+ 1, hk), which
is also bounded above by (αµ − β)/(µ∆). If a0 = 1 and a1 = 0 then (75) is
trivially equal to zero. Finally, if a0 = 0 and a1 = 1 then this implies that the
inequalities

D(x, hk) ≤ 0, D(x+ 1, hk) ≥ 0

both hold. However, property (73) tells us that D(x + 1, hk) ≤ D(x, hk) and
therefore the above inequalities imply D(x + 1, hk) = D(x, hk) = 0. With
a0 = 0 and a1 = 1, (75) is equal to D(x+1, hk)+D(x, hk) = 0. Thus, we have
shown that in all possible cases for a0 and a1, the difference (75) is bounded
above by (αµ− β)/(µ∆).

We still need to consider the other terms on the right-hand side of (74).
We will consider the cases x < c and x ≥ c separately. If x < c, then

D(x, hk+1) =D(x, r) + λ∆(hk(x+ 1 + a1)− hk(x+ a0))

+ xµ∆D(x− 1, hk) + (1− λ∆− (x+ 1)µ∆)D(x, hk).
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By the inductive assumption D(x−1, hk) and D(x, hk) are bounded above
by (αµ − β)/(µ∆), and we have shown that the same is true of hk(x + 1 +
a1)− hk(x+ a0). Therefore, noting that D(x, r) = αµ− β for x < c, we have

D(x, hk+1) ≤ αµ− β + (1− µ∆)(αµ− β)/(µ∆) = (αµ− β)/(µ∆)

as required. In the x ≥ c case, we have

D(x, hk+1) =D(x, r) + λ∆(hk(x+ 1 + a1)− hk(x+ a0))

+ cµ∆D(x− 1, hk) + (1− λ∆− cµ∆)D(x, hk). (76)

The last three terms on the right-hand side of (76) represent a convex
combination of terms bounded above by (αµ − β)/(µ∆). Also, given that
x ≥ c, we have D(x, r) = −β < 0 and therefore D(x, hk+1) is bounded above
by (αµ− β)/(µ∆) as required. This completes the proof that (72) holds with
k replaced by k + 1.

Next, we consider (73). Enumerating the transition probabilities again, we
obtain (after some simplifications):

D(x+ 1, hk+1)−D(x, hk+1) = D(x+ 1, r)−D(x, r)

+ λ∆([hk(x+ 2 + a2)− hk(x+ 1 + a1)]− [hk(x+ 1 + a1)− hk(x+ a0)])

+ min(x, c)µ∆(D(x, hk)−D(x− 1, hk))

+ I(x = c− 1)µ∆D(x, hk)

+ (1− λ∆−min(x, c)µ∆− I(x < c− 1)µ∆− I(x < c)µ∆)(D(x+ 1, hk)−D(x, hk)),
(77)

where a0, a1, a2 ∈ {0, 1} are actions which maximize hk(x+a0), hk(x+1+a1)
and hk(x + 2 + a2) respectively. The reward function r(x) increases linearly
(with gradient αµ− β > 0) when x < c, and decreases linearly (with gradient
−β < 0) when x ≥ c. Hence:

D(x+ 1, r)−D(x, r) =

{
−αµ, if x = c− 1,

0, otherwise,

so D(x + 1, r) − D(x, r) is non-positive. Next, we will show that the second
line on the right-hand side of (77) is non-positive by considering the possible
combinations for a0, a1 and a2. These are considered below.

– If a0 = a2 = 0, then

[hk(x+ 2 + a2)− hk(x+ 1 + a1)]− [hk(x+ 1 + a1)− hk(x+ a0)] (78)

is bounded above by D(x+ 1, hk)−D(x, hk). This is due to the fact that
a1 ∈ {0, 1} is a maximizing action, so the value of (78) must be no greater
than the value we would obtain by putting a1 = 0. Since D(x + 1, hk) −
D(x, hk) ≤ 0 by the inductive assumption, we can say that (78) is non-
positive.
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– If a0 = a2 = 1, then we can use similar reasoning to the case above and say
that (78) is bounded above by D(x+ 2, hk)−D(x+ 1, hk) (by considering
a1 = 1), and this is also non-positive by the inductive assumption.

– If a0 = 1 and a2 = 0, then (78) is bounded above by

hk(x+ 2)− hk(x+ 2)− hk(x+ 1) + hk(x+ 1) = 0.

– Finally, if a0 = 0 and a2 = 1, then (78) is bounded above by

hk(x+ 3)− hk(x+ 2)− hk(x+ 1) + hk(x),

which is equivalent to D(x+2, hk)−D(x, hk). By the inductive assumption
we can say that D(x+2, hk) ≤ D(x+1, hk) ≤ D(x, hk), so (78) must again
be non-positive.

By the inductive assumption, the differences D(x, hk) −D(x − 1, hk) and
D(x+1, hk)−D(x, hk) appearing on the third and fifth lines of (77) respectively
are non-positive. On the fourth line we have an expression which is non-zero
only if x = c− 1, in which case it is bounded above by αµ−β due to property
(72). However, in the x = c−1 case we also have D(x+1, r)−D(x, r) = −αµ,
so we can conclude that for any x ∈ N0:

D(x+ 1, r)−D(x, r) + I(x = c− 1)µ∆D(x, hk) ≤ 0.

This completes the proof that the sum of terms on the right-hand side of
(77) is non-positive, as required. At this point we have proved that (72) and
(73) hold with k replaced by k + 1, and next we turn our attention to (71).
By again enumerating transition probabilities, we have

D(x, h′k)−D(x, hk) =λ′∆([h′k(x+ 1 + a′1)− h′k(x+ a′0)]− [hk(x+ 1 + a1)− hk(x+ a0)])

+ (λ− λ′)∆(D(x, h′k)− [hk(x+ 1 + a1)− hk(x+ a0)])

+ min(x, c)µ∆(D(x− 1, h′k)−D(x− 1, hk))

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)(D(x, h′k)−D(x, hk)),
(79)

where a0, a1, a
′
0 and a′1 are all actions (belonging to {0, 1}) which maximize

the relevant quantities hk(x+a0), hk(x+1+a1), etc. By induction we assume
that the differences D(x − 1, h′k) −D(x − 1, hk) and D(x, h′k) −D(x, hk) are
both non-negative and therefore only the first and second lines on the right-
hand side of (79) remain to be checked for non-negativity. We need to show
that, for each possible combination of actions a0, a1, a

′
0, a
′
1 ∈ {0, 1}, we have

λ′∆([h′k(x+ 1 + a′1)− h′k(x+ a′0)]− [hk(x+ 1 + a1)− hk(x+ a0)])

+ (λ− λ′)∆(D(x, h′k)− [hk(x+ 1 + a1)− hk(x+ a0)])

≥ 0. (80)

In practice, since a0, a1, a
′
0, a
′
1 are all maximizing actions, we only need to

consider the possible cases for a′0 and a1 and show (in each case) that there
exists some choice of (a′1, a0) ∈ {0, 1}2 such that (80) holds. The possible cases
are considered below.
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– If a′0 = a1 = 0, then we consider a′1 = a0 = 0 also, in which case (80) holds
by the inductive assumption (71).

– If a′0 = a1 = 1, then we consider a′1 = a0 = 1, in which case the first term
on the left-hand side of (80) is non-negative by the inductive assumption,
and the second term simplifies to

(λ− λ′)∆(D(x, h′k)−D(x+ 1, hk)).

Due to property (73), the above expression is bounded below by

(λ− λ′)∆(D(x, h′k)−D(x, hk)),

which is non-negative due to (72).
– If a′0 = 1 and a1 = 0, then we consider a′1 = 0 and a0 = 1. Then the first

term on the left-hand side of (80) is equal to zero, and the second term
simplifies to (λ−λ′)∆D(x, h′k). Given that a′0 = 1, it must be the case that
D(x, h′k) ≥ 0, so (80) holds as required.

– Finally, if a′0 = 0 and a1 = 1, this implies D(x, h′k) ≤ 0 and D(x +
1, hk) ≥ 0. The latter inequality implies D(x, hk) ≥ 0 due to (73), but
given that D(x, h′k) ≥ D(x, hk) by the inductive assumption we then obtain
D(x, hk) = D(x, h′k) = D(x+1, hk) = 0. By considering a′1 = 0 and a0 = 1
in (80) the left-hand side simplifies to

λ′∆(D(x, h′k)−D(x+ 1, hk)) + (λ− λ′)∆(D(x, h′k)−D(x+ 1, hk)),

which is equal to zero by our previous arguments.

This completes the proof that (71) holds with k replaced by k + 1. At
this point we have shown that (71), (72) and (73) hold for all k ∈ N0 and
x ∈ N0. As k → ∞, hk tends to a function h which satisfies the average
reward optimality equations (see Puterman (1994)). As such, let h and h′

denote the functions satisfying the optimality equations under demand rates
λ and λ′ < λ respectively; that is, h = limk→∞ hk and h′ = limk→∞ h′k. Given
that T is the largest integer n such that an n-threshold policy is optimal under
a demand rate λ′ > 0, the optimality equations imply that

h′(m+ 1)− h′(m) < 0 ∀m ≥ T.

Our inductive proof implies that h(x + 1) − h(x) ≤ h′(x + 1) − h′(x) for
any x ∈ N0, so from the above we obtain h(m + 1) − h(m) < 0 for m ≥
T , which proves that T is the greatest possible optimal threshold under the
larger demand rate λ. Recalling that an arbitrary facility i ∈ {1, 2, ..., N} was
considered throughout this proof, it follows that if balking is chosen by the
Whittle policy at state x ∈ S under demand rate λ′ then it must also be chosen
at x under demand rate λ, and so we obtain SW (λ) ⊆ SW (λ′) as stated by
the theorem. �
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G Proof of Theorem 7 and a counter-example to show lack of
heavy-traffic optimality for θ[B].

First, we will prove Theorem 7. Let Λ = (λ1, ..., λN ) be any static rout-
ing policy under which the system is stable; that is, λi < ciµi for each
i ∈ {1, ..., N}. The long-run average reward gΛ(λ) under this policy is given
by (20). By Little’s formula (see Gross and Harris (1998), p.10) we have
Li(λi) = λiMi(λi) for each facility i, where Mi(λi) is an individual customer’s
average waiting time in the system. Hence, we can also write

gΛ(λ) =
N∑
i=1

λi(αi − βiMi(λi)). (81)

As the system demand rate λ tends to zero, the constraint
∑N
i=1 λi ≤

λ implies that λi → 0 for each i ∈ {1, ..., N}, which in turn implies that
Mi(λi) → 1/µi (equivalently, a customer’s expected waiting time at facility i
tends to their expected service time). Let J denote the set of facilities which
maximize αi − βi/µi. That is:

J = arg max
i∈{1,...,N}

{
αi −

βi
µi

}
.

Also, let Λ̄ = (λ̄1, ..., λ̄N ) be a static policy which, given any demand rate
λ > 0, always chooses to join a particular facility j ∈ J with probability
one; that is, λ̄j = λ for some j ∈ J and λ̄i = 0 for all i 6= j. Since we are
considering a light-traffic limit, we can assume that λ < cjµj and hence the
system is stable under Λ̄. Then, by our previous arguments:

lim
λ→0

gΛ̄(λ)

λ
= lim
λ→0

N∑
i=1

λ̄i
λ

(αi − βiMi(λi)) = max
i∈{1,...,N}

{
αi −

βi
µi

}
. (82)

Meanwhile, it is clear that an upper bound for the expected long-run av-
erage reward under any admissible policy (static or otherwise) is λmaxi{αi−
βi/µi}, since an individual customer’s expected net reward can never be greater
than maxi{αi − βi/µi} (see 4). Therefore the equation (82) implies that the
static policy Λ̄ achieves asymptotic light-traffic optimality, and so this must
also be the case for the optimal static policy Λ∗.

Next, consider the Bernoulli improvement policy θ[B]. The method of con-
struction for this policy implies that, given any demand rate λ > 0, it will
improve upon the expected long-run average reward earned by the optimal
static policy Λ∗. Indeed, the action chosen by θ[B] at state x is that which
maximizes the expression δ(x, a) defined in (21). Noting that

N∑
i=1

λ∗i
λ
δ(x, i) +

λ∗0
λ
δ(x, 0) = 0,
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it must be the case that δ(x, a) ≥ 0 for at least one action a ∈ {0, 1, ..., N}. It
follows from the definition of δ(x, a) that g[B](λ) ≥ gΛ

∗
(λ) for all λ > 0 and

therefore θ[B] inherits the light-traffic optimality of Λ∗. �

Next, we provide a counter-example to show that θ[B] is not necessarily
optimal in a heavy-traffic limit. We consider a single facility (N = 1) and a
demand rate λ = 5. The parameters for the single facility are given as

c = 5, µ = 2, β = 15, α = 8.

Let λ∗1 be the Poisson demand rate for the facility under the optimal static
policy. Solving the relevant convex optimization problem yields λ∗1 ≈ 3.595,
which gives an average reward of approximately 1.458. We also note that, due
to the concavity of the objective function, the same optimal value λ∗1 will be
obtained for any value of λ greater than 5.

It can be seen from (28) and (30) that the index Di(x, λ
∗
1) is independent

of the system demand rate λ. In this example, Di(x, λ
∗
1) is negative if and only

if x ≥ 3. Hence, for all demand rates λ ≥ 5, the Bernoulli improvement policy
θ[B](λ) is a threshold policy with a threshold of 3. Note that if a single facility
is operating under a threshold policy and T ∈ N denotes the threshold, then
the long-run average reward under the threshold policy tends to

min(c, T )αµ− βT

as the demand rate tends to infinity. Hence, in this example, we have

lim
λ→∞

g[B](λ) = 3(αµ− β) = 3.

However, by increasing the threshold to 5, we would obtain a policy under
which the average reward tends to 5(αµ − β) = 5 as λ → ∞. Hence, for
sufficiently large λ, we find that θ[B](λ) is sub-optimal.

H Methods for generating the parameters for the numerical
experiments in Section 6

For the 32,934 systems considered in Section 6.1, the parameters were
randomly generated as follows:

– The number of facilities, N , was sampled unbiasedly from the set {2, 3, 4}.
– Each service rate µi was sampled from a uniform distribution between 5

and 25.
– Each service capacity ci was sampled unbiasedly from the set {1, 2, 3, 4, 5}.
– Each holding cost βi was sampled from a uniform distribution between 5

and 25.
– Each fixed reward αi was sampled from a uniform distribution which was

dependent upon the number of facilities N . This uniform distribution was
between 2 and 28 in the case N = 2, between 2 and 18 in the case N = 3,
and between 2 and 8 in the case N = 4.
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– The demand rate λ was sampled from a uniform distribution between 0

and 1.5×
N∑
i=1

ciµi.

In addition, all facilities i were required to satisfy the condition αi > βi/µi
in order to avoid degeneracy, and the size of S̃ (defined in (5)) was required
to be between 100 and 100,000 (inclusive).

Parameter sets which did not satisfy these criteria were rejected and, in
these cases, all parameters were re-sampled. (Note: as a result of the require-
ment for S̃ to be between 100 and 100,000, parameter sets with N = 2 were
somewhat more likely to be accepted than those with N = 3 or N = 4. This
can be seen in Section 6 (see Table 2).)

For the 4660 systems considered in Section 6.2, parameters were randomly
generated as follows:

– The number of facilities,N , was sampled unbiasedly from the set {4, 5, 6, 7, 8, 9, 10, 11, 12}.
– Each service capacity ci was sampled unbiasedly from the set {2, 3, 4, 5, 6}.
– Each fixed reward αi was sampled from a uniform distribution between 2

and 20.
– The parameters µi and βi and the demand rate λ were generated in the

same way as in Section 6.1.

As in Section 6.1, all facilities i were required to satisfy the condition
αi > βi/µi. For these ‘large system’ experiments, the size of S̃ was required to
be greater than 100,000. However, in order to place a restriction on the number
of indices to be computed, we also enforced the requirement that the selfish
‘caps’ for the individual facilities, given by bαiciµi/βic (see (5)) should not
exceed 100. Parameter sets which did not satisfy the aforementioned criteria
were rejected and, in these cases, all parameters were re-sampled.
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