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The Supplementary Material is organized as follows. Section S1 presents
the proofs of Lemma 1, Theorems 1–5 and Corollary 1 of the article. Section S2
displays plots of random variates from Clayton copula, Ali-Mikhail-Haq copula
and BB7 copula discussed in Sections 4.2 and 6 of the article. Finally, Section
S3 presents some properties of the measure for trivariate random vectors and
its sample analogue discussed in Section 9 of the article.

S1 Proofs

S1.1 Proof of Theorem 1

Proof It follows from the expression (4) that

λU = lim
u↑1

C(u, u)

1− u
= lim

u↓0

C(ū, ū)

u
.

This result and Proposition 4 imply that

α(0) = lim
u↓0

log

(
C(ū, ū)

C(u, u)

)
= log

(
lim
u↓0

C(ū, ū)/u

C(u, u)/u

)
= log

(
λU
λL

)
.
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The last equality holds because λU and λL exist and either of λU and λL is
not equal to zero.

S1.2 Proof of Theorem 2

Proof If follows from the assumption that there exists a slowly varying function
`L(u) such that C(u, u) ∼ uκL`L(u) as u→ 0. Similarly, there exists a slowly
varying function `U (u) such that C(ū, ū) ∼ uκU `U (u) as u→ 0. Therefore

α(0) = lim
u↓0

log

(
C(ū, ū)

C(u, u)

)
= lim

u↓0
log

(
uκU−κL

`U (u)

`L(u)

)
=

{
∞, κU > κL,
−∞, κU < κL.

The last equality holds because `U (u)/`L(u) is slowly varying. If κU = κL and
either ΥU 6= 0 or ΥL 6= 0, then

α(0) = lim
u↓0

log

(
`U (u)

`L(u)

)
= log

(
lim
u↓0

`U (u)

`L(u)

)
= log

(
ΥU
ΥL

)
.

S1.3 Proof of Theorem 3

Proof Proposition 4 implies that α(0) can be expressed as

α(0) = lim
u↓0

log

(
C(ū, ū)

C(u, u)

)
= log

(
lim
u↓0

C(ū, ū)

C(u, u)

)
.

Since limu↓0 dC(u, u)/du = limu↓0 dC(ū, ū)/du = 0, the l’Hôpital’s rule is
applicable to the last expression of the equation above. Hence we have

α(0) = log

(
lim
u↓0

d2C(ū, ū)/du2

d2C(u, u)/du2

)
= log

(
lim
u↓0

γ(1− u)

γ(u)

)
as required.

S1.4 Proof of Lemma 1

Proof It is straightforward to see that E [TL(u)] and var [TL(u)] can be calcu-
lated as

E [TL(u)] = E

[
1

n

n∑
i=1

1(U1i ≤ u, U2i ≤ u)

]
=

1

n

n∑
i=1

E [1(U1i ≤ u, U2i ≤ u)]

=
1

n
· nCu = Cu,
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var [TL(u)] = var

[
1

n

n∑
i=1

1(U1i ≤ u, U2i ≤ u)

]
=

n

n2
var [1(U11 ≤ u, U21 ≤ u)]

=
1

n

(
E
[
12(U11 ≤ u, U21 ≤ u)

]
− {E [1(U11 ≤ u, U21 ≤ u)]}2

)
=

1

n

(
Cu − C2

u

)
=

1

n
Cu(1− Cu).

Noting that E [1(U11 > 1− u, U21 > 1− u)] = C ū, the other expectation and
variance, namely, E [TU (u)] and var [TU (u)], can be calculated in a similar
manner.

Consider

cov [TL(u), TL(v)] = E [TL(u)TL(v)]− E [TL(u)]E [TL(v)] .

The first term of the right-hand side of the equation above is

E [TL(u)TL(v)] =
1

n2
E

 n∑
i=1

1(U1i ≤ u, U2i ≤ u)

n∑
j=1

1(U1j ≤ v, U2j ≤ v)


=

1

n2

n∑
i,j=1

E [1(U1i ≤ u, U2i ≤ u)1(U1j ≤ v, U2j ≤ v)]

=
1

n2

n∑
i=1

E [1(U1i ≤ u, U2i ≤ u)1(U1i ≤ v, U2i ≤ v)]

+
1

n2

∑
i 6=j

E [1(U1i ≤ u, U2i ≤ u)1(U1j ≤ v, U2j ≤ v)]

=
1

n2

n∑
i=1

E [1(U1i ≤ u ∧ v, U2i ≤ u ∧ v)]

+
1

n2

∑
i 6=j

E [1(U1i ≤ u, U2i ≤ u)]E [1(U1j ≤ v, U2j ≤ v)]

=
1

n2
{nCu∧v + n(n− 1)CuCv} =

1

n
Cu∧v {1 + (n− 1)Cu∨v} .

Therefore we have

cov [TL(u), TL(v)] =
1

n
Cu∧v {1 + (n− 1)Cu∨v} − CuCv =

1

n
Cu∧v(1− Cu∨v).
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Similarly, cov [TU (u), TU (v)] can be calculated. The other covariance cov[TL(u),
TU (v)] can also be obtained via a similar approach, but notice that

E [TL(u)TU (v)] =
1

n2

n∑
i=1

E [1(U1i ≤ u, U2i ≤ u)1(U1i > 1− v, U2i > 1− v)]

+
1

n2

∑
i 6=j

E [1(U1i ≤ u, U2i ≤ u)1(U1j > 1− v, U2j > 1− v)]

= 0 +
n(n− 1)

n2
CuC v̄ =

n− 1

n
CuC v̄.

The second equality holds because 0 < u, v ≤ 0.5. Thus

cov [TL(u), TU (v)] = E [TL(u)TU (v)]− E [TL(u)]E [TU (v)] = − 1

n
CuC v̄.

S1.5 Proof of Theorem 4

Proof Without loss of generality, assume 0 < u ≤ v ≤ 0.5. Let

β̂ = (β̂1, β̂2, β̂3, β̂4)T = (TL(u), TU (u), TL(v), TU (v))T ,

β = (β1, β2, β3, β4)T = (C(u, u), C(ū, ū), C(v, v), C(v̄, v̄))T ,

Σβ = (σβij)i,j , σβij = n · cov(β̂i, β̂j).

Then it follows from Lemma 1 and the central limit theorem that

√
n(β̂ − β)

d−→ N(0,Σβ) as n→∞.

Define

h(β) =

(
log(β2/β1)
log(β4/β3)

)
=

(
α(u)
α(v)

)
.

Applying the delta method, we have

√
n
{
h(β)− h(β̂)

}
d−→ N

(
0,∇h(β)TΣβ∇h(β)

)
as n→∞,

where

∇h(β) =


∂
∂β1

log(β2/β1) ∂
∂β1

log(β4/β3)
...

...
∂
∂β4

log(β2/β1) ∂
∂β4

log(β4/β3)

 =


−1/β1 0
1/β2 0

0 −1/β3

0 1/β4

 .
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The asymptotic variance can be calculated as

∇h(β)TΣβ∇h(β)

=

(
σ11

β2
1
− 2σ12

β1β2
+ σ22

β2
2

σ13

β1β3
− σ23

β2β3
− σ14

β1β4
+ σ24

β2β4
σ13

β1β3
− σ23

β2β3
− σ14

β1β4
+ σ24

β2β4

σ33

β2
3
− 2σ34

β3β4
+ σ44

β2
4

)

=

 C(u,u)+C(ū,ū)

C(u,u)·C(ū,ū)

C(v,v)+C(v̄,v̄)

C(v,v)·C(v̄,v̄)
C(v,v)+C(v̄,v̄)

C(v,v)·C(v̄,v̄)

C(v,v)+C(v̄,v̄)

C(v,v)·C(v̄,v̄)


=

(
σ(u, u) σ(u, v)
σ(u, v) σ(v, v)

)
. (S1)

The case 0 < v < u ≤ 0.5 can be calculated in the same manner. Then, for any
0 < u, v ≤ 0.5, it follows that, as n→∞, (An(u),An(v))(=

√
n{h(β)−h(β̂)})

converges weakly to the two-dimensional Gaussian distribution with mean 0
and the covariance matrix (S1). Weak convergence of (An(u1), . . . ,An(um)) to
anm-dimensional centered Gaussian distribution for u1, . . . , um ∈ (0, 0.5] (ui 6=
uj , i 6= j) can be shown in a similar manner. Therefore {An(u) | 0 < u ≤ 0.5}
converges weakly to a centered Gaussian process with covariance function
σ(u, v) as n→∞.

S1.6 Proof of Corollary 1

Proof Theorem 4 implies that a converges weakly to an m-dimensional normal
distribution N(0,Σ) as n tends to infinity, where

Σ =


σ2(u1) σ(u1, u2) . . . σ(u1, um)
σ(u1, u2) σ2(u2) . . . σ(u2, um)

...
...

. . .
...

σ(u1, um) σ(u2, um) . . . σ2(um)

 ,

σ2(ui) = σ(ui, ui), and σ(ui, uj) is defined as in Theorem 4. Then we have

aTΣ−1a
d−→ χ2

m as n→∞. Since TL(uj) and TU (uj) are consistent estimators
of C(uj , uj) and C(ūj , ūj), respectively, it holds that, for any (i, j), σ̂(ui, uj)
converges in probability to σ(ui, uj) as n→∞. It then follows from Slutsky’s

theorem that aT Σ̂−1a
d−→ χ2

m as n→∞.

S1.7 Proof of Theorem 5

It can be seen that

T ∗L(0.5) =
1

n

n∑
i=1

1(F̂1(X1i) ≤ 0.5)− 1(F̂1(X1i) ≤ 0.5, F̂2(X2i) > 0.5)

=
1

n

⌈n
2

⌉
− 1

n

n∑
i=1

1(F̂1(X1i) ≤ 0.5, F̂2(X2i) > 0.5),
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where dxe = min{y ∈ Z ; y ≥ x}. The second equality follows from the fact
that the ordered values of the empirical distribution functions F̂1(X11), . . .,
F̂1(X1n) are equally spaced between [1/(n+ 1), n/(n+ 1)]. Similarly, we have

T ∗U (0.5) =
1

n

⌈n
2

⌉
− 1

n

n∑
i=1

1(F̂1(X1i) < 0.5, F̂2(X2i) ≥ 0.5).

These results imply that

|T ∗U (0.5)− T ∗L(0.5)| = 1

n

∣∣∣∣ n∑
i=1

1(F̂1(X1i) = 0.5, F̂2(X2i) > 0.5)

− 1(F̂1(X1i) < 0.5, F̂2(X2i) = 0.5)

∣∣∣∣.
If n is even, F̂1(X1i) and F̂2(X2i) do not take values in 0.5 and hence P(T ∗U (0.5)−
T ∗L(0.5) = 0) = P(α̂∗(0.5) = 0) = 1. If n is odd, the number of the random

variables {F̂j(Xji)}ni=1 which take values in 0.5 is 0 or 1 for each j = 1, 2. This
implies that

P
(
|T ∗U (0.5)− T ∗L(0.5)| ≤ 1

n

)
= 1. (S2)

Also,

P
(
|T ∗U (0.5)− T ∗L(0.5)| ≤ 1

n

)
= P

(
T ∗L(0.5)− 1

n
≤ T ∗U (0.5) ≤ T ∗L(0.5) +

1

n

)
= P

(
log

(
T ∗L(0.5)− 1

n

T ∗L(0.5)

)
≤ log

(
T ∗U (0.5)

T ∗L(0.5)

)
≤ log

(
T ∗L(0.5) + 1

n

T ∗L(0.5)

))
= P

(
log

(
1− 1

nT ∗L(0.5)

)
≤ α̂∗(0.5) ≤ log

(
1 +

1

nT ∗L(0.5)

))
. (S3)

It follows from (S2) and (S3) that (12) holds as required.

S2 Plots of random variates from some existing copulas

Fig. S1 plots random variates from Clayton copula (5), Ali-Mikhail-Haq copula
(6) and BB7 copula (7) with some selected values of the parameter(s). This
figure is given to help an intuitive understanding of the distributions of those
copulas discussed in the paper.
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Fig. S1 Plots of 5000 random variates from: Clayton copula (5) with (a) θ = 1 and (b)
θ = 20; Ali-Mikhail-Haq copula (6) with (c) θ = 0.1 and (e) θ = 1; and BB7 copula (7) with
(f) (δ, θ) = (1, 1.71), (g) (δ, θ) = (1.94, 1.71) and (h) (δ, θ) = (1, 7.27).

S3 Some properties of the trivariate measure α3(u) and its sample
analogue

Here we present some properties of the trivariate extension α3(u) and its sam-
ple analogue α̂3(u) defined in Definitions 4 and 5 of the article, respectively.

The following proposition provides basic properties of the trivariate mea-
sure which are similar to those of the bivariate measure presented in Proposi-
tion 2.
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Proposition S1 Let C3 be a set of all trivariate copulas. Suppose α3,C3(u) is
the measure α3(u) for the copula C3 ∈ C3. Assume that p3L = C3(u, u, u) and
p3U = 1− 3ū+C3(ū, ū, 1) +C3(ū, 1, ū) +C3(1, ū, ū)−C3(ū, ū, ū). Let C3P,jk`

be a permuted copula of C3 defined by C3P,jk`(uj , uk, u`) = C3(u1, u2, u3),
where (j, k, `) is a permutation of {1, 2, 3}. Define C3 by the survival copula
associated with C3. Then, for 0 < u ≤ 0.5, it follows that:

(i) −∞ ≤ α3,C3
(u) ≤ ∞ for every C3 ∈ C3; in particular, α3,C3

(u) = −∞ if
p3U = 0 and p3L > 0 and α3,C3

(u) =∞ if p3L = 0 and p3U > 0;
(ii) α3,C3(u) = 0 if and only if p3L = p3U ;

(iii) for fixed p3U , α3,C3(u) is monotonically non-increasing with respect to p3L;
similarly, for fixed p3L, α3,C3

(u) is monotonically non-decreasing with re-
spect to p3U ;

(iv) α3,C3
(u) = −α3,C3

(u) for every C3 ∈ C3;
(v) α3,C3P,jk`

(u) = α3,C3
(u) for any C3 ∈ C3, j, k, ` = 1, 2, 3, j 6= k, k 6=

`, j 6= `;
(vi) if C3 ∈ C3 and {C3,n}n∈N is a sequence of copulas such that C3,n → C3

uniformly, then α3,C3,n
→ α3,C3

.

As briefly mentioned in Section 9 of the article, the weak convergence to a
Gaussian process holds for the sample analogue α̂3 of the trivariate measure
defined in Definition 5. Details are given in the following theorem. The proof of
this theorem is straightforward from that of Theorem 4 and therefore omitted.

Theorem S1 Let (U11, U21, U31),. . . ,(U1n, U2n, U3n) be an iid sample from the
trivariate copula C3(u1, u2, u3). Assume

A3,n(u) =
√
n {α̂3(u)−α3(u)} , 0 < u ≤ 0.5.

Then, as n → ∞, {A3,n(u) | 0 < u ≤ 0.5} converges weakly to a centered
Gaussian process with covariance function

σ3(u, v) ≡ E[A3,n(u)A3,n(v)]

=
C3(u ∨ v, u ∨ v, u ∨ v) + C3(ū ∧ v̄, ū ∧ v̄, ū ∧ v̄)

C3(u ∨ v, u ∨ v, u ∨ v) · C3(ū ∧ v̄, ū ∧ v̄, ū ∧ v̄)
.

Inferential methods based on α̂3(u) can be established by following the dis-
cussion in Section 5.2 and applying Theorem S1. For example, a 100(1− p)%
nonparametric asymptotic confidence interval for α3(u) can be established as

α̂3(u)−
zp/2σ̂3(u)
√
n

≤ α3(u) ≤ α̂3(u) +
zp/2σ̂3(u)
√
n

,

where σ̂3(u) = [{T3L(u) + T3U (u)}/{T3L(u) · T3U (u)}]1/2 and zp/2 is defined
as in (9).


