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Abstract

The current research work analyzes dynamics of a sandwich disk which is gently thiéck. The® snrtioned sandwich structure
has honeycomb core, a couple of middle layers having fibers of shape memory alloy< "MA), and a couple of external layers
of multi-scaled hybrid nanocomposite (MHC) considering in-plane force. Thegore in tii_Whape of honeycomb is manufac-
tured of aluminum due to its high stiffness and less density compared with gther iaterials. Applying energy methods called
the principle of Hamilton, we obtained governing motion equations of thé nmii_ yUioastructure and solved them using First-
order shear-deformation-theory (FSDT), as well as generalized-differential-que edture-method (GDQM), respectively. To
layers’ joint, the compatibility equations have been taken into account " M2 -parametric mathematical manipulation has
been conducted to analyze the impacts of fibers of SMA, boundary coiditions (BCs), internal loads, honeycomb network
angle, ratio of external to internal radiuses, ratio of thickness to length of jiie honeycomb, weight fraction of CNTs, angle of
fibers, ratio of honeycomb to face-sheet thickness on the frgfjaci W of the multi-phase sandwich disk. The outcomes derived
reveal that for any amount of internal pressure and eachA> W, the i lation of the honeycomb’s thickness ratios to MHC layer
(hy/h,) and sandwich structure’s frequency is similagfS:quad: hicAunction. Further results show that the effects of the fibers’
angle on the frequency can be ignored for larger A}k, pmounts.

Keywords Honeycomb core - Porosity - Mul¢ Sayer disk)” Various boundary conditions - MHC - SMA fibers

1 Introduction a new and perfect method to boost the dynamic and static

responses of the low-density beam, plate, disk, and shell
Since applicable material and Wmictures™ thermomechani-  [1-7] due to the mentioned fact, structures in honeycomb
cal response has been improved\by,«, iying the sandwich  shape [8, 9] are presented to use in the pertained industries
module structures, in tha@st decant, scientists discovered  [10, 11]. The sandwich panel’s frequency parameters made

from Honeycomb Core have been analyzed by Mukho-
padhyay et al. [12] using Energy Methods. In that paper,
it is reported that core of honeycomb would enhance the
free vibration characteristics and ultimately the sandwich
panels’ stiffness. Ref. [13] has investigated the impacts of
a wide range of defects occurring to build honeycomb com-
posite beams and determined the mechanical behavior of
those structures in different frequency modes employing
Fast Fourier Transform analyzer and finite element (FE)
model. Considerable outcomes of this research revealed that
Chemistry and Chemical Engineering and Environmental the structure’s frequency parameters would be reduced by
gﬁ&"’fe’ Weifang University, Weifang 261061, Shandong, increasing percentage of structure’s defect. Frequency char-

acteristics of honeycomb sandwich structures with various
cores have been analyzed by Mozafari et al. [14] Employing
experimental tests, they obtained the polyurethane foams’
mechanical behaviors and evaluated the impact of the first
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resonance, the foams’ impact and the shape of the state on
the core’s vibrations. The frequency characteristics of the
structure’s graded corrugated lattice core along with using
an exact solution method to solve the governing motion
equations has been evaluated by Ref. [15]. They studied the
beam length’s impact, thickness of facial leaf and graded
parameters on the mentioned structure’s frequency. The
amplitude of the solar panel’s vibrations which is manu-
factured by smart layers and honeycomb core has been con-
trolled by Amini et al. [16]. Using the theories related to thin
plate and employing Hamilton’s principle, they obtained the
BCs and equations of motion. Eventually, they discovered
that elastoelectric impacts are playing prominent roles in the
solar panel’s frequency parameters. Ref. [17] examined the
panels’ post-buckling response with graphene particles rein-
forcements and honeycomb cores. The scientists’ achieve-
ments show that the thickness of core, weight fraction of
GPL, and geometric characters pertained to panel have
vital roles on the sandwich panel’s post-buckling. Sobhy
[18] has analyzed the curved beam’s bending characters
reinforced with layers of graphene nanoplatelets along with
honeycomb core. Employing DQM, they obtained the asso-
ciated BCs and solved complicated motion equations. Sand-
wich panels’ frequency parameters with honeycomb core
employing FE model and experimental research has begn
conducted by Wang et al. [19]. They eventually reyealec
that, the face-sheet’s thickness ratio, and density of filling
foam have essential role in the sandwich panels“/Tii_wcitey
with honeycomb core. Frequency investigatidn of a5\
wich beam considering honeycomb hybrid & & applying
experimental techniques and FE modelsshas bec ptudied
by Ref. [20]. Honeycomb sandwich/hell’s nonlinear fre-
quency parameters has been reporte¢ 3y Zhapg et al. [21].
They have solved the structure’s governi.._dtion equations
with simply BCs through using = Wad, of homotopy per-
turbation. Recently, applying reinfércements of CNTs have
attracted the attentionf 11 iny sdientists and researchers.
For instance, an FG/cii plés,"0%’s major bending behav-
ior boosted through using "NTs and covered by an elastic
foundation haglbed hstudied by Keleshteri et al. [22]. They
assert that e thick sii_yr’deformation models and von Kar-
man aregfsedyto present more precise results in their math-
ematical riz_hod. Moreover, for solving governing equations
exffac,d thr¢, Zh using energy methods, they applied the
M wtol Wigwhison as well as GDQ approach. Their promi-
nent' Jsult is that the CNT’s volume fraction along with
thickness would play an important role when it comes to the
analysis of the circular disk’s nonlinear frequency. Nonlinear
free and forced an FG disk’s frequency response employing
the von Karman model along with thin SDT has been con-
ducted by Ansari and Torabi [23]. They highlighted basically
on the enhanced GDQ approach for the solution method of
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the FG disk’s governing equation and presented a structure’s
large amplitude frequency. Torabi and Ansari [24] have pre-
sented that it is vital to develop motion equations of the FG-
CNT-reinforced circular plate’s large amplitude vibration
based on general asymmetric’s equations in the existence of
elementary thermally stress for reaching precise outcomes.
Finally, a huge number of researches presentZd the stability/
sinstability of applicable structure in many®_ytiches [25-33].

Based on the highly scrutinized literature in%_higation, no
one would assert there is a study onghe sandwich disk’s fre-
quency analysis considering a cose (fid Rycorib), including
fiber of shape memory alloy (SWA), and «_duple of external
layers (MHC) under in-plan_\load. FSDT is employed to
stress—strain formulatiopfMoc. d Falpin—Tsai model and
the Rule of the mixtugmare s delved in providing the efficient
the MHC disk’s m¢ »rial cons unt. Using energy methods,
the structure’s goternii_hequations are extracted. Eventually,
the impacts o Ine physjcally and geometrically factors of
SMA fibex{ ad } HSyand in-plane loads on the dynamics
of the mentiox_ ¥, structure are reported, in detail. The final
resultQmaveal thay'we would conclude that using the network
of hondycgris Vas the structure’s core boosts the structure’s
dynamics considerably.

2) Mathematical modeling
2.1 The homogenization process of MHC

The homogenization procedure is contained of a couple
of basic stages due to the Halpin—Tsai theory [34], com-
bined with a micromechanical model. The primary level is
involved with calculating the efficient behaviors of the com-
posite enhanced with CF as below [35]

F NCM
E“ = VFE” + VNCME s (1)
NCM EF
| VF VNCM (VF)2 EEgz + (VNCM)Z E_‘I‘\; _ ZVFVNCM
o= 7F T pNem  VPVnem X F NCM '
n Ej VrEy, + VemE’ )
1 Ve VNem
G, Gf, GNM’ (&)
NCM F
p=VYaemp " +Ver, C))
_ NCM F
Vis = VaemV + Vv 5)

The nanocomposite matrixes [36—38] and fiber’s volume
fraction may be as [35]:
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Vit Vaen = 1. ) Eventua.lly, the MHC face sheets’ mechanical properties
may be written as:

The? following stage is organized to ds:termine. the efficient New _ y Ny b
behaviors of the nano-scaled composite matrix enhanced 7 = Venrp mP (12)
with CNTs using the developed micromechanics of Hal-
pin—Tsai [39]:

ENCOM EM<§ < 1+ 28,,Vent > N 3 < 1+ 2(NT JdNTY B, Ve ) > -
8\ 1= FBuVenr 8 1= ByVenr
\
. WM = M, (13)
Here, f; and f,; may be calculated as the following
relations ENCM
NCM _
(EICINT/EM) (dNT /4CNT) 2(1 + VNCM) (14
ba = (ICNT /24CNT) 4 (EﬁNT/EM) - (ICNT /24CNT) 4 (EﬁNT/EM) ’
(ECNT /M) (dONT /4/CNT) In Fig. 2, diffe pes o1jporosity distribution called,
Paa = (dONT /2,CNT) 1 (ECNT /) ©(dONT /2 x (ONT) ¢ (BT oy’ X, U, a’long with ve [41—.44]. The shear modulus,
®) Young’s mo as welras density, are as follow:
The CNTs’ volume fraction would be calculated as &
follow: 12z (15a)

o _ Wenr
CNT —

CNT : 9 E,=E 15b
Wenr + (f’p—M)a — Wenr) O  En=E (15b)
However, a broad range of MHC distribution through’o =E, (1 - €oS(Z)), (15¢)
entation of thickness would be written by [40]:
5| P@) = [=€,5Q) +1]p@) + VicnPuns (15d)
L%
Vont =4 CNT ™, FG-X & where [45]:
5] (10) s, PD - UD

Venr = 2V 1 - 252 [ FG-0

Nt h 5= socos<§+%) PD - X (16)
Venr = Vinr FG-UD socos(%) PD -0
where §; = (% + ﬁ N, Due to the Gaussian Random Field scheme (Figs. 3 and
Moreover, the r and Vy, is equal to one as 4), we would have [45]:
below (Fig. 1); 0
L1211 = (1= es2) 7 |
Vent +V, (1) e, = i (17)
5(z)
the porous disk’s Poisson’s ratio pertaining to the Field of
closed-cell Gaussian Random would be computed as [45]:
-UD FG-X FG-0 .
v, =0.221 (1 - @>
P
i)’ 5(2)
+ 1 ll + 0.342(1 - ”—> ~1.21 (1 - ”-)] ,
p p

(18a)

Fig. 1 Distribution of CNT through the thickness of the MHL com-
posite

@ Springer



Engineering with Computers

Fig.2 Patterns of porosity dis-
tribution through the thickness

of MHC [46]
........... >
(a) P.D.1 v
- o Ey Z
V21 —_ V12~_- (18b) N
22 < l v
Moreover, when the porosity distributions’ variousgyp % ) i
with the disk’s total masses are the same, the amouy#it of the R
S, may be obtained as [45]: hf f
P r
A
1 2
so=—|1 (19) >
’ X
L Fig.3 The hexagonal cell geometry
3 Honeycom® core e _%_p <t>3 (h/1+sin(6,)) 1
27 P cos? (6,) 1+ (t/1)° cot® (6),)
The hexa cell cO: dguration is demonstrated in Fig. 3. (20-b)
Due to theory, we would have [47]:
) . _ & cos” (6,) -t/
cos (6, 1 =TT . . 2
1 h/l+sin(0,))sin (6,) 1+ cot? (8,)(t/])
(h/1+sin (6,)) sin* (6,) 1+ (¢/1)* cot® (6,,) (/ (64)) sin (61) (@) (20-c)
(20-a)
h/l+sin (6,)) sin (0 —(t/D?
Vi o= 2t _ ( / ( h)) ( h) (/D) +1 (20-d)

A g cos? (6,

1+ ((h/D)sec? (6,) +tan? (6,))(t/1)
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The above equation # explains the bottom, top, along with
(20-e) core layers.

\3(h/l+sin (6,
()(/+ (9))

1
Gt = E| - -
S\ (h/1)* cos (6,) R

12

2h/1+sin (6
R=(22+1+ (%) /—2“) [(sin (6,) + h/1) tan? (6,) + sin (6,)] (20-)
! ! (h/D)
\
<z) <h + 2) 6 Stress-Strain honeycomb core’s ions
o IAY 20
s 2cos (gh) (ﬁ +sin (gh)) (20-¢) Due to the FSDT, the stress—s ay be given
! as [57-63]:
B q¢ ¢
ORR €RR
4 SMA characteristics in the composite’s 7 €9p
matrix Oro | = 0 Yro
. OR; >3 VR
The SMA properties are reported by Ref. [48] the present 0 Ou
research, supposed that the fibers of SMA have been distrib- L %oz | . Yo: o
uted uniformly. The composite disk’s elastic parameters with " 0, = 2 0, = vaiEyn
fibers of SMA may be derived by [48]: i 2o 1= TR =)
E* = V,E}| + VgEg (21a) Oy = s =G5 Qg =Gy Gy =G =G, 03

0, the strain elements may be defined as [64]:

m
Esma _ ESE22
22 m v 0 V¥ v
VmE22 +V,E, €RrR £§R KRR
€pp €99 Kog
0
G.G™ YRo =19 Yo + 29 Kgg 24
Gsma — ST12 7/0 K
12 GSGTQ + GSVm YRz Rz Rz
Yoz 7/92 Koz
G;’;’“ =GRV, +GgVg 21d) Equation (24) would be rewritten as
N\ C
Fsma ~sma 0 ¢ 9% ¢ g ¢
Gi3" =Gy (21e) “Rr w Rop KRR o Ry
I3 - —_— K R4 250
R ' Roo 00
yi)z S ST/ QD S QD -
vime =y Yy + Vv 21 RO " 0R. R [ 78 TR R
12 mY12 T Vs (211) 0 o
y]gz f R + g_R KRZ 0
YQZ f 0+ ox Koz 0
ﬁsma — p (21g) Ro6
mrm v J

(25)
MHC angle-ply laminated disk’s Stress—strain equations
[65-69] and SMA layer would be given as below [57]:

Vv

_O-RR_W Qll le 0 0 Qm _ERR_W
o0 0> O AO AO O | | €00
the following equations relations [57]: ol =1 0 0 644 645 0 Yro 26)
o = ) + 2y O; f f Qys Oss £ YR:
o,
" = By +2& 22) - 0z 1 | Q16 @26 0 0 Qg | [ Yoz |

= x
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In the aforementioned relation, y explains the bottom and y ( o 1Y ” 2 v
top layers of the structure. % . E&ﬂ KRR R
Here Egg 7 oo Koo %R %
729 = %+Z—;—ﬂ—;>, Krp = ﬁ+&_§_ﬁ
oy ) . N ) N B 0 v RO ' OR R
0,, = sin* 6,07, + cos* 6,07, + 2sin” 0, cos® 0, (O, +20%) )}:Iéz Skt —§ ’;RZ 0
(27a) 6z &+ o 0z 0
2~y - ~ - -
0,, = +(sin* 0 +cos* 6,) OV, + sin? 0, cos® 0,(QY, + 0%, — 40Y,) 29
(27b)
Va
2oy ~ - - . - - -
0, = cos 0y sin’ 0, (Og +20Y, —203)) + cos’ 6, sin 6, (207, ~ 20}, - Of;) 279
o .0 2 AW <4 AW 40 AW 2 29 (HY 14 (27d)
Q,, = 2sin” 0, cos” 0,07, +sin” 6,0, + cos” 0,05, + 2 sin” 0, cos Hf( nt 2Q66)
Q5 = cos’ ; sin; (20}, — 20, + OF;) + cos 6; sin’ 6, (20}, - 20}, ~ (27¢)
= 2, > 7 C atib equations
0,, = sin® 0,0, + cos6,0", 70 yeq

The conditions of compatibility supposing excellent bonding
= . > > layers of composite and the core that would be
=cos 8, sin0,(—-0%, + 0. 27 ctween the lay p
us s s ( Q44 st) ressed as below:

Y " - [ 2) = SMAb — 2
0., = cos? 0,0, +sin 6,0, 2 = —h./2) = " Epap = hsyan/2), (30a)
oy 2 Pz = —h./2) = ﬂSMAb(ZSMAb = hgyan/2)s (30b)
Qg = O (cos® 0, —sin> ;)" + 4sin’ 0, cos® O,
@ = ~he/2) = 1" Csuap = hsyan/2): 30c
The terms involved in Eq. (27a—2f1) would be ‘obtained o / o SMAD swan/ (30¢)
as [70-74]:
7S n
- E11 _ E22 O G v = Qw =t
U= 1 _v.0. L (<44 12° %55 23> 266 13°
Vi2Val 1 -v,v5,
The aforeme fons define ¢ as the layer of % & =hc/2) = @M (Zgpa = ~hsyan/2), (30d)
MHLC and Y the ‘strain elements could be given
‘ F(ze = he/2) = B (zgpar = ~hsuac/2), (30e)
w
1°Ge = he/2) = 1M Ggyn = ~hgya/2), (30f)

(28)
aMHCt(ZMHCt = —hyuc/2) = aSMAt(ZSMAt = hgya/2),
(30g)

Equation (28) can be rewritten as
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B Cpmer = —hyrci/2) = B (Zoyar = Psac/2)s (30h)
X MHCt(ZMHCt = ~hyuc/2) = x SMAt(ZSMAt = hgyae/2),
(301)
aMHCb(ZMHCb = hyncp/2) = aSMAb(ZSMAb = —hgyap/2), .
(305)
X MHCb(ZMHCb = hyncy/2) = ﬁSMAb(ZSMAb = ~hgyan/2),
(30k)
X MHCb(ZMHCb = hyucy/2) = x SMAb(ZSMAb = —hgyap/2)-
(30D

8 Developed principle of Hamilton

Due to the energy method, there are equations between
motion equations and BCs defined as [77, 78]:
o)
/ 6T —sU* +6W5"dt =0 3D
f

The related rotating system’s kinetic energy may be cal-
culated as [79-84]:

sum =1 /// o6e"dV
2 o i

14
[ déa, 650{1 T
Pre—55" aR T ERTRp aR
358, 35p 6a
(P 06 Ra; oo Rae)1 +F 99 R -
_ 068 05 950,
_/ Pro aRO Oro aR1 Pro Rae? “
o B T )
PR9 R QRO R
35
+<(PRZ)<5a1 ’(‘) ))
(35)
which [89]:
{PRR’ QRR}'7 = ZO'RR} dz;
{Poe’Qae y 0pp> 2 90}”‘11;
{Pre Qs T | / {0kes 20k P op, } 3. (36)
z

{PRG’QR’ Re}” =/{6R9’Z6R07126R€}’1dz§

- Qo Toz} = /{O-GZ’ZO-GZ’Z Uez} dz.

2
1 oa ap 61
re ]G (8 - ()] o
/ > l al T < a:) *
14 Additionally, the variation of the work done [82, 90-93]
ST = /p"(ﬂ U | dV 06V 0W a
Jt ot ot ot
1%
[ P ay 02 02 T
R, 6 t2 o o . o 2 33)
0-a, 0-p 0°¢&
- 0 0 0
6T = // +<{ o,— > }5§R + { —Iy—- proaie 1¥}5/3 RdARdO
R 0 0
+ s S U
where: by mechanical force (internal load) can be obtained as
W = / P!

{1, qﬁz}u i=0:4
er, the presented composue structure’s strain

energy [85-88] could be determined as:

Ultimately, corresponding BCs and governing equations
would be extracted by inserting Egs. (37), (35), and (33) in
principle of Hamilton (Eq. (31)) which may be written as:
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bay :
2 2
O PoPre, 0 _ %%, 400 O3
OoR RER R Ro9 RO 0 o2 1 o1
5py
O PP, 0 _p PR PP GBY)
RO 90T TR T oR R T0T52 T
8xy -
9 ", 0 1 o9 ’x)" (38c)
2— (P, +2—(P, ) - P22 =] 2
aR( Rz) Rde( 91) oR2 0 o7
6&q -
00rr  Qgg  190Qgy (Py) = 1 0%a, o 0%&, (38d)
oR R R 96 kz Vo T2 o2
0y .
0 2 d 0%y 0%
WQ%"‘EQR&»"'&QM—Q&—11W+12ﬁ
(38e)
0 day 9ck
5“3'@({”%1154'2115 + 3 =
10 (Re9% | Ze %% o K
Ro6\ R 06 R 060
n
1 da,) 0&
-~ ({r,=2+7,=E
R { g FAgr (t
2 2
_qm 0 n0 o)
0 o2 1752

R % R

66 6512 aﬁ g aé:z IR66
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Z
Bl - 7“:;?)

TR 4 Ry 0 4 g 0 Beo g Zoo e
R 00 % 9R 9r RO R0

pox
" R2 062

Furthermore, general pertained BCs would be written as:

n
A RO A

ba’ =0 or Pl fip + — o = 0 (39a)
U
. 00 -
8p" =0or Py ap + — o =0 (39b)
(39¢c)
(394d)

(40a)

R z Ry, 0By Zy, 0%,
ﬁa”+£52+£_0+£_0
R 00 R 060

op T R
+ Ry —2 47, —0 66
% 9R %9R R

(40b)

(40c)
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da]! &y z C Z,,00; C, 08
8N 91z, 20 ¢, 22\, A Y S L S < L
oR JoR JOR R R R 00 R 00
oa! 0¢! z C 7y, 0B; C,, 08,
1 7,20 e, 2Ry 2zg+ 22§Z+£_0 L2 059
R dR JdR R R R 00 R 00
] (40d)
Lo (Zetn Cu , B o 9% Ze g Cosp
RO\ R 90 " R 00 TSGR TR TR TR
9%, Pay 9
~(Rss)| Gp+ =2 ) =Ti—> z—éR
OR or? or?
10 day 9y Ly Cy .y, Zn 9B Cy 95y
0&y I =— Z C =g+ = —=22_ 0
% R00<{ PR PCGR (PN RO RS R 0 TR 00
Z. dal C.. o0& op' &l 7 C
+i Z66 0 + 66 PR +ZGG_O +C()6_9 — _66ﬁg — ﬂéz
OR\ R 00 R 00 OR OR R R
Zo 00 Ceq OF ap; k& z C
f (LT Zee TR, T o 0 _ Soo ﬁég (40¢)
R\ R 00 R 060 JdR OR R
Z. 0a!  C.. 0&! ap! & 7 C
+l i il ) C66_9_ 66n 66
R\ R 00 R 00 JdR
xl 2 2
7} 20
—( (Ru){ &+ 1'17_/30 n Al
Raé) or? aﬂ
ho_ df N, Ny
where: {C;, Z;, R, } = /3 0;{z%.7", 19dz. % = Z I[:nAf - (41b)
2 r=r;, 0= r—
It is highlighted that, due to the eqyfations of cornpatibil- #O%f m=ln=l
ity (Eq. (30)), the amounts of variabli 3 which jire unknown
would be declined from by 8. So, amounts of d of _ N Y r a0
unknowns in the core and fac is reduced from 25 gy \ 96|,_, oup. | = _lAthJ mn (41c)
to 13. S
F N, N, )
= =2 2 B lofm (41d)
r r=r;,0=0; m=1n=1
simulation and semi numerical
known to simulation different prob-  92f &
is stage of the current paper, we intro- g2 s 1 214 LB, j (41e)
r=r;,0=0; m=1 n=

e current problem. In this method have:

N, N,
af ’
= AT 10f,
O ey om0 mz £ i (41a)

Also, Il.’m and Ij‘i would equal to 1 while m=i and n=j
otherwise, may be equal to 0. Furthermore, Bfn, B, Afn and

Al 'may be weighting factors of the second and first-order
derivatives along with the 8 and r orientation, respectively,
and would be taken into consideration as
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g f(ri) . A(.r_l)
o | Gy When iEm . BY =r[ ATVAD - ) = 1,2, N, i#m
Al.m=< % W iim=12,...,N, (r,—rm
- A when i=m
| k=lketi ik (44a)
(42a) 6-1
_ 0-1) O-1) (1) Jn . .
&) . Bjn OAJ.j A/n jn=12,...,Ny, j#n
———  when j#n (9—0)
(1) (6']—9”)6(9,1) . n
Ajn = N, o ' jhn=12,...,N, (44b)
- X A when j=n
k=T k#j
(42b) (44c¢)
in which
NV
)= IT () TN DR, N S
k=1kei i ik
k=1,kj
N, In addition, a oints of Chebyshev polynomials
£0,)=T] (6,-0) (43b)  greed, the seedsas well () and 6 directions would be dis-
k=1k#j tributed as 4@
And
Table 1 Comparison of non- CNT distribution
dimensional natural frequency NT
(@° = wb*+/p/E) of the multi- 0.06
scale nanocomposite face sheets
for different CNT pattern t research Ref . [108] Current research Ref . [108]
FG-X ( 3.2647 3.2604 3.4805 3.4808
FG-V 3.3775 3.3817 3.5795 3.5783
FG-A 3.4275 3.4291 3.6292 3.6294
FG-U 34174 3.4156 3.6197 3.6170
Table2 The material prope Matrix (Epoxy) Fiber (Carbon) Metal (Core)
of core [18] and compo
[109] 9,, =033 E™(Gpa) = 3.51 J =02 v =0.34
3\ = k; kg
p (kg /m?) = 1350 v =034 P(2E) = 1750 p(=£) = 2700
E(Gpa) = 640 () = 1200 E| (GPa) = 233.05 E*(Gpa) =170
d"(m) = 1.4 x 107 E| (GPa) = 23.1
" (m) = 0.34 x 10~° G (GPa) = 8.96
1 (m) = 25 x 107
Table 3 Convergence study B.Cs N=4 N=6 N=8 N=10 N=12 N=14
of the GDQM for solving the .
current research for different S-S 0.0370 0.0419 0.0421 0.0422 0.0422 0.0422
boundary conditions (B.Cs) s 0.1015 0.1009 0.1009 0.1009 0.1009 0.1009
c-C 0.1398 0.1390 0.1385 0.1385 0.1385 0.1385
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Table4 Convergence study PD CNT-distribution Nt=2 Nt=4 Nt=6 Nt=8 Nt=10 Nt=12 Nt=14 Nt=16 Nt=100
of the GDQM for solving the

current research for different X FG-X 0.1385 0.1363 0.1370 0.1373 0.1374 0.1374 0.1374 0.1375 0.1375

ggT'dlsmb‘monpa“em and FG-O 0.1411 0.1354 0.1349 0.1347 0.1347 0.1346 0.1346 0.1346 0.1346

FG-UD 0.1401 0.1358 0.1358 0.1358 0.1357 0.1357 0.1357 0.1357 0.1358

0 FG-X 0.1247 0.1360 0.1363 0.1363 0.1363 0.1363 0.1363 0.1363 0.1363

FG-O 0.1286 0.1344 0.1346 0.1346 0.1346 0.1346 0.1346 0.1347

FG-UD 0.1275 0.1349 0.1351 0.1351 0.1351 0.1351 0.1351 1351
UD FG-X 0.1325 0.1352 0.1358 0.1359 0.1360 0.1360 0.1361 O0: 361
FG-O 0.1357 0.1342 0.1338 0.1338 0.1337 0.1337 ) 0.1337

FG-UD 0.1346 0.1346 0.1346 0.1346 0.1346

Table 5 Effects of three

. . Simply-Simply Clamped-Sim amped—Clamped
types’ method for reinforcing

the structure on the system’s FG-X FG-O FG-UD FG-X FG-X FG-O FG-UD
frequency with consideration

three porosity coefficient and Without imperfection (e, =0)

boundary conditions MHC/HC/MHC' 0.0388 0.0378 0.1296 0.1263 0.1275

CNT/HC/CNT?  0.0489 0.0395 0.1190 0.9998 0.1155
With imperfection (e;=0.3)

MHC/HC/MHC!  0.0396 0.0386
CNT/HC/CNT?  0.0451 0.0321
With imperfection (ey=0.5)
MHC/HC/MHC!  0.0406
CNT/HC/CNT?  0.0556

0.1322  0.1291 0.1302
0.1140 0.0895 0.1042

0.0594

0.0963 0.0971 0.1355 0.1325 0.1337
.0507  0.0950 0.0732 0.0842 0.1329 0.1042 0.1258

"Multi-scale hybrid n
forced disk

2Carbon nanotubegyrei d di oney-Comb/ Carbon nanotubes reinforced disk

+R, i=123, ... ,N, (45a)

Eventually, Though Eq. (46) the novel system are

J=1.2.3, Ny K6, + [Kg]6, =0 (47a)
(45b)
as solution method of this [Kbd] 64+ [Kbb] 0, =0 (47b)

here, the freedom degrees’ vector will be expressed as:

o 5

By inserting of Eq. (48) into Eq. (47b):

de

2
o, + [ K,

Kdd ]
Kbd
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Clamped-Clamped Clamped-Simply

0.17 T T T T 0.13 T T T T
----- P=-200 [N] =+=r=P=-200 [N]
0161 P=-100 [N] ) e P=2100 [N] P
’ - -P=0  [N] 012 |- ==P=0  [N] e
——P=100 [N] ——P=100 [N] P
0.15 F |[——P=200 [N] ——P=200 [N] -
'370.14
0.13
0.12
0.11 : ! : '
10 15 20 25 30
hyy/h
0.07
0.06
0.05
=
3
0.04
0.03
0.02
Fig.4 Frequency of the disk versus to the hone; b col omposite face-sheet thickness ratio for five value of internal force and three kinds
of boundary conditions
-1 -1
(_[Kbb] [Ka) " [Kaa) + [Kbd]) (49) <_[Mbb] [Ka]  [Kaa] + [Mbd]>5d =0 (52)
So Thereby
-1
K* = [K,| - [K db d (50)  M* = —[My|[Ky|  [Kaa] + [Mpa] (53)
and Ultimately, through solving the following relation, the
structure’s displacement fields and frequency information
(M]3 = (51)  would be derived by GDQM.

Qby a ing of Eq. (48) into Eq. (51): Mo®+K =0 (54)
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Clamped-Clamped

0.24 . , ' ‘
“‘ ----- 9f=0
022 F \ 9;#/6 1
A}
\ 0 =m/4
02l N 3 J
‘\ Gf:Tr/3

Clamped-Simply

0.18 . ; ; .
----- 0,0
0.16 e =06
\ —
N 9f—7r/4
0.14F 9=m/3 | |

Fig.5 Frequency of the disk versus to the ho mb
four 0,

10 Results and discussion

e <urrent method, the
of the annular plate
ared with outcomes pro-
1. As illustrated in a broad

composite face-sheet thickness ratio for three kinds of boundary conditions and

The mechanical properties for both of the reinforcements
(Carbon Fiber and Carbon nanotube) and the epoxy matrix
are shown in Table 2.

Also, the properties of SMA and matrix layer illustrated
in Ref. [48]. Convergence number of grid points for hav-
ing independent results with respect to the three kinds of
boundary conditions is investigated in Table 3. As illustrated
in Table 3, as grid points’ number in the GDQ approach is
more than eleven, the error for the calculation of the disk’s
natural frequency becomes zero and this matter is a fact for
all boundary conditions.
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Clamped-Clamped VF:O

0.17 T T T

by

Clamped-Simply VF:O

hy/hy

Simply-Simply V=0
0.05 T T T T

0.045

0.035

0.03

=

0.048

0.046

0.044

0.042

0.04

0.038 -

0.036

0.034

0.032

Clamped-Clamped VF:0.2

lam imply VF:0.2

hy/hy

Simply-Simply VF=0‘2

10

of the disk versus to &y, /h, for three kinds of boundary conditions
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0.5

----- h /R.=0.05 =e=-=h_/R=0.05
H i 03 H i
04 hH/Ri:O'l - hH/Ri:0'1
hH/RiZO.IS 0.25 hH/Ri:O'IS |
_hH/Ri=0'2 _hH/Ri=0'2
03 : o
(= =
3 3
02 ] 0.15
0.1
01f T e T T -~
_____ 0.05
0 1 1 1 1 0

Clamped-Clamped

Simply-Simply

Clamped-Simply

025 K {
..... h, /R =0.05
1
o2 F e R=0.1 1
h, /R =0.15
——h R=02
0.15F 1

Fig.7 Frequency of the disk versus to 6,/ e kinds

e number of
nctionally graded
Iti-phase disk with

Convergence information for effe
nanocomposite layer (N¢) and
distribution on the frequency o

and FG-O pa

sitionally f;

porositygoatterns, du¢ to the Nt > 10 we are not able to
observe in the structure’s frequency. Analysis

of three types’ method for reinforcing the
e system’s frequency with consideration three
por oefficient and boundary conditions is argued in

oundary conditions and four %, /R;

Table 5. The ends of Table 5 are that for clamped-simply,
and clamped—clamped not only MHC/HC/MHC reinforced
disk have the greatest natural frequency compared to CNTs/
HC/CNTs reinforcements but also growing the imperfection
effect is a reason to decrease the systems’ frequency.

In accord with Table 5, it can be concluded that apply-
ing the honeycomb network as the core of the structure will
enhance the structure’s dynamic response, impressively. The
graphs and data in Fig. 4 depicts the internal force, three
types of boundary conditions, and honeycomb core to com-
posite face-sheet thickness ratio (h;, /h,) effects on the vibra-
tional response of the compositionally disk. It is as a fact

@ Springer



Engineering with Computers

Clamped-Clamped

0.4 T

Clamped-Simply

0.3 T

0.25 F™

0.2

'35 0.15

0.1

for various boundary conditio
in the applied internal force ca
of the structure tends to i

; value of internal pressure,
4 the sandwich structure’s fre-
tic function. For more explana-
the Ay, /h, at first, the honeycomb

illustrates the fibers angel (), three types of
onditions, and honeycomb core to composite face-

@ Springer

of the compositionally disk. It is as a fact for various boundary
condition in which with each decrease in the 6, can claim that
the frequency of the structure tends to improve, particularly for
the smaller values of 4, /h, and simply-simply boundary condi-
tions. Also, the impact of the fibers angle on the frequency can
be overlooked for large i, /h,. For each boundary conditions
and any value of fibers angel, the relation among 4, /h, and the
sandwich structure’s frequency is the same as quadratic func-
tion. To clarify it more, by ever-increasing in the Ay, /h, at first,
the honeycomb core structure’s frequency drops, exponentially
and after the specific value of the structure’ dynamic response
improves, linearly. It is important to mention that the specific
value for the h; / h, grows by increasing the 6.
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Clamped-Clamped

----- 9h:7r/ 50

Simply-Simply

Clamped-Simply

----- 9h:7r/ 50

0.05

----- t9h:7r/50
0h=1r/25

_0h=7r/6

0h:7r/10

Fig.9 Frequency of the disk versus to % for thy nds o

lays the fibers angel
porosity factor, and

The depicted graph in Fig.
(V}), three types of boundary con:

(hy /h,) effects on t
tionally disk. As

namic response improves, linearly.
hat the fibers angel (6;/7), three types

9f/7r

dary conditions and four 6,

bell-shaped function with the positive concave. When the
0,/ becomes close to 0.5, there is no change in the disk’s
frequency, especially for the smaller /1, /R; and C—C and C-S
boundary conditions. In addition, for each value of 0f /x,
dynamic stability of the structure will improve by increasing
hy /R;. As another general outcome, the critical or minimum
frequency for the sandwich disk displays when the (6, / )¢
and (6, /m)S are 0.5 while for S-S edges, 0;/m is equal to
0.5, 0.32, and 0.64.

The given information in Fig. 8 shows the fibers angel
(Gf /m), three kinds of boundary conditions, and outer to
inner radius ratio (R, /R;) affect the vibrational behavior of
the compositionally disk. Figure 8 presents that each value
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Clamped-Clamped

Simply-Simply

Clamped-Simply

0.2 . -
----- P=-500 [N]
b, e =250 [N] e
s, P=0  [N] 3
0.15 ——P=250 [N] 1
——P=500 [N]

................

----- P=-500 [N]

0.25 ' |
..... P=-500 [N]
s P=2250 [N]
oal P=0 [N] ]
0.15 - 7
(=
3
0.1r Simimemny, gmimaTi g . 1
0.05 _
0
0 0.2 0.4 06 o l
0f/7r
0.12 !
B s P=2250 [N]
0.08
'3% 0.06
0.04
0.02
0
0

Fig. 10 Frequency of the disk versus to 6, /7 fi e ki

of 0;/x, the structure’s dyna
through an increase in R; param

ability will improve

. 9 depicts by considering the
b network, 8, have significant role
s{requency as an enhancement.

i ates that the fibers angel (0;/7), three
y conditions, and external applied load
e vibrational behaviors of the composition-
considering external applied load, the impact

@ Springer

oundary conditions and four p

of compressive or tensile load on the structure’s dynamic
response is impressive as the rigidity of the edges decreases
and the dimensionless fibers angle becomes close to 0.5.
As a remarkable result, when the structure is encountered
with clamped edges, there is a critical fibers angel in which
is equal to 0.5, but if we consider pure simply edges and
compressive load, there can see three critical fibers angels
in which are equal to 0.5, 0.33, and 0.66. In addition, by
considering tensile applied load there is a range for critical
fibers angel and this range expands by increasing the value
of applied load.

Figure 11 depicts the effects of three types of boundary
conditions, various thickness of the SMA reinforced face
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Clamped-Clamped V f=0.2

Clamped-Simply V f=0.2

0.11 - ' '
0.04

0.02  0.03 0.05 0.09 0.1

Simply-Simply

.

0.28 | . ‘ .
0.26
0.24
3% 0.22
02l
0.18
0.16 . : : : : :
002 003 004 005 006 007 008 009 0.1
h/h
0.13
0.12
0.11
BT O T —
009 ......................................................
0.08
0.07

0.02  0.03 .05

Fig. 11 Frequency of the sandwich disk versus to 7, /h

ickness ratio

sheet (hg,,), and MHC face sheet t
3 of the compositionally

(h,/h) on the vibrational respc

between #,/h and sandwich
e same as quadratic function. To

’s frequency drops, exponentially and

6.06

). 0.07  0.08  0.09 0.1
ht/h

e¢ kinds of boundary conditions and four /g,

after an specific value for the /,/h the dynamic response of
the structure improves.

In Fig. 12 shows the effects of three boundary condition
types, various SMA (V) value fraction, and MHC face sheet
to total thickness ratio (h,/h) on the vibrational response
of the compositionally disk. For various boundary condi-
tion, with each increase in the V parameter the frequency
of the structure tends to improve. As an important report,
the impact of V element on the dynamics of the structure is
more considerable at the initial /,/h value.
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Clamped-Clamped
0.28 T T P T p‘

0.26

0.24

0.02  0.03 0.04 0.05 006 0.07
ht/h

0.2 T T

Clamped-Simply

0.04  0.05

Fig. 12 Frequency of the sandwich disk versus par

11 Conclusion

cifications with a
cluding SMA fiber,
in-plane pressure is stud-
s and strain relations are

A porous sandwich disk’s vibr:
core (honeycomb), two middle 1
and two outer layers of
ied. By employing
acquired. Halpin’
are combined
introduced

eiation among sandwich structure’ frequency
. 1s as same as quadratic function.

dynamics of the structure is more considerable at the
initial &, /h value.

e For boundary conditions and hg,,, values, the relation
between sandwich structure’s frequency and k,/h is as
same as quadratic function.

@ Springer

0.07  0.08  0.09 0.1

1 for three kinds of boundary conditions and four Vg

for various boundary conditions, with each increase in
the hg,,, parameter the frequency of the structure tends
to improve, particularly in the lowest value of 4,/h and
simply-simply boundary conditions.

the effect of the fibers angle on the frequency can be
overlooked for lager value of A /h,

For various boundary condition, with each increase in
the hg,,, parameter the frequency of the structure tends
to improve, particularly in the lowest value of 4,/h and
simply-simply boundary conditions

By an increase in the i, /h, at first, the honeycomb core
structure’s frequency drops, exponentially and after
the specific value of the structure’s dynamic response
improves, linearly.

when the 6, /7 parameter becomes close to z /2, there
is no change in the disk’s frequency, especially for the
smaller value of & /R; and C—C boundary conditions.
by considering external applied load, the impact of
compressive or tensile load on the structure’s dynamic
response is impressive as the edges’ rigidity decreases
and the dimensionless fibers angle becomes close to 7 /2.
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