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Abstract
The current research work analyzes dynamics of a sandwich disk which is gently thick. The mentioned sandwich structure 
has honeycomb core, a couple of middle layers having fibers of shape memory alloy (SMA), and a couple of external layers 
of multi-scaled hybrid nanocomposite (MHC) considering in-plane force. The core in the shape of honeycomb is manufac-
tured of aluminum due to its high stiffness and less density compared with other materials. Applying energy methods called 
the principle of Hamilton, we obtained governing motion equations of the mentioned structure and solved them using First-
order shear-deformation-theory (FSDT), as well as generalized-differential-quadrature-method (GDQM), respectively. To 
layers’ joint, the compatibility equations have been taken into account. Then, a parametric mathematical manipulation has 
been conducted to analyze the impacts of fibers of SMA, boundary conditions (BCs), internal loads, honeycomb network 
angle, ratio of external to internal radiuses, ratio of thickness to length of the honeycomb, weight fraction of CNTs, angle of 
fibers, ratio of honeycomb to face-sheet thickness on the frequency of the multi-phase sandwich disk. The outcomes derived 
reveal that for any amount of internal pressure and each BCs, the relation of the honeycomb’s thickness ratios to MHC layer 
( h

H
∕h

t
 ) and sandwich structure’s frequency is similar to quadratic function. Further results show that the effects of the fibers’ 

angle on the frequency can be ignored for larger h
H
∕h

t
 amounts.

Keywords Honeycomb core · Porosity · Multi-layer disk · Various boundary conditions · MHC · SMA fibers

1 Introduction

Since applicable material and structures’ thermomechani-
cal response has been improved by applying the sandwich 
module structures, in the last decant, scientists discovered 

a new and perfect method to boost the dynamic and static 
responses of the low-density beam, plate, disk, and shell 
[1–7] due to the mentioned fact, structures in honeycomb 
shape [8, 9] are presented to use in the pertained industries 
[10, 11]. The sandwich panel’s frequency parameters made 
from Honeycomb Core have been analyzed by Mukho-
padhyay et al. [12] using Energy Methods. In that paper, 
it is reported that core of honeycomb would enhance the 
free vibration characteristics and ultimately the sandwich 
panels’ stiffness. Ref. [13] has investigated the impacts of 
a wide range of defects occurring to build honeycomb com-
posite beams and determined the mechanical behavior of 
those structures in different frequency modes employing 
Fast Fourier Transform analyzer and finite element (FE) 
model. Considerable outcomes of this research revealed that 
the structure’s frequency parameters would be reduced by 
increasing percentage of structure’s defect. Frequency char-
acteristics of honeycomb sandwich structures with various 
cores have been analyzed by Mozafari et al. [14] Employing 
experimental tests, they obtained the polyurethane foams’ 
mechanical behaviors and evaluated the impact of the first 
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resonance, the foams’ impact and the shape of the state on 
the core’s vibrations. The frequency characteristics of the 
structure’s graded corrugated lattice core along with using 
an exact solution method to solve the governing motion 
equations has been evaluated by Ref. [15]. They studied the 
beam length’s impact, thickness of facial leaf and graded 
parameters on the mentioned structure’s frequency. The 
amplitude of the solar panel’s vibrations which is manu-
factured by smart layers and honeycomb core has been con-
trolled by Amini et al. [16]. Using the theories related to thin 
plate and employing Hamilton’s principle, they obtained the 
BCs and equations of motion. Eventually, they discovered 
that elastoelectric impacts are playing prominent roles in the 
solar panel’s frequency parameters. Ref. [17] examined the 
panels’ post-buckling response with graphene particles rein-
forcements and honeycomb cores. The scientists’ achieve-
ments show that the thickness of core, weight fraction of 
GPL, and geometric characters pertained to panel have 
vital roles on the sandwich panel’s post-buckling. Sobhy 
[18] has analyzed the curved beam’s bending characters 
reinforced with layers of graphene nanoplatelets along with 
honeycomb core. Employing DQM, they obtained the asso-
ciated BCs and solved complicated motion equations. Sand-
wich panels’ frequency parameters with honeycomb core 
employing FE model and experimental research has been 
conducted by Wang et al. [19]. They eventually revealed 
that, the face-sheet’s thickness ratio, and density of filling 
foam have essential role in the sandwich panels’ frequency 
with honeycomb core. Frequency investigation of a sand-
wich beam considering honeycomb hybrid core applying 
experimental techniques and FE models has been studied 
by Ref. [20]. Honeycomb sandwich shell’s nonlinear fre-
quency parameters has been reported by Zhang et al. [21]. 
They have solved the structure’s governing motion equations 
with simply BCs through using method of homotopy per-
turbation. Recently, applying reinforcements of CNTs have 
attracted the attention of many scientists and researchers. 
For instance, an FG circular plate’s major bending behav-
ior boosted through using CNTs and covered by an elastic 
foundation has been studied by Keleshteri et al. [22]. They 
assert that the thick shear deformation models and von Kar-
man are used to present more precise results in their math-
ematical method. Moreover, for solving governing equations 
extracted through using energy methods, they applied the 
Newton–Raphson as well as GDQ approach. Their promi-
nent result is that the CNT’s volume fraction along with 
thickness would play an important role when it comes to the 
analysis of the circular disk’s nonlinear frequency. Nonlinear 
free and forced an FG disk’s frequency response employing 
the von Kármán model along with thin SDT has been con-
ducted by Ansari and Torabi [23]. They highlighted basically 
on the enhanced GDQ approach for the solution method of 

the FG disk’s governing equation and presented a structure’s 
large amplitude frequency. Torabi and Ansari [24] have pre-
sented that it is vital to develop motion equations of the FG-
CNT-reinforced circular plate’s large amplitude vibration 
based on general asymmetric’s equations in the existence of 
elementary thermally stress for reaching precise outcomes. 
Finally, a huge number of researches presented the stability/
sinstability of applicable structure in many articles [25–33].

Based on the highly scrutinized literature investigation, no 
one would assert there is a study on the sandwich disk’s fre-
quency analysis considering a core (honeycomb), including 
fiber of shape memory alloy (SMA), and a couple of external 
layers (MHC) under in-plane load. FSDT is employed to 
stress–strain formulation. Modified Halpin–Tsai model and 
the Rule of the mixture are involved in providing the efficient 
the MHC disk’s material constant. Using energy methods, 
the structure’s governing equations are extracted. Eventually, 
the impacts of some physically and geometrically factors of 
SMA fiber and MHC, and in-plane loads on the dynamics 
of the mentioned structure are reported, in detail. The final 
results reveal that we would conclude that using the network 
of honeycomb as the structure’s core boosts the structure’s 
dynamics considerably.

2  Mathematical modeling

2.1  The homogenization process of MHC

The homogenization procedure is contained of a couple 
of basic stages due to the Halpin–Tsai theory [34], com-
bined with a micromechanical model. The primary level is 
involved with calculating the efficient behaviors of the com-
posite enhanced with CF as below [35]

The nanocomposite matrixes [36–38] and fiber’s volume 
fraction may be as [35]:

(1)E11 = VFE
F
11
+ VNCME

NCM,

(2)
1

E22

=
VF

E
F

22

+
VNCM

ENCM
− VFVNCM ×

(�F)2
E
NCM

E
F

22

+ (�NCM)2
E
F

22

EM
− 2�F�NCM

VFE
F

22
+ VNCMENCM

,

(3)
1

G12

=
VF

GF
12

+
VNCM

GNCM
,

(4)� = VNCM�
NCM + VF�

F,

(5)�12 = VNCM�
NCM + VF�

F.

R
ET
R
A
C
TE
D
A
RT

IC
LE



Engineering with Computers 

1 3

The following stage is organized to determine the efficient 
behaviors of the nano-scaled composite matrix enhanced 
with CNTs using the developed micromechanics of Hal-
pin–Tsai [39]:

Here, �dl and �dd may be calculated as the following 
relations

The CNTs’ volume fraction would be calculated as 
follow:

However, a broad range of MHC distribution through ori-
entation of thickness would be written by [40]:

where �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h j = 1,2,… ,Nt.

Moreover, the sum of  VCNT and  VM is equal to one as 
below (Fig. 1):

 

(6)VF + VNCM = 1.

(7)ENCM = EM

(
5

8

(
1 + 2�ddVCNT

1 − �ddVCNT

)
+

3

8

(
1 + 2(lCNT∕dCNT)�dlVCNT

1 − �dlVCNT

))
.

(8)

�dl =
(ECNT

11
∕EM)

(lCNT∕2tCNT) + (ECNT
11

∕EM)
−

(dCNT∕4tCNT)

(lCNT∕2tCNT) + (ECNT
11

∕EM)
,

�dd =
(ECNT

11
∕EM)

(dCNT∕2tCNT) + (ECNT
11

∕EM)
−

(dCNT∕4tCNT)

(dCNT∕2 × tCNT) + (ECNT
11

∕EM)
.

(9)V∗
CNT

=
WCNT

WCNT +
(

�
CNT

�
M

)
(1 −WCNT)

.

(10)

VCNT = 4V∗
CNT

����j
���

h
FG - X

VCNT = 2V∗
CNT

⎛⎜⎜⎝
1 − 2

����j
���

h

⎞⎟⎟⎠
FG-O

VCNT = V∗
CNT

FG - UD

(11)VCNT + VM = 1.

Eventually, the MHC face sheets’ mechanical properties 
may be written as:

In Fig. 2, different types of porosity distribution called, 
X, U, along with O are given [41–44]. The shear modulus, 
Young’s modulus, as well as density, are as follow:

where [45]:

Due to the Gaussian Random Field scheme (Figs. 3 and 
4), we would have [45]:

the porous disk’s Poisson’s ratio pertaining to the Field of 
closed-cell Gaussian Random would be computed as [45]:

(12)�
NCM = VCNT�

CNT + VM�
M

(13)�
NCM = �

M ,

(14)GNCM =
ENCM

2
(
1 + �

NCM
)

(15a)G̃12(z) =
Ẽ11

2(1 − v(z))

(15b)Ẽ22 = E22

(
1 − e0s(z)

)
,

(15c)Ẽ11 = E11

(
1 − e0s(z)

)
,

(15d)�̃�(z) =
[
−ems(z) + 1

]
𝜌(z) + Vncm𝜌ncm,

(16)s =

⎧⎪⎨⎪⎩

so PD − UD

so cos
�

�

4
+

�z

2h

�
PD − X

socos
�

�z

h

�
PD − O

.

(17)em =
1.121

[
1 −

(
1 − e0s(z)

) 1

2.3

]

s(z)
,

(18a)

ṽ12 = 0.221

(
1 −

�̃�(z)

𝜌

)

+ v12

[
1 + 0.342

(
1 −

�̃�(z)

𝜌

)2

− 1.21

(
1 −

�̃�(z)

𝜌

)]
,

Fig. 1  Distribution of CNT through the thickness of the MHL com-
posite
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Moreover, when the porosity distributions’ various types 
with the disk’s total masses are the same, the amount of the 
 S0 may be obtained as [45]:

3  Honeycomb core modeling

The hexagonal cell configuration is demonstrated in Fig. 3. 
Due to the Gibson theory, we would have [47]:

(18b)ṽ21 = ṽ12
Ẽ11

Ẽ22

.

(19)s0 =
1

e0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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1
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h

2∫
−

h
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.
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)
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(
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∗
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= −
�1
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h
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l + sin

(
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sin

(
�h

)

cos2
(
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(
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)
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(
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Fig. 2  Patterns of porosity dis-
tribution through the thickness 
of MHC [46]
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Fig. 3  The hexagonal cell geometry
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4  SMA characteristics in the composite’s 
matrix

The SMA properties are reported by Ref. [48] the present 
research, supposed that the fibers of SMA have been distrib-
uted uniformly. The composite disk’s elastic parameters with 
fibers of SMA may be derived by [48]:

5  The disk’s displacement fields

According to the shear stress theories [49–56], and due to 
the FSDT, the fields of displacement would be expressed by 
the following equations relations [57]:

(20-e)G∗
12
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h
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�
� = �
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0
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�

R

�
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�
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�

�

�
� = �

�

0

The above equation � explains the bottom, top, along with 
core layers.

6  Stress–Strain honeycomb core’s relations

Due to the FSDT, the stress–strain relation, may be given 
as [57–63]:

So, the strain elements may be defined as [64]:

Equation (24) would be rewritten as

MHC angle-ply laminated disk’s Stress–strain equations 
[65–69] and SMA layer would be given as below [57]:
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In the aforementioned relation, � explains the bottom and 
top layers of the structure.

Here

The terms involved in Eq. (27a–27i) would be obtained 
as [70–74]:

The aforementioned relations define � as the layer of 
MHLC and SMA. So, the strain elements could be given 
as [75, 76]:

Equation (28) can be rewritten as
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𝜁

12
�̃�
𝜁

21

, Q̃
𝜓

22
=

Ẽ
𝜁

22

1 − �̃�
𝜁

12
�̃�
𝜁

21

, Q̃
𝜓

44
= G̃

𝜁

12
, Q̃

𝜓

55
= G̃

𝜁

23
, Q̃

𝜓

66
= G̃

𝜁

13
.

(28)

⎧⎪⎪⎨⎪⎪⎩

�RR

�
��

�R�

�Rz

�
�z

⎫
⎪⎪⎬⎪⎪⎭

�

=

⎧
⎪⎪⎨⎪⎪⎩

�
0
RR

�
0
��

�
0
R�

�
0
Rz

�
0
�z

⎫
⎪⎪⎬⎪⎪⎭

�

+ z

⎧
⎪⎪⎨⎪⎪⎩

�RR

�
��

�R�

�Rz

�
�z

⎫
⎪⎪⎬⎪⎪⎭

�

7  Compatibility equations

The conditions of compatibility supposing excellent bonding 
between the layers of composite and the core that would be 
expressed as below:

(29)

⎧⎪⎪⎨⎪⎪⎩

�
0
RR

�
0
��

�
0
R�

�
0
Rz

�
0
�z

⎫⎪⎪⎬⎪⎪⎭

�

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

��0

�R
�0

R
+

��0

R��
��0

R��
+

��0

�R
−

�0

R

�R +
��

�R

�
�
+

��

R��

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

�

,

⎧⎪⎪⎨⎪⎪⎩

�RR

�
��

�R�

�Rz

�
�z

⎫⎪⎪⎬⎪⎪⎭

�

=

⎧⎪⎪⎨⎪⎪⎩

��R

�R
�R

R
+

��
�

R��
��R

R��
+

��
�

�R
−

�
�

R

0

0

⎫⎪⎪⎬⎪⎪⎭

�

(30a)�
c(zc = −hc∕2) = �

SMAb(zSMAb = hSMAb∕2),

(30b)�
c(zc = −hc∕2) = �

SMAb(zSMAb = hSMAb∕2),

(30c)�
c(zc = −hc∕2) = �

SMAb(zSMAb = hSMAb∕2),

(30d)�
c(zc = hc∕2) = �

SMAt(zSMAt = −hSMAt∕2),

(30e)�
c(zc = hc∕2) = �

SMAt(zSMAt = −hSMAt∕2),

(30f)�
c(zc = hc∕2) = �

SMAt(zSMAt = −hSMAt∕2),

(30g)
�
MHCt(zMHCt = −hcMHCt∕2) = �

SMAt(zSMAt = hSMAt∕2),R
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R
A
C
TE
D
A
RT

IC
LE



Engineering with Computers 

1 3

8  Developed principle of Hamilton

Due to the energy method, there are equations between 
motion equations and BCs defined as [77, 78]:

The related rotating system’s kinetic energy may be cal-
culated as [79–84]:

where:

However, the presented composite structure’s strain 
energy [85–88] could be determined as:

(30h)�
MHCt(zMHCt = −hMHCt∕2) = �

SMAt(zSMAt = hSMAt∕2),

(30i)
�
MHCt(zMHCt = −hMHCt∕2) = �

SMAt(zSMAt = hSMAt∕2),

(30j)
�
MHCb(zMHCb = hMHCb∕2) = �

SMAb(zSMAb = −hSMAb∕2),

(30k)
�
MHCb(zMHCb = hMHCb∕2) = �

SMAb(zSMAb = −hSMAb∕2),

(30l)
�
MHCb(zMHCb = hMHCb∕2) = �

SMAb(zSMAb = −hSMAb∕2).

(31)∫
t2

t1

(�T∗ − �U∗ + �W∗)� dt = 0

(32)T∗� = ∫
V

1

2
�
�

[(
��

�t

)2

+

(
��

�t

)2

+

(
��

�t

)2
]
�

dV

(33)

�T∗� = ∫
V

�
�

�
�U

�t

��U

�t
+

�V

�t

��V

�t
+

�W

�t

��W

�t

��

dV ∶

�T∗� =

R2

∫
R1

�

∫
0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�
−I0

�
2
�0

�t2
− I1

�
2
�R

�t2

�
�� +

�
−I1

�
2
�0

�t2
− I2

�
2
�R

�t2

�
��R

+

�
c1I3

�
2
�0

�t2
+ c1I4

�
2
�R

�t2

�
��R +

�
−I0

�
2
�0

�t2
− I1

�
2
�
�

�t2

�
��

+

�
−I1

�
2
�0

�t2
− I2

�
2
�
�

�t2

�
��

�
+

�
−I0

�
2
�0

�t2

�
��

⎤⎥⎥⎥⎥⎥⎥⎥⎦

�

RdRd�

(34)
{
Ii
}
=

h

2

∫
−

h

2

�
�(z)

{
zi
}
dZ, i = 0 ∶ 4

which [89]:

Additionally, the variation of the work done [82, 90–93] 

by mechanical force (internal load) can be obtained as

Ultimately, corresponding BCs and governing equations 
would be extracted by inserting Eqs. (37), (35), and (33) in 
principle of Hamilton (Eq. (31)) which may be written as:

(35)

�U∗� =
1

2 ∭
V

�
�

ij
��

�

ij
dV

= ∫
A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
PRR

��� 0

�R
+ QRR

���1

�R

�

+

�
P
��

���0

R��
+ Q

��

���1

R��
+ P

��

��0

R
+ Q

��

��1

R

�

+

⎛⎜⎜⎜⎝

PR�

���0

�R
+ QR�

���1

�R
+ PR�

���0

R��
+ QR�

���1

R��

−PR�

��0

R
− QR�

��1

R

⎞⎟⎟⎟⎠
+

�
(PRz)

�
��1 +

���0

�R

��
+

�
(P

�z)

�
��1 +

���0

R��

��

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

dA

(36)

{
PRR,QRR

}
�

= ∫z

{
�RR, z�RR

}
�

dz;

{
P
��
,Q

��

}
�

= ∫z

{
�
��
, z�

��

}
�

dz;

{
PRz,QRz, TRz

}
�

= ∫z

{
�Rz, z�Rz, z

2
�Rz

}
�

dz;.

{
PR� ,QR� , TR�

}
�

= ∫z

{
�R� , z�R� , z

2
�R�

}
�

dz;

{
P
�z,Q�z, T�z

}
�

= ∫z

{
�
�z, z��z, z

2
�
�z

}
�

dz.

(37)W∗� = −∫
A

PA

(
�
2
�
�

0

�R2

)
dA
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(38a)
��

�

0
∶

�

�R
P
�

RR
−

P
�

��
− P

�

RR

R
+

�

R��
P
�

R�
= I

�

0

�
2
�
�

0

�t2
+ I

�

1

�
2
�
�

1

�t2

(38b)
��

�

0
∶

�

R��
P
�

��
+

2P
�

R�

R
+

�

�R
P
�

R�
= I

�

0

�
2
�
�

0

�t2
+ I

�

1

�
2
�
�

1

�t2

(38c)

��
�

0
∶

2
�

�R

(
PRz

)
�

+ 2
�

R��

(
P
�z

)
�

− PA
�
2
�0

�R2
=

(
I0
�
2
�0

�t2

)�

(38d)
��

�

R
∶

�QRR

�R
−

Q
��

R
+

1

R

�QR�

��

−
(
PRZ

)
= I1

�
2
�0

�t2
+ I2

�
2
�R

�t2

(38e)

��
�
∶

�

R��
Q

��
+

2

R
QR� +

�

�R
QR� − Q

�z = I
�

1

�
2
�0

�t2
+ I

�

2

�
2
�
�

�t2

Furthermore, general pertained BCs would be written as:

By inserting Eq. (36) into Eqs. (38a–e), the governing 
equations of the MHLCD are obtained as

(39a)𝛿𝛼
𝜂 = 0 or P

𝜂

RR
n̂R +

P
𝜂

R𝜃

R
n̂
𝜃
= 0

(39b)𝛿𝛽
𝜂 = 0 or P

𝜂

R𝜃
n̂R +

P
𝜂

𝜃𝜃

R
n̂
𝜃
= 0

(39c)𝛿𝜒
𝜂 = 0 or

[
2
(
PRZ

)]
𝜂

n̂R +
[
2

R

(
P
𝜃Z

)]𝜂
n̂
𝜃
= 0

(39d)𝛿𝜒
𝜂

R
= 0 or

[
QRR

]
𝜂

n̂R +

[
QR𝜃

R

]
𝜂

n̂
𝜃
= 0

(39e)𝛿𝜒
𝜂

𝜃
= 0 or

[
QR𝜃

]
𝜂

n̂R +

[
Q

𝜃𝜃

R

]
𝜂

n̂
𝜃
= 0

(40a)

��
�

0
∶

�

�R

({
ℝ11

��
�

0

�R
+ ℤ11

��
�

R

�R

}
+

{
ℝ12

R
�
�

0
+

ℤ12

R
�
�

R
+

ℝ12

R

��
�

0

��

+
ℤ12

R

��
�

�

��

})

+
1

R

�

��

(
ℝ66

R

��
�

0

��

+
ℤ66

R

��
�

R

��

+ℝ66

��
�

0

�R
+ ℤ66

��
�

�

�R
−

ℝ66

R
�
�

0
−

ℤ66

R
�
�

�

)

−
1

R

({
ℝ12

��
�

0

�R
+ ℤ12

��R

�R

}
+

{
ℝ22

R
�
�

0
+

ℤ22

R
�
�

R
+

ℝ22

R

��
�

0

��

+
ℤ22

R

��
0
�

��

})

= I
�

0

�
2
�
�

0

�t2
+ I

�

1

�
2
�
�

1

�t2

(40b)

��
�

0
∶
1

R

�

��

({
ℝ12

��
�

0

�R
+ ℤ12

��
�

R

�R

}
+

{
ℝ22

R
�
�

0
+

ℤ22

R
�
�

R
+

ℝ22

R

��
�

0

��

+
ℤ22

R

��
�

�

��

})

+
�

��

(
ℝ66

R

��
�

0

��

+
ℤ66

R

��
�

R

��

+ℝ66

��
�

0

�R
+ ℤ66

��
�

�

�R
−

ℝ66

R
�
�

0
−

ℤ66

R
�
�

�

)

+
1

R

(
ℝ66

R

��
�

0

��

+
ℤ66

R

��
�

R

��

+ℝ66

��
�

0

�R
+ ℤ66

��
�

�

�R
−

ℝ66

R
�
�

0
−

ℤ66

R
�
�

�

)

= I
�

0

�
2
�
�

0

�t2
+ I

�

1

�
2
�
�

1

�t2

(40c)
�w ∶

�

�R

((
ℝ55

)(
�
�

R
+

��
�

0

�R

))
+

1

R

�

��

((
ℝ44

)(
�
�

�
+

��
�

0

R��

))
−

P

R2

�
2
�
�

0

��
2

=

(
I0
�
2
�0

�t2

)�
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where: 
{
ℂij,ℤij,ℝij

}
= ∫ h

2

−
h

2

Qij

{
z2, z1, 1

}
dz.

It is highlighted that, due to the equations of compatibil-
ity (Eq. (30)), the amounts of variables which are unknown 
would be declined from by 8. So, the total amounts of 
unknowns in the core and face sheets is reduced from 25 
to 13.

9  Solution process

Recently, computer aid simulation and semi numerical 
approach become well-known to simulation different prob-
lems [94–102]. In this stage of the current paper, we intro-
duced a solution procedure called GDQM to solve the for-
mulation of the current problem. In this method have:

(40d)

��
�

R
∶

�

�R

({
ℤ11

��
�

0

�R
+ ℂ11

��
�

R

�R

}
+

{
ℤ12

R
�
�

0
+

ℂ12

R
�
�

R
+

ℤ12

R

��
�

0

��

+
ℂ12

R

��
�

�

��

})

−
1

R

({
ℤ12

��
�

0

�R
+ ℂ12

��
�

R

�R

}
+

{
ℤ22

R
�
�

0
+

ℂ22

R
�
�

R
+

ℤ22

R

��
�

0

��

+
ℂ22

R

��
�

�

��

})

+
1

R

�

��

(
ℤ66

R

��
�

0

��

+
ℂ66

R

��
�

R

��

+ ℤ66

��
�

0

�R
+ ℂ66

��
�

�

�R
−

ℤ66

R
�
�

0
−

ℂ66

R
�
�

�

)

−
(
ℝ55

)(
�
�

R
+

��
�

0

�R

)
= I1

�
2
�0

�t2
+ I2

�
2
�R

�t2

(40e)

��
�
∶
1

R

�

��

({
ℤ12

��
�

0

�R
+ ℂ12

��
�

R

�R

}
+

{
ℤ22

R
�
�

0
+

ℂ22

R
�
�

R
+

ℤ22

R

��
�

0

��

+
ℂ22

R

��
�

��

})

+
�

�R

(
ℤ66

R

��
�

0

��

+
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R

��
�

R

��
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��
�
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��
�

�

�R
−
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�
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�
�

�

)
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1

R

(
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R
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�

0

��

+
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R

��
�

R

��

+ ℤ66

��
�

0

�R
+ ℂ66

��
j

�
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−

ℤ66

R
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�

0
−
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R
�
�

�

)

+
1

R

(
ℤ66

R

��
�

0

��

+
ℂ66

R

��
�

R

��

+ ℤ66

��
�

0

�R
+ ℂ66

��
�

�

�R
−

ℤ66

R
�
�

0
−

ℂ66

R
�
�

�

)

−

((
ℝ44

)(
�
�

�
+

��
�

0

R��

))
= I

�

1

�
2
�0

�t2
+ I

�

2

�
2
�
�

�t2

(41a)
�f

�r

||||r=ri, �=�j
=

Nr∑
m=1

N
�∑

n=1

Ar
im
I�
jn
fmn

Also, Ir
im

 and I�
jn

 would equal to 1 while m = i and n = j 
otherwise, may be equal to 0. Furthermore, B�

jn
 , Br

im
 , A�

jn
 and 

Ar
im

 may be weighting factors of the second and first-order 
derivatives along with the θ and r orientation, respectively, 
and would be taken into consideration as

(41b)
�f

��

||||r=ri, �=�j
=

Nr∑
m=1

N
�∑

n=1

Ir
im
A�

jn
fmn

(41c)
�

�r

(
�f

��

||||r=ri, �=�j

)
=

Nr∑
m=1

N
�∑

n=1

Ar
im
A�

jn
fmn

(41d)
�
2f

�r2

|||||r=ri, �=�j
=

Nr∑
m=1

N
�∑

n=1

Br
im
I�
jn
fmn

(41e)
�
2f

��
2

|||||r=ri, �=�j
=

Nr∑
m=1

N
�∑

n=1

Ir
im
B�
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fmn
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in which

And

(42a)

A
(1)

im
=

⎧
⎪⎨⎪⎩

�(ri)
(ri−rm)�(rm)

when i ≠ m

−
Nr∑

k=1,k≠i
A
(1)

ik
when i = m

i,m = 1, 2,… ,Nr

(42b)

A
(1)

jn
=

⎧⎪⎨⎪⎩

�(�j)
(�j−�n)�(�n)

when j ≠ n

−
N
�∑

k=1,k≠j
A
(1)

jk
when j = n

j, n = 1, 2,… ,N
�

(43a)�

(
ri
)
=

Nr∏
k=1,k≠i

(
ri − rk

)

(43b)�

(
�j

)
=

N
�∏

k=1,k≠j
(
�j − �k

) In addition, applying points of Chebyshev polynomials 
greed, the seed as well as r and � directions would be dis-
tributed as [103]:

(44a)

B
(r)

im
= r

(
A
(r−1)

ii
A
(1)

im
−

A
(r−1)

im(
ri − rm

)
)

i,m = 1, 2,… ,Nr , i ≠ m

(44b)

B
(�−1)

jn
= �

⎛
⎜⎜⎝
A
(�−1)

jj
A
(1)

jn
−

A
(�−1)

jn�
�j − �n

�
⎞⎟⎟⎠

j, n = 1, 2,… ,N
�
, j ≠ n

(44c)B
(r)

ii
= −

Nr∑
k=1,k≠i

B
(r)

ik
, i = 1, 2,… ,Nr, i = m

(44d)B
(�)

jj
= −

N
�∑

k=1,k≠j
B
(�)

jk
, j = 1, 2,… ,Nj, j = n

Table 1  Comparison of non-
dimensional natural frequency 
( �2

= �b
2
√
�∕E ) of the multi-

scale nanocomposite face sheets 
for different CNT pattern

CNT distribution WCNT

0.04 0.06

Current research Ref . [108] Current research Ref . [108]

FG-X 3.2647 3.2604 3.4805 3.4808
FG-V 3.3775 3.3817 3.5795 3.5783
FG-A 3.4275 3.4291 3.6292 3.6294
FG-UD 3.4174 3.4156 3.6197 3.6170

Table 2  The material properties 
of core [18] and composite layer 
[109]

CNTs Matrix (Epoxy) Fiber (Carbon) Metal (Core)

�12 = 0.33 Em(Gpa) = 3.51 �
f = 0.2 vs = 0.34

�
cnt
(
kg∕m3

)
= 1350 vm = 0.34 �

f (
kg

m3
) = 1750 �

s(
kg

m3
) = 2700

Ecnt(Gpa) = 640 �
m(

kg

m3
) = 1200 E

f

11
(GPa) = 233.05 Es(Gpa) = 70

dcnt(m) = 1.4 × 10
−9

E
f

11
(GPa) = 23.1

tcnt(m) = 0.34 × 10
−9

G
f

11
(GPa) = 8.96

lcnt(m) = 25 × 10
−6

Table 3  Convergence study 
of the GDQM for solving the 
current research for different 
boundary conditions (B.Cs)

B.Cs N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

S–S 0.0370 0.0419 0.0421 0.0422 0.0422 0.0422
C-S 0.1015 0.1009 0.1009 0.1009 0.1009 0.1009
C–C 0.1398 0.1390 0.1385 0.1385 0.1385 0.1385
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By employing the GDQM as solution method of this 
problem, an algebraic eigenvalue [79, 104–107] would be 
created. These relations would be given by:

(45a)ri =
−Ri + R0

2

(
− cos

(
(i − 1)(
Nr − 1

)� + 1

))
+ Ri i = 1, 2, 3, … ,Nr

(45b)

�j =

(
− cos

(
(j − 1)(
N
�
− 1

)� + 1

))
�

2
j = 1, 2, 3, … ,N

�

(46)
{[ [

Mdd

] [
Mdb

]
[
Mbd

] [
Mbb

]
]
�
2
n
+

[ [
Kdd

] [
Kdb

]
[
Kbd

] [
Kbb

]
]}{

�d

�b

}
= 0

Eventually, Though Eq. (46) the novel system are

here, the freedom degrees’ vector will be expressed as:

By inserting of Eq. (48) into Eq. (47b):

(47a)
[
Kdd

]
�d +

[
Kdb

]
�b = 0

(47b)
[
Kbd

]
�d +

[
Kbb

]
�b = 0

(48)�b = −�d

[
Kdd

]
[
Kdb

]

Table 4  Convergence study 
of the GDQM for solving the 
current research for different 
CNT-distribution pattern and 
PD

PD CNT- distribution Nt = 2 Nt = 4 Nt = 6 Nt = 8 Nt = 10 Nt = 12 Nt = 14 Nt = 16 Nt = 100

X FG-X 0.1385 0.1363 0.1370 0.1373 0.1374 0.1374 0.1374 0.1375 0.1375
FG-O 0.1411 0.1354 0.1349 0.1347 0.1347 0.1346 0.1346 0.1346 0.1346
FG-UD 0.1401 0.1358 0.1358 0.1358 0.1357 0.1357 0.1357 0.1357 0.1358

O FG-X 0.1247 0.1360 0.1363 0.1363 0.1363 0.1363 0.1363 0.1363 0.1363
FG-O 0.1286 0.1344 0.1346 0.1346 0.1346 0.1346 0.1346 0.1346 0.1347
FG-UD 0.1275 0.1349 0.1351 0.1351 0.1351 0.1351 0.1351 0.1351 0.1351

UD FG-X 0.1325 0.1352 0.1358 0.1359 0.1360 0.1360 0.1361 0.1361 0.1361
FG-O 0.1357 0.1342 0.1338 0.1338 0.1337 0.1337 0.1337 0.1337 0.1337
FG-UD 0.1346 0.1346 0.1346 0.1346 0.1346 0.1346 0.1346 0.1346 0.1346

Table 5  Effects of three 
types’ method for reinforcing 
the structure on the system’s 
frequency with consideration 
three porosity coefficient and 
boundary conditions

1 Multi-scale hybrid nanocomposite reinforced disk /Honey-Comb/ Multi-scale hybrid nanocomposite rein-
forced disk
2 Carbon nanotubes reinforced disk/Honey-Comb/ Carbon nanotubes reinforced disk

Simply-Simply Clamped-Simply Clamped–Clamped

FG-X FG-O FG-UD FG-X FG-O FG-UD FG-X FG-O FG-UD

Without imperfection  (e0 = 0)
 MHC/HC/MHC1 0.0388 0.0378 0.0381 0.0942 0.0918 0.0926 0.1296 0.1263 0.1275
 CNT/HC/CNT2 0.0489 0.0395 0.0465 0.0825 0.0697 0.0785 0.1190 0.9998 0.1155

With imperfection  (e0 = 0.3)
 MHC/HC/MHC1 0.0396 0.0386 0.0390 0.0961 0.0938 0.0946 0.1322 0.1291 0.1302
 CNT/HC/CNT2 0.0451 0.0321 0.0407 0.0775 0.0594 0.0702 0.1140 0.0895 0.1042

With imperfection  (e0 = 0.5)
 MHC/HC/MHC1 0.0406 0.0396 0.0400 0.0984 0.0963 0.0971 0.1355 0.1325 0.1337
 CNT/HC/CNT2 0.0556 0.0407 0.0507 0.0950 0.0732 0.0842 0.1329 0.1042 0.1258
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So

and

Also, by applying of Eq. (48) into Eq. (51):

(49)
(
−
[
Kbb

][
Kdb

]−1[
Kdd

]
+
[
Kbd

])
�d = 0

(50)K∗ =
[
Kbd

]
−
[
Kbb

][
Kdb

]−1[
Kdd

]

(51)
[
Mbd

]
�d +

[
Mbb

]
�b = 0

Thereby

Ultimately, through solving the following relation, the 
structure’s displacement fields and frequency information 
would be derived by GDQM.

(52)
(
−
[
Mbb

][
Kdb

]−1[
Kdd

]
+
[
Mbd

])
�d = 0

(53)M∗ = −
[
Mbb

][
Kdb

]−1[
Kdd

]
+
[
Mbd

]

(54)M∗
�
2 + K∗ = 0

Fig. 4  Frequency of the disk versus to the honeycomb core to composite face-sheet thickness ratio for five value of internal force and three kinds 
of boundary conditions
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10  Results and discussion

For evaluating the reliability of the current method, the 
dimensionless natural frequency of the annular plate 
obtained in this research is compared with outcomes pro-
vided by Ref. [108] in Table 1. As illustrated in a broad 
range of  WCNT and CNT-distribution pattern, there is a good 
agreement between the outcomes. Regarding the table, this 
study anticipates the vibration characteristics of the annular 
plate very close and similar to the outcomes given in Ref. 
[108].

The mechanical properties for both of the reinforcements 
(Carbon Fiber and Carbon nanotube) and the epoxy matrix 
are shown in Table 2.

Also, the properties of SMA and matrix layer illustrated 
in Ref. [48]. Convergence number of grid points for hav-
ing independent results with respect to the three kinds of 
boundary conditions is investigated in Table 3. As illustrated 
in Table 3, as grid points’ number in the GDQ approach is 
more than eleven, the error for the calculation of the disk’s 
natural frequency becomes zero and this matter is a fact for 
all boundary conditions.

Fig. 5  Frequency of the disk versus to the honeycomb core to composite face-sheet thickness ratio for three kinds of boundary conditions and 
four �f
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Fig. 6  Frequency of the disk versus to hH∕ht for three kinds of boundary conditionsR
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Convergence information for effects of the number of 
nanocomposite layer ( Nt ) and various functionally graded 
distribution on the frequency of the multi-phase disk with 
respect to the porosity patterns is depicted in Table 4.

Based on Table 4 we can state that the structure will 
have the best dynamic response by considering the PD-X 
and FG-O patterns, also the layer’s number in the compo-
sitionally face sheets must not exceed nine for all FG and 
porosity patterns, due to the Nt ≥ 10 we are not able to 
observe any change in the structure’s frequency. Analysis 
of the impacts of three types’ method for reinforcing the 
structure on the system’s frequency with consideration three 
porosity coefficient and boundary conditions is argued in 

Table 5. The ends of Table 5 are that for clamped-simply, 
and clamped–clamped not only MHC/HC/MHC reinforced 
disk have the greatest natural frequency compared to CNTs/
HC/CNTs reinforcements but also growing the imperfection 
effect is a reason to decrease the systems’ frequency.

In accord with Table 5, it can be concluded that apply-
ing the honeycomb network as the core of the structure will 
enhance the structure’s dynamic response, impressively. The 
graphs and data in Fig. 4 depicts the internal force, three 
types of boundary conditions, and honeycomb core to com-
posite face-sheet thickness ratio ( hH∕ht ) effects on the vibra-
tional response of the compositionally disk. It is as a fact 

Fig. 7  Frequency of the disk versus to �f ∕� for three kinds of boundary conditions and four hH∕Ri
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for various boundary condition in which with each increase 
in the applied internal force can claim that the frequency 
of the structure tends to improve, particularly in the bigger 
value of hH∕ht and simply-simply boundary conditions. For 
each boundary conditions and any value of internal pressure, 
the relation between hH∕ht and the sandwich structure’s fre-
quency is the same as quadratic function. For more explana-
tion by ever-increasing in the hH∕ht at first, the honeycomb 
core structure’s frequency drops, exponentially and after a 
specific value for the hH∕ht the structure’s dynamic response 
improves, linearly.

The Fig. 5 illustrates the fibers angel ( �f  ), three types of 
boundary conditions, and honeycomb core to composite face-
sheet thickness ratio ( hH∕ht ) effects on the vibrational behaviors 

of the compositionally disk. It is as a fact for various boundary 
condition in which with each decrease in the �f  can claim that 
the frequency of the structure tends to improve, particularly for 
the smaller values of hH∕ht and simply-simply boundary condi-
tions. Also, the impact of the fibers angle on the frequency can 
be overlooked for large hH∕ht . For each boundary conditions 
and any value of fibers angel, the relation among hH∕ht and the 
sandwich structure’s frequency is the same as quadratic func-
tion. To clarify it more, by ever-increasing in the hH∕ht at first, 
the honeycomb core structure’s frequency drops, exponentially 
and after the specific value of the structure’ dynamic response 
improves, linearly. It is important to mention that the specific 
value for the hH∕ht grows by increasing the �f .

Fig. 8  Frequency of the disk versus to �f
�

 for three kinds of boundary conditions and four Ro∕Ri
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The depicted graph in Fig. 6 displays the fibers angel 
( Vf  ), three types of boundary conditions, porosity factor, and 
honeycomb core to composite thickness ratio of face sheet 
( hH∕ht ) effects on the vibrational behaviors of the composi-
tionally disk. As common result in all below figure by ever-
increasing in the hH∕ht at first, the honeycomb core struc-
ture’s frequency drops exponentially and after the specific 
value the structure’s dynamic response improves, linearly.

Figure 7 shows that the fibers angel ( �f∕� ), three types 
of boundary conditions, and honeycomb core thickness to 
inner radius ratio ( hH∕Ri ) effects on the vibrational behav-
iors of the compositionally disk. As Fig. 7 presents the 
relation between fibers angle and frequency is similar to a 

bell-shaped function with the positive concave. When the 
�f∕� becomes close to 0.5, there is no change in the disk’s 
frequency, especially for the smaller hH∕Ri and C–C and C-S 
boundary conditions. In addition, for each value of �f∕� , 
dynamic stability of the structure will improve by increasing 
hH∕Ri . As another general outcome, the critical or minimum 
frequency for the sandwich disk displays when the (�f∕�)

C−C 
and (�f∕�)

C−S are 0.5 while for S–S edges, �f∕� is equal to 
0.5, 0.32, and 0.64.

The given information in Fig. 8 shows the fibers angel 
( �f∕� ), three kinds of boundary conditions, and outer to 
inner radius ratio ( Ro∕Ri ) affect the vibrational behavior of 
the compositionally disk. Figure 8 presents that each value 

Fig. 9  Frequency of the disk versus to �f
�

 for three kinds of boundary conditions and four �h
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of �f∕� , the structure’s dynamic stability will improve 
through an increase in Ri parameter.

The given information in Fig. 9 shows the fibers angel 
( �f∕� ), three types of boundary conditions, and honeycomb 
network angel ( �h ) affect the vibrational behaviors of the 
compositionally disk. As Fig. 9 depicts by considering the 
close angles for honeycomb network, �h have significant role 
in the disk’s frequency as an enhancement.

The Fig. 10 indicates that the fibers angel ( �f∕� ), three 
kinds of boundary conditions, and external applied load 
( p ) effects on the vibrational behaviors of the composition-
ally disk. By considering external applied load, the impact 

of compressive or tensile load on the structure’s dynamic 
response is impressive as the rigidity of the edges decreases 
and the dimensionless fibers angle becomes close to 0.5. 
As a remarkable result, when the structure is encountered 
with clamped edges, there is a critical fibers angel in which 
is equal to 0.5, but if we consider pure simply edges and 
compressive load, there can see three critical fibers angels 
in which are equal to 0.5, 0.33, and 0.66. In addition, by 
considering tensile applied load there is a range for critical 
fibers angel and this range expands by increasing the value 
of applied load.

Figure 11 depicts the effects of three types of boundary 
conditions, various thickness of the SMA reinforced face 

Fig. 10  Frequency of the disk versus to �f ∕� for three kinds of boundary conditions and four p
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sheet ( hSMA ), and MHC face sheet to total thickness ratio 
( ht∕h ) on the vibrational response of the compositionally 
disk. For various boundary condition, with each increase in 
the hSMA parameter the frequency of the structure tends to 
improve, particularly in the lowest value of ht∕h and simply-
simply boundary conditions. Also, for boundary conditions 
and hSMA values, the relation between ht∕h and sandwich 
structure’s frequency is the same as quadratic function. To 
clarify it, by ever-increasing in the ht∕h at first the honey-
comb core structure’s frequency drops, exponentially and 

after an specific value for the ht∕h the dynamic response of 
the structure improves.

In Fig. 12 shows the effects of three boundary condition 
types, various SMA ( VS ) value fraction, and MHC face sheet 
to total thickness ratio ( ht∕h ) on the vibrational response 
of the compositionally disk. For various boundary condi-
tion, with each increase in the VS parameter the frequency 
of the structure tends to improve. As an important report, 
the impact of VS element on the dynamics of the structure is 
more considerable at the initial ht∕h value.

Fig. 11  Frequency of the sandwich disk versus to ht∕h for three kinds of boundary conditions and four hSMA
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11  Conclusion

A porous sandwich disk’s vibrational specifications with a 
core (honeycomb), two middle layers including SMA fiber, 
and two outer layers of MHC under in-plane pressure is stud-
ied. By employing FSDT, the stress and strain relations are 
acquired. Halpin’s modified model–Tsai and the mixture rule 
are combined to provide the efficient material constant of the 
introduced porous sandwich structure. Eventually, the key 
results of this study are as follows:

• for each boundary conditions and internal pressure’s val-
ues, the relation among sandwich structure’ frequency 
and hH∕ht is as same as quadratic function.

• As an important report, the impact of VS element on the 
dynamics of the structure is more considerable at the 
initial ht∕h value.

• For boundary conditions and hSMA values, the relation 
between sandwich structure’s frequency and ht∕h is as 
same as quadratic function.

• for various boundary conditions, with each increase in 
the hSMA parameter the frequency of the structure tends 
to improve, particularly in the lowest value of ht∕h and 
simply-simply boundary conditions.

• the effect of the fibers angle on the frequency can be 
overlooked for lager value of hH∕ht

• For various boundary condition, with each increase in 
the hSMA parameter the frequency of the structure tends 
to improve, particularly in the lowest value of ht∕h and 
simply-simply boundary conditions

• By an increase in the hH∕ht at first, the honeycomb core 
structure’s frequency drops, exponentially and after 
the specific value of the structure’s dynamic response 
improves, linearly.

• when the �f∕� parameter becomes close to �∕2 , there 
is no change in the disk’s frequency, especially for the 
smaller value of hH∕Ri and C–C boundary conditions.

• by considering external applied load, the impact of 
compressive or tensile load on the structure’s dynamic 
response is impressive as the edges’ rigidity decreases 
and the dimensionless fibers angle becomes close to �∕2.

Fig. 12  Frequency of the sandwich disk versus ht∕h parameter for three kinds of boundary conditions and four VS
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