
The Visual Computer manuscript No.
(will be inserted by the editor)

Light Field Variational Estimation using a Light Field
Formation Model: Supplementary Material

Julien Couillaud · Djemel Ziou

This supplementary material accompanies the pa-

per ”Light Field Variational Estimation using a Light

Field Formation Model” published in The Visual Com-

puter. It provides additional information, demonstra-

tions, proofs, and results.

1 Light ray irradiance demonstration

A light ray is emitted by a scene point and passes

through planes ST and UV located at a distance zl
from the camera. This light ray intersects plane ST at

coordinates (s, t) and plane UV on a point P at coor-

dinates (u, v), as illustrated in Fig.1. The light ray also

crosses the camera aperture plane Ap at coordinates

(au, av) and travels towards an image plane Ip located

at a distance d1 from Ap. The light ray intersection with

Ip is located on a point p at coordinates (ix, iy), where

its radiance is transformed into irradiance. To describe

the radiance transformation into irradiance, some geo-

metric features have to be defined. Let dO be a small

area around P , da be a small area around the light ray

intersection with Ap, and dI be a small area around p

on Ip. The solid angles subtended by dO, da, and dI

are, respectively, ∆ΩO, ∆Ω, and ∆ΩI. Moreover, we

introduce three angles noted θ, α, and β. The first an-

gle θ is the angle between the object normal at P and

the light ray emitted by P . The second one α is the an-

gle between the incident light ray and Ap normal. The

third one β is the angle between the emerging light ray

and Ap normal. Horn [7] writes the irradiance E at p

Julien Couillaud · Djemel Ziou
Université de Sherbrooke, MOIVRE,
2500, boulevard de l’Université Sherbrooke (Québec)
J1K 2R1
E-mail: julien.couillaud@usherbrooke.ca

Fig. 1 Projection of a light ray from a light field into a cam-
era

as a ratio between the light power W emitted by P and

dI. The same ratio is used to calculate the light ray

irradiance, but with dW , the light power of a light ray

emitted by P . This ratio is given by:

E =
dW

dI
(1)

The light ray power dW depends on the radiance L,

which a light ray emitted by P carries. It is determined

by [7]:

dW = LdO∆Ω cos (θ) (2)

By using basic geometry principles, ∆Ω, dO, and dI

are described by:

∆Ω =
da cos (α)

3

z2l
(3)

dO =
∆ΩOz2l

cos (θ) cos (α)
2 (4)



2 Julien Couillaud, Djemel Ziou

dI =
∆ΩId21

cos (β)
3 (5)

By replacing the terms dW , ∆Ω, dO, dI in (1) with

their equations, the irradiance of a light ray emitted by

P is given by:

E = L
∆ΩO

∆ΩI

cos (α) cos (β)
3

d21
da (6)

The solid angles ∆ΩO and ∆ΩI are assumed to be pro-

portional. Indeed, these solid angles are not the same,

but they could be proportional. Thus, the ratio ∆ΩO
∆ΩI

is equal to a coefficient of proportionality k. This hy-

pothesis simplifies the irradiance (6), which is rewritten

as:

E = Lk
cos (α) cos (β)

3

d21
da (7)

By using basic geometry principles, the angles α and β

are determined by:

α = cos−1

(
zl√

(au − u)2 + (av − v)2 + z2l

)
(8)

β = cos−1

(
d1√

(ix − au)2 + (iy − av)2 + d21

)
(9)

Finally, da can be calculated by using the coordinates

(au, av) described in the section 3.1 of the paper and

given by:{
au = zl+d0

d0
u− zl

d0
s

av = zl+d0
d0

v − zl
d0
t

(10)

The equation (10) is derived from the Thales’s theorem

used on the triangles formed by a light ray, the planes

ST and UV as well as a a straight line. This line is

parallel to the optical axis and passes through the in-

tersection of the light ray with the plane Ap. The unit

area da can be described as the product of the unit

length dau and dav on Ap. By deriving au and av with

regard to u and v, dau and dav are determined by:{
dau = zl+d0

d0
du

dav = zl+d0
d0

dv
(11)

where the variable du and dv can be considered as unit

lengths on the plane UV . Therefore, the irradiance (7)

is rewritten as:

E = Lk
cos (α) cos (β)

3

d21

(
zl + d0
d0

)2

du dv (12)

2 Light ray projection coordinates

demonstration: the case of a thick lens

A thick lens is an optical device, which allows users

to focus light rays in one point of a surface. This de-

vice is characterised by two principal planes, two focal

points and two nodal points. The location of the princi-

pal planes Pl1 and Pl2 depends on features of the lens,

such as its refraction index, its thickness, and its shape

[10]. These planes are spaced by the effective lens thick-

ness ρ, which may be negative [8]. The focal point F1

(resp. F2) is located on the optical axis in front of Pl1
(resp. behind Pl2) at a distance f1 (resp. f2), which cor-

responds to the front effective focal length (resp. rear

effective focal length) of a thick lens. Finally, the nodal

point N1 (resp. N2) is placed on the optical axis at a

distance f2 (resp. f1) behind F1 (resp. in front of F2).

We assume that the aperture plane Ap and Pl1 are

superimposed. Light rays, which are parallel to the op-

tical axis and intersect Pl1 (resp. Pl2), pass through

the lens, emerge from it in a new direction, and cross

the focal point F2 (resp. F1). Moreover, a light ray in-

tersecting a nodal point N1 (resp. N2) emerges from

the lens with the same direction than the incident light

ray, as if it was passing through N2 (resp. N1). By us-

ing these properties and basic geometry principles, one

finds that, given the effective focal lengths f1 and f2,

light rays originating from a scene point Pf , at a dis-

tance zf from Ap, intersect an image plane Ip, at a dis-

tance d1 from Ap, on a point pf at coordinates (ix, iy),

as shown in Fig. 2. Note that zf is the depth of focus.

The relationship between these distances is given by:

1 =
f2

d1 − ρ
+
f1
zf

(13)

In the scene configuration, illustrated in Fig. 2, the

point Pf is located at coordinates (xf , yf ) on a plane

called plane of focus PF . The light ray passing through

Pf originates from a light field parametrised by two

planes ST and UV , spaced by a distance d0 and placed

at a distance zl from the Pl1. The light ray coordinates

in the light field space are (s, t, u, v). In this configura-

tion, the planes ST , UV , PF , Ap, Pl1, and Ip are paral-

lels and their coordinate system is the same. To find the

intersection coordinates of a light ray with Ip, Thales’s

theorem is used on triangles, which are formed by the

light ray, PF , and a straight line parallel to the opti-

cal axis, which passes through a point at coordinates

(s, t) on the plane ST . These triangles are illustrated

by green dotted lines in Fig. 2. Using this theorem, the

following equation is determined:{
xf − s =

zl−zf+d0
d0

(u− s)
yf − t =

zl−zf+d0
d0

(v − t)
(14)



Light Field Variational Estimation using a Light Field Formation Model: Supplementary Material 3

Fig. 2 Light ray projection inside a thick lens camera. The image (a) is a top view and (b) is a side view of the scene and
the camera

Due to the thick lens properties, the coordinates of pf
are the projection coordinates on Ip of a light ray pass-

ing through Pf and the nodal point N1. Using the prop-

erty of light rays passing through a nodal point, we form

two similar triangles. One of them is made of a light ray

passing through Pf and N1, the optical axis, and the

plane of focus. The second one is composed of a part

of the image plane, the optical axis, and a line pass-

ing through N2 in the same direction than the light ray

emitted by Pf and passing through N1. These triangles

are illustrated by magenta dotted lines in Fig. 2. By

using Thales’s theorem on these similar triangles, the

projection coordinates of pf are determined by:{
ix = −d1−ρ−f2+f1zf−f1+f2 xf

iy = −d1−ρ−f2+f1zf−f1+f2 yf
(15)

By combining (15) with (13) and (14), the light ray

projection coordinates on Ip are described by:{
ix = Ps−Qu
iy = Pt−Qv (16)

with

P =
zl (d1− ρ− f2)− f1 (d1 − ρ)

d0f2
(17)

and

Q =
(zl + d0) (d1− ρ− f2)− f1 (d1 − ρ)

d0f2
(18)

3 Invertibility of
(
HtH − γG

)
: proof

For this demonstration, we first prove that HtH is in-

vertible. Then, the invertibility of (HtH− γG) is demon-

strated. In the paper, H is a projection matrix of di-

mension XY × STUV and Ht is its transpose. In the

thick lens projection geometry defined in (16), a light

ray cannot be projected over two different points of the

image plane. Moreover, the light ray sampling, mod-

elled by g() and specified by a unit impulse in (16),

does not overlap several points of Ip. Thus, each point

of Ip is struck by a unique set of light rays. Hence, each

row of H contains a unique combination of positions

and values of ηx,y,s,t,u,v. Therefore, each row of H is

unique, so that the only vector solution to H−→x =
−→
0

is
−→
0 and H has linearly independent columns. Let us

look at the product HtH, which forms a square matrix

of dimensions STUV × STUV . If the matrix HtH has

linearly independent columns, then it is invertible. Let
−→v be a vector solution of:

HtH−→v =
−→
0 (19)

If this equation is multiplied by −→v t, we obtain:

−→v tHtH−→v = 0 (20)

which is also equal to:(
H−→v

)t
H−→v =

∥∥H−→v ∥∥2 = 0 (21)

In (21), the vector −→v must be the solution of
∥∥H−→v ∥∥2 =

0, where ‖.‖ is the L2 vector norm. From the pre-

vious statements, we know that the only solution to∥∥H−→v ∥∥2 = 0 is
−→
0 . Hence, the only vector solution

to HtH−→v =
−→
0 is

−→
0 . This solution means that the

columns of HtH are linearly independent, so that HtH

is invertible. Miller [9] proves that if a matrix B has a

positive rank r, it can be decomposed in a sum of rank

one matrices given by:

B =

r∑
i=1

Di (22)

where Di is a rank one matrix. Miller also demonstrates

that if the matrices A and A + B are non-singular,

then a non-singular matrix Ck+1 is formed by Ck+1 =

A + D1 + ... + Dk with k = 1, ..., r. Moreover, Miller



4 Julien Couillaud, Djemel Ziou

Fig. 3 Hybrid implementation architecture of the light field
estimation algorithm using both GPU and CPU

shows in [9] that the inverse of the matrix Ck+1 is equal

to the following equation:

Ck+1
−1 = Ck

−1 + µkCk
−1DkCk

−1 (23)

where µk = 1
1+tr(Ck

−1Dk)
and tr() is the trace of a ma-

trix. This last equation is valid only if C1 equals A and

A is invertible. In this theorem, Cr+1 is equal to A +

D1 + ...+ Dr, which is equal to A + B. Hence, Cr+1
−1

is (A + B)
−1

and (A + B) is invertible. Our implemen-

tation of the matrix −G of dimensions STUV ×STUV
in the paper equation (21) gives a matrix of rank six.

Moreover, this matrix is non-singular. Hence, −G can

be written as a sum of six non-singular rank one matri-

ces Gi. The matrix (HtH− γG) can be written as:

M7 = HtH + γ (G1 + ...+ G6) (24)

By using the theorem explained by Miller [9], M7 is

invertible, so that (HtH− γG) is invertible as well.

Table 1 Computation time (in seconds) of both GPU/CPU
and sequential CPU implementations of the light field esti-
mation for several directional resolutions U×V . The speed up
factor (SuF ) of the GPU/CPU implementation with respect
to the CPU one is also given.

Images U × V 3 × 3 5 × 5 7 × 7

K1
GPU/CPU 183.72 471.76 664.27
CPU 27.31 353.20 855.35
SuF 0.15 0.75 1.29

K2
GPU/CPU 181.71 473.28 696.37
CPU 25.83 350.48 856.86
SuF 0.14 0.74 1.23

K3
GPU/CPU 213.50 462.92 661.74
CPU 26.64 351.90 856.85
SuF 0.13 0.76 1.29

K4
GPU/CPU 184.26 452.14 680.79
CPU 26.72 351.15 855.50
SuF 0.15 0.78 1.26

L1
GPU/CPU 30.14 84.54 169.95
CPU 5.6 74.10 182.25
SuF 0.19 0.88 1.07

L2
GPU/CPU 34.94 79.45 154.11
CPU 5.61 74.52 181.97
SuF 0.16 0.94 1.18

L3
GPU/CPU 23.30 70.09 137.41
CPU 5.70 74.73 182.51
SuF 0.25 1.07 1.33

L4
GPU/CPU 40.98 88.44 166.18
CPU 5.70 75.00 182.17
SuF 0.14 0.85 1.10

4 Discussion on the value of the Lagrangian

multiplier γ

In the paper, the choice of the Lagrangian multiplier

γ is important because it determines the strength of

the second requirement in paper equation (19). In the

section 4.1 of the paper, we treated a non-zero value of

γ. This section aims to explain why we ignore the case

where γ equal to zero. If one sets γ to zero, only the

reconstruction error FE(L) is considered in paper equa-

tion (19). In this case, the light field is estimated with-

out using the scene depth information. Therefore, the

estimated light field is composed of unregularised light

rays which do not represent the scene geometry. By set-

ting the value of γ above zero, the scene depth encoded

in the second requirement (i.e. FC(Ls, Lt, Lu, Lv) in pa-

per equation (18)) constrains the light field structure.

Thanks to FC(Ls, Lt, Lu, Lv), all light rays emitted by

a scene point are assumed to have a smooth radiance

variation, which regularises their values and allows the

light field to encode the scene geometry.



Light Field Variational Estimation using a Light Field Formation Model: Supplementary Material 5

5 Intrinsic parameter calibration

Camera intrinsic parameters are determined from the

manufacturers’ data and calibration. The focal lengths

f1 and f2, the aperture radius r, and the lens thickness

ρ are found from the manufacturers’ data. The length

d1 and the coefficient κ are found by using calibration

methods and an optical bench. A camera is placed at a

fixed position on the optical bench and a flat textured

surface is placed in front of it. First, we determine the

depth of focus by finding at which depth the camera

captures the sharpest image of the textured surface.

We assume that the sharpest image is placed at the

depth of focus of the camera. The textured surface is

iteratively moved of few millimeters along the optical

bench and a picture of it is taken. Then the MES [15]

is computed for each captured image. The MES is used

as a sharpness index; the higher this index, the sharper

the image is. The depth, at which the sharpest image of

the textured surface is captured, is measured from the

optical bench. Then equation (13) is used to calculate

d1 from the depth of focus. The value of d1 participates

in the calculations of the irradiance model and the light

ray projection in paper equations (11) and (13). Errors

in the estimation of d1 impact the light ray radiances

estimated from the image and the light ray locations

in the light field. Therefore, a wrong estimation of d1
creates distortions in the estimated light field. To de-

termine κ, several images of the textured surface are

acquired. Each of these images have a different MES.

In addition, their depth zs is measured from the opti-

cal bench. For each image, we compute the standard

deviation of a Gaussian point spread function, which

models the image defocus blur as in [17]. We use the

method presented in [16] to compute it. Moreover, the

theoretical blur radius of each image is calculated from

the following equation:

rdefocus = ‖ r

f2zs
d(zs)‖ (25)

where

d(zs) = (f1 (d1 − ρ)− (d1 − f2 − ρ) zs) (26)

Afterwards, the ratio between the standard deviation

and the blur radius is calculated for each image. The

coefficient κ, used in the paper section 5, is the mean of

the ratios. Note that errors in the estimation of κ im-

pact the defocus generated by the light field formation

model in paper equation (10). Therefore, it influences

the quantity of defocus blur which is left in the esti-

mated light field.

Table 2 Computation time (in seconds) of both parallel
GPU and sequential CPU implementations of the image re-
construction method for several directional resolutions U×V .
The speed up factor (SuF ) of the GPU implementation with
respect to the CPU one is also given.

Images U × V 3 × 3 5 × 5 7 × 7

K1
GPU 0.08 0.18 0.32
CPU 5.50 13.47 27.40
SuF 68.75 74.8 85.6

K2
GPU 0.08 0.16 0.34
CPU 5.45 13.39 27.33
SuF 68.1 83.7 80.4

K3
GPU 0.08 0.18 0.34
CPU 5.63 13.34 27.45
SuF 70.4 74.1 80.7

K4
GPU 0.08 0.18 0.33
CPU 5.46 13.34 27.61
SuF 68.3 74.1 83.7

L1
GPU 0.02 0.04 0.07
CPU 1.16 2.78 5.69
SuF 58.0 69.5 81.3

L2
GPU 0.02 0.04 0.07
CPU 1.14 2.77 5.60
SuF 57.0 69.3 80.0

L3
GPU 0.02 0.04 0.08
CPU 1.15 2.76 5.61
SuF 57.5 69.0 70.1

L4
GPU 0.02 0.04 0.08
CPU 1.17 2.76 5.65
SuF 58.5 69.0 70.6

6 Implementation details: Hybrid GPU/CPU
light field estimation

In this section, we describes the implementation used

to obtain the results presented in the paper. The di-

mensions of the sparse matrices used in the light field

estimator, described in paper equation (21), are large,

even if they contain a small quantity of non-zero ele-

ments. For example, for an image of 256 × 256 pixels

and a light field of dimensions 256 × 256 × 11 × 11,

the dimensions of H and G are 65536 × 7929856 and

7929856×7929856, while the minimum number of non-

zero elements is 65536 for H and 23789568 for G. Be-

cause of their large sizes, the matrices H and G can-

not be stored in a personal computer memory even if a

sparse matrix representation is used. To overcome this

drawback, we propose to reduce their sizes by estimat-

ing light fields locally from image blocks. The resulting

light fields are then combined in order to form an ap-

proximative light field of the whole scene.

The computational complexity for solving equation (21)

is at least of O
(
(STUV )2

)
. To fasten the computation,

the light field estimation algorithm is implemented by

using GPU and CPU together, as depicted in the im-

plementation architecture in Fig. 3. We use the frame-

work Open Computing Language (OpenCL) [13] for the



6 Julien Couillaud, Djemel Ziou

Table 3 Computation time (in seconds) of three sparse sys-
tem solvers for different directional resolutions U × V . The
first solver (CPUBICG) is the biconjugate gradient imple-
mented under CPU in Eigen library [6]. The second solver
(DIRECTLU ) corresponds to a CPU implementation of the
unsymmetric-pattern multifrontal method from Umfpack li-
brary [4]. The third solver (GPUBICG) is a GPU imple-
mentation of the biconjugate gradient from ViennaCL library
[11].

Images U × V 3 × 3 5 × 5 7 × 7

K1
CPUBICG 172.20 526.25 1483.76
DIRECTLU 183.72 471.76 664.27
GPUBICG 455.83 1514.33 10597.16

K2
CPUBICG 190.93 546.80 1555.10
DIRECTLU 181.71 473.28 696.37
GPUBICG 1277.23 3681.79 10571.52

K3
CPUBICG 189.32 534.43 1513.35
DIRECTLU 213.50 462.92 661.74
GPUBICG 1218.64 3967.59 14625

K4
CPUBICG 192.21 537.65 1494.62
DIRECTLU 184.26 452.14 680.79
GPUBICG 1214.7 4096.01 9150.23

L1
CPUBICG 31.50 101.31 310.96
DIRECTLU 30.14 84.54 169.95
GPUBICG 122.77 368.72 1438.3

L2
CPUBICG 32.71 99.42 293.98
DIRECTLU 34.94 79.44 154.11
GPUBICG 98.98 316.61 1082.43

L3
CPUBICG 23.65 86.19 286.95
DIRECTLU 23.30 70.09 137.41
GPUBICG 68.53 317.32 1071.3

L4
CPUBICG 35.96 104.93 311.70
DIRECTLU 40.98 88.44 166.18
GPUBICG 117.43 349.82 1230.38

parallel computations under the GPU. This framework

provides a complete application programming interface,

which allows parallel data processing and memory trans-

fers between CPU and GPU. Each computation in GPU

is encoded by using kernels written in OpenCL lan-

guage C. The construction of the sparse matrices H

and G, basic sparse matrix operations, image recon-

struction algorithms, and light field transformations are

computed on GPU because they can be efficiently par-

allelised. In the light field estimator, the computation

begins by gathering all the information needed, i.e. an

image of a scene, a scene depth map, and parameters

of the camera used to acquire the image. The image

and the depth map are stored into matrices and read

by using openCV library [2]. The camera parameters

are all read from a file. Afterwards, the image and the

depth map are split into blocks by using OpenCV fea-

tures. We empirically found that small square blocks

slow the light field estimation down because it increases

the number of processed blocks and the time-consuming

memory transfers between GPU and CPU. Therefore,

we use the largest block size supported by the GPU

memory. Note that the blocks used in the experiments,

described in section 5 of the paper, have a size of 16×16

pixels. The projection matrix H is constructed by us-

ing two kernels which are executed one after the other.

The first kernel looks for the light rays projected on a

point p, at coordinates (x, y) on Ip, by using the pro-

jection T (s, t, u, v) in (16). The second kernel reads the

light ray coordinates (s, t, u, v) found by the first kernel

and computes the weight ηx,y,s,t,u,v associated with the

light rays falling on p. Paper equation (16) describes the

weight ηx,y,s,t,u,v. In these two kernels, the computation

of each pixel of Ip is distributed in a thread. The matrix

G is computed with one kernel, which writes a deriva-

tion mask for each light ray. The derivation masks are

deduced from the explicit finite differences, which ap-

proximate the continuous derivatives in paper equation

(20). In this implementation, the computation of each

line of G is distributed in a thread. In addition, several

algorithms for sparse matrix operations, among those

in [12], have been implemented in kernels. After the

GPU computations, data are transferred to the CPU,

where the linear system in paper equation (21) is solved

with the unsymmetric-pattern multifrontal method [4,

5]. This method requires a high memory load, so that

it is processed on CPU by using Umfpack library [4].

Once the light field is estimated from an image block,

a devoted kernel is used to add it to a total light field

containing the light rays estimated from the whole im-

age. We observe that estimation errors are high in the

neighbourhood of occlusion. To remedy this, we use a

light field inpainting algorithm. Iteratively, scene views

are generated from the light field, holes near the occlu-

sions are filled in by using an image inpainting method

[14], and the radiance of inpainted scene points is prop-

agated to the light rays emitted by those scene points

and encoded in the light field. A scene view is gener-

ated from a light field by selecting a subspace S × T
for fixed values of u and v. The light field inpainting

algorithm stops once it has browsed all the scene views

encoded into the light field or once no holes are left.

Further below, we compare the computational speed of

the proposed implementation with the one of a sequen-

tial implementation on CPU. In addition, we compare

the computational time of three different solvers tested

to obtain the solution of the linear system in paper

equation (21).

7 Comparison of parallel and sequential light

field estimation implementations

We propose to examine the hybrid implementation on

CPU/GPU in contrast to a sequential implementation

on CPU. In order to compare these implementations,



Light Field Variational Estimation using a Light Field Formation Model: Supplementary Material 7

Table 4 MACADE and M∆E94 measured between ground truth images and images reconstructed from estimated light fields
for two types of camera models. The images are reconstructed from light fields estimated by using either the thick lens or thin
lens projection geometries. The lens thickness is set to zero for the thin lens model, while the thickness for the thick lens model
is provided in the Table 1 of the paper. The ground truth images, depicted in Fig. 4 of the paper, are used as inputs of the
light field estimator. The value of γ is equal to 1.

Camera types Images K1 K2 K3 K4 L1 L2 L3 L4

Thick lens
MACADE 0.99 0.99 0.98 0.96 0.99 0.98 0.99 1.0

M∆E94 1.54 2.72 2.20 1.97 2.26 2.56 1.38 1.09

Thin lens
MACADE 0.98 0.98 0.98 0.96 0.99 0.99 1.0 1.0

M∆E94 1.63 2.83 2.22 1.98 2.0 2.27 1.12 1.01

we use the computational time as a performance mea-

sure. Table 1 summarises the light field estimation com-

putation time of both CPU/GPU and sequential CPU

implementations. As a direct observation of Table 1, we

notice that for most images, the CPU implementation

is faster than the GPU/CPU implementation for direc-

tional resolutions of 3×3 and 5×5. This performance is

due to the time-consuming memory transfers between

the CPU and the GPU. However, the GPU/CPU im-

plementation is faster than the CPU one when the di-

rectional resolution is equal to 7 × 7 with an average

speed up factor of 1.23. When the light field size is

large, the parallel calculations under GPU are so quick

that even with slow memory transfers, the GPU/CPU

implementation is faster than the sequential CPU one.

In addition, we compare a sequential CPU and a par-

allel GPU image reconstruction implementation. The

image reconstruction method corresponds to the ap-

plication of paper equation (10) on an estimated light

field. The computation time for both parallel GPU and

sequential CPU image reconstruction implementations

are summarised in Table 2. The light fields used in

the image reconstruction method corresponds to the

output of the light field estimation implementation on

GPU/CPU. The measures in Table 2 show that the

GPU implementation is about 71 times faster than the

CPU one.

8 Impact of the linear system solver on the

implementation of the light field estimation

In this section, we compare three implementations of

the light field estimation on GPU/CPU. Each imple-

mentation applies a different sparse linear solver to the

linear system in the paper equation (21). The compu-

tational time of these various implementations is used

as a performance measure. The compared solvers cor-

respond to: a biconjugate gradient method with a CPU

implementation (CPUBICG) from Eigen library [6], a

CPU implementation (DIRECTLU ) of the unsymmetric-

pattern multifrontal method from Umfpack library [4],

and a GPU implementation (GPUBICG) of a biconju-

gate gradient method from the library ViennaCL [11].

The computation time of the solvers are summarised in

Table 3. The GPUBICG solver is always slower than the

two other algorithms due to intensive memory trans-

fers between CPU and GPU, which slow the light field

estimation down. For small directional resolutions, the

computation times for CPUBICG and DIRECTLU are

close to each other, but for higher resolutions, DIRECTLU

is faster than CPUBICG. Therefore, we choose the DI-

RECTLU solver for the light field estimation imple-

mentation proposed in section 6.

9 Comparison between the thin lens and thick

lens projection geometries

In section 3.3 of the paper, we propose a thick lens cam-

era model and we use it to estimate light fields. How-

ever, in other studies [1,3], the thin lens model is usu-

ally employed. In this section, we propose to evaluate

if one of these lens models is better than the other one.

To achieve this, light fields are estimated from ground
truth images captured with Kinect and leanXcam cam-

eras. Then images are reconstructed from the estimated

light fields and compared with their ground truths. The

ground truth images are illustrated in Fig. 4 of the pa-

per. We use the same methodology and performance

measures, i.e. MACADE and M∆E94, than the ones

employed in the sections 5.2, 5.3, and 5.4 of the pa-

per. To simulate the thin lens, the lens thickness is set

to zero and f1 = f2, while the thickness is non-zero

and f1 can be different than f2 for the thick lens. The

intrinsic parameters used to simulate these lenses are

detailed in Table 1 of the paper. Table 4 summarises

the measured MACADE and M∆E94 for the thick lens

and thin lens camera models. From these measures, we

can see that the MACADE as well as the M∆E94 de-

termined for the thick lens have negligible differences

with the ones evaluated from the thin lens. This result

is explained by the lens thickness of the used camera,

which is so small that we can neglect it in the thick

lens projection (13) described in the paper. We cannot



8 Julien Couillaud, Djemel Ziou

state that one of these models is better than the other

as both produce similar results with the used cameras.

One of the strengths of the thick lens model is that it

models the thin lens under some special configurations,

but it can also represent other types of lenses. For ex-

ample, it can model lenses with a significant thickness

or with different focal lengths. Therefore, the thick lens

is much more flexible than a thin lens as it allows users

to model many more types of lenses.

References

1. Bishop, T.E., Favaro, P.: The light field camera: Extended
depth of field, aliasing, and superresolution. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 34(5),
972–986 (2012)

2. Bradski, G.: The openCV library. Dr. Dobb’s Journal of
Software Tools 25(11), 120–126 (2000)

3. Chia-Kai, L., Yi-Chang, S., Chen, H.: Light field analysis
for modeling image formation. IEEE Transactions on Image
Processing 20(2), 446–460 (2011)

4. Davis, T.A.: Algorithm 832: UMFPACK V4.3 - an
unsymmetric-pattern multifrontal method. ACM Transac-
tions on Mathematical Software 30(2), 196–199 (2004)

5. Davis, T.A., Duff, I.S.: An unsymmetric-pattern multi-
frontal method for sparse LU factorization. SIAM J. Matrix
Analysis and Applications 18(1), 140–158 (1997)

6. Guennebaud, G., Jacob, B., et al.: Eigen v3.
http://eigen.tuxfamily.org (2010)

7. Horn, B.K.: Robot Vision, 1 edn. McGraw-Hill Higher
Education (1986)

8. Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera
model for computer graphics. In: Proc. of the 22nd Annual
Conf. on Computer Graphics and Interactive Techniques,
pp. 317–324 (1995)

9. Miller, K.S.: On the inverse of the sum of matrices. Math-
ematics Magazine 54(2), 67–72 (1981)

10. Ray, S.: Applied Photographic Optics, 3rd Edition, 3 edn.
Focal Press (2002)

11. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - a high
level linear algebra library for GPUs and multi-core CPUs.
In: International Workshop on GPUs and Scientific Appli-
cations, pp. 51–56 (2010)

12. Spagnoli, K.E., Humphrey, J.R., Price, D.K., Kelmelis,
E.J.: Accelerating sparse linear algebra using graphics pro-
cessing units. Proc. SPIE 8060, 4–9 (2011)

13. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems.
IEEE Design & Test 12(3), 6–73 (2010)

14. Telea, A.: An image inpainting technique based on the
fast marching method. Journal of Graphics Tools 9(1), 23–
34 (2004)

15. Wang, X., Tian, B., Liang, C., Shi, D.: Blind image qual-
ity assessment for measuring image blur. In: Cong. on Image
and Signal Processing, vol. 1, pp. 467–470 (2008)

16. Zhuo, S., Sim, T.: Defocus map estimation from a single
image. Pattern Recognition 44(9), 1852–1858 (2011)

17. Ziou, D., Deschnes, F.: Depth from defocus estimation in
spatial domain. Computer Vision and Image Understanding
81(2), 143 – 165 (2001)


