Depth Image Upsampling based on Guided Filter with Low Gradient Minimization

Hang Yang • Zhongbo Zhang

Received: date / Accepted: date

1 Overview

In this supplementary material, we consider the solution of following equation:
$\sum_{i} \min _{x_{i}}\left\{\left(x_{i}-p_{i}\right)^{2}+\alpha H^{t}\left(p_{i}\right)\right\}$
where
$H^{t}(p)= \begin{cases}0 & \text { if } \mathrm{p}=0 \\ t & \text { if } 0<|p| \leq 1 \\ 1 & \text { if }|p|>1\end{cases}$
Each single term w.r.t. pixel p_{i} in Eq. (2) is
$E(p)=\min _{p}(x-p)^{2}+\alpha H^{t}(p)$
Theorem 1 When $|x| \geq 1$, Eq.(3) reaches its minimum E_{p}^{*} under the condition
$p= \begin{cases}0 & \text { if }|x| \leq \min \left(\frac{1+\alpha t}{2}, \sqrt{\alpha}\right) \\ \operatorname{sgn}(x) & \text { if } \frac{1+\alpha t}{2}<|x| \leq 1+\sqrt{\alpha(1-t)} \\ x & \text { if }|x|>\max (1+\sqrt{\alpha(1-t)}, \sqrt{\alpha})\end{cases}$
In our submission, we have give the proofs of Theorem 1.1.

In order to make the proof more intuitive, in Fig.2, we show the relationship of three functions $1+\sqrt{\alpha(1-t)}$, $\sqrt{\alpha}$ and $\frac{1+\alpha t}{2}$.

[^0]Theorem 2 When $|x| \geq 1$, and $\alpha>\frac{2-t+2 \sqrt{1-t}}{t^{2}}$, Eq.(3) reaches its minimum E_{p}^{*} under the condition
$p= \begin{cases}0 & \text { if }|x| \leq \sqrt{\alpha} \\ x & \text { if }|x|>\sqrt{\alpha}\end{cases}$
When $|x| \geq 1$, and $\frac{2-t+2 \sqrt{1-t}}{t^{2}} \geq \alpha \geq \frac{2-t-2 \sqrt{1-t}}{t^{2}}$, Eq.(3) reaches its minimum E_{p}^{*} under the condition

$$
p= \begin{cases}0 & \text { if }|x| \leq \frac{1+\alpha t}{2} \tag{6}\\ \operatorname{sgn}(x) & \text { if } \frac{1+\alpha t}{2}<|x| \leq 1+\sqrt{\alpha(1-t)} \\ x & \text { if }|x|>1+\sqrt{\alpha(1-t)}\end{cases}
$$

When $|x| \geq 1$, and $\frac{2-t-2 \sqrt{1-t}}{t^{2}}>\alpha>0$, Eq.(3) reaches its minimum E_{p}^{*} under the condition
$p= \begin{cases}\operatorname{sgn}(x) & \text { if } 1 \leq|x| \leq 1+\sqrt{\alpha(1-t)} \\ x & \text { if }|x|>1+\sqrt{\alpha(1-t)}\end{cases}$
Proof According to Lemma 1.2, we can see that the Eq.(6) is true obviously. We only need to proof the Eq. (5) and (7).

When $\frac{2-t-2 \sqrt{1-t}}{t^{2}}>\alpha>0$, according to Lemma 1.2 and Theorem 1.1, Eq.(3) reaches its minimum E_{p}^{*} under the condition
$p= \begin{cases}0 & \text { if }|x| \leq \sqrt{\alpha} \\ \operatorname{sgn}(x) & \text { if } \frac{1+\alpha t}{2}<|x| \leq 1+\sqrt{\alpha(1-t)} \\ x & \text { if }|x|>\sqrt{\alpha}\end{cases}$
but according to Lemma 1.2 , in this case, $\frac{1+\alpha t}{2} \leq 1+$ $\sqrt{\alpha(1-t)}$ is false (see Eq.(12). Then, Eq.(8) can be reducible to Eq.(5).

Fig. 1 The relation of the three curves when $t=0.25$. Left subplot: $\alpha \in[0,100]$. Right subplot: $\alpha \in[0,2]$.

According to Lemma 1.2, when $\frac{2-t-2 \sqrt{1-t}}{t^{2}}>\alpha>0$, Eq.(3) reaches its minimum E_{p}^{*} under the condition
$p= \begin{cases}0 & \text { if }|x| \leq \sqrt{\alpha} \\ \operatorname{sgn}(x) & \text { if } \frac{1+\alpha t}{2}<|x| \leq 1+\sqrt{\alpha(1-t)} \\ x & \text { if }|x|>1+\sqrt{\alpha(1-t)}\end{cases}$
but one can see that $\sqrt{\alpha}<1, \frac{1+\alpha t}{2}<1$ in this case, and $|x| \geq 1$, so $|x| \leq \sqrt{\alpha}$ is false. Then, Eq.(9) can be written as Eq.(7).

Lemma 1 If $0<t<1$, then $0<\frac{2-t-2 \sqrt{1-t}}{t^{2}}<1$

Proof

$$
\begin{align*}
&-3 t^{2}-t^{3}<0 \\
&(t+2)^{2}(1-t)<4 \\
&(1-t)(2+t)<2 \sqrt{(} 1-t) \\
&2-t-2 \sqrt{(} 1-t)<t^{2} \\
& \frac{2-t-2 \sqrt{1-t}}{t^{2}}<1 \tag{10}
\end{align*}
$$

$$
t^{2}>0
$$

$$
(2-t)^{2}>4(1-t)
$$

$$
2-t-2 \sqrt{(} 1-t)>0
$$

$$
\begin{equation*}
\frac{2-t-2 \sqrt{1-t}}{t^{2}}>0 \tag{11}
\end{equation*}
$$

Lemma 2 If $\alpha>\frac{2-t+2 \sqrt{1-t}}{t^{2}}$, we have
$\frac{1+\alpha t}{2}>\sqrt{\alpha}>1+\sqrt{\alpha(1-t)}$

$$
\begin{equation*}
\text { If } \frac{2-t+2 \sqrt{1-t}}{t^{2}} \geq \alpha \geq \frac{2-t-2 \sqrt{1-t}}{t^{2}} \text {, we have } \tag{13}
\end{equation*}
$$

$1+\sqrt{\alpha(1-t)} \geq \sqrt{\alpha} \geq \frac{1+\alpha t}{2}$
$1+\sqrt{\alpha(1-t)}>\frac{1+\alpha t}{2}>\sqrt{\alpha}$

Proof First, we give a fact,

$$
\begin{equation*}
t^{2} \alpha^{2}+(2 t-4) \alpha+1=0 \tag{15}
\end{equation*}
$$

because $t<1$ and the discriminant value of the equation is $(2 t-4)^{2}-4 t^{2}=16(1-t)>0$. Then, this equation has two real solutions, they are
$\alpha=\frac{2-t \pm 2 \sqrt{1-t}}{t^{2}}$
where $\frac{2-t+2 \sqrt{1-t}}{t^{2}}>1$ and according to Lemma 1.1, we have $\frac{2-t-2 \sqrt{1-t}}{t^{2}}<1$

1) When $\alpha>\frac{2-t+2 \sqrt{1-t}}{t^{2}}$, we can see that $\alpha>1$

$$
\begin{align*}
t^{2} \alpha^{2}+(2 t-4) \alpha+1 & >0 \\
(t \alpha+1)^{2} & >4 \alpha \\
t \alpha+1 & >2 \sqrt{\alpha} \\
\alpha+1-2 \sqrt{\alpha} & >\alpha(1-t) \\
\sqrt{\alpha} & >1+\sqrt{\alpha(1-t)} \tag{17}
\end{align*}
$$

and

$$
t^{2} \alpha^{2}+(2 t-4) \alpha+1>0
$$

$$
\begin{align*}
(t \alpha+1)^{2} & >4 \alpha \\
\frac{1+\alpha t}{2} & >\sqrt{\alpha} \tag{18}
\end{align*}
$$

2)When $\frac{2-t+2 \sqrt{1-t}}{t^{2}} \geq \alpha \geq \frac{2-t-2 \sqrt{1-t}}{t^{2}}$

$$
\begin{align*}
t^{2} \alpha^{2}+(2 t-4) \alpha+1 & \leq 0 \\
t \alpha+1 & \leq 2 \sqrt{\alpha} \\
\frac{1+\alpha t}{2} & \leq \sqrt{\alpha} \tag{19}
\end{align*}
$$

and when $\frac{2-t+2 \sqrt{1-t}}{t^{2}} \geq \alpha \geq 1$, we have

$$
\begin{align*}
t^{2} \alpha^{2}+(2 t-4) \alpha+1 & \leq 0 \\
(\sqrt{\alpha}-1)^{2} & \leq \alpha(1-t) \\
\sqrt{\alpha} & \leq 1+\sqrt{\alpha(1-t)} \tag{20}
\end{align*}
$$

When $\frac{2-t-2 \sqrt{1-t}}{t^{2}} \leq \alpha<1$, we have
$\sqrt{\alpha}<1<1+\sqrt{\alpha(1-t)}$
So, in summary, when $\frac{2-t+2 \sqrt{1-t}}{t^{2}} \geq \alpha \geq \frac{2-t-2 \sqrt{1-t}}{t^{2}}$, we have Eq.(21).
3) When $\frac{2-t-2 \sqrt{1-t}}{t^{2}}>\alpha>0$,
$t^{2} \alpha^{2}+(2 t-4) \alpha+1>0$
similar to the Eq.(18), we can obtain $\frac{1+\alpha t}{2}>\sqrt{\alpha}$.
And according to Lemma 1.1, $\alpha<\frac{2-t-2 \sqrt{1-t}}{t^{2}}<1$,
$\frac{1+\alpha t}{2}<1<1+\sqrt{\alpha(1-t)}$

[^0]: H. Yang

 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China.
 Tel.: +86-0431-86176563
 Fax: +86-0431-86176399
 E-mail: yanghang09@mails.jlu.edu.cn
 Zhongbo Zhang
 Departments of Mathematics, Jilin University, Changchun, 130012, China.

