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Abstract Pedestrian detection is the use of computer vision techniques to
determine whether there are pedestrians in an image or video sequence and
give their precise positioning, but the difference in the scale of pedestrians has
always been a difficult problem in pedestrian detection. In contrast to exist-
ing research, this study jointly considers the problem of multi-scale pedestrian
detection at both the macro and micro levels. At the macro level, the shape
and location of an anchor are predicted by feature maps to guide its gen-
eration, and the obtained anchor can better adapt to pedestrian targets at
different scales. At the micro level, the standard convolution in the backbone
network is replaced with switchable atrous convolution, which effectively solves
the problem of scale differences between pedestrians. Finally, the classification
and regression tasks in pedestrian detection are completed more efficiently
through the use of a Double Head. These elements are combined to form a
multi-scale pedestrian detection network, and experimental results show that
the model proposed in this paper can substantially improve the performance
of multi-scale pedestrian detection. The detection accuracy on the COCOP-
ersons dataset reaches an average precision (AP) of 57.3. Compared with the
pedestrian detection accuracy of Faster R-CNN based on a feature pyramid
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network at large, medium, and small scales, the accuracy of our model is signif-
icantly improved at 1.7 AP, 2.5 AP, and 6.8 AP, respectively. On the Caltech
pedestrian dataset, the MR2 of Near, Medium and Far subsets reach 0.45%,
13.78% and 48.85%, respectively. And on the CityPersons pedestrian dataset,
the MR2 of Small, Medium and Large subsets reach 12.1%, 2.6% and 5.5%,
respectively.

Keywords Macro level · Micro level · Pedestrian detection · Scale difference

1 Introduction

As the field of deep learning algorithm research matures, the problem of object
detection in computer vision has attracted the attention of an increasing num-
ber of researchers. As an important sub-topic in computer vision, pedestrian
detection has a very wide range of application scenarios, such as autonomous
driving, intelligent monitoring, intelligent robots, etc. It plays an extremely im-
portant role in intelligent monitoring. In complex application scenarios, there
are differences in the pedestrian scale displayed by the monitoring due to the
distance of the pedestrian target from the intelligent monitoring device. For
example, pedestrian objects that are closer to the monitoring device tend to
occupy more pixels in the image, and pedestrian objects that are farther away
from the monitoring device tend to occupy less area in the image. This leads
to, on the one hand, the small-scale pedestrian targets have blurred outlines
and less useful information, making it difficult for detectors to accurately de-
tect them. On the other hand, the feature of large-scale pedestrian targets and
small-scale pedestrian targets are quite different, and it is difficult to design a
unified feature processing strategy for targets of different scales. Therefore, it
is still a great challenge to detect pedestrian objects of different scales under
intelligent surveillance equipment.

Pedestrian detection methods can be subdivided into two categories: tra-
ditional pedestrian detection methods and deep learning-based pedestrian de-
tection methods. Traditional pedestrian detection methods need to give pedes-
trian features before detection, and then match and identify by defining pedes-
trian texture and gradient features. The more typical ones include methods
based on the Local Binary Pattern (LBP) [35] and the Histogram of Oriented
Gradient (HOG) [11]. However, due to the simple extraction of manual fea-
tures and imperfect post-processing, in complex scenes, the pedestrian detec-
tion method based on deep learning is more dominant. Because convolutional
neural networks are widely used in image classification problems, deep learning
methods can automatically extract better pedestrian features while learning
to obtain better similarity measures, and hence the accuracy of pedestrian
detection techniques has been greatly improved. Pedestrian detection meth-
ods based on deep learning regard pedestrians as a specific target and adopt
general target detection methods, including one-stage detectors that dominate
speed and two-stage detectors that dominate in accuracy. Pedestrian detection
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From macro to micro: Rethinking multi-scale pedestrian detection 3

uses computer vision techniques to determine the presence and precise posi-
tioning of pedestrians in an image or video sequence. However, scale differences
between individual pedestrians continue to hinder the performance of general
detectors based on deep learning. In deep learning-based detector, the image
features are extracted through the standard convolution in the backbone net-
work, and the traditional anchor mechanism is used to obtain the proposals
for detection. In fact, this method is not the best approach to this problem,
and hence this paper discusses the problems at the macro and micro levels
separately.

At the macro level, we consider that the traditional anchor mechanism is
not suitable for solving the problem of multi-scale pedestrian detection. The
most advanced detectors currently use a traditional anchor mechanism, that
is, a set of anchors with a defined shape and size are uniformly placed on the
image. This causes two problems: (1) A set of anchors with a fixed size and
aspect ratio must be predefined. However, the scale of pedestrian targets in
pedestrian detection is quite different, and this is not conducive to detection.
Incorrect anchor design may affect the speed and accuracy of the detector. (2)
To maintain a sufficiently high recall, a large number of anchors are required.
However, most anchors have nothing to do with the object of interest (many
anchors are in the background area). Moreover, a large number of anchors will
increase the computational cost. Therefore, we propose an adaptive anchor
mechanism to predict the position and shape of the anchor through the feature
maps to guide its generation. This solves the above problems well and is helpful
for subsequent multi-scale pedestrian target detection.

At the micro level, we found that standard convolution and atrous con-
volution cannot adapt well to pedestrian targets of different scales because
of the single receptive field. The current mainstream backbone network uses
a large number of 3×3 standard convolutions for feature extraction, but the
difference in pedestrian target scales in pedestrian detection is obvious, and
the single standard convolution receptive field limits multi-scale pedestrian
detection. Moreover, standard convolution reduces the size of the image by
pooling while increasing the receptive field of the network. Finally, the up-
sampling operation is used to restore the size of the image to the original
size. Such a series of operations leads to the loss of some information of the
image, especially the detailed information that may have a relatively large
impact on performance. To increase the receptive field without losing image
information, in 2015, Yu et al. [52] proposed atrous convolution. Atrous con-
volution is an effective technique that can amplify the filter’s receptive field
in any convolutional layer. However, some problems with atrous convolution
remain. The specific performance is: the information obtained from a long dis-
tance has no relevance. Because of the sparsely sampled input signal of the
atrous convolution, there is no correlation between the information obtained
by the long-distance convolution, which affects the detection result. Atrous
convolution obtains long-distance information by increasing the atrous rate
to expand the receptive field. However, the feature information extracted by
atrous convolution with a large atrous rate may be effective for some larger
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targets, but not good for small targets. Therefore, by switching the atrous
rate of the atrous convolution, we hope to use atrous convolution with a larger
atrous rate for larger-scale pedestrian targets and atrous convolution with a
smaller atrous rate for smaller-scale pedestrian targets.

The main contributions of this paper are as follows: (1) We systematically
discuss why the existing detection methods at the macro and micro levels
are not suitable for solving the problem of scale differences that are common
in pedestrian detection. (2) We propose a multi-scale pedestrian detection
model to solve the problem of pedestrian detection scale differences from mul-
tiple angles. At the macro level, the guided anchoring region proposal network
(GARPN) is used to predict the position and shape of an anchor based on the
feature maps, and the anchor is generated in an adaptive manner. This scheme
can handle pedestrian targets at different scales better than the traditional an-
chor scheme. At the micro level, standard convolution in the backbone network
is replaced with switchable atrous convolution (SAC). According to the target
position of pedestrians of different scales, we switch atrous convolution with
different atrous rates. Finally, we use a Double Head [49] to complete clas-
sification and regression tasks more efficiently. (3) This study evaluated the
proposed model on the COCOPersons dataset [28] and compared it with the
current mainstream detection models and other multi-scale methods. Ablation
experiments on each module of the proposed model were also conducted in this
study, and the effect of each component of the SAC on performance was evalu-
ated. At the same time, this paper also verifies the experimental results of the
proposed model on the Caltech [13] and CityPersons pedestrian datasets [56].

2 Related work

This section first introduces the multi-scale pedestrian detection methods and
summarizes related work at the macro and micro levels with respect to scale
difference in pedestrian detection. At the macro level, the use of a traditional
anchor mechanism and its improved methods are reviewed. At the micro level,
the related work of atrous convolution is presented.

The common multi-scale pedestrian detection methods are multi-scale fea-
ture fusion methods and anchor-free methods.Multi-scale feature fusion pedes-
trian detection methods, such as in 2017, Zhu et al. [60] proposed SADR,
introducing deconvolution layer to adaptively up-sample the feature map of
small pedestrians. In the same year, Du et al. [14] proposed F-DNN, which
uses SSD to generate candidate pedestrians and uses a soft rejection strat-
egy to fuse multiple DNNS in parallel to detect pedestrians. In 2021, Tan
et al. [42] proposed the Bidirectional Feature Enhancement Module (BFEM),
which enhances the semantic information of low-level features and enriches the
positioning information of high-level features. Multi scale pedestrian detection
method based on anchor free, such as in 2019, Liu et al. [30] proposed CSP.
In 2020, Wang et al. [47] further refined the CSP. In the same year, Cai et
al. [3] proposed PP-Net, an anchor-free method for center-based pedestrian
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From macro to micro: Rethinking multi-scale pedestrian detection 5

detection. Different from the above methods, this paper solves the problem of
pedestrian detection scale difference from the macro and micro levels. At the
macro level, we found that the traditional anchor frame mechanism and its
improvement used in most pedestrian detection methods are not suitable for
multi-scale pedestrian detection; At the micro level, we found that standard
convolution and atrous convolution cannot adapt well to pedestrian targets of
different scales because of the single receptive field.

At the macro level. The traditional anchor mechanism uses a sliding
window method to generate proposals in the feature map, and it has been
widely adopted by various anchor-based detectors. In 2015, Ren et al. [38]
used a region proposal network in Faster R-CNN to generate target proposals.
This network uses a fully convolutional network to map each sliding window
anchor to a low-dimensional feature. Because of the alignment and consistency
of the anchor mechanism, a method of using multi-scale anchors to handle
objects of different scales has emerged. In 2016, Liu et al. [29] proposed the
single shot multibox detector (SSD), which uses anchor regression to detect
objects in multiple feature maps. In 2017, Lin et al. [26] proposed feature
pyramid networks (FPN), which generate multi-level and multi-scale feature
maps, and set anchors at one scale and three aspect ratios at each level. This
network provides a solution to the problem of scale difference in pedestrian
detection. In 2018, Lin et al. [27] proposed RetinaNet, which uses an anchor
setting that is different from that of FPN. It sets anchors at three scales
and three aspect ratios at each level of the feature maps. In the same year,
Yang et al. [51] proposed MetaAnchor, which randomly samples anchors of
any shape during training to cover different types of target bounding boxes.
At the same time, the parameters remain unchanged. In 2020, Zhong et al.
[59]proposed a general approach to optimize anchor boxes for object detection.
To improve the accuracy and reduce the workload of designing anchor boxes, it
is proposed to dynamically learn the anchor shape, which enables the anchors
to automatically adapt to the data distribution and network learning ability. In
the same year, Ma et al. [33] studied the problem of automatically optimizing
anchor boxes for object detection. In 2021, Ming et al. [34] proposed a dynamic
anchor learning (DAL) method, which utilizes the newly defined matching
degree to comprehensively evaluate the localization potential of the anchors
and carries out a more efficient label assignment process. In 2022, Liu et al. [31]
proposed a feature-guided anchor generation method named dynamic anchor.
Compared with the hand-designed anchor scheme, dynamic anchor discards
all pre-defined boxes and avoids complex hyper-parameters. Unlike the above
method, our proposed method uses GARPN [46] to predict the shape and
position of the anchor through the feature map to guide its generation so
that the obtained anchor can better adapt to pedestrian targets at different
scales. Specifically: on the one hand, by predicting the position of the anchor,
the possibility of the anchor appearing in the non-interesting area and the
background area is greatly reduced. On the other hand, by predicting the
shape of the anchor, the obtained anchor can be more suitable for pedestrian
targets with large scale differences than the traditional anchor mechanism.
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At the micro level. Researchers have found that using atrous convo-
lution is more conducive to multi-scale detection than standard convolution.
In 2017, Yu et al. [53] combined a residual network with atrous convolution,
and proved through experiments that the performance of the atrous residual
network is much higher than an ordinary residual network. In the same year,
Chen et al. [6] embedded the atrous spatial pyramid pooling (ASPP) mod-
ule in DeepLabv3. This module is based on atrous convolution and spatial
pyramid pooling. The given input is sampled in parallel by atrous convolu-
tion with different atrous rates. This is equivalent to capturing the context
of the image at multiple scales, which helps improve the accuracy of detect-
ing objects of different scales in the image. In 2018, Li et al. [25] replaced
the original 3×3 convolutions in the bottleneck of a deep network with atrous
convolutions with an atrous rate of 2. Without reducing the size of the space,
this increases only slightly the amount of calculation while increasing the re-
ceptive field, thereby increasing the accuracy of detection. In 2020, Alsaih et
al. [1] discussed the performance difference between convolution operations
and atrous convolution operations. In 2021, Wang et al. [48] solved the grid
effect by smoothing the atrous convolution itself instead of stacking atrous
convolution layers. The grid effect refers to the inability to calculate all pixels
of the feature map when stacking multiple atrous convolutions, thus losing
the continuity of information. In the same year, Kim et al. [24] proposed an
attention-based multi-scale atrous convolutional neural network (AMSASeg).
And through distinctive atrous spatial pyramid pooling (DASPP) utilizes aver-
age pooling operations and atrous convolutions with different sizes to aggregate
distinctive information on objects at multiple scales. Unlike the above method,
We convert standard convolutions in the backbone network to SAC [37] and do
not change the pretrained model in the process. Through the switch function,
the atrous rate of the atrous convolution is controlled according to the pedes-
trian target scale, and the problem of the scale difference between pedestrians
is effectively solved.

3 Methodology

To address the problem of scale differences in pedestrian detection, this paper
considers the macro and micro levels separately, and proposes a multi-scale
pedestrian detection network. At the macro level, considering that the tradi-
tional anchor mechanism is not suitable for solving the detection of pedestrian
targets at different scales, an anchor adaptive mechanism is used to guide the
generation of anchors. At the micro level, considering that standard convo-
lution and atrous convolution have a single receptive field, which does not
meet the requirements of multi-scale pedestrian detection, we proposed re-
placing the standard convolution in the backbone network with SAC. Finally,
we reconsider the classification and regression tasks to further improve the
performance of the detector. The overall structure of the proposed method is
shown in Figure 1.
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Fig. 1 Overall structure of the proposed method

As shown in Figure 1, we selected ResNet50 [19] as the backbone net-
work of the model to extract the feature map of the image. The structure
of ResNet50 is presented in Table 1. We replace all 3×3 convolutions with
switchable atrous convolutions and switch the atrous convolution rate accord-
ing to the pedestrian positions at different scales. First, a 7×7 convolution
layer with a stride of two and a 3×3 maximum pooling layer with a stride of
two greatly reduce the required storage space. Then, the data pass through
a stack of residual blocks of 3, 4, 6, and 3 filters and 1×1 convolution. This
reduces the dimensionality and restores the number of channels, which effec-
tively reduces the computational complexity. The four residual blocks result in
feature maps with channel numbers of 256, 512, 1024, and 2048, respectively.
These feature maps extracted from the four groups of residual blocks are used
to construct the feature pyramid to generate multi-scale feature expressions.
Then, the multi-level feature maps are fed to the GARPN to predict the posi-
tion and shape of the anchor to better adapt to pedestrian targets at different
scales. Finally, the classification and regression tasks are completed through a
Double Head.

3.1 GARPN

To better detect multi-scale pedestrians, at the macro level, the proposed
method uses GARPN to predict the position and shape of the anchors through
the feature maps to guide their generation. Its structure is shown in Figure 2.
It consists of an anchor generation module and a feature adaptation module.
The anchor generation module predicts the position and shape of an anchor
through the NL and NS branches, respectively. The scheme is described as
follows: the position and shape of a pedestrian target can be represented by a
four-dimensional vector (x, y, w, h), where (x, y) is the center point of the space
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Table 1 ResNet50 network structure

Layer name Output size 50-layer

Conv 1 112× 112 7× 7, 64, stride2

56× 56
3× 3maxpool, stride2

Conv2 x  1*1,64
3*3,64
1*1,256

 ∗ 3

28× 28

1*1,128
3*3,128
1*1,512

 ∗ 4

Conv3 x

14× 14

 1*1,256
3*3,256
1*1,1024

 ∗ 6

Conv4 x

7× 7

 1*1,512
3*3,512
1*1,2048

 ∗ 3

Conv5 x

coordinate, w represents the width of the bounding box, and h represents the
height of the bounding box. Assuming that a target is extracted from image
I, its position and shape are distributed as follows:

p(x, y, w, h|I) = p(x, y|I)p(w, h|x, y, I) (1)

Equation (1) shows two important pieces of information: (1) Given an image,
the target may only exist in certain areas; (2) the shape (size and aspect ratio)
of a pedestrian target has a strong correlation with its location.

The anchor position prediction branch NL is used to predict the anchor
position, as shown in Figure 2. First, the NL branch generates a probability
map p(·|FI) that is equal in size to the input feature map FI , and each p(i, j|FI)
corresponds to the position of the coordinate ((i+ 1

2 )s+(j+ 1
2 )s) on I, where s

is the stride of the feature map, that is, the distance between adjacent anchors.
The value of p(i, j|FI) represents the probability that the target center exists at
that location. Probability mapping p(i, j|FI) uses a 1×1 convolution on FI to
obtain the mapping of the target score map, and then uses the sigmoid function
to convert it into a probability value. Based on the generated probability map,
we determine the active area where the target may exist by selecting a location
with a probability value higher than a predefined threshold of εL. This process
can filter out the vast majority of non-target areas while maintaining the
same recall. As shown in Figure 6(b), the background area is excluded, and
the anchors are all concentrated around the person.

After determining the possible locations of pedestrian targets, we use an-
chor shape prediction branch NS to determine the shape of pedestrian targets
at each location, as shown in Figure 2. Given a feature map FI , the NS branch
predicts the best shape a for each position through a 1×1 convolution layer,
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anchors

NL

NS

W×H×1

location

W×H×2
shape

offset field

1×1 conv

NT

FI'

FI

GARPN

Fig. 2 GARPN structure

that is, the shape that produces the highest coverage with the nearest ground
truth. Although our goal is to predict the values of width w and height h,
based on experience, it has been found that direct prediction of these two val-
ues is not stable because they have a large range. Therefore, the conversion is
performed as follows:

w = σ · s · edw, h = σ · s · edh (2)

The shape prediction branch NS outputs dw and dh, and we then map them
to (w, h), where s is the stride and σ is an empirical scale factor (σ = 8 in
the experiment). The nonlinear transformation mapping can map [0, 1000] to
[−1, 1], making the learning target simpler and more stable. Experiments show
that because of the close relationship between position and shape, our scheme
can achieve higher recall than the traditional anchor mechanism. Because it
allows any aspect ratio, the scheme can better fit pedestrian targets at different
scales.

In the traditional anchor mechanism using the sliding window scheme, the
anchors are consistent across the entire feature map, that is, they have the
same size and aspect ratio at each position. Therefore, the traditional anchor
mechanism uses a consistent full convolutional integrator on all feature maps.
However, in the method proposed in this paper, the shape of the anchor varies
from position to position, that is, the shape of the anchor is variable. Our aim
is that the features of larger anchors can encode the content of larger areas,
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and the features of smaller anchors can extract the content of smaller areas. On
the basis of this, we introduce the feature adaptation module that transforms
features according to the anchor shape at a specific position, as follows:

f
′

i = NT (fi, wi, hi) (3)

Here, fi is the feature of the ith position and (wi, hi) is the corresponding
anchor shape. For this position-dependent conversion method, we use a 3×3
deformable convolution layer [9] to implement NT . As shown in Figure 2,
the offset is first predicted from the output of the anchor shape prediction
branch, and then a deformable convolution kernel offset is used on the original
feature map to obtain f

′

i . Using the adaptive features, we can perform further
classification and bounding box regression more efficiently.

The method proposed in this paper uses multi-task loss to optimize in an
end-to-end manner. In addition to the traditional classification loss Lcls and
regression loss Lreg, we introduce two additional losses, namely the anchor
position loss Lloc and anchor box shape loss Lshape. They are jointly optimized
by the following equation.

L = λ1Lloc + λ2Lshape + Lcls + Lreg (4)

To train the anchor position branch, for each image, we need a binary
label map, where 1 represents an effective position to place the anchor and
the other pixels are 0. In this work, we use the ground truth to guide the
generation of binary label maps. Our aim is to place more anchors near the
center of the target and fewer anchors away from the center. First, we map the
ground truth bounding box (xg, yg, wg, hg) to the feature map scale to obtain

(x
′

g, y
′

g, w
′

g, h
′

g). Here, R(x, y, w, h) is a rectangular area with a center of (x, y)
and a size of w× h. We would like for more anchors to appear near the center
of the ground truth target to obtain a larger IOU, and hence three types of
regions are defined for each box:

(1) Central region CR = R(x
′

g, y
′

g, σ1w
′
, σ1h

′
) defines the central area of

the box, and the pixels in CR are designated as positive samples, as indicated
by the green area in Figure 3.

(2) Ignore region IR = R(x
′

g, y
′

g, σ2w
′
, σ2h

′
) \ CR, that is, the box region

with the CR area removed. The pixels in IR are marked as ignored and do
not participate in training, as indicated by the yellow area in Figure 3.

(3) Outer region OR, which is the part of the entire feature map excluding
CR and IR. The pixels in OR are designated as negative samples, as indicated
by the gray area in Figure 3.

Densebox [21] introduced the “gray area” of balanced sampling, which
helps us train anchor position prediction branch NL, but it only applies to a
single feature map. Because we use multiple feature levels of a FPN, we also
consider the impact of adjacent feature maps. Specifically, each level of feature
map should only target objects at a specific scale range. Therefore, we only
assign a CR region in the feature map when the feature map matches the scale
range of the target object. The same areas in adjacent levels are set to IR,
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as shown in Figure 3. When multiple objects overlap, CR can inhibit IR, and
IR can inhibit OR. Because CR usually occupies a small part of the entire
feature map, we use focal loss [27] to train the position branch.

ground truth bounding box

center region (positive)

ignore region

outside region (negative)

Fig. 3 Multi-level anchor positioning. The ground truth is assigned to different feature
levels according to the scale

To train the anchor shape branch, first we need to match the anchors to the
ground truth. Next, we predict the width and height of the anchor so that it can
best cover the matched ground truth. We define the IOU between the variable
anchor awh = (x0, y0, w, h)|w > 0, h > 0 and ground truth gt = (xg, yg, wg, hg)
as vIOU, as follows:

vIOU(awh, gt) = max
w>0,h>0

IOUnormal(awh, gt) (5)

In this equation, IOUnormal is used to calculate the intersection of union
(IOU) between the variable anchor and the ground truth, and both w and h
are variables. Because awh is variable and the calculation of vIOU(awh, gt)
is relatively complicated, it is difficult to realize it in an end-to-end network.
Therefore, we use an enumeration method to approximate it. Given (x0, y0),
we sample some common values of w and h to simulate all enumerations of w
and h. Then, we use gt to calculate the IOU of these sampled anchors, and use
the maximum value as an approximation of vIOU(awh, gt). In our experiment,
we sampled nine groups of (w, h) samples to estimate vIOU during training.
Specifically, we adopted nine groups of different sizes and aspect ratios used
by RetinaNet [27]. In theory, the more groups sampled, the more accurate
the approximation. However, the computational cost also increases. We use a
variant of the bounded IOU loss [43] to optimize the shape prediction branch
because the anchor position is fixed, and hence only w and h are optimized
instead of all w, y, w, h. The loss is:

Lshape = L1(1−min(
w

wg
,
wg

w
)) + L1(1−min(

h

hg
,
hg
h

)) (6)

where (w, h) and (wg, hg) represent the predicted anchor shape and the corre-
sponding ground truth shape, and L1 is smooth L1 loss.
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3.2 SAC

To better detect multi-scale pedestrians at the micro level, the proposed method
uses SAC to replace standard convolution in the backbone network. SAC uses
convolution kernels with different atrous rates to process the same input fea-
tures and uses a switch function to collect the results. In this way, our aim is to
use an atrous convolution with an atrous rate of 1 for smaller-scale pedestrian
target positions, and an atrous convolution with a large atrous rate for larger-
scale pedestrian target location. Figure 4 shows the SAC structure, which
consists of three main components: the SAC component itself and two global
context modules, one before and after it.

Global 

AvgPool

Conv

（1×1）

+Input
AvgPool

（5×5）

Conv

（1×1） + + Output

Global 

AvgPool

Conv

（1×1）

Conv（3×3，

atrous=3）

Conv（3×3，

atrous=1）

×

×

Pre-Global Context Switchable Atrous Convolution Post-Global Context

S

1-S

Fig. 4 Switchable Atrous Convolution(SAC)

We first introduce the SAC component. Let y = Conv(x,w, r) denote a
convolution operation with x as input, y as output, r as the atrous rate, and
weight w. Then, we can convert the convolutional layer to SAC, as follows.

Conv(x,w, 1)
Convert−→
toSAC

S(x) ·Conv(x,w, 1)

+(1− S(x)) ·Conv(x,w +∆w, r)
(7)

In this equation, r is the hyperparameter of SAC, ∆w is a trainable weight,
and the switch function S(·) is implemented by a 5×5 average pooling layer
and a 1×1 convolutional layer, as shown in Figure 4. After the switch func-
tion is obtained, according to formula (7), it is multiplied and added by the
output results of the atrous convolution with atrous rate 1 and r respectively.
The results are collected so that the model can use atrous convolutions with
different atrous rates depending on pedestrians at different scales. The switch
function depends on the input and location, and hence the backbone can adapt
to different ranges as needed. We set r = 3 in the experiment. Simultaneously,
we use a locking mechanism to set the weight when the atrous ratio is 1 to
w, and the other weight is set to w + ∆w. This is because the detector usu-
ally uses pre-training to initialize the weights. However, when the SAC layer
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is converted from the standard convolution layer, it lacks the weights of the
larger atrous rate. Because pedestrian targets with different proportions can be
roughly detected with the same weight and different atrous rates, the weights
in the pre-training model can be used to initialize the missing weights. We use
w+∆w to represent the missing weight, where w comes from the pre-training
weight and ∆w is initialized to 0.

As shown in Figure 4, we insert a global context module before and after
the SAC component, and our aim is to apply the global information before
and after the switch function. This module passes the input through a global
average pooling and 1×1 convolution, and then adds the result back to the
main stream. We use deformable convolution [10] to replace the two convo-
lution operations in equation (7), and their offset functions are not shared.
When loaded from the pre-training backbone, these functions are initialized
to 0. We use SAC on ResNet and ResNeXt [50] by replacing all 3×3 convo-
lutional layers in the backbone. The weight and offset in the global context
module are initialized to 0, the weight in the switch function S is initialized
to 0, the bias is set to 1, and ∆w is initialized to 0.

4 Experimental results and analysis

4.1 Datasets

The experiments in this paper use the COCOPersons dataset, Caltech, and
CityPersons pedestrian dataset for training and verification.

The COCOPersons dataset is a subset of the MS COCO dataset, and its
images only include the ground truth of people. The other 79 categories were
ignored in the evaluation. The dataset was split into 64,115 images for the
training set (which includes 257,252 pedestrian targets; each image contains
4.01 pedestrian targets on average), and 2,693 images for the validation set.

The Caltech pedestrian dataset consists of approximately 10 hours of 640x480
30Hz video taken from a vehicle driving through regular traffic in an urban
environment. About 250,000 frames (in 137 approximately minute long seg-
ments) with a total of 350,000 bounding boxes and 2300 unique pedestrians
were annotated.

The CityPersons dataset is a subset of Cityscapes which only consists of
person annotations. There are 2975 images for training, 500 and 1575 images
for validation and testing. The density of pedestrians in the dataset is very
high, and the average number of pedestrians in an image is 7. What’s more,
scenarios of the datasets are rich, and it contains multiple occlusion cases.

4.2 Evaluation metrics

The evaluation metrics in the COCOPersons dataset use the average precision
(AP) of the MS COCO dataset as an indicator. Specifically, this study uses
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mAP (mean average precision), APS (AP for small pedestrian targets: area <
322), APM (AP for medium pedestrian targets: 322 < area < 962), and APL

(AP for large pedestrian targets: area > 962). We use the AR value as an
indicator when verifying the recall of GARPN and RPN. AR is the average
value of recalls under different IOU thresholds (from 0.5 to 0.95). The AR of
100 proposals per image is represented as AR100. We calculated the AR of
small, medium, and large targets (ARS , ARM , ARL) for 100 proposals.

The experiments in this paper on the Caltech pedestrian dataset are based
on the Caltech evaluation criterion: the average false positive per image (FPPI)
pedestrian missed detection rate between

[
10−2, 100

]
, denoted by MR−2. Ac-

cording to the data division standard of Caltech test set, this paper mainly
selects: Near, Medium and Far subsets represent the test subsets whose pedes-
trian height ranges are greater than 80 pixels, between 30 and 80 pixels, and
between 20 and 30 pixels, respectively.

The experiments in this paper on the CityPersons pedestrian dataset are
based on the CityPersons evaluation criterion: the average false positive per im-
age (FPPI) pedestrian missed detection rate between

[
10−2, 100

]
, denoted by

MR−2. According to the size of the area occupied by the target, the CityPer-
sons dataset is divided into three subsets, Small, Medium and Large, with the
pixel area 322 and 962 as the boundary, respectively, to verify the detection
performance of the algorithm for small, medium and large scale pedestrians.

4.3 Implementation details

The experiment was conducted using PyTorch [5], CUDA 10.1, and the MMDe-
tection 2.0 target detection library, with ResNet50 as the pre-training weights.
The training was conducted on two NVIDIA RTX 2080 Ti GPUs. Training was
performed over 12 epochs on the COCOPersons dataset, Caltech,and CityPer-
sons pedestrian dataset. Using the stochastic gradient descent method, the
initial learning rate was set to 0.0025, and after the 8th and 11th epochs, it
was reduced by one-tenth. The input image size was 1333 × 800 pixels. We
set σ1 = 0.2 and σ2 = 0.5 in GARPN. In the multi-task loss function, we set
λ1 = 1 and λ2 = 0.1 to balance the position and shape prediction branches.
We uniformly set the momentum factor to 0.9 and the weight attenuation
factor to 0.0001 to prevent the model from overfitting.

4.4 Experimental results and analysis

4.4.1 Testing on the COCOPersons dataset

Table 2 compares the evaluation results of the proposed model with those of
other detection methods on the COCOPersons dataset. Using Faster R-CNN
as the baseline, after embedding the method proposed in this paper, the accu-
racy of pedestrian detection is improved by 3.7 AP under the same conditions.
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Moreover, the detection accuracy of pedestrian targets at large, medium, and
small scales is improved by 1.7 AP, 2.5 AP, and 6.8 AP, respectively. These
results also verifies that the proposed model substantially improves the accu-
racy of multi-scale pedestrian detection. Moreover, Table 2 reveals that the
detection results of this model are better than those of other current detection
methods. We then replaced the backbone with ResNeXt-50 and evaluated the
results again, obtaining a pedestrian detection accuracy of 57.7 AP. Moreover,
the pedestrian detection accuracies at the three scales were 37.2 AP, 63.8 AP,
and 77.9 AP, respectively. We present a visual result of multi-scale pedestrian

Table 2 Comparison of the results on the COCOPersons dataset

Method Backbone mAP APS APM APL

RetinaNet [27] ResNet-50 53.2 34.2 60.6 72.4
Mask R-CNN [18] ResNet-50 55.3 37.0 62.8 72.8

Cascade R-CNN [4] ResNet-50 56.6 36.9 63.6 74.3
Faster R-CNN [38] ResNet-50 53.6 35.3 61.2 70.9

SINPER [39] ResNet-50 54.8 35.9 62.7 73.5
SAFNet [23] ResNet-50 55.0 36.0 62.8 73.9
YOLOF [7] ResNet-50 55.8 36.3 62.9 74.9

Dynamic R-CNN [54] ResNet-50 56.3 36.5 63.4 75.4
CBNet [32] ResNeXt-50 56.8 36.9 63.7 75.5
SCNet [44] ResNet-50 56.5 36.8 63.7 75.2

Sparse R-CNN [41] ResNet-50 57.0 37.0 63.9 77.5
Ours ResNet-50 57.3 37.0 63.7 77.7
Ours ResNeXt-50 57.7 37.2 63.8 77.9

detection on the COCOPersons dataset in Figure 5. As shown in this figure,
pedestrian targets at different scales are accurately detected; in particular,
small pedestrian targets in the distance are also accurately located.

We also compared the results of the model proposed in this paper with
other methods for solving the problem of pedestrian scale differences on the
COCOPersons dataset. As presented in Table 3, the pedestrian detection ac-
curacy of the model in this paper is much higher than those of the balanced
feature pyramid (BFP) and the recursive feature pyramid (RFP) at large,
medium, and small scales. Compared with the multi-scale feature enhance-
ment modules the augmentation feature pyramid networks (AugFPN) and
the feature-aligned pyramid network (FaPN), the proposed model has a com-
parable small-scale pedestrian detection accuracy, whereas its medium- and
large-scale pedestrian detection accuracies are substantially improved. These
results also demonstrate that the model proposed in this paper better solves
the problem of pedestrian scale differences than other multi-scale methods.
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Fig. 5 Visual results on the COCOPersons dataset

Table 3 Comparison with other multi-scale methods on the COCOPersons dataset

Method Backbone mAP APS APM APL

RetinaNet+NasFPN [16] ResNet-50 53.8 36.0 60.7 71.5
Faster R-CNN+BFP [36] ResNet-50 54.6 36.8 61.4 71.9
Faster R-CNN+RFP [37] ResNet-50 55.7 36.5 62.7 74.7

Faster R-CNN+MFBE [20] ResNet-50 54.7 37.1 61.7 71.7
Faster R-CNN+AugFPN [17] ResNet-50 55.0 37.0 62.1 73.5

Faster R-CNN+FaPN [22] ResNet-50 56.5 37.3 63.5 75.6
Ours ResNet-50 57.3 37.0 63.7 77.7

4.4.2 Testing on the Caltech pedestrian dataset

In order to laterally compare the effectiveness of the proposed model for multi-
scale pedestrian detection, an experimental comparison is conducted on the
Caltech dataset with the current pedestrian detection methods that perform
well. As shown in Table 4, the MR−2 of this model on the Near, Medium
and Far subsets are 0.45%, 13.78%, and 48.85%, respectively. Compared with
Faster R-CNN+ATT, the of our model on the Near, Medium and Far subsets
are reduced by 0.98%, 26.97%, and 42.09%, respectively. Compared with the
current state-of-the-art TLL-TFA method, the MR−2 are reduced by 0.27%,
9.14% and 55.24% on the subsets of Near, Medium and Far, respectively. This
also shows that the proposed model has better detection effect for pedestrian
objects of different scales.
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Table 4 Comparison of the results on the Caltech Pedestrain dataset

Method Near Medium Far

Faster R-CNN+ATT [57] 1.43 40.75 90.94

RPN+BF [55] 2.26 53.93 100

AR-Ped [2] 1.37 49.31 100

TLL-TFA [40] 0.72 22.92 60.09
Ours 0.45 13.78 48.85

4.4.3 Testing on the CityPersons pedestrian dataset

At the same time, we compared the proposed method with other multi-scale
pedestrian detection methods on CityPersons dataset. As shown in Table 5,
the MR−2 of this model on the Small, Medium and Large subsets are 12.1%,
2.6%, and 5.5%, respectively. Compared with Faster R-CNN, the MR−2 of our
model on the Small, Medium and Large subsets are reduced by 13.5%, 4.6%,
and 2.4%, respectively. Compared with MagnifierNet, the MR−2 of our model
on the Small, Medium and Large subsets are reduced by 0.5%, 2.9%, and 2.2%,
respectively. Compared with DHRNet with excellent performance, the MR−2

are reduced by 1.3%, 0.1% and 0.7% on the subsets of Small, Medium and
Large, respectively. This shows that the model proposed in this paper also
has excellent detection effect for pedestrian targets of different scales on the
CityPersons dataset.

Table 5 Comparison of the results on the CityPersons Pedestrain dataset

Method Backbone Small Medium Large

Fater R-CNN [56] VGG-16 25.6 7.2 7.9

CSP [30] ResNet-50 16 3.7 6.5

MagnifierNet [8] ResNet-101 12.6 5.5 7.7

PRF-Ped [42] ResNet-50 12.9 3.9 5.8

DHRNet [12] DHRNet-W18 13.4 2.7 6.2
Ours ResNet-50 12.1 2.6 5.5

4.4.4 Ablation experiments

To explore the impact of the three modules on the model detection perfor-
mance, we conducted ablation experiments on the COCOPersons dataset, and
the results are presented in Table 6. At the macro level, we first introduced
GARPN separately into a Faster R-CNN based on FPN, and the accuracy of
pedestrian detection at three scales was improved by 0.9 AP, 2.0 AP, and 2.2
AP, respectively. At the same time, there is only a small increase in the amount
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of model size. The results verify that, compared with the traditional RPN
fixed anchor generation scheme, predicting the position and shape of the an-
chor through the feature map can better adapt to the common scale-difference
problem in pedestrian detection. Then, at the micro level, we replaced the 3×3
convolution in the backbone with SAC. Although the model size increases by
19.2 MB, the improvement in detection accuracy is also significant. Pedes-
trian detection accuracy is improved at the large, medium, and small scales.
In particular, the accuracy of large-scale pedestrian detection is improved by
4.3 AP. This result shows that SAC sets up the atrous convolution with dif-
ferent atrous rates, and then allocates the weight of the results obtained by
the atrous convolution with different atrous rates using the switch function ac-
cording to the pedestrian targets with different scales, and collects the results.
In this way, smaller scale pedestrian targets will use more the results of atrous
convolution with an atrous ratio of 1, and larger scale pedestrian targets will
use more the results of atrous convolution with a larger atrous ratio. So as to
get better multi-scale pedestrian detection effect. Finally, we introduced the
Double Head to the proposed method, which improves the pedestrian detec-
tion accuracy by 0.3 AP, verifying that the Double Head, that is, using an
fc-head to focus on classification tasks and a conv-head to focus on regression
tasks, is beneficial for detection.

Table 6 Ablation experiment results of each module

GARPN SAC Double Head mAP APS APM APL Model size/MB

53.6 35.3 61.2 70.9 333.4√
55.3 36.2 63.2 73.1 334.9√ √
57.0 36.6 63.5 77.4 354.1√ √ √
57.3 37.0 63.7 77.7 378.5

We compare the recall results on the COCOPersons dataset in Table 7.
Compared with the traditional anchoring scheme RPN, the GARPN of the
model in this paper increases the AR100 by 3.4, and increases the recall rates
of pedestrian targets at large, medium, and small scales by 4.3, 3.0, and 2.6
respectively. This verifies that GARPN predicts the possible locations of an-
chors using the feature map, which greatly reduces the possibility of anchors
appearing in non-interest areas and background areas. We show the effect of
predicting anchors and the visualization of the output of the two branches. As
shown in Figure 6, the anchors are more focused on the pedestrian targets in
the image, which also provides a basis for obtaining the subsequent propos-
als. Meanwhile, compared with other related methods, our method has better
performance.

We have also explored the impact of each component of the SAC module
more deeply, as detailed in Table 8. First, we introduced the SAC separately,
and the pedestrian detection accuracy was 56.5 AP. On this basis, we removed
the deformable convolution (SAC-DCN), and the detection accuracy was re-
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Table 7 Recall results on COCOPersons dataset

Method Backbone AR100 ARS ARM ARL

RPN ResNet-50 62.1 46.1 68.8 78.3
AEMS-RPN [45] ResNet-50 62.7 46.4 69.7 78.4

Attention-RPN [15] ResNet-50 63.0 48.2 70.5 78.8
RPN Prototype Alignment [58] ResNet-50 63.6 48.7 70.9 79.5

GARPN ResNet-50 65.5 50.4 71.8 80.9

（a） （b） （c）

Fig. 6 Anchor prediction effect. (a) Input image and predicted anchor effect, (b) predicted
anchor position probability map, and (c) predicted anchor aspect ratio

duced by 1.0 AP. Then, we removed the global context module (SAC-DCN-
global), and the detection accuracy was reduced by 1.3 AP. This shows that
adding global context information before the SAC component has a positive
impact on detection performance. This is because global information enables
the switch function to make more stable switching predictions. Finally, we use
∆w only instead of w +∆w for the weight of the convolution with an atrous
rate of 3. The importance of the locking mechanism (SAC-DCN-locking) is
verified because after the locking mechanism was removed, the detection ac-
curacy dropped by 0.9 AP. Figure 7 shows a visualization of the output of
the last switch function, where the darker area indicates that the switch func-
tion collects more results from atrous convolution with a larger atrous rate.
Comparing this result with the original image, we can observe that the output
result of the switch function is highly aligned with the original image. That
is, for larger-scale pedestrian targets, atrous convolution with a larger atrous
rate is used. On the contrary, for a smaller-scale pedestrian target, atrous
convolution with a smaller atrous rate is used.

Table 8 Ablation experiment results for each component of the SAC module

Method Backbone mAP APS APM APL

SAC ResNet-50 56.5 36.1 63.0 77.0
SAC-DCN ResNet-50 55.5 35.8 62.1 75.2

SAC-DCN-global ResNet-50 54.2 35.4 61.4 74.2
SAC-DCN-locking ResNet-50 54.6 35.7 62.0 73.6
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Original image Switch function output visualization

Fig. 7 Visualization of the outputs of the switch functions in SAC

5 Conclusions

In view of the widespread problem of scale differences in pedestrian detec-
tion, this paper systematically summarized the current mainstream detectors
that still have shortcomings at the macro and micro levels. We then proposed
the multi-scale pedestrian detection model, which considers both the macro
and micro levels. At the macro level, predicting the location and shape of the
anchor through the feature map enables the model to better adapt to pedes-
trian targets at different scales. At the micro level, SAC is used to replace
standard convolution in the backbone, and the atrous rate of atrous convo-
lution is adjusted according to the target location of pedestrians at different
scales. Finally, by reasonably assigning classification and regression tasks, the
pedestrian detection performance of the model is further improved.
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convolutions and atrous convolutions in deep networks for retinal disease segmentation
on optical coherence tomography volumes. In: 2020 42nd Annual International Confer-
ence of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1863–1866.
IEEE (2020)

2. Brazil, G., Liu, X.: Pedestrian detection with autoregressive network phases. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7231–7240 (2019)

3. Cai, J., Lee, F., Yang, S., Lin, C., Chen, H., Kotani, K., Chen, Q.: Pedestrian as points:
An improved anchor-free method for center-based pedestrian detection. IEEE Access
8, 179666–179677 (2020)

4. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
6154–6162 (2018)

5. Chen, K.M., Cofer, E.M., Zhou, J., Troyanskaya, O.G.: Selene: a pytorch-based deep
learning library for sequence data. Nature methods 16(4), 315–318 (2019)

6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for
semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

7. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level
feature. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13039–13048 (2021)

8. Cheng, Q., Chen, M., Wu, Y., Chen, F., Lin, S.: Magnifiernet: Learning efficient small-
scale pedestrian detector towards multiple dense regions. In: 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 1483–1490. IEEE (2021)

9. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully convolu-
tional networks. Advances in neural information processing systems 29 (2016)

10. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional
networks. In: Proceedings of the IEEE international conference on computer vision, pp.
764–773 (2017)

11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), vol. 1, pp. 886–893. Ieee (2005)

12. Ding, M., Zhang, S., Yang, J.: Learning a dynamic high-resolution network for multi-
scale pedestrian detection. In: 2020 25th International Conference on Pattern Recogni-
tion (ICPR), pp. 9076–9082. IEEE (2021)

13. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the
state of the art. IEEE transactions on pattern analysis and machine intelligence 34(4),
743–761 (2011)

14. Du, X., El-Khamy, M., Lee, J., Davis, L.: Fused dnn: A deep neural network fusion
approach to fast and robust pedestrian detection. In: 2017 IEEE winter conference on
applications of computer vision (WACV), pp. 953–961. IEEE (2017)

15. Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-rpn
and multi-relation detector. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4013–4022 (2020)

16. Ghiasi, G., Lin, T.Y., Le, Q.V.: Nas-fpn: Learning scalable feature pyramid architecture
for object detection. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7036–7045 (2019)

17. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: Augfpn: Improving multi-scale feature
learning for object detection. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 12595–12604 (2020)

18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE
international conference on computer vision, pp. 2961–2969 (2017)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778 (2016)



22 Yuzhe He et al.

20. He, Y., He, N., Zhang, R., Yan, K., Yu, H.: Multi-scale feature balance enhancement
network for pedestrian detection. Multimedia Systems 28(3), 1135–1145 (2022)

21. Huang, L., Yang, Y., Deng, Y., Yu, Y.: Densebox: Unifying landmark localization with
end to end object detection. arXiv preprint arXiv:1509.04874 (2015)

22. Huang, S., Lu, Z., Cheng, R., He, C.: Fapn: Feature-aligned pyramid network for dense
image prediction. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 864–873 (2021)

23. Jin, Z., Liu, B., Chu, Q., Yu, N.: Safnet: A semi-anchor-free network with enhanced
feature pyramid for object detection. IEEE Transactions on Image Processing 29,
9445–9457 (2020)

24. Kim, M., Ilyas, N., Kim, K.: Amsaseg: An attention-based multi-scale atrous convo-
lutional neural network for real-time object segmentation from 3d point cloud. IEEE
Access 9, 70789–70796 (2021)

25. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Detnet: A backbone network for
object detection. arXiv preprint arXiv:1804.06215 (2018)

26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid
networks for object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2117–2125 (2017)

27. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object de-
tection. In: Proceedings of the IEEE international conference on computer vision, pp.
2980–2988 (2017)

28. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft coco: Common objects in context. In: European conference on computer
vision, pp. 740–755. Springer (2014)

29. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: European conference on computer vision, pp. 21–37.
Springer (2016)

30. Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: A
new perspective for pedestrian detection. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5187–5196 (2019)

31. Liu, X., Chen, H.X., Liu, B.Y.: Dynamic anchor: A feature-guided anchor strategy for
object detection. Applied Sciences 12(10), 4897 (2022)

32. Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., Ling, H.: Cbnet: A novel
composite backbone network architecture for object detection. In: Proceedings of the
AAAI conference on artificial intelligence, vol. 34, pp. 11653–11660 (2020)

33. Ma, W., Tian, T., Xu, H., Huang, Y., Li, Z.: Aabo: Adaptive anchor box optimization
for object detection via bayesian sub-sampling. In: European Conference on Computer
Vision, pp. 560–575. Springer (2020)

34. Ming, Q., Zhou, Z., Miao, L., Zhang, H., Li, L.: Dynamic anchor learning for arbitrary-
oriented object detection. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, pp. 2355–2363 (2021)
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