
26 
Appendix A: Proof of Proposition 2.5 

PROPOSITION 2.5: Assume that the query object and the 
moving objects all move piecewise linearly, where each object 
can have at most m linear pieces. k(n)≥2m(nk)+1. 

PROOF: For the motion in Figure A(a) the curves 
arrangement is as in Figure A(b), and the details are as in 
Proposition 2.2. � 

 
 (a) Configuration in the motion space 

 

 
 (b) Arrangement in the Time-Square_Distance space 

Figure A. The auxiliary figure for the proof of Proposition 
2.5. 

 

Appendix B: Proof of Lemma 3.5 

LEMMA 3.5. Let A be a connected sequence of mA 
parabola-pieces and B be a connected sequences of mB x-
monotone parabola-pieces, in the Time-Square_Distance 
space. There are at most )1(2  BA mm  intersections between 

A and B. 

PROOF. Denote by S1 the set of pieces in sequence A that 
are intersected by the first piece in sequence B, by S2 the set 
of pieces in A that are intersected by the second piece in B, 
and so on. Denote by |S| the size of a set S. Since any pair of 
pieces intersect at most twice, there are at most 

|)|...|||(|2 21 BmSSS  intersections between A and B. On 

the other hand, due to the monotonicity of time, there is at 
most one common piece between Si and Si+1. Thus, the total 
number of distinct pieces in A that are intersected by B is at 
least  
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Since the number of distinct pieces in A is mA, the 
following inequality holds: 
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. Thus there are at most 

)1(2  BA mm  intersections between A and B. � 

Appendix C: Proof of Theorem 3.6 

THEOREM 3.6. Assume that the query object and the 
expected locations of each data object move piecewise linearly, 
where each object has at most m pieces. Then for any constant 

k )(
~

nk = )( 2 mn  . 

PROOF: We prove the theorem by constructing a feasible 
case in which the number of answer-pairs is quadratic in n and 
linear in m. The construction proceeds as follows. Let object 
Oq and the expected locations of O1, O2,…, and Ok be static in 
the motion space such that Oi has the i-th maximum possible 
distance to Oq (see Figure B(a)). Denote by max

iR  the circle the 

center of which is the location of Oq and the radius of which 
is the maximum possible distance between Oi and Oq. Let the 
route of the expected location of object Ok+1 have m linear 
pieces such that for each piece, the trace of Ok+1’s farthest-to-
Oq-point intersects max

kR  twice but does not intersect max
1kR , as 

shown in Figure B(a). Let Ok+2 have the same route as Ok+1 
and move behind Ok+1 such that its farthest-to-Oq-point enters 

max
kR  after that of Ok+1 leaves max

kR . Construct the same for 

Ok+3,…, On/2. Figure B(b) shows the max-curves of the first 
k+1 objects. 

Denote by min
iR  the circle the center of which is the 

location of Oq and the radius of which is the minimum possible 
distance between Oi and Oq. Let On/2+1 be static such that 

min
12/ nR  intersects the trace of Ok+1’s farthest-to-Oq-point for 

2m times (see Figure B(c)). Do the same construction for 
On/2+2,…, On. Figure B(d) shows how the min curves intersect 
the max k-level. It is not difficult to see that there are 
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(a) Configuration of the first k+1 objects in the motion space. 

 

 
 (b) Max-curves of the first k+1 objects. 

 
(c) Configuration of On/2+1 in the motion space. 

 

 
(d) Intersections between the min-curve of On/2+1 and the max 

k-level. 
Figure B. The Concrete Example for the Proof of Theorem 

3.6 
 

Appendix D: Explicit Updates and Piecewise Linear Model 
in the Uncertain Case 

 
Addition. Consider the addition of an object O at a time point 
t. The first step is to add O to MOH in O(logn) time as 
described in section 4.2.4. Depending on how the root node r 
changes as a result of the addition, there are three cases for the 
second step. 

Case 1: The max-curve of O is always farther from Oq 
than that of r.object between t and r.time. In this case, neither 
r.object nor r.time changes. To process this case, compute the 
intersections between the min-curve of O and the max-curve 
of r.object that will occur between t and r.time. Create an 
intersection event for each of these intersections (at most two) 
and insert it to the event queue. 

Case 2: The max-curve of O switches the distance order 
with that of r.object some time after t and before r.time. In 
this case, r.object does not change but r.time decreases. This 
case is illustrated by Figure 5.1, in which r.time decreases 
from a farther time to t due to the addition of O. In this case, 
the intersection events in the event queue that will occur after 
the new r.time, such as intersection p in Figure 5.1, are no 
longer valid. However, we leave them in the event queue. 
They will be eliminated by the max 1-level event triggered at 
r.time.  

Case 3: The max-curve of O is currently closer to Oq than 
that of r.object and therefore r.object changes. In this case, 
eliminate the existing event queue; invoke the procedure 
Max1LevelUpdate(r, t) to compute and schedule new 
intersection events. 

The complexity of the addition is dominated by Case 3 
which is O(n).  
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Figure 5.1. Case 2 of addition and Case 2 of deletion. 

 

 
Figure 5.2. r.time may change due to the velocity-vector 

change of an object other than r.object. 
 

Deletion. Consider the deletion of an object O at a time 
point t. The first step is to delete O from MOH in O(logn) 
time as described in section 4.2.4. Depending on how the root 
node r changes as a result of the deletion, there are three cases 
for the second step. 

Case 1: The max-curve of O is always farther from Oq 
than that of r.object between t and r.time. In this case, neither 
r.object nor r.time changes. To process this case, remove the 
critical intersections incurred by O if any from the event 
queue. 

Case 2: The max-curve of O switches the distance order 
with that of r.object some time after t and before r.time. In 
this case, r.object does not change but r.time increases. This 
case is illustrated by Figure 5.1, in which r.time increases from 
t to a farther time due to the deletion of O. In this case, some 
new intersection events may need to be scheduled, such as 
intersection p in Figure 5.1. Observe that there may be O(n) 
such intersection events. Inserting them to the existing event 
queue takes O(nlogn) time. On the other hand, eliminating the 
existing event queue and reconstructing a new one takes only 
O(n) time. Thus, in Case 2 we eliminate the existing event 
queue; invoke the procedure Max1LevelUpdate(r, t) to 
compute and schedule new intersection events. 

Case 3: O is currently r.object and therefore r.object 
changes. In this case, eliminate the existing event queue; 
invoke the procedure Max1LevelUpdate(r, t) to compute and 
schedule new intersection events. 

The complexity of the deletion is dominated by Case 2 and 
Case 3 which is O(n) each. Thus the complexity of the deletion 
is O(n). 

Velocity-vector Change. Consider that an object O 
changes its velocity-vector at time t.  The first step is to 
perform velocity-vector update to the object heap as described 
in section 4.2.4. Depending on how the root node r changes as 
a result of the update to the object heap, there are three cases 
for the second step: 

Case 1: Both old(O) and new(O) are always farther from 
Oq than the max-curve of r.object between t and r.time, where 
old(O) and new(O) represent the max-curves of O before 
and after the velocity-vector change, respectively. In this case, 
neither r.object nor r.time changes. To process this case, 
compute the intersections between the new min-curve of O 
and the max-curve of r.object that will occur between t and 
r.time. Create an intersection event for each of these 
intersections (at most two) and insert it to the event queue. 

Case 2: r.object does not change but r.time decreases. This 
case may happen when O is r.object, i.e., it is r.object that 
changes its velocity-vector. Case 2 may also happen when O 
is not r.object, as illustrated in Figure 5.2. In the figure, r.time 
decreases from a farther time to t due to the velocity-vector 
change of O which is not r.object. No further processing is 
needed in this case. 

Case 3: r.object does not change but r.time increases. 
Again this case may happen when either r.object or some other 
object changes velocity-vector. In this case, eliminate the 
existing event queue and invoke the procedure 
Max1LevelUpdate(r, t).  

The complexity of processing each velocity-vector update 
is dominated by Case 3 which is O(n). 

THEOREM 5.1. Assume that each object can change its 
velocity at most m times. Then the cumulative complexity of 
the on-line algorithm for the uncertain case is  
O(n2m(n)logn). 

PROOF. There are four types of processing involved in the 
on-line algorithm, i.e., the processing of velocity-vector 
updates, the processing of intersection events, the processing 
of max 1-level events, and the processing of implicit updates 
to the object heap.  

Processing velocity-vector updates. Since processing 
each velocity-vector update takes O(n) time, the cumulative 
complexity for processing velocity-vector updates is O(n2m).  

Processing intersection events. According to Theorem 
2.4, there are O(nm(n)) parabola pieces in the max 1-level. 
Each min-curve has O(m) parabola pieces. According to 
Lemma 3.5, there are O(nm(n)) intersections between each 
min-curve and the max 1-level. Thus there are totally 
O(n2m(n)) intersections between n min-curves and the max 
1-level. Processing each intersection event takes O(logn) time 
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to remove from the event queue. Processing each intersection 
event takes O(logn) time. Thus the cumulative complexity of 
processing intersection events is O(n2m(n)logn).  

Processing max 1-level events. Each implicit update to 
the object heap triggers a max 1-level event. According to the 
analysis given in section 4.2.4, there are O(nm(n)logn) 
implicit updates to the object heap and thus there are 
O(nm(n)logn) max 1-level events. Processing each max 1-
level event takes O(n) time. Thus the cumulative complexity 
of processing max 1-level events is O(n2m(n)logn).  

Processing implicit updates to the object heap. The 
cumulative complexity for processing implicit updates is 
O(nm(n)log2n) as discussed in section 4.2.4.  

Thus the cumulative complexity of our on-line algorithm 
in the piecewise linear model is O(n2m(n)logn).� 

Appendix E: Figures for Section 6.3 

 

 
Figure 6.16. Normalized processing time 

versus number of objects  
 

 

 

 

Figure 6.17. Answer-pair density versus 
number of objects 

 

Appendix F: Applicability of Proposition 3.1 when there is 
location uncertainty associated with the query object 

When there is location uncertainty associated with the query 
object Oq, Proposition 3.1 does not hold anymore. Specifically, 
Oi’s min-curve being below the k-th level at a time t is only a 
necessary, but not a sufficient condition, for Oi to be a PkNN 

at t. This is because the distances of different objects to the 
query object are not independent to each other; they depend 
on which location within the query object’s uncertainty region 
is used to compute the distance. This concept is illustrated by 
the following simple example. Figure C shows the uncertainty 
regions of the query object Oq and the only two moving objects 
Oa and Ob, at a time t. The radius is r for all the uncertainty 
regions. According to the figure, the maximum possible 
distance between Ca(t) and Cq(t) is 4r. The minimum possible 
distance between Cb(t) and Cq(t) is smaller than 4r. Thus Ob’s 
min-curve is below Oa’s max-curve at time t. If we apply 
Proposition 3.1, we would conclude that Ob is a P1NN at time 
t, but this is obviously wrong. The reason is that the query 
object Oq can be at only one location at a time. Specifically, in 
order for Oq to get the maximum distance to Oa, Oq has to take 
the location at P in Figure C. On the other hand, in order for 
Oq to get the minimum distance to Ob, Oq has to take the 
location at P. But Oq can only take one location at time t.  

 
Figure C. Proposition 3.1 does not hold when there is 
location uncertainty associated with the query object. 

 

Appendix G: Comparison between Certain Case and 
Uncertain Case 

We focused on on-line processing. For on-line processing, 
every GPS point was treated as a velocity-vector update. The 
query processing stopped at the 3600th simulated second 
which is the end time of the GPS trace for all moving objects. 
Observe that the processing time may end before or after the 
simulated time. For example, if the average time it takes to 
process an update is bigger than the average inter-arrival time 
for updates, then the query processing time will be larger than 
the simulated time, otherwise it will be smaller. Figures 6.12 
to 6.14 show the results for the query processing time. The 
data point for N=1,000,000 for the uncertain case in Figure 
6.12 is not attainable due to a prohibitively long computation 
time. On the other hand, on-line processing easily scales to 
N=1,000,000. Furthermore, the difference between the two 
cases increases with the number of objects. Particularly, the 
processing time of the uncertain case grows much faster than 
that of the certain case as the number of objects grows (see 
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Figure 6.12). This phenomenon matches the analytical results 
(recall the O(n) factor of difference according to Table 1.1). 

One fact that is a bit surprising is that the query processing 
time of the uncertain case does not change with the uncertainty 
region radius (see Figure 6.14). This is surprising because 
Figure 6.8 shows that the number of answer-pairs increases 
with the uncertainty region radius and thus presumably the 
query processing time should also increase with the 
uncertainty region radius. The reason for the phenomena 
shown in Figure 6.14 is as follows. Recall the proof of 
Theorem 5.1 in section 5.2.2. The cost of query processing for 
the uncertain case is dominated by three components: 
processing intersection events, processing max 1-level events, 
and processing implicit updates to the object heap. Observe 
that when all the other parameters are fixed and only the 
uncertainty region radius changes, the cost of processing max 
1-level events and processing implicit updates to the object 
heap are fixed. The cost of processing max 1-level events is 

fixed because the algorithm always computes the critical 
intersections between the max 1-level and the min-curves of 
all the other N−2 objects. The cost of processing implicit 
updates to the object heap is fixed because the change of the 
max 1-level is not affected by the uncertainty region radius. 
The only component that is affected by the uncertainty region 
radius is processing intersection events. However, the cost of 
this component is negligible as shown in Table 6.3. Table 6.3 
also shows that the most time-consuming part is processing 
max 1-level events. In this part, time is consumed for 
computing intersections between the max 1-level and the min-
curves.  

Table 6.4 shows the processing time distribution for the 
certain case when N=1,000,000 and k=1. From the figure it 
can be seen that most of the query processing time is spent on 
handling velocity-vector updates. This is true for other values 
of N and k that we tested. 

 
 
Table 6.3. Processing time distribution for the uncertain case when N=10000, k=1, and r=15m. 

Processing component Processing intersection 
events 

Processing max 1-level 
events 

Processing implicit updates to object 
heap 

Processing time (second) 0.1 621 0.2 

 
Table 6.4. Processing time distribution for the certain case when N=1000000 and k=1. 

Processing component Initialization Processing implicit updates Processing velocity-vector updates 

Processing time (second) 4 15 190 

 
 

Figure 6.12. Query processing time versus number of objects Figure 6.13. Query processing time versus k 
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Figure 6.14. Query processing time versus uncertainty region radius 
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