
26
Appendix A: Proof of Proposition 2.5

PROPOSITION 2.5: Assume that the query object and the
moving objects all move piecewise linearly, where each object
can have at most m linear pieces. k(n)≥2m(nk)+1.

PROOF: For the motion in Figure A(a) the curves
arrangement is as in Figure A(b), and the details are as in
Proposition 2.2. �

 (a) Configuration in the motion space

 (b) Arrangement in the Time-Square_Distance space

Figure A. The auxiliary figure for the proof of Proposition
2.5.

Appendix B: Proof of Lemma 3.5

LEMMA 3.5. Let A be a connected sequence of mA
parabola-pieces and B be a connected sequences of mB x-
monotone parabola-pieces, in the Time-Square_Distance
space. There are at most)1(2 BA mm intersections between

A and B.

PROOF. Denote by S1 the set of pieces in sequence A that
are intersected by the first piece in sequence B, by S2 the set
of pieces in A that are intersected by the second piece in B,
and so on. Denote by |S| the size of a set S. Since any pair of
pieces intersect at most twice, there are at most

|)|...|||(|2 21 BmSSS intersections between A and B. On

the other hand, due to the monotonicity of time, there is at
most one common piece between Si and Si+1. Thus, the total
number of distinct pieces in A that are intersected by B is at
least

)1()||(||...1||1||
1

21

B

m

i
im mSSSS

B

B

Since the number of distinct pieces in A is mA, the
following inequality holds:

AB

m

i
i mmS

B

)1()||(
1

Thus, 1||
1

BA

m

i
i mmS

B

. Thus there are at most

)1(2 BA mm intersections between A and B. �

Appendix C: Proof of Theorem 3.6

THEOREM 3.6. Assume that the query object and the
expected locations of each data object move piecewise linearly,
where each object has at most m pieces. Then for any constant

k)(
~

nk =)(2 mn .

PROOF: We prove the theorem by constructing a feasible
case in which the number of answer-pairs is quadratic in n and
linear in m. The construction proceeds as follows. Let object
Oq and the expected locations of O1, O2,…, and Ok be static in
the motion space such that Oi has the i-th maximum possible
distance to Oq (see Figure B(a)). Denote by max

iR the circle the

center of which is the location of Oq and the radius of which
is the maximum possible distance between Oi and Oq. Let the
route of the expected location of object Ok+1 have m linear
pieces such that for each piece, the trace of Ok+1’s farthest-to-
Oq-point intersects max

kR twice but does not intersect max
1kR , as

shown in Figure B(a). Let Ok+2 have the same route as Ok+1
and move behind Ok+1 such that its farthest-to-Oq-point enters

max
kR after that of Ok+1 leaves max

kR . Construct the same for

Ok+3,…, On/2. Figure B(b) shows the max-curves of the first
k+1 objects.

Denote by min
iR the circle the center of which is the

location of Oq and the radius of which is the minimum possible
distance between Oi and Oq. Let On/2+1 be static such that

min
12/ nR intersects the trace of Ok+1’s farthest-to-Oq-point for

2m times (see Figure B(c)). Do the same construction for
On/2+2,…, On. Figure B(d) shows how the min curves intersect
the max k-level. It is not difficult to see that there are

)
2

(
2

2 k
n

m
n

 critical intersections.�

x(0,0)

y

O1

O2

Ok-1

Ok

Oq

Ok+1

Rk

Rk1

time

square
distance
to Oq

0

O1

O2

Ok1

Ok

1 2 m

Ok+1

27

(a) Configuration of the first k+1 objects in the motion space.

 (b) Max-curves of the first k+1 objects.

(c) Configuration of On/2+1 in the motion space.

(d) Intersections between the min-curve of On/2+1 and the max

k-level.
Figure B. The Concrete Example for the Proof of Theorem

3.6

Appendix D: Explicit Updates and Piecewise Linear Model
in the Uncertain Case

Addition. Consider the addition of an object O at a time point
t. The first step is to add O to MOH in O(logn) time as
described in section 4.2.4. Depending on how the root node r
changes as a result of the addition, there are three cases for the
second step.

Case 1: The max-curve of O is always farther from Oq
than that of r.object between t and r.time. In this case, neither
r.object nor r.time changes. To process this case, compute the
intersections between the min-curve of O and the max-curve
of r.object that will occur between t and r.time. Create an
intersection event for each of these intersections (at most two)
and insert it to the event queue.

Case 2: The max-curve of O switches the distance order
with that of r.object some time after t and before r.time. In
this case, r.object does not change but r.time decreases. This
case is illustrated by Figure 5.1, in which r.time decreases
from a farther time to t due to the addition of O. In this case,
the intersection events in the event queue that will occur after
the new r.time, such as intersection p in Figure 5.1, are no
longer valid. However, we leave them in the event queue.
They will be eliminated by the max 1-level event triggered at
r.time.

Case 3: The max-curve of O is currently closer to Oq than
that of r.object and therefore r.object changes. In this case,
eliminate the existing event queue; invoke the procedure
Max1LevelUpdate(r, t) to compute and schedule new
intersection events.

The complexity of the addition is dominated by Case 3
which is O(n).

x(0,0)Oq

O1

Ok-1

Ok

Ok+1

max
1kR max

kR

time

square
distance
to Oq

0

Ok1

Ok

1 2 m

Ok+1

x(0,0)Oq

On/2+1

Ok+1

y

max
1kR max

kR

min
12/ nR

time

square
distance
to Oq

0

Ok1

Ok

1 2 m

Ok+1

On/2+1

28

Figure 5.1. Case 2 of addition and Case 2 of deletion.

Figure 5.2. r.time may change due to the velocity-vector

change of an object other than r.object.

Deletion. Consider the deletion of an object O at a time
point t. The first step is to delete O from MOH in O(logn)
time as described in section 4.2.4. Depending on how the root
node r changes as a result of the deletion, there are three cases
for the second step.

Case 1: The max-curve of O is always farther from Oq
than that of r.object between t and r.time. In this case, neither
r.object nor r.time changes. To process this case, remove the
critical intersections incurred by O if any from the event
queue.

Case 2: The max-curve of O switches the distance order
with that of r.object some time after t and before r.time. In
this case, r.object does not change but r.time increases. This
case is illustrated by Figure 5.1, in which r.time increases from
t to a farther time due to the deletion of O. In this case, some
new intersection events may need to be scheduled, such as
intersection p in Figure 5.1. Observe that there may be O(n)
such intersection events. Inserting them to the existing event
queue takes O(nlogn) time. On the other hand, eliminating the
existing event queue and reconstructing a new one takes only
O(n) time. Thus, in Case 2 we eliminate the existing event
queue; invoke the procedure Max1LevelUpdate(r, t) to
compute and schedule new intersection events.

Case 3: O is currently r.object and therefore r.object
changes. In this case, eliminate the existing event queue;
invoke the procedure Max1LevelUpdate(r, t) to compute and
schedule new intersection events.

The complexity of the deletion is dominated by Case 2 and
Case 3 which is O(n) each. Thus the complexity of the deletion
is O(n).

Velocity-vector Change. Consider that an object O
changes its velocity-vector at time t. The first step is to
perform velocity-vector update to the object heap as described
in section 4.2.4. Depending on how the root node r changes as
a result of the update to the object heap, there are three cases
for the second step:

Case 1: Both old(O) and new(O) are always farther from
Oq than the max-curve of r.object between t and r.time, where
old(O) and new(O) represent the max-curves of O before
and after the velocity-vector change, respectively. In this case,
neither r.object nor r.time changes. To process this case,
compute the intersections between the new min-curve of O
and the max-curve of r.object that will occur between t and
r.time. Create an intersection event for each of these
intersections (at most two) and insert it to the event queue.

Case 2: r.object does not change but r.time decreases. This
case may happen when O is r.object, i.e., it is r.object that
changes its velocity-vector. Case 2 may also happen when O
is not r.object, as illustrated in Figure 5.2. In the figure, r.time
decreases from a farther time to t due to the velocity-vector
change of O which is not r.object. No further processing is
needed in this case.

Case 3: r.object does not change but r.time increases.
Again this case may happen when either r.object or some other
object changes velocity-vector. In this case, eliminate the
existing event queue and invoke the procedure
Max1LevelUpdate(r, t).

The complexity of processing each velocity-vector update
is dominated by Case 3 which is O(n).

THEOREM 5.1. Assume that each object can change its
velocity at most m times. Then the cumulative complexity of
the on-line algorithm for the uncertain case is
O(n2m(n)logn).

PROOF. There are four types of processing involved in the
on-line algorithm, i.e., the processing of velocity-vector
updates, the processing of intersection events, the processing
of max 1-level events, and the processing of implicit updates
to the object heap.

Processing velocity-vector updates. Since processing
each velocity-vector update takes O(n) time, the cumulative
complexity for processing velocity-vector updates is O(n2m).

Processing intersection events. According to Theorem
2.4, there are O(nm(n)) parabola pieces in the max 1-level.
Each min-curve has O(m) parabola pieces. According to
Lemma 3.5, there are O(nm(n)) intersections between each
min-curve and the max 1-level. Thus there are totally
O(n2m(n)) intersections between n min-curves and the max
1-level. Processing each intersection event takes O(logn) time

time

d2(t)

t’ t’’

max-O’

p min-O’’
max-r.obj

d2(t)

time

d2(t)

0 t’ t’’

min-O’’

max-r.obj

max-O’

p
before change

after change

29
to remove from the event queue. Processing each intersection
event takes O(logn) time. Thus the cumulative complexity of
processing intersection events is O(n2m(n)logn).

Processing max 1-level events. Each implicit update to
the object heap triggers a max 1-level event. According to the
analysis given in section 4.2.4, there are O(nm(n)logn)
implicit updates to the object heap and thus there are
O(nm(n)logn) max 1-level events. Processing each max 1-
level event takes O(n) time. Thus the cumulative complexity
of processing max 1-level events is O(n2m(n)logn).

Processing implicit updates to the object heap. The
cumulative complexity for processing implicit updates is
O(nm(n)log2n) as discussed in section 4.2.4.

Thus the cumulative complexity of our on-line algorithm
in the piecewise linear model is O(n2m(n)logn).�

Appendix E: Figures for Section 6.3

Figure 6.16. Normalized processing time

versus number of objects

Figure 6.17. Answer-pair density versus
number of objects

Appendix F: Applicability of Proposition 3.1 when there is
location uncertainty associated with the query object

When there is location uncertainty associated with the query
object Oq, Proposition 3.1 does not hold anymore. Specifically,
Oi’s min-curve being below the k-th level at a time t is only a
necessary, but not a sufficient condition, for Oi to be a PkNN

at t. This is because the distances of different objects to the
query object are not independent to each other; they depend
on which location within the query object’s uncertainty region
is used to compute the distance. This concept is illustrated by
the following simple example. Figure C shows the uncertainty
regions of the query object Oq and the only two moving objects
Oa and Ob, at a time t. The radius is r for all the uncertainty
regions. According to the figure, the maximum possible
distance between Ca(t) and Cq(t) is 4r. The minimum possible
distance between Cb(t) and Cq(t) is smaller than 4r. Thus Ob’s
min-curve is below Oa’s max-curve at time t. If we apply
Proposition 3.1, we would conclude that Ob is a P1NN at time
t, but this is obviously wrong. The reason is that the query
object Oq can be at only one location at a time. Specifically, in
order for Oq to get the maximum distance to Oa, Oq has to take
the location at P in Figure C. On the other hand, in order for
Oq to get the minimum distance to Ob, Oq has to take the
location at P. But Oq can only take one location at time t.

Figure C. Proposition 3.1 does not hold when there is
location uncertainty associated with the query object.

Appendix G: Comparison between Certain Case and
Uncertain Case

We focused on on-line processing. For on-line processing,
every GPS point was treated as a velocity-vector update. The
query processing stopped at the 3600th simulated second
which is the end time of the GPS trace for all moving objects.
Observe that the processing time may end before or after the
simulated time. For example, if the average time it takes to
process an update is bigger than the average inter-arrival time
for updates, then the query processing time will be larger than
the simulated time, otherwise it will be smaller. Figures 6.12
to 6.14 show the results for the query processing time. The
data point for N=1,000,000 for the uncertain case in Figure
6.12 is not attainable due to a prohibitively long computation
time. On the other hand, on-line processing easily scales to
N=1,000,000. Furthermore, the difference between the two
cases increases with the number of objects. Particularly, the
processing time of the uncertain case grows much faster than
that of the certain case as the number of objects grows (see

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

n
o

rm
al

iz
ed

 p
ro

ce
ss

in
g

 t
im

e
(s

ec
o

n
d

/s
ec

o
n

d
)

number of objects

online, k=1, r=15m

certain (split)
uncertain (split)

certain (raw)
uncertain (raw)

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

an
sw

er
-p

ai
r

d
en

si
ty

(a
n

sw
er

-p
ai

rs
/s

ec
o

n
d

)

number of objects

k=1, r=15m

certain (split)
uncertain (split)

certain (raw)
uncertain (raw)

Ub(t)

Ca(t)

Ua(t)

Cq(t)

Uq(t)

Cb(t)

4r

P

P

30
Figure 6.12). This phenomenon matches the analytical results
(recall the O(n) factor of difference according to Table 1.1).

One fact that is a bit surprising is that the query processing
time of the uncertain case does not change with the uncertainty
region radius (see Figure 6.14). This is surprising because
Figure 6.8 shows that the number of answer-pairs increases
with the uncertainty region radius and thus presumably the
query processing time should also increase with the
uncertainty region radius. The reason for the phenomena
shown in Figure 6.14 is as follows. Recall the proof of
Theorem 5.1 in section 5.2.2. The cost of query processing for
the uncertain case is dominated by three components:
processing intersection events, processing max 1-level events,
and processing implicit updates to the object heap. Observe
that when all the other parameters are fixed and only the
uncertainty region radius changes, the cost of processing max
1-level events and processing implicit updates to the object
heap are fixed. The cost of processing max 1-level events is

fixed because the algorithm always computes the critical
intersections between the max 1-level and the min-curves of
all the other N−2 objects. The cost of processing implicit
updates to the object heap is fixed because the change of the
max 1-level is not affected by the uncertainty region radius.
The only component that is affected by the uncertainty region
radius is processing intersection events. However, the cost of
this component is negligible as shown in Table 6.3. Table 6.3
also shows that the most time-consuming part is processing
max 1-level events. In this part, time is consumed for
computing intersections between the max 1-level and the min-
curves.

Table 6.4 shows the processing time distribution for the
certain case when N=1,000,000 and k=1. From the figure it
can be seen that most of the query processing time is spent on
handling velocity-vector updates. This is true for other values
of N and k that we tested.

Table 6.3. Processing time distribution for the uncertain case when N=10000, k=1, and r=15m.

Processing component Processing intersection
events

Processing max 1-level
events

Processing implicit updates to object
heap

Processing time (second) 0.1 621 0.2

Table 6.4. Processing time distribution for the certain case when N=1000000 and k=1.

Processing component Initialization Processing implicit updates Processing velocity-vector updates

Processing time (second) 4 15 190

Figure 6.12. Query processing time versus number of objects Figure 6.13. Query processing time versus k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
o

n
d

)

number of objects

online, k=1, r=15m

certain
uncertain

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 10 20 30 40 50

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
o

n
d

)

k

online, N=10000, r=15m

certain
uncertain

31

Figure 6.14. Query processing time versus uncertainty region radius

 0

 100

 200

 300

 400

 500

 600

 700

 1 5 10 15 20 25 30
q

u
er

y
p

ro
ce

ss
in

g
 t

im
e

(s
ec

o
n

d
)

uncertainty region radius (meter)

online, N=10000, k=1

certain
uncertain

