
26 Hui Li, Sourav S Bhowmick, Aixin Sun, Jiangtao Cui

A Table of Notations

Table 4: Key notations used in this paper.

Symbol Definition

G(V,E) A social network graph

n number of vertices in G

m number of edges in G

Gi(Vi, Ei) ith component (subnetwork) in G(V, E)

Γ A set of subnetworks (components)

m′ max
Ei⊆E

|Ei|

k number of seeds to be selected

ℓ number of subnetworks

R number of rounds of simulation

βi A cog-sublist

Υ A set of cog-sublists

M mag-list

S seed set

Si seed nodes selected from Gi(Vi, Ei)

Ω(·) conformity index

Φ(·) influence index
−→uv the edge pointing from u to v

σi(·) influence function under cascade model Ci

T number of iterations in gain computation

T A topic

ET edge correlated with topic T

GT subgraph correlated with topic T

ΩT(·) conformity index with respect to topic T

ΦT(·) influence index with respect to topic T

B Example related to Influenceability-based

Approach

Consider the network in Fig. 15 where each node denotes
an individual. Suppose we aim to select a single seed node
(k = 1) to propagate a piece of information (e.g., iPad).
Suppose we use the influenceability-based technique [16] to
determine the seed. Recall that “influenceability” is defined as
the ratio of propagated actions divided by the total number of
actions. For example, in Fig 15 user v1 performed 4 actions on
topic A1, A2, A3 and A4, respectively. Among these actions,
actions on A2, A3 and A4 are propagated from v5. Therefore,
the influenceability of v1 is 3/4 = 0.75. Similarly, the influ-
enceability of other nodes can be computed and are shown
in Table 5 along with their influence and conformity indices.
We can computed the expected influence for each node by
using the influenceability as the propagation probability. The
results are shown in Table 6 along with related approaches
including our conformity-aware models. Hence, we may se-
lect v5 as the seed. However, v5 exhibits very small influence
whereas at the same time v1 exhibits low conformity. In other
words, v1 is not easily influenced by v5 and as a result −−→v5v1 is
hardly activated during influence propagation. Hence this is
not the best choice when conformity of nodes are taken into
account.
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Fig. 15: A network.

Table 5: Nodes’ influence and conformity indices.

Node ID Φ(·) Ω(·) Φ1(·) Ω1(·) influenceability

v1 0.68 0.21 0.70 0.17 0.75

v2 0.68 0.11 - - 0

v3 0.18 0.94 0.70 0.70 0.5

v4 0.03 0.21 0.17 0.70 1

v5 0.18 0.11 - - 0

Table 6: Expected influence size of nodes in Fig. 15.

Model σ(v1) σ(v2) σ(v3) σ(v4) σ(v5)

ic 1.75 1.75 1.5 1 1.875

wc 1.67 1.67 2 1 1.83

[16] 2 2 2 1 2.5

c
2 1.66 1.66 1.04 1 1.06

c
3 (for A1) 1.73 1 1.49 1 1

C Proof of Theorem 1

According to Definition 1, for each vertex u its influence index
Φ(u) can be computed as the following.

Φ(u) =
∑

−−→
u′u∈E+

Ω(u′)−
∑

−−→
u′′u∈E−

Ω(u′′)

If we denote I =(Φ(u1), Φ(u2), . . ., Φ(uℓ))⊤ and C =(Ω(u1),
Ω(u2), . . ., Ω(uℓ))⊤ for V = {u1, u2, . . ., uℓ}, then the com-
putation of both indices in each iteration can be represented
as:

{

I = A
⊤
+C− A

⊤
−C

C = A+I− A−I

If we substitute C in the first equation using the second e-
quation, then the first line turns into the following:

Ik+1 =
1

Z
(A⊤

+ − A
⊤
−)(A+ − A−)Ik

=
1

Z
(A+ − A−)⊤(A+ − A−)Ik

where Z is a normalizing factor such that ‖Ik+1‖ = 1. If we
compute Ik+1 using Ik for k = 1, 2, . . . , n recursively, then
In+1 should be the unit vector along the direction of

((A+ − A−)⊤(A+ − A−))n(A+ − A−)⊤(1, 1, . . . , 1)⊤.

Similarly, Cn+1 should be the unit vector along the direction
of

((A+ − A−)(A+ − A−)⊤)n+1(1, 1, . . . , 1)⊤.

If M is a symmetric matrix, and v is a vector not orthog-
onal to the principal eigenvector ω1(M), then the unit vector
in the direction of Mkv converges to ω1(M) as k increases.
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Comparing with our case, (1, 1, . . ., 1)⊤ is not orthogonal
to ω1((A+−A−)(A+−A−)⊤), thus Ck converges. Similarly,
Ik also converges.

In summary, both Φ(u) and Ω(u) converge.

D Initial Value of CASINO

Besides setting the initial values of indices for each node to
1, we test two other initial value settings. One is to set the
initial value for each node by sampling from a uniform distri-
bution ranging from 0 to 1 (denoted as UniDist for brevity);
the other method is to set the initial values proportional to
the degree of the nodes where both indices for the nodes with
the largest degree are set to 1 (referred to as DegreePro for
brevity). We use datasets in Tables 8 and 9 to investigate the
impact of these initial values. We observe that all approaches
converge to the same result set but with different number of
iterations. The number of iterations for different initial values
for each dataset is reported in Table 7. Since the number of
iterations does not differ significantly among different strate-
gies, we set all initial values to 1 for simplicity.

Table 7: Number of Iterations before Convergence

Initial Value Hep Phy Twitter Wiki LJ

All set to 1 33 31 30 35 41

UniDist 38 32 34 37 42

DegreePro 35 29 31 34 40

E Cascade Models

Majority of the literature on influence maximization have fo-
cused on the following cascade models as defined in [23].

– Independent cascade ( ic) model. Let Ai be the set of
nodes that are influenced in the i-th round and Ao = |S|.
For any (u, v) ∈ E such that u is already in Ai and
v is not yet influenced, v is influenced by u in the next
(i+1)-th round with an independent probability p, which
is referred to as the propagation probability. Thus, if there
are t neighbors of v that are in Ai, then v ∈ Ai+1 with
probability 1 − (1 − p)t. This process is repeated until
Ai+1 is empty.

– Weighted cascade (wc) model. The wc model can be con-
sidered as an instance of ic model [23]. Let (u, v) ∈ E. In
this model, if u is influenced in round i, then v is influ-
enced by u in round (i+ 1) with probability 1/v.degree.
Thus, if v has t neighbors influenced at the i-th round
then the probability for a node v to be influenced in the
next round is 1− (1− 1/v.degree)t.

– Linear threshold ( lt) model. Here each node v has a
threshold θv uniformly and randomly chosen from 0 to
1; this represents the weighted fraction of v’s neighbors
that must become influenced (active) in order for v to be
influenced. All nodes that were influenced in step (i− 1)
remains so in step i, and any node v is influenced when
the total weight of its influenced neighbors is at least θv .

F Proof of Theorem 2

Let S1 and S2 be two sets of nodes such that S1 ⊆ S2. R(v,X)
denotes the set of all nodes that can be reached from v on all
the activated edges that are in X . Consider the expression of
σX(S1 ∪ {v}) − σX(S1). It denotes the number of elements
in R(v,X) that are not already in

⋃

u∈S1
R(u, X), which is

at least as large as the number of elements in R(v,X) that
are not in

⋃

u∈S2
R(u, X). That is σX(S1 ∪{v})−σX(S1) ≥

σX(S2∪{v})−σX(S2), which means that the function σX(·)
is submodular. Moreover, we have shown that σ(·) can be
computed from σX(·) using Equation (1). It means σ(·) is a
non-negative linear combination of another submodular func-
tion σX(·). Hence σ(·) is also submodular.

G Proof of Theorem 3

According to Definition 9, σ(S) can be represented as the
following.

σ(S) = max
∑

|Si|=k

∑

σi(Si)

Assume S′ ⊂ S, v ∈ Vt \ St where t ∈ {1 . . . ℓ} and S =
S1∪S2∪. . .∪Sℓ, S′ = S′

1∪S
′
2∪. . .∪S

′
ℓ, then S′

i ⊆ Si. Besides,
the following expression holds as Si ∩Sj = ∅ ∀ 0 < (i, j) ≤ ℓ.

σ(S ∪ {v})− σ(S) = σt(St ∪ {v})− σt(St)

σ(S′ ∪ {v})− σ(S′) = σt(S
′
t ∪ {v})− σt(S

′
t)

As S′
t ⊆ S′ and the influence function σt(·) is submodular,

then σt(St ∪ {v}) − σt(St) ≤ σt(S′
t ∪ {v}) − σt(S′

t) holds
according to the definition of submodularity. Thus, σ(S ∪
{v}) − σ(S) ≤ σ(S′ ∪ {v}) − σ(S′) holds too, which means
that the influence function σ(S) is submodular.

H Proof of Theorem 4

Without loss of generality, let ∆ be the set of edges that
are cut during the partitioning phase. Let vs

i and ve
i be the

source node and end node of a cut edge mi(mi ∈ ∆), respec-
tively. Assume that the expected influence of vs

i after cutting
mi is σ′(vs

i ). Then before the cut the influence of vs
i can

be calculated as (1 − pmi
)σ′(vs

i ) + pmi
(σ′(vs

i ) + σ(ve
i )) =

σ′(vs
i )+pmi

σ(ve
i ), where pmi

represents the influence proba-
bility of edge mi, which depends on the cascade model. Hence,
the cut edge mi will cause vs

i ’s expected influence reduced by

pmi
σ(ve

i ). Generally, for
−−−−−−−→
v−n
i v−n+1

i , . . . ,
−−−−→
v−1
i vs

i ∈ E, the re-

moval of edge mi (edge
−−→
vs
i v

e
i ) will result in a deduction of

σ(v−n
i ) by pmi

σ(ve
i )

n
∏

j=1

p−j
mi

, where p−j
mi

represents the in-

fluence probability of edge
−−−−−−−→
v−j
i v−j+1

i . Specially, v0
i = vs

i .
Obviously, the influence probability pmi

≤ 1 for ∀mi ∈
∆. Therefore, the loss of expected influence for an arbitrary
node, denoted by χ(V ) (i.e., χ(V ) = max

v∈V
(σ0(v)− σ(v)))

is upper bounded by
∑

mi∈∆

pmi
σ(ve

i ) when all edges in ∆

share the same source node. In contrary, the maximal loss of
expected influence for an arbitrary node is lower bounded by
max
mi∈∆

pmi
σ(ve

i ) when none of the edges in ∆ share the same

source node.
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Table 8: Description of real-world networks.

network nodes edges components m′

Phy 37,154 231,584 3,883 134,358

Hep 15,233 58,891 1,781 19,630

Wiki-talk 2,394,385 5,021,410 34 5,018,445

LiveJournal 4,847,571 68,993,773 1,145,331 65,825,429

Table 9: Description of the context-aware Twitter network.

#tweets #trends #tweeters #edges #components m′

1,054,261 21,917 576,894 1,230,748 24 271,319

Table 10: Top 10 authors with the highest influence index and conformity index.

Rank Influential twitter (#positive in-links/#in-links) Conformer twitter (#positive out-links/#out-links)

All Top-1 Top-2 All Top-1 Top-2

1 142987924 (66/73) 3453454 (13/13) 950596 (31/34) 51389816 (35/37) 121836131 (14/16) 49276778 (101/144)

2 49276778 (61/82) 56068621 (11/11) 190108655 (11/11) 172039151 (31/34) 105332925 (13/14) 202346609 (45/61)

3 119394881 (60/77) 3984874 (10/10) 3498571 (8/9) 177173204 (30/35) 177255919 (11/12) 197538544 (26/30)

4 231134989 (55/71) 133282617 (11/11) 147327886 (5/5) 143062806 (27/34) 193206052 (11/12) 184930795 (22/26)

5 2109823 (56/72) 199855121 (7/7) 49126931 (5/5) 128118710 (25/33) 36525648 (9/10) 148335502 (21/23)

6 92503401 (55/78) 8234375 (5/5) 121158546 (5/5) 130414633 (30/41) 90723076 (7/8) 171387567 (17/20)

7 206661373 (51/66) 1465130 (3/3) 129009252 (5/5) 4782790 (23/30) 123606641 (6/8) 126407259 (18/22)

8 220490093 (46/60) 2894822 (3/3) 79897503 (4/4) 125551983 (22/34) 51513825 (6/6) 114455733 (14/20)

9 168175236 (40/51) 21755211 (2/2) 83629945 (4/4) 91930055 (21/28) 203774695 (5/6) 217826740 (15/20)

10 171287044 (41/62) 4051581 (2/2) 166830172 (4/4) 145339829 (22/31) 203780314 (4/4) 159724683 (12/17)

I Proof of Theorem 5 (Sketch)

The time complexity of the indices computation step using
casino (Line 2 in Algorithm 4) is O(k′m′n′) where k′ is the
number of iterations in influence and conformity indices com-
putation. The time complexity of the influence maximization
step (Lines 4-6 in Algorithm 4) is O(kTRm′). Hence, the time
complexity of cinema is O(k′m′n′ + kTRm′).

J Pseudocode for Reduce Phase

The pseudocode of the Reduce phase is outlined in Algorith-
m 8.

Algorithm 8: Pseudo-code of Reduce phase.

Input: Intermediate key/value pairs for subgraph Gi:
((u, σi(u)), (i, j)) and a group of these pairs for
subgraphs Gi′ (i′ 6= i): ((u′, σi′(u′)), (i′, j′))

Output: The key/value pairs for each u ∈ Gi:
((u, σi(u)), r)

1 begin

2 foreach i′ 6= i do

3 if σi′(u′) ≥ σi(u) then

4 r = r + 1

5 foreach ((u, σi(u)), (i, j)) do

6 return ((u, σi(u)), j = j + r − 1)

K Statistics of Datasets

The statistics of the five networks used in experimental study
are given in Tables 8 and 9.

L Additional Experimental Results

L.1 A Case Study in Twitter

Table 10 shows IDs of top-10 authors who exhibit the high-
est influence index and conformity index for the top-2 topics
as well as for all topics. Consider the top two twitters for all
topics. The author ‘142987924’ who has the highest influence
index receives 66 conforming edges out of 73 in-links over 22
topics. Similarly, the author ‘49276778’ receives 61 conform-
ing edges out of 82 in-links over 24 topics. On the other hand,
the author ‘51389816’ who exhibits the highest conformity
index initiates 35 conforming edges out of 37 out-links over
37 topics indicating that she has high chance to conform to
others’ opinions in almost all the topics she is involved in.
Furthermore, we can make the following observations. First-
ly, none of the top-10 authors occupies a position in both
indices for each category (all, top-1, and top-2 ). Secondly,
the top-10 individuals having highest influence and confor-
mity indices are different for different topics. This confirms
our hypothesis that social influence phenomenon is context-
sensitive as same individual may exhibit different influence
and conformity over different topics of social interactions.

We also adopted a regression function of svm
light and use

both influence and conformity indices as features, where pres-
ence of positive edges are labeled as 1 and negative edges are
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Fig. 16: Cost of Phases 1–4.

labeled as −1. In the experiment we adopt the classifier icap-

n which takes into account the topic information associated
with each edge. That is, the following features for each edge
−−→
uAv are used to train the model: d+in(v) (positive in-degree),
d−in(v), d

+
out(u), d

−
out(u), din(v), dout(u), C(u, v) (number of

common neighbors), Φ(v), Ω(u), ΦA(v) and ΩA(u). Figure 18
plots the prediction accuracies of the relevant classifiers. Ob-
serve that in both figures icapn outperforms the rest baseline
methods. All these evidences demonstrate that by leverag-
ing on the influence and conformity indices in topic-based
subgraphs, the proposed model leads to superior prediction
performance for both positive edge presence and edge sign
prediction tasks.

L.2 Cost of Phases 1-4

Next, we analyze the cost of Phases 1–4 of cinema. Fig. 16
compares the running times of these phases for the four dataset-
s. Since the running time of mag-list construction is signifi-
cantly smaller than the rest, we plot the total running time of
Phases 1 and 2. Observe that the seed selection phase domi-
nates the running time agreeing with our analysis in Sec. 5.2.
Note that in order to ensure fair comparison with Hep and
Phy, for Wiki-talk and LiveJournal we depict only the parti-
tioning times of the ℓ-way partitioning algorithm and not its
initial failed attempt to partition using bfs technique.

L.3 On-demand vs. Synchronized Update

Next, we compare the on-demand and synchronized update
strategies introduced earlier and justify our choice of the for-
mer. Note that the choice of using one of these strategy only
affects the update performance of mag-list and cog-sublist
and not the seed set quality. Figures 17a and 17b plot the
comparison of the running times between the two strategies
for different values of k. The running times of both strategies
increase linearly with k. Besides, the on-demand strategy is
slightly better than the synchronized one which also agrees
with our discussion in the preceding section.

L.4 Comparative Study of Seeds Selection in Twitter

Table 11 reports Twitter IDs of seeds selected by different
models for k = 10. The first four columns report the seeds
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Table 12: Features involved in different approaches. (P:

positive, N: negative, I: influence, C: conformity, A: top-

ic)

h
h
h
h
h
h
h
h
hh

Features
Approaches

p pn ipn icp icpn icapn

d
+
in(v) X X X X X X

d
−
in(v) - X X - X X

d
+
out(u) X X X X X X

d
−
out(u) - X X - X X

din(v) - X X - X X

dout(u) - X X - X X

C(u, v) X X X X X X

Φ(u) - - X - - -

Φ(v) - - X X X X

Ω(u) - - - X X X

context A - - - - - X

ΦA(v) - - - - - X

ΩA(u) - - - - - X
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Fig. 18: Context-aware prediction accuracy.

computed by cinema-c3 for four different topics. The seeds
set computed by MixGreedy-ic and cinema-c2 over the en-
tire network are shown in the last two columns. We can make
two key observations. Firstly, the seeds identified by cinema-
c
3 are completely distinct from those selected by context-

unaware techniques (MixGreedy and cinema-c2). In other
words, it further strengthen our conclusion that the result
quality can improve significantly if topic information is incor-
porated in the im problem. Secondly, the seeds generated by
cinema-c2 and MixGreedy-ic are significantly different (only
4 out of 10 seeds appear in both sets) highlighting the impor-
tance of conformity-awareness for im problem.



30 Hui Li, Sourav S Bhowmick, Aixin Sun, Jiangtao Cui

Table 11: Seeds selected from Twitter.

cinema-c3

Mumford & Sons WeLoveTokioHotel BornThisWayFriday Mubarak MixGreedy-ic cinema-c2

3453454 4093419 950596 388397 8994366 8994366

56068621 191059547 190108655 4725921 6837510 950596

3984874 114799747 3498571 5549 143131074 6837510

133282617 22418179 147327886 25817119 12732578 4976883

199855121 90276810 49126931 4112233 969858 106789932

8234375 201647517 121158546 957238 20735827 179500

4051581 146896900 79897503 3238537 1327826 20735827

2894822 97497115 4051581 69290548 2494788 124440574

202658279 204479139 193820280 190736000 4740643 4740643

780597 206998557 83629945 1314262 1111124 940898

L.5 Edge Prediction

In this experiment, we summarize how the influence and con-
formity indices can facilitate link prediction. A more detailed
exposition of this issue is given in [29]. On one hand, we con-
duct experiments to predict the presence of positive edges.
Note that in order to test the effect of negative edges in pre-
dicting the presence of positive edges, we adopted a regres-
sion function of svm

light where presence of positive edges
are labeled as 1 and negative edges are labeled as −1. We
investigate how each of the aforementioned classifiers perfor-
m in predicting the presence of positive edges. On the other
hand, we undertake another group of experiments to predic-
t the signs of edges. We ensure that the training set and
test set both contain equal number of positive and negative
edges. Note that in a binary classification, positive edges and
negative edges belong to two different classes. Our goal is
to predict the signs of edges which maybe either positive or
negative. In both experiments, we adopt the classifier icap-

n (Table 12) which takes into account the topic information
associated with each edge. That is, the following features for
each edge

−−→
uAv are used to train the model: d+in(v), d−in(v)

(i.e., positive and negative in-degree of v), d+out(u), d
−
out(u)

(i.e., positive and negative out-degree of v), din(v), dout(u)
(i.e., in- and out-degree of v), C(u, v) (i.e., number of com-
mon neighbors of u, v), Φ(v), Ω(u), ΦA(v) and ΩA(u). Fig-
ure 18 plots the prediction accuracies of the relevant classifiers
over Twitter dataset by varying the training set. Each classi-
fier contains different features described in Table 12. Observe
that in both figures icapn outperforms the rest. Note that the
performances of icapn and icpn are similar when the training
set is very small. This is because there may not be enough
training edges in each topic-based subgraphs GA when the
training set is very small. Consequently, not enough infor-
mation is available to accurately compute ΦA(v) and ΩA(u).
All these evidences demonstrate that by leveraging on the
influence and conformity indices in topic-based subgraphs,
our indices computation model leads to superior prediction
performance for both positive edge presence and edge sign
prediction tasks.
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