
Analyzing Execution Traces – Critical-Path

Analysis and Distance Analysis

Online Appendix: Proofs

Martijn Hendriks∗† Jacques Verriet∗ Twan Basten‡∗

Bart Theelen∗ Marco Brassé§ Lou Somers‡§

This is Online Resource 1 that belongs to the article “Analyzing Execu-
tion Traces – Critical-Path Analysis and Distance Analysis” in the Interna-
tional Journal on Software Tools for Technology Transfer (STTT) published by
Springer.

Theorem 1. Let f be an execution, and let ε1, ε2 ∈ R+∪{∞} such that ε1 ≤ ε2.
Then Gε1(f) ⊆ Gε2(f).

Proof. Suppose that this does not hold, i.e., Gε1(f) 6⊆ Gε2(f). The element that
is in Gε1(f) and not in Gε2(f) is not a vertex because both task graphs have the
same set of tasks as vertices. Therefore, it must be an arc, i.e., (t, t′) is an arc in
Gε1(f) and not in Gε2(f). By Def. 4, closeε1(t, t′) and this arc is not redundant.
This means that there is no other path from t to t′ via the closeε1 relation. By
definition, we also have that closeε2(t, t′) because ε1 ≤ ε2. However, because
(t, t′) is not an arc of Gε2(f), we must conclude that it is redundant. Because the
gap between t and t′ is smaller than or equal to ε1, however, this would imply
that (t, t′) is also redundant in Gε1(f), which is a contradiction. Therefore, the
statement holds.

Theorem 2. Let G = (T,→, d) be a task graph, let f be an execution of G, and
let G∞(f) = (T,→∞, d). If t→+ t′, then t→+

∞ t′.

Proof. Assume that t→+ t′. By Def. 3, we have that t′ starts the moment that
t ends or later than that. Thus, close∞(t, t′) and therefore t→+

∞ t′.

Proposition 1. Algorithm 1 adds the tasks (in line 6) according to a topological
order of the resulting arc relation.

Proof. A sequence v1v2 · · · vn of tasks is ordered topologically according to the
arc relation → if it holds that vp →n vq implies that p < q. Now consider the

∗Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
†martijn.hendriks@tno.nl
‡Eindhoven University of Technology, Eindhoven, The Netherlands
§Océ Technologies B.V., Venlo, The Netherlands

1

sequence of tasks that are added to T in line 6. Clearly, every task is added
exactly once, because a task has only a single start event. Now consider the
addition of task vi to T . Line 7 of the algorithm adds (vk, vi) to the arc relation,
for every vk ∈ Fi−1 that is ε-close to vi. We must show that vk has already
been added earlier to T . Line 17 has added vk to some Fj with j < i when
its end event was processed. By definition, the start event of vk has also been
processed in an earlier iteration and therefore k < i.

Lemma 1. An invariant that holds in line 20 (at the end of each loop iteration)
of Alg. 1 is that for all t ∈ Di there exists a task t′ ∈ Fi such that t→+

i t
′.

Proof. Clearly, this holds for the first loop iteration that necessarily processes a
start event. Now suppose that the property holds for all iterations up to the i-th
loop iteration. If the ith event is a start event, then Di = Di−1, Fi = Fi−1 and
→i⊇→i−1. Therefore, the property also holds for i. If the ith event is an end
event (vi, ti, e), then a set of vertices is moved from Fi−1 to Di. Every vertex
that is moved, is a predecessor of vi, which itself is added to Fi. Therefore, the
property also holds for i.

Lemma 2. An invariant that holds in line 20 (at the end of each loop iteration)
of Alg. 1 is that t 6→+

i t
′ for all t, t′ ∈ Fi.

Proof. Clearly, this holds for the first loop iteration that necessarily processes
a start event. Suppose that it holds for the loop iterations up to i. If a start
event is processed in iteration i, then the arc relation is extended with arcs from
tasks in Fi−1 to the new task. Furthermore, Fi = Fi−1. Therefore, the lemma
still holds. If an end event is processed in iteration i, then the arc relation is not
changed: →i=→i−1. The task of the end event, vi, however, is added to Fi−1
in order to create Fi. However, all tasks in Fi−1 that are predecessors of vi are
removed at the same time. Therefore, the only remaining way to have a relation
between tasks in Fi is that vi is predecessor of some other task in Fi−1, say w.
Now suppose that that is the case. This means that the arc vi → w has been
added earlier by line 7 in the algorithm in an iteration j < i. This iteration has
thus processed the start event of task w. This implies that vi ∈ Fj−1, which
means that the end event of vi had to be processed before iteration j. This
contradicts the fact that iteration i processes the end event of vi.

Theorem 3. Let f be an execution, and let τ be a trace of f . Algorithm 1
computes Gε(f) from τ .

Proof. We must prove that (Tn →n, dn) = Gε(f), which equals ((T, closeε)
−, d)

by Def. 4. Clearly, dn = d, and Tn = T because the trace contains exactly one
start and one end event for each task. Line 6 updates the set of tasks, and lines
8 and 15 take care of the duration execution function.

Next, we must prove that (i) →n encodes the same reachability relation
as closeε and (ii) that →n contains no redundant edges. From (ii) follows
that (Tn,→n) is transitively reduced. Together with (i), which states that →n

and closeε encode the same reachability relation, we can then conclude that

2

(Tn →n) = (T, closeε)
−. In the remainder of this proof, we omit the subscript

n in the arc relation →n.
(i ⇒) Suppose that v → v′. We prove closeε(v, v

′). The arc v → v′ is only
added if task v is in Fi−1 and the start event of v′ is processed in iteration i
(see line 7). Task v being element of Fi−1 implies that the end event of task v
has been processed in iteration i− 1 or earlier. Because the events are ordered
by their timestamp, we have that end(v) ≤ start(v′). Furthermore, in line 7 we
also see that the distance between the end event of v (tk) and the start event of
v′ (ti) is at most ε. Therefore, closeε(v, v

′).
(i⇐) Suppose that closeε(v, v

′). We prove v →+ v′. By definition, end(v) ≤
start(v′) ∧ start(v′)− end(v) ≤ ε. In the execution trace, the end event of v is
processed before the start event of v′. Consider the iteration i of the algorithm
which processes the start event of v′. There are two cases: either v ∈ Fi−1 or
v ∈ Di−1. In the first case, line (7) adds the arc v → v′. In the second case, we
know from Lem. 1 that some v′′ ∈ Fi−1 exists such that v →+ v′′. Furthermore,
line (7) adds the arc v′′ → v′, and therefore v →+ v′.

(ii) Consider an arc v → v′ and suppose that this arc is redundant, i.e., there
is a v′′ 6= v and v′′ 6= v′ such that v →+ v′′ and v′′ → v′. Let i be the iteration
that adds the arc v → v′. This happens when processing the start event of
v′ and implies that v ∈ Fi−1. This same iteration must then also add the arc
v′′ → v′, and therefore v′′ ∈ Fi−1. However, Lem. 2 tells us that v and v′′ must
be unrelated, i.e., v 6→+ v′′. This contradicts our assumption. Therefore, such
a v′′ does not exist, and hence v → v′ is not redundant.

Theorem 4. Consider a trace τ of an execution f . Algorithm 1 uses O(length(τ)·
w(Gε(f))) set operations.

Proof. There are 2 · |T | iterations, and each iteration applies a number of set
operations that is linear in the size of Fi. Lemma 2 shows that Fi is an anti-
chain, hence |Fi| ≤ w(Gε(f)). Since length(τ) = 2 · |T |, the total number of set
operations is O(length(τ) · w(Gε(f))).

Lemma 3. start−(t) ≤ start+(t) for all t ∈ T .

Proof. By induction on the reversed topologically ordered task sequence, i.e.,
from tn to t1. By line 4 in Alg. 2 we have that start−(tn) = start+(tn). Now
suppose that it holds up to task j: start−(tk) ≤ start+(tk) for all j ≤ k ≤ n,
and consider ti. The maximum start time of ti is determined by its successors.
Consider one of the successors, say tj , that determines it. Then we have that
start+(ti) = start+(tj)−di and start−(tj) ≥ start−(ti)+di. The latter equation
gives start−(ti) ≤ start−(tj)−di. Application of the induction hypothesis gives
that start−(ti) ≤ start+(tj) − di. The first equation above then gives that
start−(ti) ≤ start+(tj)− di = start+(ti).

Lemma 4. If a task tj is critical, then at least one successor tk (if it exists)
is critical, and at least one predecessor ti (if it exists) is critical. Furthermore,
these all are consecutive, which is to say that start−(ti) + d(ti) = start−(tj)
and start−(tj) + d(tj) = start−(tk).

3

Proof. By induction on the reversed topologically ordered task sequence, i.e.,
from tn to t1. First, consider tn (which is critical by definition). It has no
successors. Consider a predecessor, if it exists, that determines start−(tn),
say ti. It holds that they are consecutive: start−(tn) = start−(ti) + d(ti) by
definition (see Alg. 2). Furthermore, we have that

start+(ti) ≤ start+(tn)− d(ti)

= start−(tn)− d(ti)

= start−(ti).

Lemma 3 gives that start+(ti) cannot be lower than start−(ti) and therefore
start+(ti) = start−(ti), which is to say that ti is a critical predecessor.

Now assume that the lemma holds for ti+1 · · · tn. We prove the lemma for
ti. The proof that ti has a critical and consecutive predecessor is equivalent to
the proof above. Now we show that it has a critical and consecutive successor.
Therefore, let tj be the successor that determines the latest start of ti, i.e.,
start+(ti) = start+(tj)− d(ti). Because we assumed that ti is critical, we have
that minimum and maximum start times are equal and therefore start−(ti) =
start+(tj)− d(ti). Then we have that

start−(tj) ≥ start−(ti) + d(ti)

= start+(tj).

Lemma 3 gives that start−(tj) cannot be larger than start+(tj) and there-
fore start−(tj) = start+(tj), which makes tj critical. Substitution gives that
start−(ti) + d(ti) = start−(tj), which makes them consecutive.

Lemma 5. The start− functions as computed by Alg. 2 for G and for G0(exec(G))
are equal.

Proof. The function computed for G is denoted by start−1 and the one computed
for G0(exec(G)) is denoted by start−2 . First, note that the start function that is
part of exec(G) as defined in Def. 3 is equal to start−1 .

We use induction on the topologically ordered task sequence, i.e., from t1 to
tn in G. Because a source task has no predecessors, we have that start−(t1) =
0. Definition 3 also gives start(t1) = 0. Since tasks have a strictly positive
execution time, there is no t′ such that close0(t′, t1) and hence t1 is also a
source in G0(exec(G)). Therefore, start−2 (t1) = 0.

Now suppose that start−1 (ti) = start−2 (ti) for all i < m and consider the
valuation of tm. Let tk be the predecessor of tm that defines its start time
in G: start−1 (tm) = start−1 (tk) + d(tk). Thus, start(tm) = end(tk) and hence
close0(tk, tm), which implies that tk also is a predecessor of tm in G0(exec(G)).
By the induction hypothesis we have that start−2 (tk) = start−1 (tk). Therefore,
start−2 (tm) ≥ start−2 (tk) + d(tk) (see Alg. 2). Substitution gives start−2 (tm) ≥
start−1 (tk) + d(tk).

Now consider a predecessor of tm in G0(exec(G)), say tj (which not necessar-
ily is a predecessor of tm in G). We thus have that close0(tj , tm) and therefore

4

start−1 (tj) + d(tj) ≤ start−1 (tm). Substitution then gives start−1 (tj) + d(tj) ≤
start−1 (tk) + d(tk) ≤ start−2 (tm). An arbitrary predecessor tj thus does not
overrule tk for the value of start−2 (tm) and therefore start−2 (tm) = start−1 (tk) +
d(tk) = start−1 (tm).

Theorem 5. A task that is marked critical (i.e, it has zero float) by Alg. 2 when
run on task graph G, is also marked critical by Alg. 2 when run on G0(exec(G)).

Proof. The function computed for G is denoted by start−1 and the one computed
for G0(exec(G)) is denoted by start−2 .

Consider the situation in which a task ti is marked critical in G but not
in G0(exec(G)). Using Lem. 4 we can construct a path π between ti and the
unique sink tn in G consisting of consecutive critical tasks. Because the tasks
are consecutive, they are related by the close0 relation. Furthermore, because
tasks have a strictly positive execution time we can conclude that π is also a
path in G0(exec(G)). The tasks on this path are clearly also consecutive (e.g.,
because start−1 = start−2 by Lem. 5).

Now pick the task tj in this path that is not marked critical in G0(exec(G))
and which is closest to tn (this may be task ti). This is not tn itself, which is
critical by definition. Therefore, the non-critical tj has a critical successor tk
(on the path π). Thus,

start+2 (tj) ≤ start+2 (tk)− d(tj)

= start−2 (tk)− d(tj).

Substitution of start−2 (tk) = start−2 (tj) + d(tj) (because tj and tk are consecu-
tive) in the equation above gives that start+2 (tj) ≤ start−2 (tj). Lemma 3 gives
us that start+2 (tj) cannot be lower than start−2 (tj) and therefore start+2 (tj) =
start−2 (tj) which makes tj critical in G0(exec(G)). This contradiction completes
the proof.

Theorem 6. Let G be a task graph. If for any two paths π and π′ in G
duration(π) 6= duration(π′), then the sets of critical tasks of G and G0(exec(G))
are equal.

Proof. We show that a task that is critical in G0(exec(G)) is also critical in G.
Together with Th. 5 this then proves the theorem.

The function computed for G is denoted by start−1 and the one computed for
G0(exec(G)) is denoted by start−2 . We use induction on the reversed topological
order of tasks in G0(exec(G)), i.e., from tn to t1. The algorithm marks tn as
critical in G0(exec(G)). We infer that tn is also the last task in a topological
order of G. Therefore, tn is also marked critical in G.

Now suppose that the theorem holds for all tasks ti+1 · · · tn. We show that
it also holds for ti. Therefore, assume that ti is marked critical in G0(exec(G)).
Lemma 4 gives that it has a successor that is critical and consecutive, say tj .
This task tj is also marked critical in G by the induction hypothesis.

First, we prove that tj is also a successor of ti in G. By Lem. 5 and the
observation that the execution as defined in Def. 3 gives the same start times as

5

Alg. 2, we have that start(ti) + d(ti) = start(tj). Suppose that ti 6→ tj in G. In
that case, there must be another task tk such that start(tk) + d(tk) = start(tj).
The assumption that every path has a unique duration, however, implies that
start−(t)+d(t) is unique for every task t. This contradiction proves that ti → tj
in G.

Next, we prove that start+1 (ti) = start−1 (ti). By definition start+1 (ti) ≤
start+1 (tj) − d(ti) and therefore, start+1 (ti) ≤ start−1 (tj) − d(ti) (because tj is
critical). By Lem. 3 we have that:

start−1 (ti) ≤ start+1 (ti) ≤ start−1 (tj)− d(ti) (1)

We can write start−1 (ti) as follows:

start−1 (ti) = start−2 (ti) (By Lem. 5)

= start−2 (tj)− d(ti) (ti and tj consecutive)

= start−1 (tj)− d(ti) (By Lem. 5)

Substitution in 1 gives that start+1 (ti) = start−1 (tj) − d(ti). Because ti and tj
are consecutive in G0(exec(G)), Lem. 5 gives that start−1 (tj) = start−1 (ti)+d(ti).
Substitution then yields start+1 (ti) = start−1 (ti) and hence ti is critical.

Theorem 7. Let G = (T,→, d) be a task graph, let exec(G) = f , and let U ⊆ T .
If the source tasks and the unique sink task in G are not elements of U , then a
task t ∈ T \ U that is marked critical by Alg. 2 when run on G, is also marked
critical by Alg. 3 when run on Gm(G,U)(f 	 U) and the gap function δf .

Proof. The function computed for G is denoted by start−1 and the one computed
for Gm(G,U)(f 	U) is denoted by start−2 . With our assumption that the source
tasks and the unique sink task are not part of U , we can prove with a similar
argument as in the proof of Lem. 5 that start−1 (t) = start−2 (t) for t ∈ T \ U .

Consider the situation in which a task ti is marked critical in G but not
in Gm(G,U)(f 	 U). According to Lem. 4 we can construct a path π between
ti and the unique sink tn in G consisting of consecutive critical tasks. By our
choice of ε = m(G,U) and the fact that start−1 (t) = start−2 (t) for t ∈ T \ U
we can conclude that the sub sequence of π without tasks in U (denoted by
π 	 U), say t1 · · · tn, are consecutive modulo the gaps, which is to say that
start−2 (ti+1) = start−2 (ti) + d(ti) + δ(ti, ti+1) for 1 ≤ i < n.

Now we pick a task tj in π 	 U = t1 · · · tn that is not marked critical in
G0(exec(G)) and for which holds that the next task tk is marked as critical.
This can be done, because the unique sink task tn is marked as critical by
Alg. 3 and is not part of U . Thus,

start+2 (tj) ≤ start+2 (tk)− (d(tj) + δ(tj , tk))

= start−2 (tk)− (d(tj) + δ(tj , tk)).

Substitution of start−2 (tk) = start−2 (tj) + d(tj) + δ(tj , tk) (because tj and tk
are consecutive modulo the gaps) in the equation above gives us the following:

6

start+2 (tj) ≤ start−2 (tj). Similar to the proof of Lem. 3, we can prove that
start+2 (tj) ≥ start−2 (tj) and therefore start+2 (tj) = start−2 (tj) which makes tj
critical. This contradiction completes the proof.

Proposition 2 (Triangle inequality). The graph edit distance satisfies the tri-
angle inequality: dged(G1, G2) + dged(G2, G3) ≥ dged(G1, G3).

Proof. We first show that A∆C ⊆ (A∆B)∪(B∆C) for all sets A,B,C. Consider
some x ∈ A∆C. It holds that (x ∈ A ∨ x ∈ C) ∧ x /∈ A ∩ C. We know that
x ∈ B∨x /∈ B. We consider the four combinations of the two disjunctions in our
set of premises. (i) x ∈ A∧x ∈ B. We know that x /∈ A∩C. Now suppose that
x ∈ B ∩ C. Then x ∈ B ∧ x ∈ C. The combination with x ∈ A then gives that
x ∈ A∩C, which gives a contradiction. Therefore, x /∈ B∩C. The combination
with x ∈ B gives x ∈ B∆C. (ii) x ∈ A ∧ x /∈ B. Thus, x ∈ A∆B. (iii)
x ∈ C ∧ x ∈ B. We have that x /∈ A ∩C and therefore x /∈ A. Thus, x ∈ A∆B.
(iv) x ∈ C ∧ x /∈ B. Thus, x ∈ B∆C. Concluding, A∆C ⊆ (A∆B) ∪ (B∆C).
This gives |A∆C| ≤ |(A∆B)∪(B∆C)|, which implies |A∆C| ≤ |A∆B|+|B∆C|.
Application of this inequality to the graph edit distance proves the lemma.

Theorem 8. Execution distance is a pseudo-metric.

Proof. First, the distance is positive or zero by Def. 6. Second, d(f, f) = 0
clearly holds by Def. 6, since an execution has a unique task graph, and sym-
metric differences between identical sets are empty. Third, d(f1, f2) = d(f2, f1)
because symmetric differences are symmetric: A∆B = B∆A. Fourth, the tri-
angle inequality holds by Prop. 2.

Theorem 9. The time complexity to compute the execution distance from two
traces is O(|T | · w), where T is the largest of the traces’ task sets and w is the
maximum of the widths of the two task graphs.

Proof. We can construct the two task graphs from the traces in time O(|T | ·w)
according to Th. 4. The number of vertices of these graphs is equal to the
number of tasks in the corresponding traces. However, because we are dealing
with transitively reduced directed acyclic graphs, we know that the number of
arcs is bound by |T | ·w. This can be understood from the observation that in a
transitive reduction, every vertex has at most w direct successors, which follows
from Dilworth’s theorem [1]. Therefore, computation of the execution distance
using Def. 6 takes at most O(|T | · w) set inclusion checks.

References

[1] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics, 51(1):161–166, 1950.

7

