
Journal: Regional Environmental Change

Article: Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow

Authors: Richard L. Armstrong^{1,2}, Karl Rittger^{1,2}, Mary J. Brodzik^{1,2}, Adina Racoviteanu^{1,4}, Andrew P. Barrett^{1,2}, Siri-Jodha Singh Khalsa^{1,2}, Bruce Raup^{1,2}, Alice F. Hill^{1,2}, Alia Khan^{1,2}, Alana M. Wilson^{1,2}, Rijan Bhakta Kayastha⁴, Florence Fetterer^{1,2}, Betsy Armstrong^{1,2}

Affilitations: ¹National Snow and Ice Data Center, ²University of Colorado, ³Kathmandu University, ⁴Aberystwyth University, ⁵Institute of Arctic and Alpine Research

Corresponding author: Richard L. Armstrong, rlax@nsidc.org, 303-494-7040

Fig. S2: Biases between 2 m air temperature from ERA (European Reanalysis)-Interim, MERRA (Modern-Era Retrospective analysis for Research and Applications), CFSR (Climate Forecast System Reanalysis) atmospheric reanalyses, and AphroTemp APHRODITE (Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation) near-surface air temperature product for climatological season. All reanalysis products show biases which vary between seasons and across the High Mountain Asia region.