
Proofs of the Propositions, Lemmas and Theorems 

Proof of Proposition 1. Since 𝒞  is a general server, it satisfies condition (a) of Definition 3, i.e., 

𝑙𝑖𝑚
%→'

𝑚()𝑡+∏ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇89/𝑚()𝑡+∑ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇89 = 0. Following from  𝒞= ⊇ 𝒞, we also have 

)𝑡+∏ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇8 ⊇ )𝑡+∏ 𝑅̇/(𝑡)/∈𝒞? ≠ 0, 𝑡 ≤ 𝑇8  and )𝑡+ ∑ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇8 ⊆

)𝑡+∑ 𝑅̇/(𝑡)/∈𝒞? ≠ 0, 𝑡 ≤ 𝑇8 . Therefore, there is 𝑙𝑖𝑚
%→'

𝑚()𝑡+ ∏ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇89 /

𝑚()𝑡+∑ 𝑅̇/(𝑡)/∈𝒞 ≠ 0, 𝑡 ≤ 𝑇89 = 0. Together with condition (b), it follows that 𝒞= is also a general server. 

Proof of Lemma 1. Consider any 𝛼 ∈ [0.8, 0.9) and assume the 1st job arrives at class 1 at 𝑡 = 0. Since the 

interarrival times are constant, the state 𝑋(𝑡) of the system at time 𝑡 reduces to a two-tuple 𝑋(𝑡) = (𝑄(𝑡), 𝑉(𝑡)). 

At 𝑡 = 0, 𝑋(0) = ((0, 0.2), (0, 0), (0,0), (0,0)). At 𝑡 = 𝛼, the 1st job is still at class 3, and therefore 𝑋(𝛼) =

((0, 0.2), (0, 0), (0, 0.9 − 𝛼), (0, 0)). At 𝑡 = 0.9, the 1st job arrives at class 4 but needs to wait since the 2nd job 

is still receiving service at class 1. Hence, 𝑋(0.9) = ((0, 𝛼 − 0.7), (0, 0), (0, 0), (1, 0)). At 𝑡 = 2𝛼, the 3rd job 

arrives, the 1st job has leaved the network, and the 2nd job is at class 3. Thus, 𝑋(2𝛼) = ((0, 0.2),

(0, 0), (0, 0.9 − 𝛼), (0, 0)). Note that the state of the network at time 2𝛼 is identical to the state at time 𝛼. Since 

the interarrival times and services times are both constant, 𝑋(𝑛𝛼) = ((0, 0.2), (0, 0), (0, 0.9 − 𝛼), (0, 0)) for any 

integer 𝑛 ≥ 1 and the evolutions in the interval ((𝑛 − 1)𝛼, 𝑛𝛼) are the same. In addition, the time epoch that the 

𝑛th job begins to receive service at class 2 is 𝑛𝛼 + 0.2, and so is the time epoch that the (𝑛 − 1)th job begins to 

receive service at class 4. Therefore, except for the first job to initiate the system, classes 2 and 4 always process 

jobs simultaneously. Q.E.D. 

Proof of Lemma 2. Let the arrival and departure times of the 𝑛th job at class i be 𝐴QR  and 𝐷QR . Assume there are 3 

jobs between classes 2 and 4, i.e., the 𝑛th, (𝑛 + 1)th and (𝑛 + 2)th jobs. There can be the following situations: 

(a) The (𝑛 + 1)th job at class 2 and the 𝑛th job at class 4 are processed simultaneously and the (𝑛 + 2)th 

job is waiting at class 2. Since the (𝑛 + 2)th job will block the (𝑛 + 1)th job, there is no job receiving 

service at class 4 while the (𝑛 + 2)th job is receiving service at class 2, i.e., class 4 is vacant during the 

interval (𝐴QTUU , 𝐷QTUU ). Therefore, the synchronization breaks. 

(b) The (𝑛 + 2)th job at class 2 and the 𝑛th job at class 4 are processed simultaneously and the (𝑛 + 1)th 

job is waiting at either class 3. After 𝐷QTUU , the (𝑛 + 1)th job will arrive at class 4 at time 𝐷QTUU + 0.1 and 

𝐴QTUV  will be 𝐷QTUU + 0.2. Since at most one job (i.e., the (𝑛 + 3)th job) can be at class 2 at time 𝐷QTUU +

0.2, classes 2 and 4 cannot process jobs simultaneously at time 𝐷QTUU + 0.8 and the synchronization 

breaks. 

(c) The (𝑛 + 2)th job at class 2 and the 𝑛th job at class 4 are processed simultaneously and the (𝑛 + 1)th 

job waits at class 4. the (𝑛 + 1)th job will block class 1 after the 𝑛th job completes its service, i.e., 𝐷QV . 

Hence, classes 2 and 4 cannot process jobs simultaneously and the synchronization breaks. 

Similar arguments can be applied when there are more than three jobs between classes 2 and 4. Q.E.D. 

Proof of Lemma 3. Since the network is synchronized when 0.8 ≤ 𝛼 < 0.9 and 1.1 ≤ 𝛼 < 1.2, we will evaluate if 

the network is synchronized when 0.9 ≤ 𝛼 < 1.1. 

By Lemma 2, there are at most two jobs between class 2 and class 4 in the Lu-Kumar network when {2, 4} is 

synchronized. Classes 2 and 4 are synchronized if and only if both always are busy at the same time (except for 



the first job to initialize the system). Hence, if the network is synchronized, the relations of the two jobs can be 

one of the following two:  

(a) One job may wait at class 4: 𝐴QV ≤ 𝐷QT\\  (two consecutive jobs can be served at the same time), 𝐴QT\\ < 𝐴QV , 

𝐴QT\U ≥ 𝐷Q] and 𝐴Q] < 𝐴QT\U  (no consecutive job can be blocked at classes 1, 2 and 3), or 

(b) One job may wait at class 2: 𝐴QT\U ≤ 𝐷Q] (two consecutive jobs can be served at the same time), and 𝐴QT\\ <

𝐴QV , 𝐴Q] < 𝐴QT\U  and 𝐴QT\V ≥ 𝐷Q\ (no consecutive job can be blocked at classes 1, 3 and 4). 

For (a), since 𝐴QT\\ < 𝐴QV ≤ 𝐷QT\\ , 𝐴QT\\ < 𝐴QV ≤ 𝐴QT\\ + 0.2, we have 0 < 𝐴QV − 𝐴QT\\ ≤ 0.2. Because no 

consecutive job can be blocked at classes 1, 2 and 3, 𝐴QV − 𝐴Q\ = 0.9. Therefore, 0.7 ≤ 𝐴QT\\ − 𝐴Q\ < 0.9, which 

is a contradiction to 0.9 ≤ 𝛼 < 1.1. 

For (b), since 𝐴Q] < 𝐴QT\U ≤ 𝐷Q], 𝐴Q] < 𝐴QT\U ≤ 𝐴Q] + 0.1, we have 0 < 𝐴QT\U − 𝐴Q] ≤ 0.1. Since 𝑚U = 0.6, 

𝑚] = 0.1 and the 𝑛th and (𝑛 − 1)th jobs are served at classes 2 and 4 simultaneously, we have 𝐴QU + 0.6	 ≤ 𝐴Q] <

𝐴QU + 0.7 (if 𝑛th job is blocked by the (𝑛 − 1)th job at class 2). Hence, 0.6 < 𝐴QT\U − 𝐴QU < 0.8. Because no 

consecutive job can be blocked at class 1, 0.6 < 𝐴QT\\ − 𝐴Q\ < 0.8, which is a contradiction to 0.9 ≤ 𝛼 < 1.1. 

Together with Lemma 1, the set {2, 4} (i.e., classes 2 and 4) can be synchronized if and only if 0.8 ≤ 𝛼 < 0.9 

or 1.1 ≤ 𝛼 < 1.2. Q.E.D. 

Proof of Theorem 1. (i) If a queueing network is stable, then effective traffic intensity of every general server does 

not exceed one. Proceeding by contradiction, we assume there exists some general server 𝑆 with 𝑀 effective 

classes such that 𝑃c > 1 . Since lim
h→'

𝐷/(𝑡)/𝑡 = 𝜆j(/)  for any 𝑘 ∈ 𝑆  (due to the pathwise stability), we have 

lim
h→'

𝑇/(𝑡)/𝑡 = 𝜆j(/)𝑚/ (𝑘 ∈ 𝑆), where 𝑇/(𝑡) is the cumulative service time received by class 𝑘. Since 𝑃c > 1, 

we have ∑ lim
h→'

𝑇/(𝑡)/𝑡/∈c = ∑ 𝜆j(/)𝑚//∈c > 𝑀 . On the other hand, the definition of 𝑀  implies that 

∑ lim
h→'

𝑇/(𝑡)/𝑡 ≤ 𝑀/∈c , which contradicts to our earlier conclusion. Hence, the effective traffic intensity of every 

general server does not exceed one if the network is stable. (ii) If the effective traffic intensity of every general 

server does not exceed one, then the queueing network is stable. It suffices to show that the corresponding fluid 

model is weakly stable if the effective traffic intensity of each general server does not exceed one. For any 1 ≤

𝑗 ≤ 𝐽 and 1 ≤ 𝑘 ≤ 𝐾, the basic fluid equations are given as follows:  

 	𝑄/(𝑡) = 𝑄/(0) + 𝐴/(𝑡) − 𝜇/𝑇/(𝑡),																								     
																																																											𝐼q(𝑡) = 𝑡 − ∑ 𝑇/(𝑡)/:	s(/)tq , 
																																																											𝑄/(𝑡) ≥ 0, 
																																																											𝑇/(0) = 0, 

𝐼q(0) = 0, 𝐼q(∙) is non-decreasing, and 
																																																											𝐼q̇(𝑡) = 0, when ∑ 𝑄/(𝑡)/:	s(/)tq > 0 and 𝐼q(𝑡) is differentiable at 𝑡, 

where 𝐴/(𝑡) = 𝜆j(/)𝑡 if 𝑘 is the first class of type 𝜏(𝑘), otherwise 𝐴/(𝑡) = 𝜇/w\𝑇/w\(𝑡). Similar to physical 

stations, for any general server 𝑆  with 𝑀  effective servers, we have extra fluid equations: 𝐼x(𝑡) = 𝑀𝑡 −

∑ 𝑇/(𝑡)/∈c  is non-decreasing and 𝑃c ≤ 1. Proceeding by contradiction, we assume there is a fluid allocation which 

is not weakly stable, i.e., given 𝑄(0) = 0, there exists a solution such that 𝑄(𝑡y) ≠ 0 for some 𝑡y. Then there 

exists a smallest 𝑘∗  and a pair of 𝑡\  and 𝑡U  less than 𝑡y  such that 𝑄(𝑡) = 0 for 𝑡 ∈ (0, 𝑡\), 𝑄/∗(𝑡) > 0 for 𝑡 ∈

(𝑡\, 𝑡U]. Since the service policy is work-conserving, for at least one general server 𝑆∗ which contains 𝑘∗, we have 

∑ (𝑇/(𝑡U)/∈c∗ − 𝑇/(𝑡\)) = 𝐸𝐹(𝑆∗)(𝑡U − 𝑡\). Furthermore, it follows that∑ 𝜆j(/)(𝑡U − 𝑡\)𝑚//∈c∗ − 𝐸𝐹(𝑆∗)(𝑡U −

𝑡\) = ∑ 𝜆j(/)(𝑡U − 𝑡\)𝑚//∈c∗ − ∑ (𝑇/(𝑡U)/∈c∗ − 𝑇/(𝑡\)) ≥ ∑ 𝑄/(𝑡U)𝑚//∈c∗ > 0 , which implies that 𝑃c∗ > 1 . 



This is a contradiction to the given condition. Hence, the fluid model is weakly stable and the network is pathwise 

stable. Q.E.D. 

REMARK: Since general servers are defined for a queueing network under a given service discipline and the 

structure of general servers also depends on the service discipline, general servers will include the information of 

the service discipline in some sense. Hence, in this proof, we do not need the extra fluid equation corresponding 

to the service discipline (e.g. FIFO policy). Considering the equations corresponding to the general servers under 

the given service discipline is sufficient. 

Proof of Theorem 2. Based on Theorem 1, it suffices to show that if the effective traffic intensity of every compact 

server does not exceed one, it is also the case for general servers. Considering any general server 𝑆 with 𝑀 

effective classes, we have the following four situations: 

(i) 𝑆 itself is a compact server, then 𝑃c ≤ 1 trivially. 

(ii) 𝑆 is a subset of a compact server, i.e., 𝑆 ⊆ 𝑆=, where 𝑆= is a compact server with the same effective 

number of servers 𝑀  as 𝑆  and we have 𝑃c? ≤ 1 . For general server 𝑆 , we have 𝑃c = 𝐿c/𝐸𝐹(𝑆) ≤

𝐿c?/𝐸𝐹(𝑆) = 𝐿c?/𝐸𝐹(𝑆=) = 𝑃c? ≤ 1. 

(iii)  𝑆 is the union of compact servers, i.e., 𝑆 = ⋃ 𝑆RR∈� , where each 𝑆R is a compact server, 𝐹 is an index set 

and 𝑆R ∩ 𝑆R? = 0 for any 𝑖 ≠ 𝑖=. We have 𝐸𝐹(𝑆) ≥ ∑ 𝐸𝐹(𝑆R)R∈�  because of the compactness of 𝑆R. Then 

it follows that 𝑃c = 𝐿c/𝐸𝐹(𝑆) = ∑ 𝐿c�R∈� /𝐸𝐹(𝑆) ≤ ∑ 𝐿c�R∈� /∑ 𝐸𝐹(𝑆R)R∈� ≤ 1. 

(iv)  𝑆 = (⋃ 𝑆R) ∪ 𝑆qR∈� , where each 𝑆R is a compact server, 𝐹 is an index set, 𝑆R ∩ 𝑆R? = 0 for any 𝑖 ≠ 𝑖= and 

𝑆q  is a subset of a compact server. We first consider (⋃ 𝑆R) ∪ 𝑆q?R∈� , where 𝑆q?  is a compact server 

containing 𝑆q  and 𝐸𝐹(𝑆q?9 = 𝐸𝐹(𝑆q). It follows from (iii) that 𝑃(⋃ c�)∪c�?�∈� ≤ 1. Then we have 𝑃c =

𝐿c/𝐸𝐹(𝑆) ≤ 𝐿(⋃ c�)∪c�?�∈� /𝐸𝐹(𝑆) = 𝐿(⋃ c�)∪c�?�∈� /𝐸𝐹((⋃ 𝑆R) ∪ 𝑆q?R∈� ) ≤ 1. 

Therefore, a queueing network is stable if and only if the effective traffic intensity of every compact server 

does not exceed one. Q.E.D. 

Proof of Proposition 2. When there is only one station, i.e., 𝐽 = 1, it is trivial that the physical station is the only 

compact server. Based on Theorem 2, the network is stable since the traffic intensity of the physical station does 

not exceed one. For a two-station feedforward network, it suffices to show that the effective traffic intensity of 

any class set 𝒞 = {𝑐\, 𝑐U}, where 𝜎(𝑐q9 = 𝑗 for 𝑗 = 1, 2, is no greater than one. It is trivial that 𝑃𝒞 ≤ 1 if  𝑚�� +

𝑚�� ≤ 1/𝜆. Next we will consider 𝑚�� +𝑚�� > 1/𝜆. Since the first station is stable, we have lim
h→'

𝑇��(𝑡)/𝑡 =

𝜆𝑚��, where for any class 𝑘, 𝑇/(𝑡) is the cumulative service time received by class 𝑘. Since traffic intensity of 

the second station is no larger than one, we also have lim
h→'

𝑚)𝑡+𝑅��(𝑡) > 0,∑ 𝑅/(𝑡) = 0/∈xh�hR�Q	U,/��� 8/𝑡 ≥ 𝜆𝑚��. 

Since the service policy is work-conserving, we further have lim
h→'

𝑚)𝑡+𝑅̇��(𝑡) > 08/𝑡 ≥ 𝜆𝑚�� . Since 𝑚�� +

𝑚�� > 1/𝜆  and  lim
h→'

𝑚)𝑡+𝑅̇��(𝑡) > 08/𝑡 = 𝜆𝑚�� , lim
h→'

𝑚)𝑡+𝑅̇��(𝑡)𝑅̇��(𝑡) ≠ 08/𝑚{𝑡|𝑅̇��(𝑡) + 𝑅̇��(𝑡) ≠ 0} > 0. 

Hence, 𝒞 = {𝑐\, 𝑐U} is not a general server and 𝑃𝒞 = (𝜆𝑚�� + 𝜆𝑚��)/2 ≤ 1. By induction, any feedforward 

network is stable if the traffic intensity at every physical station does not exceed one. Q.E.D. 

Proof of Proposition 3. For a two-station reentrant line, it is sufficient to show that the effective traffic intensity 

of any class set 𝒞 = {𝑐\, 𝑐U}, where 𝜎(𝑐q9 = 𝑗 for 𝑗 = 1, 2, is no greater than one. It is trivial that 𝑃𝒞 ≤ 1 if  𝑚�� +



𝑚�� ≤ 1/𝜆. Next we will consider 𝑚�� +𝑚�� > 1/𝜆. Without loss of generality, we assume 𝑐\ < 𝑐U. First, we 

consider 𝑐\ = 1. Since class 1 has the highest priority at station 1, we have 𝑅̇\(𝑡) < 0 if 𝑅\(𝑡) > 0. If 𝑐U = 2, 

then class 2 has the highest priority at station 2 and 𝑅̇U(𝑡) < 0  when 𝑅U(𝑡) > 0 . Since 𝑚�� +𝑚�� > 1/𝜆 , 

lim
h→'

𝑚)𝑡+𝑅̇��(𝑡)𝑅̇��(𝑡) ≠ 08/𝑚{𝑡|𝑅̇��(𝑡) + 𝑅̇��(𝑡) ≠ 0} > 0.  Hence, the set 𝒞 is not a general server and 𝑃𝒞 ≤ 1. 

If 𝑐U = 3  and class 2 belongs to the first station, we still have lim
h→'

𝑚)𝑡+𝑅̇��(𝑡)𝑅̇��(𝑡) ≠ 08/𝑚{𝑡|𝑅̇��(𝑡) +

𝑅̇��(𝑡) ≠ 0} > 0.  If 𝑐U = 3 and class 2 belongs to the second station, we have	 lim
h→'

𝑚)𝑡+𝑅̇U(𝑡) < 0	8/𝑡 = 𝜆𝑚U 

since class 2 has the highest priority. Hence, lim
h→'

𝑚)𝑡+𝑅��(𝑡) > 0,			𝑅U(𝑡) = 08/𝑡 = min)𝜆𝑚��, 1 − 𝜆𝑚U8 =

𝜆𝑚��, which immediately implies  lim
h→'

𝑚)𝑡+𝑅̇��(𝑡)𝑅̇��(𝑡) ≠ 08/𝑚{𝑡|𝑅̇��(𝑡) + 𝑅̇��(𝑡) ≠ 0} > 0. Therefore, 𝑃𝒞 is 

also no greater than one when 𝑐\ = 1 and 𝑐U = 3. When 𝑐U > 3, the proof is similar. Hence, the set {𝑐\, 𝑐U} is not 

a general server and 𝑃𝒞 ≤ 1 when 𝑐\ = 1.  

When 𝑐\ = 2, the arguments are similar because class 1 has the highest priority and we can assume the 

external arrivals are at class 2. By induction, a two-station reentrant line is stable if the traffic intensity at every 

physical station does not exceed one. For an 𝐽-station reentrant line, the similar analysis applies. Therefore, any 

reentrant line operating under FBFS discipline is stable if the traffic intensity at every physical station does not 

exceed one. Q.E.D. 

Proof of Theorem 3. It suffices to show that the mutual blocking (of classes belonging to different physical stations) 

will break if the dispatching policy is WIP-dependent, i.e., class 𝑘 will be assigned the highest priority if 𝑄/ >

𝜑/, where 𝑄/ is the number of jobs in buffer 𝑘 and 𝜑/ is a preset threshold. Assume there exists a set 𝑆 (not a 

physical station) such that lim
h→'

𝑚()𝑡+∏ 𝑅̇/(𝑡)/∈c ≠ 089/𝑚()𝑡+∑ 𝑅̇/(𝑡)/∈c ≠ 089 = 0  ( 𝑆  suffers mutual 

blocking), 𝑃c > 1 and ∑ 𝑄//∈c (𝑡)/𝑡 ↛ 0. If 𝑆 only consists of two classes 𝑘 and 𝑙, then (𝑄/(𝑡) + 𝑄�(𝑡))/𝑡 ↛ 0. 

Without loss of generality, we assume 𝑘 is a class before 𝑙. For any large enough 𝑀, there exists a 𝑡y s.t. 𝑄/(𝑡y) >

𝑀. Therefore, we have 𝑄/(𝑡) ≥ 𝜑/  and 𝑅̇/(𝑡) < 0 for any 𝑡 ∈ (𝑡y, 𝑡y + 𝑇), where 𝑇 is a positive number and 

𝑇/(𝑀 − 𝜑/)
�.x.
��𝑚/ as 𝑀 → ∞ . If 𝑙 is the next class of 𝑘 (i.e., 𝑙 = 𝑘 + 1), 𝑄� will increase by (𝑀 − 𝜑/) during 

the interval (𝑡y, 𝑡y + 𝑇)  since class 𝑙  does not receive service. Hence, 𝑄�  will exceed 𝜑�  during the interval 

(𝑡y, 𝑡y + 𝑇) and should have been assigned the highest priority. This contradicts to the previous assumption. 

If 𝑙 = 𝑘 + 2 , (𝑄/T\ + 𝑄�)  will increase by (𝑀 − 𝜑/)  during the interval (𝑡y, 𝑡y + 𝑇) . As long as 𝑄/T\ 

exceeds 𝜑/T\ , class 𝑘 + 1 will receive service and 𝑄�  increases. Since 𝑀  is large enough, 𝑄�will exceed its 

threshold 𝜑� during the interval (𝑡y, 𝑡y + 𝑇), which is contradicted to the previous assumption.  

By induction, 𝑄�  will always exceed 𝜑�  in the interval (𝑡y, 𝑡y + 𝑇) since 𝑀 is large enough and 𝑙 is finite. 

Hence, classes 𝑘 and 𝑙 will both be assigned the highest priority during a period, which is a contradiction. 

Similar arguments can be applied to the case that 𝑆 consists of multiple classes. Therefore, a queueing 

network which satisfies the usual traffic condition will always be stable under the WIP-dependent policy. Q.E.D. 


