
1

1 Diversity score

We calculated a diversity score equal to the average phenotypic distance be-
tween each pair of viable individuals in the final population. For each function,
this diversity is normalized by dividing it by the largest diversity measured for
a run on that function. Normalization is performed because some functions
have more potential for diversity than others.

2 Finding canonical devices

Simplicity search is a Truth-Seq-Er run with an additional objective: minimize
the number of H-segments that bind to each other. In exploratory work (not
shown), this new objective considered all possible H-segments interactions.
However, this did not produce acceptable results. Results were significantly
improved when only OBS and negator self-interactions were considered. It
appears that these interactions are largely non-essential unlike the interactions
between two different segments. These self-interactions are represented by a
new fitness term, fSI , which is equal to sum of the diagonal entries of the
SPMMS.

In addition to the self-interactions fitness term, three other minor changes
are made to Truth-Seq-Er. Instead of initializing a random population, sim-
plicity search begins with the final population of a Truth-Seq-Er run. Further-
more, in order to compensate for a new fitness term being added, the two
performance scores (fON , fOFF) are averaged into a single switch score: fsw.
Finally, the viability nullification parameters are set more aggressively. The
fitness parameters of simplicity search are shown in table 1. For each 3-input
function, the canonical device is the viable individual with the least number
of segment interactions from the final simplified population.

Number of generations 200
Population size 300
Mutation rate 4
Objective scores Switch, self-interactions, novelty
Viability nullification? Yes
(Start, End) threshold values (0.9, 0.95)
Threshold Breakpoint (generation, value) N/A
Novelty neighborhood size 30

Table 1 Simplicity search fitness parameters.

2

3 Canonical devices for functions f-7-3I, f-25-3I, f-27-3I, f-129-3I,
f-135-3I

Fig. 1 Segment structures of canonical devices.

3

4 Simulation

In the main text, we generated segment structures from a given mechanism
graph by hand. Here we present an algorithm called simulation which auto-
mates the process. It uses exhaustive search to calculate the stability of all
candidate structures and it returns the most stable one. The pseudocode for
simulation is shown in Algorithm 1.

4

Algorithm 1: Simulate mechanism graph

1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 W // A dictionary storing the weight assigned to each edge
3 VO // The set of occupied nodes (OBSs bound to their respective input)

4 // Generate the set of candidate structures
5 edges← the set of all e ∈ E such that e is not incident on any node ∈ VO

6 provisional candidates← powerset(edges) // All possible subsets of edges

7 // Remove invalid structures from the set of candidates
8 candidates← copy provisional candidates
9 for each c in provisional candidates do

10 for each node in V do
11 node bundles← ∅
12 node edges← the set of all edges ∈ edges that are incident on node
13 // If multiple edges are incident on a node, they must share a bundle
14 // If at least one node violates this condition, the structure is invalid
15 if |node edges| > 1 then
16 for each edge in node edges do
17 edge bundles← all bundles that include edge
18 node bundles← node bundles ∪ {edge bundles}
19 end for
20 common bundles←

⋂
node bundles

21 if |common bundles| == 0 then
22 remove c from candidates
23 break

24 end if

25 end if

26 end for

27 end for

28 // Calculate the stability of each candidate
29 stabilities← empty list
30 for each c in candidates do

31 stability =
∑
e∈c

W [e] // Sum the edge weights

32 append stability to stabilities

33 end for

34 // Select the candidate with the highest stability
35 indices← argsort stabilities (by descending value)
36 L← length of indices
37 index 1← indices[0] //index of candidate with the highest stability
38 max stability structure← candidates[index 1]

39 // Determine whether the highest stability structure is unique
40 // This is necessary for mechanism extraction (discussed in Section 5)
41 bool degenerate← 0
42 // If there was more than one candidate
43 if L > 1 then
44 index 2← indices[1] //Index of the candidate with the second highest stability
45 if stabilities[index 1] == stabilities[index 2] then
46 bool degenerate← 1 // The highest stability structure is not unique
47 end if

48 end if
49 return (max stability structure, stabilities[index 1], bool degenerate)

5

5 Mechanism extraction

Mechanism extraction is an algorithm that takes as input a list of target seg-
ment structures and it outputs a mechanism that can reproduce these struc-
tures without error when it is simulated. Mechanism extraction consists of
two steps. First, the target segment structures are merged into an unweighted
graph. Then, the edges of this graph are assigned weights using an iterative
procedure similar to simulated annealing. A full example of mechanism ex-
traction is shown in Figure 2.

5.1 Merging

The unweighted mechanism graph represents TO segments that interact with
each other in at least one state. The unweighted mechanism graph is equal to
the union of the target TO structures. In addition, certain edges of the un-
weighted mechanism may be grouped together into sets called bundles. Edges
are part of the same bundle if they are incident on the same node in the same
segment structure. Merging is detailed in Algorithm 2. An example unweighted
mechanism is shown in Figure 2 a).

5.2 Weight assignment

Once the unweighted mechanism graph has been obtained, weights are as-
signed to it. In general, mechanism graphs having identical edges, nodes, and
bundles, but different weights, will produce different segment structures when
simulated. The weight assignment algorithm searches for weights such that
the mechanism reproduces the target segment structures. Each edge of the un-
weighted mechanism is initially assigned a random weight, and these weights
are mutated through an iterative process until a solution is found. The weights
at iteration i are denoted by w(i). Each iteration, the current mechanism graph
is simulated to generate a list of predicted segment structures. The similarity
between the predicted and target segment structures is assessed, and an error
is calculated. The higher the similarity, the lower the error. If the error of w(i)
is smaller than or equal to the error of w(i − 1) (i.e. the current iteration is
an improvement over the previous one), then w(i) is always accepted. Other-
wise, w(i) is only accepted with a certain probability. As explained in the main
text, the segment structure of each state is the candidate structure with the
highest stability. Note that for certain weight assignments, multiple candidate
structures of a state may have maximum stability. In this case, the candidate
mechanism graph is considered invalid and it is assigned a very high error as
a penalty. The reason for this is that we want the segment structures gen-
erated by simulation to be non-ambiguous. Weight assignment is detailed in
Algorithms 3 and 4, and is illustrated in Figure 2 b). Note that the graphs gen-
erated by mechanism extraction are not unique. Two mechanism graphs with

6

Fig. 2 a) The target segment structures are merged into an unweighted mechanism graph
(UMG). The UMG has the same nodes as the target segment structures. Its edges are equal
to the union of the edge sets of the target segment structures. Since O1 and O2 are both
incident on Rz in the same state (00), they are grouped into a bundle. b) The UMG is
assigned a set of random weights. Each iteration, the mechanism graph is simulated with
its current weights. An error is calculated based on how dissimilar the target and predicted
segment structures are. Then, a random weight of the mechanism graph is mutated. If this
mutation results an error reduction, it is always accepted. Otherwise, it is only accepted
with a certain probability. If the mutation is rejected, a new one is applied to the parent
graph. If the target and predicted structures match, the current candidate mechanism graph
is returned as the solution. List of abbreviations: On (OBS n), Rz (ribozyme).

7

Algorithm 2: Merge target segment structures

1 Inputs: segment structures // There is one segment structure per state

2 E ← ∅
3 V ← ∅
4 provisional bundles← ∅
5 for each structure in segment structures do
6 (e, v)← (edges, nodes) of structure
7 //Take the union of the segment structures
8 E ← E ∪ e
9 V ← V ∪ v

10 for each node in v do
11 node edges← the set of all edges in e that are incident on node
12 if |node edges| > 1 then
13 bundle← node edges
14 provisional bundles← provisional bundles ∪ bundle

15 end if

16 end for

17 end for

18 // Discard any bundles that are strict subsets of other bundles
19 bundles← copy provisional bundles
20 for each bundle i in provisional bundles do
21 for each bundle j in provisional bundles do
22 if bundle i ⊂ bundle j then
23 remove bundle i from bundles
24 break

25 end if

26 end for

27 end for
28 return (E, V, bundles) // Unweighted mechanism graph

different weights and/or bundles can generate the same segment structures
when simulated.

5.3 Experimental setup

We performed mechanism extraction for each 3-input NPN function. For each
function, the input to the mechanism extraction algorithm was the segment
structures of that function’s canonical ribogate. Before running the algorihtm,
we made slight changes to the second segment structures of two functions.
For f-135-3I, we removed the OBS2-OBS2 self-loop in states 000 and 101.
For f-27-3I, we added an edge an OBS3-Rz edge in state 000. None of these
modifications affect the output state of the ribogate and they result in cleaner
mechanism graphs.

8

Algorithm 3: Assign mechanism weights

1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 target structures // The segment structures we wish for the mechanism
3 graph to reproduce when simulated

4 // Score a random initial weight assignment
5 min weight← 1
6 max weight← 8
7 prev weights← empty dictionary
8 for each edge in E do
9 w ← random integer between min weight and max weight

10 prev weights[edge]← w

11 end for
12 prev error ← score mechanism graph(E, V,B, prev weights, target structures)

13 // Iterate until a solution is found or the max # of iterations is exceeded
14 num iterations← 2000
15 for i from 0 to num iterations− 1 do
16 weights← prev weights
17 // Mutate weight
18 edge← random edge from E
19 weights[edge]← random integer between min weight and max weight

20 // Score mechanism graph
21 error ← score mechanism graph(E, V,B,weights, target structures)

22 // Accept or reject mutation
23 if error == 0 then
24 return (E, V,B,weights) // Return the complete mechanism graph
25 else if error <= prev error then
26 prev error ← error
27 prev weights← weights

28 else
29 jump probability ← exp(prev error − error)
30 jump sample← random floating point number between 0 and 1
31 if jump probability > jump sample then
32 prev error ← error
33 prev weights← weights

34 end if

35 end for
36 return NULL // No solution

5.4 Manual post-processing

The mechanism extraction algorithm does not natively handle partial bundles.
Instead, some graphs will have partially overlapping bundles. In this step, we
manually remove these bundles and replace them with a partial bundle that
allows a maximum of two concurrent edges. Specifically, for f-127 and f-135,
we remove the {OBS1-RZ, OBS2-Rz}, {OBS1-Rz, OBS3-Rz}, and {OBS2=Rz,
OBS3-Rz} bundles and replace them with a {OBS1-Rz, OBS2-Rz, OBS3-Rz}
(max 2) partial bundle.

9

Algorithm 4: Score mechanism graph

1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 W // A dictionary storing the weight assigned to each edge
3 target structures // The segment structures we wish for the mechanism
4 graph to reproduce when simulated

5 num states← length of target structures
6 occupied nodes all← the set of occupied nodes for each state
7 error ← 0
8 for i from 0 to num states - 1 do
9 occupied nodes← occupied nodes all[i]

10 predicted structure, stability, bool degenerate←
simulate mechanism graph(E, V,B,W, occupied nodes)

11 if bool degenerate == 1 then
12 // Severely penalize mechanism graphs that generate non-unique structures
13 error ← 1000
14 break

15 else
16 Ep ← edges of predicted structure
17 Et ← edges of target structures[i]
18 // The error is equal to the # of edges that are in the predicted,
19 // but not the target structure (and vice versa)
20 state error ← |(Ep ∪ Et)\(Ep ∩ Et)|
21 error ← error + state error

22 end if

23 end for
24 return error

6 Linear inseparability and OBS-OBS interactions

In this analysis, we consider base structures that are in competition with each
other. In each state, the candidate segment structures are substructures of
these base structures. The specific structure of a candidate (and by extension
its stability) depends on which edges are available, which in turn depends on
which OBSs are unoccupied by inputs. This allows us to express the stability
of each candidate in terms of the input state.

In the case of family 1, two base structures compete with each other: 1) the
three OBS-Rz edges and 2) the Rz-Rz edge. These are illustrated in Figure 3
b). The stabilities of these two base structures are expressed by Equations 4
and 5, respectively:

i′1wO1R + i′2wO2R + i′3wO3R (1)

wRR (2)

The i′n term is equal to 0 when the nth input is present and 1 when it is
absent. Therefore, the i′nwOnR term indicates than an OBS-Rz edge only con-
tributes to the stability when its corresponding input is absent. The ribogate
is active if the candidate derived from the second base structure is more sta-
ble than the candidate derived from the first one. This occurs if the following
inequality holds true:

10

Fig. 3 a) Mechanism graph of a family 1 ribogate. There are three OBS-Rz edges with
weights wOnR. There is also an Rz-Rz edge with weight wRR. c) Mechanism graph of a
family 2 ribogate. It is the same as the family 1 graph, but it contains an addition OBS2-
OBS3 segment with weight wOO. b, d) In each state, the ribogate adopts a structure that
is a subset of one of these base structures. The stability (S) of that structure is represented
by the equation at the bottom of the box. Its value depends on which OBSs are unoccupied
by inputs (in). Refer to main text for a detailed discussion on the role of stability values in
determining linear separability.

i′1wO1R + i′2wO2R + i′3wO3R < wRR (3)

In the case of family 2, three base structures now compete with each other:
1) the three OBS-Rz edges, 2) the Rz-Rz edge and the OBS2-OBS3 edge, and
3) the OBS1-Rz edge and the OBS2-OBS3 edge. These are illustrated in Figure
3 d). Their stabilities are expressed by Equations 4, 5, and 6, respectively:

i′1wO1R + i′2wO2R + i′3wO3R (4)

wRR + i′2i
′
3wOO (5)

i′1wO1R + i′2i
′
3wOO (6)

11

The non-linear i′2i
′
3wOO term indicates that the OBS2-OBS3 edge only

contributes to the stability when inputs 2 and 3 are both absent. The ribogate
is active if the candidate derived from the second base structure is more stable
than both the one derived from the first and third ones. This occurs if the
following two inequalities holds true:

i′1wO1R + i′2wO2R + i′3wO3R < wRR + i′2i
′
3wOO

i′1wO1R < wRR

(7)

The above analysis shows that ribogates governed by the additive segment
model intrinsically implement linear (Inequality 3) and non-linear (Inequalities
7) decision boundaries as they change shape in response to various inputs.
Crucially, the factor that distinguishes these two types of decision boundaries
is not the number of segments, but rather the complexity of the interactions
between them. This enables a single ribogate to implement functions that
would require multiple standard logic gates or artificial neurons.

7 Additive segment competition vs secondary structure prediction

In this work, we have used RNA secondary structure prediction to design ri-
bogates and additive segment competition (ASC) to analyze them. We now
take a moment to compare the two processes. ASC is an abstract version of
RNA secondary structure folding and the two processes have many similari-
ties. Both treat structure prediction as an optimization problem: folding uses
dynamic programming [1] to find the secondary structure with the lowest free
energy whereas ASC uses exhaustive search to find the segment structure with
the highest stability. Both impose limits on the number of partners that their
nodes may have. Finally, both apply constraints to certain nodes (OBS nu-
cleotides in folding and OBS segments in ACS) to prevent them partnering
with other nodes, thereby changing the optimal structure.

Despite these many similarities, there are some key differences. Segment
structures generated by ACS may have nodes with self-loops and multiple
partners. They are also much more concise: they have a maximum of 5 nodes
whereas their corresponding secondary structures have more than 100. Criti-
cally, ACS models a structure’s stability as a sum of independent edge weights.
This allows us to easily reason about the effect of adding or removing certain
edges. This is not the case in folding: the free energy of an RNA secondary
structure is not simply the sum of the independent contributions of its base-
pairs. Rather, it is the result of many non-additive effects such as base-pair
stacking and loop entropy [2].

Despite its simplicity, ACS appears to be a plausible model of ribogate
behavior, being able to reproduce the observed segment structures of each
canonical ribogate with virtually no error. Because of its simplicity, we have
seen that ribogates can be grouped into families, and that OBS-OBS or OBS-
Negator interactions are required for linear inseparability. We have also seen
that like artificial neurons, ribogates can implement different functions by

12

changing their weights, but that unlike neurons, they can solve entirely new
classes of problems by changing their interactions. These insights suggest that
ACS is not only a useful model of rigobate behavior, but a potential new form
of unconventional computing that requires further investigation.

13

References

1. J. S. McCaskill, Biopolymers 29, 1105 (1990).
2. D. H. Turner and D. H. Mathews, Nucleic Acids Res 38, D280 (2010).

