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A Soundness Proofs

We prove soundness of our basic bound algorithm for DCPs (Definition 19, The-
orem 1) in Section A.1. In Section A.2 we prove soundness of our reasoning on
reset chains (Definition 23, Theorem 2). Throughout this section we assume a
well-defined and fan-in free DCP ∆P(L,E, lb, le) over A to be given.

We first define some basic notions which we use to state our proofs precisely.

Definition A.1 (Indices) Let π = l0
u0−−→ l1

u1−−→ . . . be a path of ∆P. By len(π)
we denote the length of π, i.e., the total number of transitions on π (possibly ∞).
Let 0 ≤ i ≤ j. By π[i,j] we denote the sub-path of π that starts at li and ends at

lj . By π(i) = li
ui−→ li+1 we denote the (i+ 1)th transition on π.

Let τ ∈ E. We define Θ(τ, π) = {0 ≤ i < len(π) | π(i) = τ}. Let E′ ⊆ E. We define
Θ(E′, π) =

⋃
τ∈E′

Θ(τ, π). We write Θ(R(v), π) to denote Θ({τ | (τ, , ) ∈ R(v)}, π),

and Θ(I(v), π) to denote Θ({τ | (τ, ) ∈ I(v)}, π). We use the same notation for
runs ρ of ∆P.

I.e., Θ(τ, π) is the set of all indices of τ on π, Θ(R(v), π) is the set of indices of all
transitions on π which reset v and Θ(I(v), π) is the set of indices of all transitions
on π which increment v.

On a run of ∆P a variable v may take arbitrary values at locations at which
v is not defined, i.e., at locations l with v 6∈ def(l). In a well-defined DCP the
value of a variable at a location where it is not defined can, however, not affect the
program’s behaviour. This observation motivates the notion of a normalized run: a
normalized run is a run on which a variable takes value ‘0’ at locations where it is
not defined.

Definition A.2 (Normalized Run) Let ρ = (l0, σ0)
u0−−→ (l1, σ1)

u1−−→ · · · be a run
of ∆P. Let

σ′i(a) =

{
0 if a ∈ V and a 6∈ def(li)
σi(a) else

for all 0 ≤ i ≤ len(ρ) and all a ∈ A.

We call bρc = (l0, σ
′
0)

u0−−→ (l1, σ
′
1)

u1−−→ · · · a normalized run.
Let Ξ be a set of runs of ∆P. We say that Ξ is closed under normalization if

ρ ∈ Ξ implies that bρc ∈ Ξ.

Lemma A.1 states that the set of all runs of ∆P is closed under normalization.

Lemma A.1 Let ρ be a run of ∆P. Then bρc is a run of ∆P.

Proof Follows directly from Definition 14 (well-definedness) and Definition A.2.
ut

A.1 Soundness of Basic Bound Algorithm

In Lemma A.2 and Lemma A.3 we formulate the two key insights on which our
algorithm is based. Lemma A.2 formalizes the intuition given in Section 9: Let v

be a local transition bound for τ . The question how often τ can appear on a run
ρ is translated to the question how often the transitions which increase the value
of v (i.e., (t, ) ∈ I(v) and (t, , ) ∈ R(v)) can appear on ρ.
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Lemma A.2 Let ρ be a run of ∆P. Let τ ∈ E. Let v ∈ V be a local transition bound
for τ on bρc. Let vb : A → Z be s.t. vb(a) is a variable bound for a on ρ for all

( , a, ) ∈ R(v). Then ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c)

is a transition bound for τ on ρ.

Proof We first show that it is sufficient to consider the case bρc = ρ :
1. Let expr be a transition bound for τ on bρc. Then expr is also a transition bound

for τ on ρ (follows directly from Definition A.2).
2. By assumption vb(a) is a variable bound for a on ρ. By Definition A.2 we have
that vb(a) is also a variable bound for a on bρc. We thus assume that bρc = ρ.

We have to show:

](τ, ρ) ≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c)

A) We first show that

](τ, ρ) ≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

We have

](τ, ρ)
(1)

≤ ](τ, ρ) +

len(ρ)−1∑
i=0

σi+1(v)− σi(v)

(2a)
= ](τ, ρ) +

len(ρ)−1∑
i=0

max(σi+1(v)− σi(v), 0) +
len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0)

(2)

≤
len(ρ)−1∑
i=0

max(σi+1(v)− σi(v), 0)

(3a)
=

 ∑
i∈Θ(I(v),ρ)

max(σi+1(v)− σi(v), 0)

+
∑

i∈Θ(R(v),ρ)

max(σi+1(v)− σi(v), 0)

(3)

≤

 ∑
i∈Θ(I(v),ρ)

max(σi+1(v)− σi(v), 0)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(4)

≤

 ∑
(t,c)∈I(v)

∑
0≤i<len(ρ) s.t. ρ(i)=t

c

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(5)
=

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

j∈Θ(R(v),ρ)

σj+1(v)
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(1) We have
len(ρ)−1∑
i=0

σi+1(v)− σi(v) = σlen(ρ)(v)− σ0(v) = σlen(ρ)(v)

because σ0(v) = 0 with i) ρ = bρc and ii) v 6∈ def(lb) (Definition 14).

Trivially σlen(ρ)(v) ≥ 0. Therefore
len(ρ)−1∑
i=0

σi+1(v)− σi(v) ≥ 0.

(2a) Case Distinction
(2) We have ](τ, ρ) ≤ ↓(v, ρ) (Definition 9).

Further ↓(v, τ) ≤

(
len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0)

)
×−1.

Thus ](τ, ρ) +
len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0) ≤ 0.

(3a) σi+1(v) − σi(v) > 0 implies in particular that σi+1(v) > 0. Thus v ∈ def(li+1)
because ρ = bρc by assumption. With σi+1(v) > σi(v) we have that either:
Case 1) (ρ(i), ) ∈ I(v), i.e., i ∈ Θ(I(v), ρ), or
Case 2) (ρ(i), , ) ∈ R(v), i.e., i ∈ Θ(R(v), ρ).

(3) Since σi(v) ≥ 0 we have that σi+1(v)− σi(v) ≤ σi+1(v).
(4) If i ∈ Θ(I(v), ρ) then there is (t, c) ∈ Incr(v) s.t. ρ(i) = t (Definition A.1).

Further σi+1(v)− σi(v) ≤ c and c > 0 (Definition 18).
(5) By definition of ](t, ρ) (Definition 7).

B) We show that
∑

j∈Θ(R(v),ρ)

σj+1(v) ≤
∑

(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c):

∑
j∈Θ(R(v),ρ)

σj+1(v)
(1)
=

∑
(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

σj+1(v)

(2)

≤
∑

(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

σj(a) + c

(3)

≤
∑

(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

vb(a) + c

(4)
=

∑
(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c)

(1) By commutativity: Let j ∈ Θ(R(v), ρ). By the assumption that ∆P is fan-in

free there is only exactly one a ∈ A and exactly one c ∈ Z s.t. (ρ(j), a, c) ∈ R(v).
(2) With (ρ(j), a, c) ∈ R(v) we have that σj+1(v) ≤ σj(a) + c (Definition 18).
(3) Let (t, a, ) ∈ R(v). By assumption vb(a) is a variable bound for a on ρ. Let j ∈

Θ(t, ρ). We have that a ∈ def(lj) by well-definedness of ∆P. Thus σj(a) ≤ vb(a).
(4) Let (t, a, c) ∈ R(v). We have

∑
j∈Θ(t,ρ)

vb(a) + c = |Θ(t, ρ)| × (vb(a) + c).

Further |Θ(t, ρ)| = ](t, ρ) (Definition 7).

With A) and B) we have

](τ, ρ) ≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c).

ut
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Lemma A.3 states that the value of a variable v ∈ V on a run ρ of ∆P is limited
by the maximum over all values to which v is reset on ρ plus the total amount by
which v is incremented on ρ.

Lemma A.3 Let v ∈ V. Let ρ be a run of ∆P. Let vb : A → Z be s.t. vb(a) is a

variable bound for a on ρ for all ( , a, ) ∈ R(v). Then

max
( ,a,c)∈R(v)

(vb(a) + c) +
∑

(τ,c)∈I(v)
](τ, ρ)× c

is a variable bound for v on ρ.

Proof We have to show that

σi(v) ≤ max
( ,a,c)∈R(v)

(vb(a) + c) +
∑

(τ,c)∈I(v)
](τ, ρ)× c

holds for all 0 ≤ i ≤ len(ρ) with v ∈ def(li).
Let 0 ≤ i ≤ len(ρ) be s.t. v ∈ def(li). By well-definedness of ∆P there is a

0 ≤ j < i, a b ∈ A and a c ∈ Z s.t. (ρ(j), b, c) ∈ R(v) and v is not reset on ρ[j+1,i],
i.e., for all j < k < i (ρ(k), , ) 6∈ R(v). In other words: there is a maximal index
j < i such that v is reset on ρ(j). We have:

σi(v)
(1)

≤ σj+1(v) +
∑

(τ,c)∈I(v)
](τ, ρ[j+1,i])× c

(2)

≤ σj+1(v) +
∑

(τ,c)∈I(v)
](τ, ρ)× c

(3)

≤ σj(b) + c+
∑

(τ,c)∈I(v)
](τ, ρ)× c

(4)

≤ vb(b) + c+
∑

(τ,c)∈I(v)
](τ, ρ)× c

(5)

≤ max
( ,a,c)∈R(v)

(vb(a) + c) +
∑

(τ,c)∈I(v)
](τ, ρ)× c

(1) We have that v is not reset on ρ[j+1,i]. If v is incremented on ρ[j+1,i] there are
indices j < k < i s.t. (ρ(k), ) ∈ I(v). Let (τ, c) ∈ I(v). An execution of τ can
increase the value of v by at most c (Definition 18). Therefore the total number
](τ, ρ[j+1,i]) of executions of τ on ρ[j+1,i] adds at most ](τ, ρ[j+1,i]) × c to v.
Thus in total v cannot be increased by more than

∑
(τ,c)∈I(v)

](τ, ρ[j+1,i])× c on

ρ.
(2) ](τ, ρ[j+1,i]) ≤ ](τ, ρ). Further for all ( , c) ∈ I(v) c ≥ 0 (Definition 18).
(3) σj+1(v) ≤ σj(b) + c (Definition 12).
(4) With (ρ(j), b, c) ∈ R(v) we have by assumption that vb(b) is a variable bound

for b on ρ. Further b ∈ def(lj) by well-definedness of ∆P. Thus σj(b) ≤ vb(b).
(5) We have (ρ(j), b, c) ∈ R(v). Therefore vb(b) + c ≤ max

( ,a,c)∈R(v)
(vb(a) + c). ut
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A.1.1 Proof of Theorem 1

We show the more general claim formulated in Theorem A.1.

Theorem A.1 Let ∆P(L,E, lb, le) be a well-defined and fan-in free DCP over atoms

A. Let Ξ be a set of runs of ∆P closed under normalization. Let ζ : E 7→ Expr(A) be a

local bound mapping for all ρ ∈ Ξ. Let TB and VB be defined as in Definition 19. Let

a ∈ A and τ ∈ E. Let ρ ∈ Ξ. Let σ0 be the initial state of ρ. We have: (I) JTB(τ)K(σ0)
is a transition bound for τ on ρ. (II) JVB(a)K(σ0) is a variable bound for a on ρ.

Proof Let ρ = (σ0, l0)
u0−−→ (σ1, l1)

u1−−→ · · · ∈ Ξ.

If JTB(τ)K =∞ (I) holds trivially. If JVB(a)K =∞ (II) holds trivially.

Assume JTB(τ)K 6= ∞ and JVB(a)K 6= ∞. Then in particular the computation
of TB(τ) resp. VB(a) terminates. We proceed by induction over the call tree of
TB(τ) resp. VB(a).

Base Case:

(I) No function call is triggered when computing VB(a). This is the case iff
a ∈ C (Definition 19). Then VB(a) = a and the claim holds trivially with a ∈ C
(Definition 13).
(II) No function call is triggered when computing TB(τ). This is the case iff
ζ(τ) 6∈ V (Definition 19). Then JTB(τ)K(σ0) = Jζ(τ)K(σ0) is a transition bound

for τ on ρ by Definition 17.

Step Case:

(I) a 6∈ C, thus a ∈ V. Let v = a. Let 0 ≤ i ≤ len(ρ) be s.t. v ∈ def(li). We have:

σi(v)
(1)

≤ max
( ,b,c)∈R(v)

(JVB(b)K(σ0) + c) +
∑

(t,c)∈I(v)
](t, ρ)× c

(2)

≤ max
( ,b,c)∈R(v)

(JVB(b)K(σ0) + c) +
∑

(t,c)∈I(v)
JTB(t)K(σ0)× c

(3)
= J max

( ,b,c)∈R(v)
(VB(b) + c)K(σ0) + JIncr(v)K(σ0)

(4)
= JVB(v)K(σ0)

(1) By Lemma A.3: Let ( , b, ) ∈ R(v). We have that VB(b) is recursively called
when computing VB(v) (Definition 19). Note that with JVB(v)K 6= ∞ also
JVB(b)K 6=∞. By I.H. JVB(b)K(σ0) is a variable bound for b on ρ.

(2) Let (t, ) ∈ I(v). We have that TB(t) is called when computing VB(v) (Defi-
nition 19). Note that with JVB(v)K 6= ∞ also JTB(t)K 6= ∞. By I.H. ](t, ρ) ≤
JTB(t))K(σ0). We thus get

∑
(t,c)∈I(v)

](t, ρ)×c ≤
∑

(t,c)∈I(v)
JTB(t)K(σ0)×c because

for all ( , c) ∈ I(v) we have c > 0 (Definition 18).
(3) JIncr(v)K(σ0) =

∑
(t,c)∈I(v)

JTB(t)K(σ0)× c (Definition 19 and Definition 15).

(4) Definition 19 and Definition 15.
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(II) ζ(τ) ∈ V. We have:

](τ, ρ)
(1)

≤ (
∑

(t,c)∈I(ζ(τ))
](t, ρ)× c) +

∑
(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(2)

≤
∑

(t,c)∈I(ζ(τ))
JTB(t)K(σ0)× c+

∑
(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(3)
= JIncr(ζ(τ))K(σ0) +

∑
(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(4)

≤ JIncr(ζ(τ))K(σ0) +
∑

(t,b,c)∈R(ζ(τ))

JTB(t)K(σ0)×max(JVB(b)K(σ0) + c, 0)

(5)
= JTB(τ)K(σ0)

(1) By Lemma A.2: Since Ξ is closed under normalization we have that ζ(τ) is a
local transition bound for τ on bρc. Further: Let ( , b, ) ∈ R(ζ(τ)). We have that
VB(b) is called during the computation of TB(τ) (Definition 19). Note that
with JTB(τ)K 6= ∞ also JVB(b)K 6= ∞. By I.H. JVB(b)K(σ0) is a variable bound

for b.
(2) Let (t, ) ∈ I(ζ(τ)). We have that there is a recursive call to TB(t) during

the computation of TB(τ) (Definition 19). Note that with JTB(τ)K 6= ∞ also
JTB(t)K 6= ∞. By I.H. ](t, ρ) ≤ JTB(t)K(σ0). Further for all ( , c) ∈ I(v) c ≥ 0
(Definition 18).

(3) Definition 19 and Definition 15.
(4) Let (t, , ) ∈ R(ζ(τ)). We have that TB(t) is recursively called during the

computation of TB(τ) (Definition 19). Note that with JTB(τ)K 6= ∞ also
JTB(t)K 6=∞. By I.H. ](t, ρ) ≤ JTB(t)K(σ0).

(5) Definition 19 and Definition 15. ut

A.2 Soundness of Reasoning Based on Reset Chains

Lemma A.7 extends Lemma A.2 by chained resets. Lemma A.4, Lemma A.5 and
Lemma A.6 are helper lemmas needed for the proof of Lemma A.7.

Definition A.3 (Matching of a Reset Chain) Let κ = an
τn,cn−−−−→ an−1

τn−1,cn−1−−−−−−−→
· · · a0 be a reset chain of ∆P. Let ρ be a run of ∆P. We call in, in−1 . . . i1 ∈ N with
0 ≤ in < in−1 · · · < i1 < len(ρ) a matching of κ on ρ iff ρ(ij) = τj holds for
all n ≥ j ≥ 1. We call in the first index and i1 is the last index. A matching
in, in−1, . . . , i1 of κ on ρ is precise iff for all n > j ≥ 1 it holds that aj is not reset

on ρ[ij+1+1,ij ], i.e., (ρ(k), , ) 6∈ R(aj) for all ij+1 < k < ij .

Informally: There is a matching of κ = an
τn,cn−−−−→ an−1

τn−1,cn−1−−−−−−−→ · · · a0 on a run ρ

if ρ contains the transitions τn, τn−1, . . . , τ1 in that order. A matching in, in−1, . . . i1
is precise if for all n > j ≥ 1 it holds that aj flows into aj−1 when executing ρ(ij)
because aj is not reset between the reset of aj to aj+1 on ρ(ij+1) and the reset of
aj−1 to aj on ρ(ij).

Definition A.4 (First- and Last-Indices of Precise Matchings) Let ρ be a run

of ∆P. Let κ = an
τn,cn−−−−→ an−1

τn,cn−−−−→ . . .
τ1,c1−−−→ a0 be a reset chain. We define
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α(κ, ρ) to denote the set
{(in, i1) | ∃in−1, . . . , i2 s.t. in, in−1, in−2, . . . , i2, i1 is a precise matching of κ on ρ}.

I.e., α(κ, ρ) is the set of first- and last-indices of all precise matchings of κ on
ρ. Note that in particular i ≤ j for all (i, j) ∈ α(κ, ρ), i.e., the interval [i . . . j] is
non-empty.

Given a reset chain κ from b to v and a precise matching of κ on a run ρ with
first index i and last index j, Lemma A.4 states that the value of v in state σj on
ρ is bounded by the value of b in state σi on ρ and the increments of a ∈ atm(κ)
between index i and index j on ρ.

Lemma A.4 Let ρ be a run of ∆P. Let b ∈ A and v ∈ V. Let κ be a reset chain from

b to v. Let (i, j) ∈ α(κ, ρ). Then

σj+1(v) ≤ σi(b) + c(κ) +
∑

a∈atm(κ)\{v}

∑
(τ,c)∈I(a)

](τ, ρ[i+1,j])× c

holds.

Proof We show the claim by induction on the length of κ.

Base Case: Let κ = b
τ,c−−→ v. With (i, j) ∈ α(κ, ρ) we have that i = j and ρ(i) =

ρ(j) = τ . Further we have that (τ, b, c) ∈ R(v) (Definition 20). Thus σj+1(v) =
σi+1(v) ≤ σi(b) + c (Definition 18). Note that atm(κ) \ {v} = ∅ since b /∈ atm(κ)
(Definition 20).

Step Case: Let κ = an+1
τn+1,cn+1−−−−−−−→ an

τn,cn−−−−→ . . .
τ1,c1−−−→ v with an+1 = b. Let

in+1, in, in−1, . . . , i1 be a precise matching of κ on ρ with in+1 = i and i1 = j.

σj+1(v) = σi1+1(v)
(1)

≤ σin (an) + c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

(2)

≤ σin+1+1(an) + (
∑

(τ,c)∈I(an)
](τ, ρ[in+1+1,in])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

(3)

≤ σin+1 (an+1) + cn+1 + (
∑

(τ,c)∈I(an)
](τ, ρ[in+1+1,in])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

(4)

≤ σin+1 (an+1) + cn+1 + (
∑

(τ,c)∈I(an)
](τ, ρ[in+1+1,i1])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

(5)
= σin+1 (an+1) + c(κ) +

∑
a∈atm(κ)\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

(1) By I.H.: We have that κ[n,0] is also a reset chain (Definition 20, note that κ[n,0]
is non-empty by definition of κ) and since in+1, in, . . . , i1 is a precise matching
of κ on ρ, in, . . . , i1 is a precise matching of κ[n,0] on ρ (Definition A.3).
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(2) We have that for all in+1 < j < in (ρ(j), , ) 6∈ R(an) (Definition A.3), i.e., an
is not reset on ρ[in+1+1,in]. In the proof of Lemma A.3 we show that
σin(an) ≤ σin+1+1(an) +

∑
(τ,c)∈I(an)

](τ, ρ[in+1+1,in])× c.

(3) σin+1+1(an) ≤ σin+1(an+1) + cn+1 (Definition 20)
(4) Note that [in+1 + 1 . . . in] is a sub-interval of [in+1 + 1 . . . i1]. Therefore

](τ, ρ[in+1+1,in]) ≤ ](τ, ρ[in+1+1,i1]) for all τ ∈ E. Accordingly [in + 1 . . . i1] is a
sub-interval of [in+1 + 1 . . . i1]. Therefore ](τ, ρ[in+1,i1]) ≤ ](τ, ρ[in+1+1,i1]) for
all τ ∈ E. We thus get∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,in])× c ≤
∑

(τ,c)∈I(a)
](τ, ρ[in+1+1,i1])× c and∑

(τ,c)∈I(a)
](τ, ρ[in+1,i1])× c ≤

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

because we have that for all v ∈ V and for all ( , c) ∈ I(v) it holds that c > 0
(Definition 18).

(5) We have c(κ) = c(κ[n,0])+cn+1 and atm(κ) = atm(κ[n,0])∪{an} (Definition 20).
ut

Let v ∈ V. Lemma A.5 states that for each index j on a run ρ s.t. v is reset on
ρ(j), there is a corresponding optimal reset chain κ and a precise matching of κ on
ρ ending at j.

Lemma A.5 Let ρ be a run of ∆P. Let v ∈ V. Let (τ, , ) ∈ R(v). Let j be s.t.

ρ(j) = τ . There is a κ ∈ R(v) and a i ≤ j s.t. (i, j) ∈ α(κ, ρ).

Proof Let a ∈ A and c ∈ Z be such that (τ, a, c) ∈ R(v) (note that by determinism

of ∆P there is exactly one such a and c). We proof the claim by the following
recursive reasoning:

[Start] We show that there is a sound reset chain κ that ends at v and a precise

matching of κ on ρ that ends at j: Obviously a
τ,c−−→ v is a reset chain. Further

a
τ,c−−→ v is trivially sound (Definition 20). We have that j is a precise matching for

a
τ,c−−→ v on ρ because by assumption ρ(j) = τ (Definition A.3).

[Recursive Step] We thus have that there is a sound reset chain κ = an
τn,cn−−−−→

an−1
τn−1,cn−1−−−−−−−→ . . .

τ1,c1−−−→ v and a precise matching in, in−1, . . . , i1 of κ on ρ with
i1 = j. If κ is optimal then κ ∈ R(v) (Definition 20) and with (in, j) ∈ α(κ, ρ) the
claim is proven. Assume κ is not optimal. Then an ∈ V because κ is not maximal
(Definition 20). By well-definedness of ∆P an is reset on ρ[0,in], i.e., there is a
0 ≤ k < in s.t. (ρ(k), , ) ∈ R(an). Let in+1 denote the maximal such k. Let
τn+1 = ρ(in+1). Let an+1 ∈ A and cn+1 ∈ Z be s.t. (τn+1, an+1, cn+1) ∈ R(an).

Then κ = an+1
τn+1,cn+1−−−−−−−→ an

τn,cn−−−−→ an−1 . . . v is a reset chain ending in v and
in+1, in, . . . , i1 is a precise matching of κ on ρ (Definition A.3). We show that κ
is sound: First note that κ[n,0] = κ and because κ is sound we have that for all
1 ≤ i < n it holds that ai is reset on all paths from the target location of τ1 to the

source location of τi. It remains to show that this also holds for an. Since κ is not
optimal there is a sound reset chain that extends κ (Definition 20). Now, because
an is on that extended sound reset chain we have that also an is reset on all paths

from the target location of τ1 to the source location of τn (Definition 20). We conclude
that κ is sound. We can thus recursively apply our reasoning on κ.
[Termination] Since by assumption the reset graph is acyclic and its node set A
is finite, a optimal reset chain κ ∈ R(v) and a matching of κ that ends at j is
constructed by iterating the stated reasoning finitely often. ut
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Note that with Lemma A.4 and Lemma A.5 we can bound the value to which v is
reset at index j in terms of the value of in(κ) at index i, where i is the start-index
of the matching that ends at j.

Lemma A.6 states that precise matchings of optimal reset chains that share a
common suffix never overlap.

Lemma A.6 Let ρ be a run of ∆P. Let v ∈ V. Let κ,κ ∈ R(v) be s.t. κ and κ
have a common suffix, i.e., there exists l > 0 s.t. κ[l,0] = κ[l,0]. Let (ik, i1) ∈ α(κ, ρ)
and (jn, j1) ∈ α(κ, ρ). Either κ = κ and [ik . . . i1] = [jn . . . j1] or the two intervals

[ik . . . i1] and [jn . . . j1] are disjoint, i.e., i1 < jn or j1 < ik.

Proof Let κ = ak
τk,ck−−−−→ ak−1 . . . a1

τ1,c1−−−→ v. Let κ = bn
tn,cn−−−−→ bn−1 . . . b1

t1,c1−−−→ v.
Let ik, ik−1, . . . i1 be a precise matching of κ on ρ.
Let jn, jn−1, . . . j1 be a precise matching of κ on ρ.
[A] We show that if i1 = j1 then ik = jn and κ = κ: W.l.o.g. assume k ≤ n.
[A.1] We show that for all k ≤ l ≤ 1 il = jl: By assumption i1 = i1 = j1 = j1. We
conclude that a1 = b1 because since ∆P is fan-in free there is exactly one a1 s.t.
(a1, , ρ(i1)) ∈ R(v). Assume i2 6= j2. Case j2 < i2: By Definition A.3 a1 is not reset

on ρ[j2+1,j1], i.e., (ρ(k), ) 6∈ R(a1) for all j2 < k < j1. Note that j2 < i2 < i1 = j1.
We have (ρ(i2), , ) ∈ R(b1) (Definition A.3 and Definition 20). With a1 = b1 we
have (ρ(i2), , ) ∈ R(a1). Contradiction. Case i2 < j2: Analogous. Thus i2 = j2.
We apply the same reasoning for i3, i4 . . . ik consecutively.
[A.2] We show that k = n: By [A.1] we have that κ[k,1] = κ (Definition A.3). Thus
κ is a suffix of κ. But by assumption κ is optimal. Thus κ = κ (Definition 20).
[A] is proven with [A.1] and [A.2].
[B] We show that if i1 6= j1 then i1 < jn or j1 < ik, i.e., the intervals [ik . . . i1] and
[jn . . . j1] are disjoint:
[B.1] We have ρ(i1) = ρ(j1) = t1 because by assumption κ and κ have a common
suffix.
[B.2] We show [B.2.i] that for all l with jn ≤ l < j1 it holds that ρ(l) 6= t1 and
[B.2.ii] that for all l with ik ≤ l < i1 it holds that ρ(l) 6= t1.
[B.2.i] Assume there is some l with jn ≤ l < j1 s.t. ρ(l) = t1. Then there is
some n ≥ r > 1 s.t. jr ≤ l < jr−1. Since jn, jn−1, . . . j1 is a precise matching of
κ we have that for all jr < s < jr−1 (ρ(s), , ) 6∈ R(ar−1) (Definition A.3). But
since κ is sound ar−1 must be reset on all paths from the target location of t1 to

the source location of tr−1, i.e., in particular on ρ[l+1,jr−1] because ρ(l) = t1 and
ρ(jr−1) = tr−1 (Definition A.3). Thus there must be some s with jr ≤ l < s < jr−1

s.t. (ρ(s), , ) ∈ R(ar−1). Contradiction.
[B.2.ii] Analogous.
[B.1] and [B.2] imply [B]: By assumption i1 6= j1. W.l.o.g. let i1 < j1. With ik ≤ i1
and jn ≤ j1 we have ik < j1. We thus have to show that i1 < jn: Assume jn ≤ i1:
Then jn ≤ i1 < j1. But with [B.1] this contradicts [B.2]. Therefore i1 < jn.
With [A] and [B] the claim is proven. ut

Lemma A.7 extends Lemma A.2 by chained resets. Let v be a local bound for τ :
The question how often a given transition τ may appear on a run ρ is translated to
the question how often the transitions that increase the value of the local bound v

are executed. But in contrast to Lemma A.2 Lemma A.7 takes the context under
which these transitions may increase v into account. See Section 3.3 for more
details.



10

Lemma A.7 Let ρ = (σ0, l0)
u0−−→ (σ1, l1)

u1−−→ . . . be a run of ∆P. Let τ ∈ E. Let
v ∈ V be a local bound for τ on bρc. Let vb : A → Z be s.t. vb(a) is a variable bound
for a on ρ for all a ∈ {in(κ) | κ ∈ R(v)}. Then ∑

a∈
⋃

κ∈R(v)
atm1(κ)

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

( min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

is a transition bound for τ on ρ.

Proof As argued in the proof of Lemma A.2 it is sufficient to consider the case
ρ = bρc.

A) As shown in the proof of Lemma A.2 we have that

](τ, ρ) ≤

( ∑
(t,c)∈I(v)

](t, ρ)× c

)
+

∑
j∈Θ(R(v),ρ)

σj+1(v)

B) We show that

∑
j∈Θ(R(v),ρ)

σj+1(v) ≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

( min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

With Lemma A.5 we have that for each j ∈ Θ(R(v), ρ) there is at least one
κ ∈ R(v) and one i ≤ j s.t. (i, j) ∈ α(κ, ρ).

Further: Let κ ∈ R(v). Let (i, j) ∈ α(κ, ρ). With Lemma A.4 we have that:
σj+1(v) ≤ σi(in(κ)) + c(κ) +

∑
a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c

Therefore:

∑
j∈Θ(R(v),ρ)

σj+1(v) ≤
∑

κ∈R(v)

∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c

(1a)
=

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)


+

 ∑
(i,j)∈α(κ,ρ)

∑
a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c


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(1b)
=

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)ρ

σi(in(κ)) + c(κ)


+

∑
a∈atm(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

(1)
=

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)ρ

σi(in(κ)) + c(κ)


+

∑
a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

(2)

≤
∑

κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)


+

∑
a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3a)
=

 ∑
κ∈R(v)

∑
a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3b)
=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

∑
κ∈R(v) s.t. a∈atm1(κ)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3c)
=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
κ∈R(v) s.t. a∈atm1(κ)

∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c
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(3)

≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(4)

≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

vb(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(5a)
=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

|α(κ, ρ)| × (vb(in(κ)) + c(κ))

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(5)

≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

( min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(1a) Commutativity.
(1b) Distributivity.
(1) We have atm(κ) = atm1(κ) ∪ atm2(κ), atm1(κ) ∩ atm2(κ) = ∅ and v ∈ atm1(κ)

(Definition 22).
(2) With Lemma A.6 we have that all intervals in α(κ, ρ) are pairwise disjoint.

Therefore
∑

(i,j)∈α(κ,ρ)
](t, ρ[i+1,j]) ≤ ](t, ρ). Further note that c > 0 for ( , c) ∈

I(a).
(3a) Commutativity.
(3b) Commutativity.
(3c) Distributivity.
(3) Let κ1, κ2 ∈ R(v). Assume a ∈ atm1(κ1)∩atm1(κ2) and a 6= v. By Definition 22

there is exactly one path in the reset graph from a to v. Thus κ1 and κ2 have
a common suffix: they share the single path from a to v in the reset graph.
We therefore have by Lemma A.6 that all intervals in α(κ1, ρ) ∪ α(κ2, ρ) are
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pairwise disjoint. Therefore
∑

κ∈R(v) s.t. a∈atm1(κ)

∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j]) ≤ ](t, ρ).

Further note that c > 0 for ( , c) ∈ I(a).
(4) Let κ ∈ R(v). By assumption vb(in(κ)) denotes a variable bound for in(κ) on

ρ.
(5a) With

∑
(i,j)∈α(κ,ρ)

vb(in(κ)) + c(κ) = |α(κ, ρ)| × (vb(in(κ)) + c(κ))

(5) Let κ ∈ R(v). Let (i1, j1), (i2, j2) ∈ α(κ, ρ). We have by Lemma A.6 that all
intervals in α(κ, ρ) are pairwise disjoint. Further each transition t ∈ trn(κ)
appears at least once on each sub-run ρ[i,j] with (i, j) ∈ α(κ, ρ). Therefore:
|α(κ, ρ)| ≤ min

t∈trn(κ)
](t, ρ).

C)

](τ, ρ)
(1)

≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

( min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(2)
=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

( min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(1) With A) and B).
(2) We have R(v) 6= ∅ by well-definedness of ∆P and therefore R(v) 6= ∅. Further

v ∈ atm1(κ) for all κ ∈ R(v). ut

A.2.1 Proof of Theorem 2

We prove the more general claim formulated in Theorem A.2.

Theorem A.2 (Soundness of Bound Algorithm based on Reset Chains) Let

∆P(L,E, lb, le) be a well-defined and fan-in free DCP over atoms A with a reset dag.

Let Ξ be a set of runs of ∆P that is closed under normalization. Let ζ : E 7→ Expr(A)
be a local bound mapping for all ρ ∈ Ξ. Let TB and VB be defined as in Definition 23.

Let τ ∈ E and a ∈ A. Let ρ ∈ Ξ. Let σ0 be the initial state of ρ. We have: (I)

JTB(τ)K(σ0) is a transition bound for τ on ρ. (II) JVB(a)K(σ0) is a variable bound
for a on ρ.

Proof Let ρ = (σ0, l0)
u0−−→ (σ1, l1)

u1−−→ · · · ∈ Ξ.

If JTB(τ)K =∞ (I) holds trivially. If JVB(a)K =∞ (II) holds trivially.
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Assume JTB(τ)K 6= ∞ and JVB(a)K 6= ∞. Then in particular the computation
of TB(τ) resp. VB(a) terminate. We proceed by induction over the call tree of
TB(τ) resp. VB(a).

Base Case: As in the proof of Theorem A.1 (Section A.1.1).

Step Case:
I) As in the proof of Theorem A.1 (Section A.1.1).
II)

](τ, ρ)
(1)

≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

( min
t∈trn(κ)

](t, ρ))×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

(2)

≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

( min
t∈trn(κ)

JTB(t)K(σ0))×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

(3)

≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

(4)

≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

JTB(t)K(σ0)× c


+

∑
κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

JTB(t)K(σ0)× c
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(5)
= JIncr(

⋃
κ∈R(ζ(τ))

atm1(κ))K(σ0)

+
∑

κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+ JIncr(atm2(κ))K(σ0)

(6)
= JTB(τ)K(σ0)

(1) By Lemma A.7: Since Ξ is closed under normalization we have that ζ(τ) is a local

bound for τ on bρc. Further: Let κ ∈ R(ζ(τ)). We have that VB(in(κ)) is called
during the computation of TB(τ) (Definition 23). Note that with JTB(τ)K 6=∞
also JVB(in(κ))K 6=∞. By I.H. JVB(in(κ))K(σ0) is a variable bound for in(κ).

(2) Let κ ∈ R(ζ(τ)). Let t ∈ trn(κ). We have that TB(t) is called during the
computation of TB(τ). Thus for t ∈ trn(κ) with JTB(t)K 6= ∞ we have that
JTB(t)K(σ0) is a transition bound for t on ρ by I.H.. Note that with JTB(τ)K 6=∞
there is a t ∈ trn(κ) s.t. JTB(t)K 6=∞. Thus min

t∈trn(κ)
](t, ρ) ≤ min

t∈trn(κ)
JTB(t)K(σ0).

(3) With TB(trn(κ)) = min
t∈trn(κ)

TB(t) (Definition 23) and Definition 15.

(4) Let κ ∈ R(ζ(τ)). Let b ∈ atm(κ). Let (t, ) ∈ I(b). We have that TB(t) is
called when computing TB(τ) (Definition 23). Note that with JTB(τ)K 6= ∞
also JTB(t)K 6=∞. By I.H. ](t, ρ) ≤ JTB(t)K(σ0).

(5) Definition 23 and Definition 15.
(6) Definition 23 and Definition 15. ut
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