Supporting Information

No.	Descriptor	Туре	Software
1	The number of residues	Constitutional descriptor	ProtorP [1]
2	The number of polar residues	Constitutional descriptor	ProtorP [1]
3	The number of nonpolar residues	Constitutional descriptor	ProtorP [1]
4	The number of neutral residues	Constitutional descriptor	ProtorP [1]
5	The number of positively charged residues	Constitutional descriptor	ProtorP [1]
6	The number of negatively charged residues	Constitutional descriptor	ProtorP [1]
7	The number of aromatic residues	Constitutional descriptor	ProtinDB [2]
8	The number of hotspot residues	Constitutional descriptor	KFC2 [3]
9	The number of critical residues	Constitutional descriptor	PCRPi-W [4]
10	The percentage of buried residues	Constitutional descriptor	ProScale [5]
11	The percentage of accessible residues	Constitutional descriptor	ProScale [5]
12	The number of hydroxyl groups	Constitutional descriptor	PSAIA [6]
13	The number of amides	Constitutional descriptor	PSAIA [6]
14	The number of carboxyl groups	Constitutional descriptor	PSAIA [6]
15	The number of ammonium salts	Constitutional descriptor	PSAIA [6]
16	The number of sulfhydryl groups	Constitutional descriptor	PSAIA [6]
17	The number of benzene rings	Constitutional descriptor	PSAIA [6]
18	The number of atoms	Constitutional descriptor	ProtorP [1]
19	The number of heavy atoms	Constitutional descriptor	ProFace [7]
20	The number of hydrogen atoms	Constitutional descriptor	ProFace [7]
21	The number of carbon atoms	Constitutional descriptor	ProFace [7]
22	The number of oxygen atoms	Constitutional descriptor	ProFace [7]
23	The number of nitrogen atoms	Constitutional descriptor	ProFace [7]
24	The number of sulfur atoms	Constitutional descriptor	ProFace [7]
25	The relative quantity of α -helices	Constitutional descriptor	DSSP [8]
26	The relative quantity of B-strands	Constitutional descriptor	DSSP [8]
27	The relative quantity of coils	Constitutional descriptor	DSSP [8]
28	Number of pocket	Constitutional descriptor	Q-SiteFinder [9]
29	Sum of atomic contact vectors	Contacting descriptor	NOXclass [10]
30	Atomic contact energy	Contacting descriptor	FastContact [11]
31	Residue contact propensity	Contacting descriptor	FastContact [11]
32	Pairwise interaction	Contacting descriptor	HORI [12]
33	Triplet interaction	Contacting descriptor	HORI [12]
34	Quadruple interaction	Contacting descriptor	HORI [12]
35	The number of residue-pairs in contact	Contacting descriptor	CMAPpro [13]
36	The number of atom-pairs in contact	Contacting descriptor	SPACE [14]
37	Residue match index	Contacting descriptor	HotPatch [15]
38	Total empirical contact potential	Contacting descriptor	PISA [16]
39	Residue interaction index	Contacting descriptor	PISA [16]
40	Core steric contact	Contacting descriptor	Probe [17]
41	Interface packing rate	Contacting descriptor	Probe [17]
42	Complementarity Index	Contacting descriptor	Probe [17]
43	Hydrophobic packing index	Contacting descriptor	PSAIA [6]
44	Total molecular weight	Geometrical descriptor	ProScale [5]
45	Average buried area	Geometrical descriptor	MSMS [18]
46	Average exposed area	Geometrical descriptor	MSMS [18]
47	Relative size of interface to surface	Geometrical descriptor	MSMS [18]
48	Accessible surface area of interface	Geometrical descriptor	MSMS [18]
49	Connectivity index	Geometrical descriptor	EMBnet [19]
50	Connectivity correlation	Geometrical descriptor	EMBnet [19]
51	Planarity	Geometrical descriptor	SHARP2 [20]
52	Eccentricity	Geometrical descriptor	ProtorP [1]

Table S2. The 110 descriptors used to characterize protein–protein interface

52	T	Commentaria 1.1	Des. (
53	Length	Geometrical descriptor	ProtorP [1]
54	Breadth	Geometrical descriptor	ProtorP[1]
55	Gap volume	Geometrical descriptor	ProtorP [1]
56	Gap volume index	Geometrical descriptor	ProtorP [1]
57	Interface accessibility	Geometrical descriptor	ProtorP [1]
58	Voronoi volume	Geometrical descriptor	D1MoVo[21]
59	van der Waals volume	Geometrical descriptor	VEGA [22]
60	Hotspot size	Geometrical descriptor	KFC2 [3]
61	Iotal pocket size	Geometrical descriptor	Q-SiteFinder [9]
62	The degree of curvature	Geometrical descriptor	CASTp [23]
63	Average diameter	Geometrical descriptor	Plasmod-PPI [24]
64	Interface roughness	Geometrical descriptor	ProtFract [25]
65	Interface topology	Geometrical descriptor	CASTp [23]
66	Bulkness	Geometrical descriptor	ProScale [5]
67	Average volume of buried residue	Geometrical descriptor	DEPTH [26]
68	Electrostatic potential	Physicochemical descriptor	DelPhi [27]
69	Interfacial polarity	Physicochemical descriptor	ProtParam [28]
70	Molar refractivity	Physicochemical descriptor	VEGA [22]
71	Average hydrophobicity	Physicochemical descriptor	2D-GraLab [29]
72	Average hydrophilicity	Physicochemical descriptor	2D-GraLab [29]
73	Net charge	Physicochemical descriptor	ProtParam [28]
74	Positive net charge	Physicochemical descriptor	ProtParam [28]
75	Negative net charge	Physicochemical descriptor	ProtParam [28]
76	Dipolar moment	Physicochemical descriptor	ProtParam [28]
77	Average solubility	Physicochemical descriptor	ProtParam [28]
78	Amphipathicity	Physicochemical descriptor	ProtParam [28]
79	Total polarity	Physicochemical descriptor	ProScale [5]
80	Degree of atomic buriedness	Physicochemical descriptor	DEPTH [26]
81	Average flexibility	Physicochemical descriptor	ProScale [5]
82	Interfacial pI	Physicochemical descriptor	ProtParam [28]
83	Instability index	Physicochemical descriptor	ProtParam [28]
84	Aliphatic index	Physicochemical descriptor	ProtParam [28]
85	Relative mutability	Physicochemical descriptor	ProScale [5]
86	Membrane tendency	Physicochemical descriptor	ProScale [5]
87	Refractivity	Physicochemical descriptor	ProScale [5]
88	Hydrophobic moment	Physicochemical descriptor	ProtParam [28]
89	Extinction coefficient	Physicochemical descriptor	ProtParam [28]
90	Average residue depth	Physicochemical descriptor	DEPTH [26]
91	Average z-scale, vector 1	Physicochemical descriptor	PROFEAT [31]
92	Average z-scale, vector 2	Physicochemical descriptor	PROFEAT [31]
93	Average z-scale, vector 3	Physicochemical descriptor	PROFEAT [31]
94	The number of hydrogen bonds	Nonbonded descriptor	HBplus [32]
95	The number of water-mediated hydrogen bonds	Nonbonded descriptor	HBplus [32]
96	Hydrogen bond potential	Nonbonded descriptor	2D-GraLab [29]
97	The number of salt bridges	Nonbonded descriptor	2D-GraLab [29]
98	Salt bridge energy	Nonbonded descriptor	2D-GraLab [29]
99	The number of π - π stacking	Nonbonded descriptor	2D-GraLab [29]
100	Desolvation energy	Nonbonded descriptor	2D-GraLab [29]
101	Conformational entropic penalty	Nonbonded descriptor	2D-GraLab [29]
102	Hydrophobic packing	Nonbonded descriptor	2D-GraLab [29]
103	The electrostatic potential of ion pairs	Nonbonded descriptor	2D-GraLab [29]
104	The number of steric interactions	Nonbonded descriptor	Probe [17]
105	The number of aromatic-sulphur interactions	Nonbonded descriptor	PIC [32]
106	The number of cation- π interactions	Nonbonded descriptor	PIC [32]
107	Long-range electrostatic potential	Nonbonded descriptor	DelPhi [27]
108	Polar solvation contribution	Nonbonded descriptor	DelPhi [27]
109	Nonpolar solvation contribution	Nonbonded descriptor	2D-GraLab [29]
	L		· L · J

110	Empirical nonbonded potential	Nonbonded descriptor	2D-GraLab [29]			
References						
[1]	C. Reynolds, D. Damerell, S. Jones, ProtorP: a <i>Bioinformatics</i> 2009, 25, 413–414.	protein-protein interacti	on analysis server.			
[2]	R. A Jordan, Y. EL-Manzalawy, D. Dobbs, V. Ho residues using local surface structural similarity	onavar, Predicting protei BMC Bioinformatics 20	n–protein interface			
[3]	X. Zhu, J. C. Mitchell, KFC2: a knowledge-ba	ased hot spot prediction	method based on $79,2671-2683$			
[4]	J. S. Mora, S. A. Assi, N. Fernandez-Fuento	es. Presaging critical r	esidues in protein			
	interfaces-web server (PCRPi-W): a web server PLoS ONE 2010, 5, e12352.	er to chart hot spots in	protein interfaces.			
[5]	E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, A. Bairo Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (et					
5 (]	The Proteomics Protocols Handbook, Humana P	ress, 2005, pp.571–607.				
[6]	J. Mihel, M. Sikić, S. Tomić, B. Jeren, K. Vla interaction analyzer <i>PMC Struct Piol</i> 2008 8	ihoviček, PSAIA — pro 21	otein structure and			
[7]	R P Saha R P Bahadur A Pal S Mandal	21. P Chakrabarti ProFace	• a server for the			
[']	analysis of the physicochemical features of protein–protein interfaces <i>BMC Struct</i> . 1					
	2006, 6, 11.	I				
[8]	W. Kabsch, C. Sander, Dictionary of protein s	econdary structure: path	tern recognition of			
	hydrogen-bonded and geometrical features. Biop	oolymers 1983, 22, 2577	-2637.			
[9]	A. T. Laurie, R. M. Jackson, Q-SiteFinder: and	energy-based method fo	or the prediction of			
[10]	H Zhu E S Domingues I Sommer	5, 21, 1908–1916. T. Langauer, NOXela	ss: prediction of			
[10]	protein-protein interaction types <i>BMC Bioinfor</i> .	<i>matics</i> 2006 7 27	ss. prediction of			
[11]	P. C. Champ, C. J. Camacho, FastContact: a fr	ree energy scoring tool	for protein–protein			
LJ	complex structures. Nucleic Acids Res. 2007, 35	, W556–W560.	r r r			
[12]	P. Sundaramurthy, K. Shameer, R. Sreenivasan,	S. Gakkhar, R. Sowdhar	mini, HORI: a web			
	server to compute higher order residue in	nteractions in protein	structures. BMC			
[12]	Bioinformatics 2010, 11, S24.	f				
[13]	P. DI Lena, K. Nagata, P. Baldi, Deep archited <i>Bioinformatics</i> 2012 28 2449–2457	clures for protein conta	et map prediction.			
[14]	V. Sobolev, E. Eval. S. Gerzon, V. Potapov, M.	Babor, J. Prilusky, M. E	delman. SPACE: a			
[]	suite of tools for protein structure prediction and analysis based on complementarity and					
	environment. Nucleic Acids Res. 2005, 33, W39-	-W43.				
[15]	F. K. Pettit, E. Bare, A. Tsai, J. U. Bowie, H	lotPatch: a statistical ap	oproach to finding			
[17]	biologically relevant features on protein surfaces	s. J. Mol. Biol. 2007, 369	9, 863–879.			
[16]	E. Krissinel, K. Henrick, inference of macromol Mol. Biol. 2007, 372, 774–797	lecular assemblies from	crystalline state. J.			
[17]	J M Word S C Lovell T H LaBean H C	Tavlor M E Zalis F	B K Preslev J S			
[1,]	Richardson, D. C. Richardson, Visualizing ar	id quantifying molecul	ar goodness-of-fit:			
	small-probe contact dots with explicit hydr	rogen atoms. J. Mol.	Biol. 1999, 285,			
	1711–1733.					
[18]	M. F. Sanner, A. J. Olson, J. C. Spehner, Redu	aced surface: an efficien	nt way to compute			
[10]	molecular surfaces. <i>Biopolymers</i> 1996, 38, 305–	320. C. V. Jangamaal, Suviag	EMDnot nodo woh			
[19]	L. Falquet, L. Boldoll, V. Ioanniuls, M. Fagni, server Nucleic Acids Res 2003 31 3782–3783	C. V. Jongeneel, Swiss	EMBnet node web			
[20]	Y Murakami S Jones SHARP2 protein-pr	otein interaction predic	ctions using patch			
[-•]	analysis. <i>Bioinformatics</i> 2006, 22, 1794–1795.	oren meneration preak	and and parent			
[21]	J. Bernauer, R. P. Bahadur, F. Rodier, J.	Janin, A. Poupon, Di	MoVo: a Voronoi			
-	tessellation-based method for discrimina	ting crystallographic	and biological			
50.03	protein-protein interactions. Bioinformatics 200	8, 24, 652–658.				
[22]	A. Pedretti, L. Villa, G. Vistoli, VEGA	A — an open plat	torm to develop			
	Comput Aid Mol Des 2004 18 167–173	in architecture and scrip	or programming. J.			

[23] T. A. Binkowski, S. Naghibzadeh, J. Liang, CASTp: computed atlas of surface topography

of proteins. Nucleic Acids Res. 2003, 31, 3352-3355.

- [24] Y. Rodriguez-Soca, C. R. Munteanu, J. Doradob, J. Rabuñal, A. Pazos, H. González-Díaz, Plasmod-PPI: a web-server predicting complexbiopolymer targets in plasmodium with entropymeasures of protein–proteininteractions. *Polymer* 2010, 51, 264–273.
- [25] A. Banerji, I. Ghosh, Revisiting the myths of protein interior: studying proteins with mass-fractal hydrophobicity-fractal and polarizability-fractal dimensions. *PLoS ONE* 2009, 4, e7361.
- [26] K. P. Tan, R. Varadarajan, M. S. Madhusudhan, DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. *Nucleic Acids Res.* 2011, 39: W242–W248.
- [27] N. Smith, S. Witham, S. Sarkar, J. Zhang, L. Li, C. Li, E. Alexov, DelPhi web server v2: incorporating atomic-style geometrical figures into the computational protocol. *Bioinformatics* 2012, 28, 1655–1657.
- [28] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, A. Bairoch, *Protein Identification and Analysis Tools on the ExPASy Server*; (In) J. M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005, p571–607.
- [29] P. Zhou, F. Tian, Z. Shang, 2D depiction of nonbonding interactions for protein complexes. J. Comput. Chem. 2009, 30, 940–951.
- [30] Z. R. Li, H. H. Lin, L. Y. Han, L. Jiang, X. Chen, Y. Z. Chen, FEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. *Nucleic Acids Res.* 2006, 34, W32–W37.
- [31] R. W. W. Hooft, C. Sander, G. Vriend, Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. *Proteins* 1996, 26, 363–376.
- [32] K. G. Tina, PIC: protein interactions calculator. *Nucleic Acids Res.* 2007, 35, W473–W476.