Online Resource 6 - Summary of the code used to simulate quantitative vasopressin
secretion.

The code has to be launched with the Scilab software (version 4.1.2).

// Skokok ok ok >k ok ok ok >k ok ok ok ok ok ok ok >k >k ok ok ok sk ok ok ok sk ok ok ok sk sk ok ok sk ke sk sk sk kok ok

// AVP level simulation based on magnocellular
// neurons simulation

// Louis Nadeau - Louis.Nadeau.3@ulaval.ca
// koK ok ok sk ok sk sk sk ok sk sk sk ok ok sk sk sk sk sk sk sksk sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk k sk sk

//Command to simulate AVP vs Osmo relationship
//0smo=[-20,-15,-10,-5,0,5,10,15,20,30]; for i=1:length(Osmo);
AVPQ_temp=AVP_Simulation(200000,4,3,51,0smo(i),4,10);AVP(i)=mean(AVPQ_temp($-$/4:$));end;

//Function that simulate the AVP secretion caused by a sequence of spikes. The
sequence should be a set of time where a spike occurs and the time scale should be in

millisecond.
function AVPQ=AVP_Simulation(Time,multiplicator,Initial AVP,ECF_Volume,Osmo, Number_Of _Cores,Seed)
lines(0);//Added so that its not necessary to press y or n after each page of output from scilab

//Prepare the parameters for the different population,

//The order and number of each parameter are important, there should be an equal
number of parameters for each type of firing behavior and the order : phasic,irregular and
continuous must be respected so that the population ratio modulate the correct AVP
secretion

Current=[-1,-1.2,-1.4,-1,-1.2,-1.4,-1,-1.2,-1.4]; //Injected current

Ratio_D=[0.75,0.75,0.75,4,4,4,0.25,0.25,0.25]; //Ratio of D increase relative to the default D values for each
population

Ratio_PSP_Freq=[1,1,1,1,1,1,1,1,1]; //Ratio of EPSP frequency increase relative to the default
frequency for each population
Ratio_PSP_Amp=[1,1,1,1,1,1,1,1,1]; //Ratio of EPSP amplitude increase relative to the default

amplitude for each population
Random_Seed=[Seed,Seed,Seed,Seed,Seed,Seed,Seed,Seed,Seed]; //Seed for the random generator during
the neuron simulation of each population

Population=9000;

//The fraction of the population value are from brown1998

//Ratio1=0.263*Population; //Phasic

//Ratio2=0.132*Population; //Irregular

//Ratio3=0.342*Population; //Continuous

//Ratio4=0.263*Population; //Silent - This fraction should be redistributed to the other three types and
should arise naturally from inactive neurons of the other types in control
Ratio1=(0.263+0.263/3)*Population //Phasic

Ratio2=(0.132+0.263/3)*Population; //Irregular

Ratio3=(0.342+0.263/3)*Population; //Continuous

Path_To_Temp_Dir="/home/cybernot/tmp/";
Path_To_Scilab="scilab";
//First part of all the bash commands

Query_command_core="mysql -ucybernot -pmycybernot -N --batch -r -e ""use MagnoSecTest; select Record is
not null from Spike where ";

Sim_command_core=Path_To_Scilab+" -nw -f
/home/cybernot/Documents/Doctorat/Scilab/Neurohypophysis/MagnoNeuron_auto.sce -args ";
Extract_command_core="mysql -ucybernot -pmycybernot -N --batch -r -e ""use MagnoSecTest; select Record
into dumpfile ";

Insert_command_core= "mysql -ucybernot -pmycybernot -N --batch -r -e ""use MagnoSecTest; insert Spike
(Osmo,Time,Current,Ratio_D,Ratio_PSP_Freq,Ratio_PSP_Amp,Seed,Record) values (";
Erase_command_core="mysql -ucybernot -pmycybernot -N --batch -r -e ""use MagnoSecTest; delete from
Spike where ";

//Query the database for the four possible population types
disp("Querying the database");
for i=1:length(Current);

Mysql_where(i)="0smo="+string(Osmo)+" and Time>="+string(Time)+" and Current="+string(Current(i))+
and Ratio_D="+string(Ratio_D(i))+" and Ratio_PSP_Freq="+string(Ratio_PSP_Freq(i))+" and
Ratio_PSP_Amp="+string(Ratio_PSP_Amp(i))+" and Seed="+string(Random_Seed(i))+"""";

Temporary_Answer=evstr(unix_g(Query_command_core+Mysql_where(i)));

if ~isempty(Temporary_Answer) then Answer(i)=Temporary_Answer; else Answer(i)=0; end;
end;

if sum(Answer) < length(Current) then //Case where at least one simulation is needed;
disp("At least one simulation is needed");
disp("Preparing to launch parralel simulations");
//Determination of the simulation to run. At least one simulation will be started but no more than four (the
number of cores on this computer)
for i=1:length(Current);
if ~(Answer(i)==1) then //Simulate the missing spike train
Sim_command(i)=Sim_command_core+string(Osmo)+" "+string(Time)+" "+string(Current(i))+"
"+string(Ratio_D(i))+" "+string(Ratio_PSP_Freq(i))+" "+string(Ratio_PSP_Amp(i))+"
"+string(Random_Seed(i))+" "+Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt & ";
else //Extract the spike train that are already in the database
Sim_command(i)="";
unix("rm "+Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt");//Have to be removed manually since INTO
DUMPFILE does not overwrite for security reasons, make sure to have the permission
unix(Extract_command_core+" ""+Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt" from Spike where
"+Mysql_where(i));
//When using a multi-core cpu, in order to maximise waiting time a random simulation should be launch
here to fill the database, this is not implemented yet
end;
end;
disp("Launching parralel simulations");

Command="";
Command_Length=0;
for i=1:length(Current)
if ~(Sim_command(i)=="") then Command_Length=Command_Length+1;
Command=Command+Sim_command(i); end;
if ((Command_Length==Number_Of_Cores) | (i==length(Current))) then unix(Command+" wait");

Command=""; Command_Length=0; end;
end;

disp("Loading simulations results in the database");
for i=1:length(Current)
if ~(Answer(i)==1) then

//Erase shorter simulation if there is one

Erase_Shorter="0Osmo="+string(Osmo)+" and Time<"+string(Time)+" and Current="+string(Current(i))+"
and Ratio_D="+string(Ratio_D(i))+" and Ratio_PSP_Freq="+string(Ratio_PSP_Freq(i))+" and
Ratio_PSP_Amp="+string(Ratio_PSP_Amp(i))+" and Seed="+string(Random_Seed(i))+"""";

unix(Erase_command_core+Erase_Shorter);

//Insert the new result
unix(Insert_command_core+string(Osmo)+","+string(Time)+","+string(Current(i))+","+string(Ratio_D(i))+","
+string(Ratio_PSP_Freq(i))+","+string(Ratio_PSP_Amp(i))+","+string(Random_Seed(i))+",LOAD_FILE(""+Path
_To_Temp_Dir+"MagnoSec"+string(i)+".txt"))""");

end;
end;

else //Case where there is no simulation needed
disp("Extracting Spike train from MySQL");
for i=1:length(Current)
unix("rm "+Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt");//Have to be removed manually since INTO
DUMPFILE does not overwrite for security reasons, make sure to have the permission
unix(Extract_command_core+" ""+Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt" from Spike where
"+Mysql_where(i));
end;
end;

disp("Reading Simulation Results");
Unsorted_Release=[[],[]];
Number_of_Spike=0;
Phasic_AVP=0;
Irreg_ AVP=0;
Continuous_AVP=0;
Phasic_Hz=0;
Irreg_Hz=0;
Continuous_Hz=0;
for i=1:length(Current)
load(Path_To_Temp_Dir+"MagnoSec"+string(i)+".txt",'SpikeRecord");
Spike_temp=SpikeRecord;
//When spike vector are extracted from the database, sometimes, their length is longer than the simulation
time and they have to be shortened
if Spike_temp($) > Time then Spike_temp=Shorten(Spike_temp,Time);end;
if ~isempty(Spike_temp) then Show_Spike_Plot(Time,Spike_temp,"SpikeTrain "+string(i),i);else disp("Empty
plot for "+string(i)); end;
//Repeat the simulated spike trains, the spike trains length is increase by a factor of 2*multiplicator
for j=1:multiplicator
if ~isempty(Spike_temp) then Spike_temp=cat(1,Spike_temp,Spike_temp+27(j-1)*Time);end;
end;
//Remove spike randomly depending on the IS], representing the axonal conduction failure, it is important to
do it between the doubling and the release computation
Spike_temp=Conduct_Failure(Spike_temp);
disp("Starting the AVP release computation "+string(i));
Release_temp=Compute_Release(Spike_temp);
select int((i-1)/3)
case 0
Release_temp=Ratio1*Release_temp/3;
Number_of Spike=Number_of Spike+length(Spike_temp)*Ratiol/3;
Phasic_AVP=Phasic_AVP+sum(Release_temp);
Phasic_Hz=Phasic_Hz+length(Spike_temp)*Ratio1/3;

case 1
Release_temp=Ratio2*Release_temp/3;
Number_of Spike=Number_of Spike+length(Spike_temp)*Ratio2/3;
Irreg_AVP=Irreg AVP+sum(Release_temp);
Irreg Hz=Irreg_Hz+length(Spike_temp)*Ratio2/3;
case 2
Release_temp=Ratio3*Release_temp/3;
Number_of Spike=Number_of Spike+length(Spike_temp)*Ratio3/3;
Continuous_AVP=Continuous_AVP+sum/(Release_temp);
Continuous_Hz=Continuous_Hz+length(Spike_temp)*Ratio3/3;
else
disp("Never reached");
break;
end;
Unsorted_Release=cat(1,Unsorted_Release,[Spike_temp,Release_temp]);
end;
disp("mofr: "+string(Number_of Spike/(9000*(Time*2"(multiplicator-1)/1000))));
Total_Release=Phasic_AVP+Irreg_AVP+Continuous_AVP;
disp('Total AVP Release: "+string(Total_Release));

disp('Phasic: '+string(Phasic_AVP/Total_Release)+' '+string((Phasic_Hz/(9000*(Time*2" (multiplicator-
1)/1000)))));

disp('Irreg: "+string(Irreg_AVP/Total_Release)+' '+string((Irreg_Hz/(9000*(Time*2”(multiplicator-
1)/1000)))));

disp('Continous: '+string(Continuous_AVP/Total_Release)+'

"+string((Continuous_Hz/(9000*(Time*2” (multiplicator-1)/1000)))));

Sorted_Release=Unsorted_Release;

disp("Sorting the spikes");

[Matrix,Permutation]=sort(Unsorted_Release,"r"); //Only useful to obtain the permutation matrix (decreasing
order)

disp("Creating the secretion vector");

for i=1:size(Permutation,1) Sorted_Release($-i+1,:)=Unsorted_Release(Permutation(i),:); end;//Recreate the
Release vector, in increasing order, with the correct row elements

disp("Generating the AVP concentration dynamics");

//Compute the plasma AVP dynamics using the release vectors and the quantity of neurons in each population
AVPQ=Compute_AVPQ(Sorted_Release,1.5,Initial AVP*ECF_Volume)/ECF_Volume;
time_index=Sorted_Release(:,1);

if ~(isempty(time_index) & isempty(AVPQ)) then xset('window',13);clf();plot(time_index,AVPQ); end;
endfunction;

//Compute the average frequency of firing during each time bin

function
[Freq,BinarySpike,ISIH,ISH_bin]=Compute_ISI_Freq(Reduced_t,Spike,Number_Of Bins_Freq,Number_Of _Bins_I
SH)

SpikePerBin=zeros(Number_Of Bins_Freq,1); //Number of spike in each bin

FreqPerBin=zeros(Number_Of _Bins_Freq,1); //Average freqency of each bin
BinarySpike(1:length(Reduced_t))=%nan; //Used to put a small triangle (at +60mv) on the voltage trace for
each detected spike

ISH_bin=zeros(Number_Of Bins_ISH,1); //Used to store the upper limit of the interspike interval allowed for
each ISI bin

[SIH=zeros(Number_Of Bins_ISH,1); //Used to store the number of ISI in each ISH_bin

for i=1:Number_Of_Bins_ISH ISH_bin(i)=i*500.0/Number_Of_Bins_ISH;end; //Sets the size limit of each bin
using a maximal ISI size of 500 ms

if(length(Spike>1)) then
ISI=(Spike(2:$)-Spike(1:$-1))"; //ISI Vector
//First Spike is not included in the loop because we need two spikes to compute the ISI

SpikePerBin(1+int(Spike(1)/Time*Number_Of _Bins_Freq))=SpikePerBin(1+int(Spike(1)/Time*Number_Of Bi
ns_Freq))+1;

BinarySpike(1+int(Spike(1)/Time*length(Reduced_t)))=60;

for i=2:length(Spike);

SpikePerBin(1+int(Spike(i)/Time*Number_Of_Bins_Freq))=SpikePerBin(1+int(Spike(i)/Time*Number_Of _Bin
s_Freq))+1; //Increases the spike count in the correct bin

FreqPerBin(1+int(Spike(i)/Time*Number_Of Bins_Freq))=FreqPerBin(1+int(Spike(i)/Time*Number_Of Bins

_Freq))+1000/ISI(i-1); //Increase the sum of the intantaneous frequency (in hz) in the correct bin
BinarySpike(1+int(Spike(i)/Time*length(Reduced_t)))=60; //Sets a +60mv flag at the spike position
if ISI(i-1)<500 then ISIH(int(ISI(i-1) /500*Number_Of_Bins_ISH)+1)=ISIH (int(ISI(i-

1)/500*Number_Of_Bins_ISH)+1)+1; end;

end;
end;
if ~(sum(ISIH)==0) then ISIH=ISIH/sum(ISIH); end; //Average each bin by the total number of ISI

//Calculates the average frequency per bin by dividing the sum by the number of spike-1
in each bin
Freq=zeros(Number_Of_Bins_Freq,1);
for i=1:1:Number_Of_Bins_Freq
if(SpikePerBin(i) < 2) then

Freq(i)=0;
else
Freq(i)=FreqPerBin(i)/(SpikePerBin(i)-1);
end;
end;
endfunction

//Shows the voltage trace, the intantaneous frequency and the interspike interval

histogram
function Show_Spike_Plot(Time,SpikeRecord,Title, WinNum)
x=10000.0; //Resolution of the time axis
Reduced_t=(Time/x:Time/x:Time); //Defines the reduced time vector
Length_Of Bin_Freq=1000; //Size (in ms) of the average frequency calculation
if Length_Of_Bin_Freq>Reduced_t($)/2 then Length_Of Bin_Freq=Reduced_t($)/2; end;
if modulo(Time,Length_Of Bin_Freq)==0 then
Number_Of_Bins_Freq=int(Time/Length_Of Bin_Freq);
else
Number_Of_Bins_Freq=int(Time/Length_Of Bin_Freq)+1;
end;
Number_Of_Bins_ISH=50; //Number of bin for the interspike histogram
[Freq,BinarySpike,ISH,ISH_bin]=Compute_ISI_Freq(Reduced_t,SpikeRecord,Number_Of _Bins_Freq,Number_Of_
Bins_ISH);

Title="Position of spike: "+Title+" neurons";

xset('window',WinNum);clf();

xtitle(Title,"time (ms)","Spike");

subplot(3,1,1)
plot2d(Reduced_t,BinarySpike,style=-4,rect=[0,-60,Reduced_t($),60]);xgrid()

subplot(3,1,2)

xtitle("mofr: "+string(1000*length(SpikeRecord)/Time)+" V: "+string(variance(Freq))+" V/mofr:
"+string(variance(Freq)*Time/(1000*length(SpikeRecord))),"time (ms)","Hz");

plot2d([0,Time/Number_Of _Bins_Freq/2:Time/Number_Of Bins_Freq:Time],[0;Freq],rect=[0,0,Reduced_t($),
max(Freq)]);xgrid()

subplot(3,1,3)

xtitle("Interspike Interval Histogram","ms","relative population");
plot2d(ISH_bin,ISH,rect=[0,0,max(ISH_bin),max(ISH)]);xgrid()
endfunction

function modulation=Time_Fatigue(Time_In_Burst)
modulation=1;
endfunction

function modulation=Freq_Fatigue(Delta)
modulation=1;
endfunction

//Compute the freq. facilitation based on fig2 of Bicknell1988, where 3 Hz was set to
modulation = 1 and the function was estimated by two slopes between 0 and 13 and
between 13 and 52

function modulation=Freq_Facilitation(Delta)

modulation=1;

Instant_Freq=1000/Delta; //Compute the instantaneous frequency, the 1000 converts the Current and Last
unit (ms) in hertz

//The following computation is a piecewise linear interpolation of the modulation
if Instant_Freq < 6.5 then modulation=Instant_Freq*0.339;
else if Instant_Freq < 13 then modulation=2.2+(Instant_Freq-6.5)*0.6;
else if Instant_Freq < 26 then modulation=6.1+(Instant_Freq-13)*-0.0231;
else modulation=5.8+(Instant_Freq-26)*-0.0538; //This is an interpolation until Instant_Freq
reaches 52 and for larger value this is an extrapolation

end;
end;
end;
endfunction

//Compute the conductance failure effect based on figure 2 of Hobbach 1988?
//function Short_Spike=Conduct_Failure(Spike)

//cursor=1; //current length of Short_Spike

//Short_Spike(cursor)=Spike(1);

//for i=2:1ength(Spike);

// Delta=Spike(i)-Short_Spike(cursor); //Delta is computed based on the last spike received at the terminal
(Short_Spike) and not on the last spike that was transmited by the soma (Spike(i-1))

// Instant_Freq=1000/Delta;

// ifrand()<(1.053-((1)./(1+exp((Instant_Freq-22.5)/-2.5)))) then

// Short_Spike(cursor+1)=Spike(i)

// cursor=cursor+1;
// end;

//end;
//endfunction

//Compute the conductance failure effect based on figure 2 of Bielefeldt1993
function Short_Spike=Conduct_Failure(Spike)
cursor=1; //current length of Short_Spike
Short_Spike(cursor)=Spike(1);
for i=2:length(Spike);
Delta=Spike(i)-Short_Spike(cursor); //Delta is computed based on the last spike received at the terminal
(Short_Spike) and not on the last spike that was transmited by the soma (Spike(i-1))
Instant_Freq=1000/Delta;
if rand()>((3.2*Instant_Freq-32)/100) then
Short_Spike(cursor+1)=Spike(i)
cursor=cursor+1;
end;
end;
endfunction

function AVP_Release=Compute_Release(Spike)
AVP_Release=zeros(length(Spike),1);
Basal_Secretion=1.3E-5;

if(length(Spike)>1) then

Last_Spike=Spike(1); //Position of the last spike

AVP_Release(1)=Basal_Secretion; //The first spike can not have fatigue ou facilitation
Time_In_Burst=0; //Length of the current burst

Burst_Threshold=1500; //Minimal number of time in ms between two consecutive spikes to

consider them in different burst

for i=2:length(Spike);
Current_Spike=Spike(i);
Delta=Current_Spike-Last_Spike;
if Delta < Burst_Threshold then Time_In_Burst=Time_In_Burst+Delta; end;

AVP_Release(i)=Basal_Secretion*Time_Fatigue(Time_In_Burst)*Freq_Fatigue(Delta)*Freq_Facilitation(Delta);
Last_Spike=Current_Spike;
end;
else
if length(Spike)==1 then AVP_Release=Basal_Secretion; end;
if length(Spike)==0 then AVP_Release=[]; end;
end;
endfunction

//Shorten a spike vector so that the last spike occurence does not exceed the time limit
function Short=Shorten(Record, Time_Limit)

index=find(Record>Time_Limit,1)-1;

//Normally a test should be performed here to prevent an error if index is empty, however, the test
performed in the calling function makes sure that it does not happend

Short=Record(1:index);

//Instead of 1 in the last line, a random starting point could be drawn so that the Shortened vector is different
each time which would be more realistic and would potentially increase statistic

endfunction;

//Dynamics of the amount of AVP contained in a rat (plasma, ECF, ICF, Organs)

function AVPQ=Compute_AVPQ(Release,Half_Life,Initial_Quantity)

tau=Half_Life/log(0.5); //Calculation of the time constant -the name of the variable is misleading
AVPQ=Initial_Quantity*exp(Release(1,1)/(60000*tau))+Release(1,2);//decay of AVP between the beginning
of the simulation and the first spike

for i=2:size(Release,1)

AVPQ(i)=AVPQ(i-1)*exp((Release(i,1)-Release(i-1,1))/(60000*tau))+Release(i,2);

end;

endfunction;

