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Supplementary Information

A Effect of the penalisation exponent p

In this paper a value of p = 2 for the penalisation factor has
been used throughout. This choice of p came as a result of
test simulations with different values of p. Optimal structures
at step 100 for the p values of 1, 2, and 3 are shown in Fig. 15.

The p = 1 case leads to a structure with a large fraction
of “gray” particles, featuring intermediate x between 0 and
1. This result is similar to what may be obtained in vari-
able thickness sheet problems [58], but it is not a desirable
outcome for the type of optimization problems studied here,
where the final result should be as close as possible to a 0-1,
void—solid solution only. p = 2 and p = 3 both lead to black
and white solutions. The structure obtained with p = 3 has a
more complex topology, featuring more elements, which might
make it more difficult to fabricate. This greater complexity
may come from the tendency of optimization problems with
high penalization levels, i.e. high p, to get trapped into local
minima of the objective function; such tendency is known in
the literature on FEM-based TO [54].

The speed of convergence, for the three cases with differ-
ent p, is show in Fig. 16. All three cases eventually converge
to a similar value of the objective function, meaning that the
choice of p for the problems in this manuscript is not driven by
the ability to better minimize the objective function. To com-
pare the speed of convergence, we fitted the curves in Fig. 16
using an exponential function of the type f(x) = k1 + kzekls,
where n is the step number during the optimization process.

Table 2 shows the fitted values for k1, k2 and k3. Amomé108
those, k1 controls the final value of the objective functionl,mg
hence it is similar for the three cases of p shown here. k2,
summed to k1, gives the starting value of the objective func-
tion at step 1, so it correctly increases with p, as the initial
structures with all particles featuring x between 0 and 1 are
less stiff when subjected to a high penalization factor. k3 con-
trols the speed of convergence: the higher k3, the slower the
convergence, i.e. more optimization steps are required to attiio

tain the final value of the objective function. The values of kg1

p=3
Fig. 15 Optimization of a beam domain, made of 75 x 25
particles, with D = 1 and filtering of 1.1 applied, simply sup-
ported beam at the bottom left and right ends. Three values

of penalization factors p are investigated. The snapshot show
the solutions at optimization step 100.

~— Fits

1072

Objective function (J)

Optimization steps

Fig. 16 Convergence of the optimization problems in Fig. 15.
The fits are obtained using the exponential function discussed
in the main body of the text.

in Table 2 are quite similar for the three cases of p considered

here, with p = 2 being a bit slower.

P k1 () ko (J) k3
1 0.0011 0.0016 2.0
2 0.00114 0.007 2.4
3 0.00117 0.025 2.1

Table 2 Constants used for the fits in Fig. 16

All in all; the results in this section led us to avoid p = 1,

as it generates undesirably gray structures. Our preference for
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p = 2 over p = 3 stemmed from the lower topological comsss
plexity of the solutions obtained with p = 2, despite this retso
quired a few more optimization steps to achieve convergencetiso
Furthermore, we considered p = 2 more recommendable alsoa1
for future, different studies, knowing from FE-based TO that2

problems with high p tend to get trapped into local minimauss

1144

B Perturbation method to compute full sensic
1146

tivities
1147

1148
In the main manuscript, we discussed how the sensitivity ex-

1149
pression in Eq. 13 is an approximation of the gradient of1

1150
the cost function with respect to the design variables. Here

1151
we present a numerical perturbation method for computing

the full sensitivity and then we compare optimization results
from this perturbation method with results obtained using
the approximate sensitivity in Eq. 13.

The full sensitivity vector is computed one term at the

time. At the generic step of the optimization process, the
1152

structure displays a certain vector of x; values, and a comple-
1153

mentary work UZ, at equilibrium under the imposed external
1154
de

forces. The generic term o of the sensitivity vector is ob-
° 1155

tained perturbing the value of x; by a small quantity Ax and
1156

computing the new value of U* resulting from a new energy
1157

minimization. The sensitivity is thus approximated by finite

. 1158
difference as:

1159
de  AU* _ U*(xi + Axs) — Uy (xi)
dxi  Axi Axi

(223160

1161
This is repeated for all particles i in the structure. This process2
dure has a high computational cost, in that each term of thes
sensitivity vector requires one dedicated energy minimizatiomss
to compute the perturbed U*. Therefore here we consideres
only small structures, made of 45 x 15 particles, to compares
results from this numerical approach and the approximatedis
sensitivity used in the main manuscript (Eq. 13). The geomses
etry, supports, and loading conditions are the same as forieo
the double-pinned, central force beams in Fig. 14.e in theo
main manuscript. The systems are loaded with three forceir:

intensities, 0.2, 2, and 20 kN, to trigger different levels ofir>

geometric nonlinearity. Figs. 17, 18, and 19 show the results
for these case studies, including results from both the numeri-
cal perturbation method (left) and the approximate sensitives
(right). In these examples, the tolerance for DEM convergence
has been set to 108, the filtering length to 1.1 diameters, and

the perturbation Ay to 0.01.

All results in Figs. 17, 18, and 19 indicate that the two
methods to compute sensitivities give results that are ex-
tremely similar, both in small and large deformation regimes
(imposed by applying a progressively larger external load
from one figure to the next). The figures also feature his-
tograms showing the distribution of normalised per-particle
¢ differences between the sensitivities obtained with the two

methods:

(%), ()
axi ) ¢ i ) p

e

dxi

P =

(23)

f

In the equation, N is the number of particles in the domain.
Subscripts f and p indicate full sensitivities computed using
the numerical perturbation method presented here, and par-
tial sensitivities obtained with the approximation in Eq. 13.
Both the difference in the numerator and the contribution to

the average in the denominator are taken as absolute values.

Fig. 20 shows that the particles with highest differences
in sensitivity are those with intermediate y between 0 and 1,
mostly located at the boundaries between solid. Particles in
the solid also display a certain level of difference in sensitiv-
ity, whereas void particles tend to zero sensitivity in both ap-
proaches as the optimization process converges. Consistently,
the histograms in Figs. 17-19 start from a single peak distri-
bution at step 1 towards bimodal distributions as the opti-
mization progresses. In particular, a peak for differences tend-
ing to zero is formed and grows: this reflects the increase in
void-like particles. The other peak in the histograms instead
increases by approximately one order of magnitude, from dif-
ferences of 0.001 — 0.01% to 0.01 — 0.1%, during the first 15
steps of the optimization. This is when the structure gains

most of its stiffness, thus reducing significantly the comple-
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Fig. 17 Optimization of beam made of 45 x 15 particles, simply supported and loaded as shown in Fig. 13.a in the main
manuscript. Here a load of 0.2 kN is applied, which leads to small deformations and an overall symmetric solution. Optimization
snapshots at steps 1, 15, and 30 are shown, for full sensitivities (computed with the numerical perturbation method in this
section) and for the approximate sensitivity in Eq. 13 (left and right columns respectively). For the same steps, the histograms
quantify the difference between per-particle sensitivities obtained with the two methods (Eq. 23).

Step 1

Step 15

Step 30

-
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1

0 0.001 0.01 0.1 1 >10
Normalised difference (%)

Fig. 18 Optimization of beam made of 45 x 15 particles, simply supported and loaded as shown in Fig. 13.a in the main
manuscript. Here a load of 2 kN is applied, which is sufficient to highlight the effect of large deformations. Optimization
snapshots at steps 1, 15, and 30 are shown, for full sensitivities (computed with the numerical perturbation method in this
section) and for the approximate sensitivity in Eq. 13 (left and right columns respectively). For the same steps, the histograms
quantify the difference between per-particle sensitivities obtained with the two methods (Eq. 23).

mentary energy and therefore the average magnitude of sensss
sitivities in the structure, as shown in Fig. 21. As a result, thess
denominator in Eq. 23 decreases significantly during the firstiss
15 optimization steps, and this shifts the normalised values i111187
the histograms up. Comparing the histograms at step 15 Witlll188
those at step 30, one can notice tail forming, with particlelslsg
that feature high normalised differences up to 10%. These are
the particles concentrating into a progressively thinner interl-191
face between solid and void. In any case, the histograms irll19

2

the snapshots in Figs. 17-19 show that the differences bel-193

tween full and partial sensitivities are very small: fractions 01f194

percent. This is consistent with the fact that the optimum so-
lutions, shown in the snapshots of the same figures, are nearly

identical for the two methods of computing sensitivities.

In the main manuscript we discussed how the approxi-
mated sensitivity in Eq. 13 is actually exact in the limit of
small strain, for linear elastic structures. By contrast, the
cases with highest geometric nonlinearity are those where
the differences between full and partial sensitivities might be
most significant. However, the histograms in Figs. 17-19 in-
dicate that the levels of nonlineariy explored here, while lead-

ing to qualitatively different structures, still imply a similar
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Fig. 19 Optimization of 45 X 15 beam, simply supported and loaded as shown in Fig. 13.a in the main manuscript. Here a high
load of 20 kN is applied, which causes visibly large deformations. Optimization snapshots at steps 1, 15, and 30 are shown,
for full sensitivities (computed with the numerical perturbation method in this section) and for the approximate sensitivity in
Eq. 13 (left and right columns respectively). For the same steps, the histograms quantify the difference between per-particle

sensitivities obtained with the two methods.
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Fig. 20 Spatial distribution of normalised difference in sensitivity for the structures in Figs. 17 and 18(with 0.2 and 2 kN
applied) showing the transition from an initially even spread of difference to concentrated error values in the solid-void border

as the optimization progresses.

distribution of differences between full and partial sensitiviteos
ties, i.e. the approximation in Eq. 13 seems quite robust taos
the geometric nonlinearity sampled here. The good quality

of the approximation is indeed confirmed in Fig. 22, which

shows the evolution of the objective function, i.e. the complel-207
mentary work, during the optimization of the structure with,
highest load and thus highest geometric nonlinearity, from,
Fig. 19. The figure clearly indicates that, for the problems,

in this manuscript, the approximate sensitivity from Eq. 13,

produces an optimization process that is quantitatively very,,

similar to that obtained using the full sensitivity from the

numerical perturbation method presented here.

C Unfiltered structure comparison

The main manuscript has shown that DEM-based TO using
mesh-independent filtering leads to mesh-independent solu-
tions, as expected. Here we consider the same structures as
in Fig. 11 of the main manuscript, but now without filtering.

Unfiltered simulations are in fact more likely to display mesh
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Fig. 21 Approximate and full mean sensitivity values during
the first 30 steps of the optimization showing a fast decrease
in all three cases.
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Fig. 22 Evolution of objective function (complementary
work) for the problem in Fig. 19 (with 20 kN of applied load)
solved using the full perturbation method and the approxi-
mate sensitivity in Eq. 13.

dependence. Fig. 23 shows results for 5 different meshes, in-
cluding the base case used in the main manuscript. The same
figure also includes results for similar meshes obtained using
the FEM-based topology optimization code in Ref. [45]. Both
the DETO and FEM-TO results show that the qualitative
results is quite stable for all meshes from 75 x 25 and finer.
Qualitative changes in the optimised topology emerge only
in the coarsest cases. We consider this result appropriate for
the type of structure and range of mesh fineness considered
here: other structures, e.g. thinner beam domains, or even
finer meshes may lead to more significant qualitative mesh
effects. A more interesting result in Fig. 23 concerns instead
the checkerboard problem, which clearly affects the FEM-TO
solutions at any mesh whereas it is completely absent in all

the solutions from DETO.
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Fig. 23 Study on mesh effects for the same beam structures as in Fig. 23, but here without imposing any filtering. Results
from our DE Topology Optimization method are compared to analogous results from the FEM-based optimization code in
Ref. [45].



