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Appendices

A Proof of Theorem 4.1

Let ξi, for i ∈ {1, . . . , 10}, be defined by

ξ1 = µ21(µ11 + µ22)(µ12 + µ22),

ξ2 = 2
(

(µ2
11(µ11 + µ12 + µ21 + µ22) + µ21µ22(µ12 + µ22) + µ11(µ12 + µ22)(2µ21 + µ22)

)
,

ξ3 = µ12(µ11 + µ22)(µ11 + µ21),

ξ4 = 2
(

(µ2
22(µ11 + µ12 + µ21 + µ22) + µ11µ12(µ11 + µ12) + µ22(µ11 + µ21)(µ11 + 2µ12)

)
,

ξ5 = µ21(µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22) + µ2
11

(
µ2

12 + µ21µ22 + µ12(µ21 + µ22)
)

+µ11

(
µ2

12µ22 + µ21µ
2
22 + µ12µ22(µ21 + µ22)

)
,

ξ6 = 2(µ11 + µ22)
[
µ21

(
µ2

12 + (µ12 + µ21)(µ21 + µ22)
)

+µ11

(
µ2

12 + µ12(2µ21 + µ22) + µ21(µ21 + 2µ22)
)]
,

ξ7 = µ12(µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22) + µ2
22

(
µ2

21 + µ11µ12 + µ21(µ11 + µ12)
)

+µ22

(
µ11µ

2
21 + µ2

11µ12 + µ11µ21(µ11 + µ12)
)
,

ξ8 = 2(µ11 + µ22)
[
µ12

(
µ2

12 + (µ12 + µ21)(µ11 + µ12)
)

+µ22

(
µ2

21 + µ12(2µ11 + µ12) + µ21(µ11 + 2µ12)
)]
,

ξ9 = (µ11µ22 − µ12µ21)(µ11 + µ12 + µ21 + µ22),

ξ10 = 2(µ11 + µ22)
(
µ2

12 + (µ12 + µ21)(µ21 + µ22) + µ11(µ12 + µ21 + µ22)
)
.

Note that the states (0, 1, 1) and (2, 2, 2) are transient under any policy π ∈ Π with positive

revenue. Hence the actions in these states do not affect the long-run average profit and we omit
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these states in the rest of the proof. First assume that 0 ≤ c ≤ min{β1, β2, β5}. Consider the

decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =


a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Similar calculations to those in the proof of Theorem 4.2 show that the policy π = (d)∞ is an

optimal policy when 0 ≤ c ≤ min{β1, β2, β5}. We see that the recurrent states of Xπ are (0, 1, 2),

(1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy.

Next, assume that β5 ≤ c ≤ min{β1, β2, β3, β4} (some algebra shows that β5 ≤ min{β3, β4},

hence this interval is non-empty when β5 ≤ c ≤ min{β1, β2}). Consider the decision rule d,

where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Similar calculations to those in the proof of Theorem 4.2 show that the policy π = (d)∞ is an

optimal policy when β5 ≤ c ≤ min{β1, β2, β3, β4}. We see that the recurrent states of Xπ are

(0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy. In the transient states (i.e., states in

S\Sw∗), we can select any action that will take the process to one of the recurrent states, and this

shows that the policy π∗ described in the theorem is optimal when β5 ≤ c ≤ min{β1, β2, β3, β4}.

This completes the proof of part (i) of the theorem.

Now, assume that the conditions in part (ii) of the theorem are satisfied. Let π′ = (d′)∞,

where d′(x) = a12 for all x ∈ S. The condition T1 ≥ T2 guarantees that π′ is not worse than

the policy π′′ = (d′′)∞, where d′′(x) = a21 for all x ∈ S. Next, we want to show that there is

no policy that allows switching of servers between stations that is better than π′. Without loss

of generality, we only compare π′ with policies that allow switching of servers between stations

and have positive revenue (because π′ is better than any policy with zero or negative revenue).

We denote the set of policies that include switching and have positive revenue by Πs, and we

let S1 = {(1, z) : z ∈ SZ}. Under any π ∈ Πs, there is exactly one departure from the system

between two successive visits of the stochastic process Xπ to a state in S1. We now show that

for all π ∈ Πs, there will be at least one setup with positive probability between every two visits

to S1.

Note that under any π ∈ Πs, every time Xπ leaves the state (1, 1, 1) or (1, 2, 2), there has

to be at least one setup before the next time the process enters a state in S1 (either when
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leaving S1 or when coming back to S1), or otherwise the long-run average profit is zero. In state

(1, 2, 1), if µ12 = µ21 = 0 and action a21 is used, then the long-run average profit is equal to

zero, and if an action other than a21 is used, then at least one setup occurs before returning

to S1. Furthermore, if µ12 = 0 or µ21 = 0, any policy that uses the action a21 in S1 results in

at least one setup at an end of the line (otherwise the long-run average profit is equal to zero).

Hence we can assume that µ12 > 0 and µ21 > 0 when Xπ is in state (1, 2, 1). Note that under

any π ∈ Πs, every time Xπ leaves the state (1, 1, 2), there has to be at least one setup with

probability ps ≥ min{ µ11
µ11+µ22

, µ22
µ11+µ22

} > 0 before the next time the process enters a state in

S1. Similarly, when µ12 > 0, µ21 > 0, and Xπ leaves state (1, 2, 1), there has to be at least one

setup before Xπ returns to S1 with probability p′s ≥ min{ µ12
µ12+µ21

, µ21
µ12+µ21

} > 0. The previous

two facts follow because either an action other than a12 (a21) is taken in state (1, 1, 2) ((1, 2, 1)),

in which case there will be at least one setup before returning to S1, or action a12 (a21) is taken

in state (1, 1, 2) ((1, 2, 1)) and there has to be at least one setup at either end of the line before

coming back to S1 (because otherwise π is not a switching policy). The four terms in the lower

bounds on ps and p′s are equal to the probabilities of moving to (0, 1, 2) or (2, 1, 2) under a12 and

the probabilities of moving to (0, 2, 1) or (2, 2, 1) under a21. We have shown that the expected

setup cost between two visits to a state in S1 cannot be less than cps or cmin{ps, p′s} depending

on whether µ12µ21 = 0 or µ12µ21 > 0.

Let v be minimum expected time between two visits to S1 (note that v > 0 because µij <∞

for i, j ∈ {1, 2}). Then v is the sum of the minimum expected times for leaving S1 (i.e., Φ) and

for returning back to S1 (i.e., φ1), so that v = Φ + φ1. By the renewal reward theorem, we can

conclude that Pπ ≤ 1−cps
v (Pπ ≤ 1−c min{ps,p′s}

v ) when µ12µ21 = 0 (µ12µ21 > 0) for all π ∈ Πs.

Hence, when T1 ≥ 1−cps
v (i.e., c >

(
1−T1(Φ+φ1)

)
(1+Θ)), then no policy in Πs can be optimal.

Consequently, the policy that uses d(x) = a12 for all x ∈ S is optimal. This proves part (ii) of

the theorem.

Finally, assume that the conditions in part (iii) of the theorem is satisfied. Then we must

have µ12 > 0 and µ21 > 0. Similar arguments as for part (ii) show that the policy that uses the

decision rule d(x) = a21 for all x ∈ S is optimal. �

B Proof of Theorem 4.2

Lemma 3.1 shows that servers should not be voluntarily idle when station 1 is blocked or station

2 is starved (this is different from involuntary idling due to being assigned to a station that

is either blocked or starved). Furthermore, when both stations are operating, if a server is at

station j ∈ {1, 2} before the previous server completion, any action that idles this server and
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assigns the other server to station j cannot be optimal. For example, actions a01 and a20 cannot

be optimal in a state (l, 1, 2), where 1 ≤ l ≤ B + 1, because they are strictly dominated by

actions a11 and a22, respectively (this can be shown through a sample path argument similar

to that in the proof of Lemma 3.1). Moreover, the action a00 results in a zero long-run average

profit if employed in any state, and hence is ignored. Similarly, a22 is never optimal in a state

(0, z) and a11 is never optimal in a state (2, z), for z ∈ SZ . The states (0, 1, 1) and (2, 2, 2) are

transient under any policy π ∈ Π with positive revenue, and the actions in these states do not

affect the long-run average profit. Hence, they are omitted in the proof because any feasible

action can be chosen in these states. Thus, we can use the following action space:

Ax =



{a11, a12, a21} for x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

{a02, a11, a12, a20, a21, a22} for x = (1, 1, 1),

{a02, a10, a11, a12, a21, a22} for x = (1, 1, 2),

{a01, a11, a12, a20, a21, a22} for x = (1, 2, 1),

{a01, a10, a11, a12, a21, a22} for x = (1, 2, 2),

{a12, a21, a22} for x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Since the state and action spaces are finite, Theorem 9.1.8 of Puterman [23] shows the

existence of an optimal Markovian stationary deterministic policy. Furthermore, since γ1, γ2 > 0,

the policies described in the theorem correspond to weakly communicating Markov chains, and

we can use the Linear Programming (LP) approach for communicating Markov decision processes

as in Sections 9.5.2 and 8.8.2 of Puterman [23].

Consider the following LP:

max
∑

x∈S
∑

a∈Ax r(x, a)ω(x, a)

s.t.
∑

a∈Ax′
ω(x′, a)−

∑
x∈S

∑
a∈Ax p(x

′|x, a)ω(x, a) = 0, for all x′ ∈ S,∑
x∈S

∑
a∈Ax ω(x, a) = 1,

ω(x, a) ≥ 0, for all x ∈ S, a ∈ Ax,


(8)

where, for all x ∈ S and a ∈ Ax, r(x, a) is the immediate reward of choosing action a in state

x and p(x′|x, a) is the one-step transition probability from state x to x′ if action a is chosen

in state x. Then, in every basic feasible solution corresponding to a policy described in the

theorem, we can conclude that for each x ∈ S there exists at most a single action ax ∈ Ax

such that ω(x, ax) > 0 as a result of Corollary 8.8.7 of Puterman [23] (which can be applied

because the policies we consider in the description of the theorem result in a single recurrent

class). Furthermore, for every basic feasible optimal solution w∗ if we define Sw∗ = {x ∈ S :
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∑
a∈Ax w

∗(x, a) > 0}, then the optimal decision rule is

dw∗(x) =


a if w∗(x, a) > 0 for x ∈ Sw∗ ,

a′ for some a′ such that there exists a state x′ ∈ Sw∗ for which

x′ is reachable from x under action a′ for x ∈ S \ Sw∗ .

Note that the actions in states S \ Sw∗ cannot be chosen arbitrarily as in unichain models.

However, the discussion in Section 9.5.2 of Puterman [23] shows that the decision rule above

results in an optimal solution. Moreover, note that an action a′ that will move the process X ′π

toward a recurrent state always exist. More specifically, if x = (y, z) and x′ = (y′, z′) ∈ Sw∗ , we

can choose a′ = az if y = y′, a′ = a11 if y < y′, and a′ = a22 if y > y′.

We first prove the optimality of the policy for 0 ≤ c ≤ γ2
2γ1+4γ2

(note that this condition

implies that c ≤ 1
2). Consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Now, consider the basic solution ω of the LP (8) corresponding to the policy π = (d)∞. The

associated basis for the LP (8) is

D = {ω((0, 1, 2), a11), ω((0, 2, 1), a11), ω((0, 2, 2), a11),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a12),

ω((2, 1, 1), a22), ω((2, 1, 2), a22), ω((2, 2, 1), a22)}.

Let cB be the vector of coefficients of the elements of D in the objective function, B be the

coefficients of the elements of D in the constraint matrix, and b be the right-hand side of the

constraints. Consequently, we have

cB = {−2cγ1,−2cγ1,−4cγ1, γ2 − c(γ1 + γ2), γ2, γ2, γ2 − c(γ1 + γ2),

2γ2(1− 2c), 2γ2(1− c), 2γ2(1− c)},
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and

B =



2γ1/q 0 0 −γ2/q . . . 0 0

0 2γ1/q 0 0 . . . 0 0

0 0 2γ1/q 0 . . . 0 0

−2γ1/q −2γ1/q −2γ1/q (γ1 + γ2)/q . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . −2γ2/q −2γ2/q

0 0 0 0 . . . 0 0

0 0 0 0 . . . 2γ2/q 0

1 1 1 1 . . . 1 1



,

where q is the uniformization constant. Note that the constraint corresponding to one of the

states is redundant, and hence the constraint corresponding to state (2, 2, 1) is eliminated. It

is easy to see that ω is also a stationary distribution for the Markov chain Xπ (since it has a

finite state space and one recurrent class, the stationary distribution exists). In order to show

the optimality of this basic feasible solution, we need only to show that

∆y = cBB
−1vy − cy ≥ 0 (9)

for each nonbasic variable y, where vy is the column in the constraint matrix of the LP (8)

and cy is the coefficient corresponding to y in the objective function (see, e.g., Theorem 3.1 of

Bertsimas and Tsitsiklis [7]).

For states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a12) = ∆w((0,2,1),a21) = ∆w((0,2,2),a12) = ∆w((0,2,2),a21) =
γ1(γ2 − 2cγ1 − 4cγ2)

γ1 + γ2
,

∆w((0,1,2),a21) = ∆w((0,2,1),a12) =
γ1γ2(1− 2c)

γ1 + γ2
.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ γ2
2γ1+4γ2

. For state (1, 1, 1) we

have

∆w((1,1,1),a02) = ∆w((1,1,1),a20) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,1,1),a11) = ∆w((1,1,1),a21) = 0,

∆w((1,1,1),a22) = 4cγ2;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) = ∆w((1,1,2),a10) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,1,2),a11) = 4cγ1,

∆w((1,1,2),a21) = 2c(γ1 + γ2), ∆w((1,1,2),a22) = 4cγ2;
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for state (1, 2, 1) we obtain

∆w((1,2,1),a01) = ∆w((1,2,1),a20) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,2,1),a11) = 4cγ1,

∆w((1,2,1),a12) = 2c(γ1 + γ2), ∆w((1,2,1),a22) = 4cγ2;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) = ∆w((1,2,2),a10) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,2,2),a11) = 4cγ1,

∆w((1,2,2),a21) = ∆w((1,2,2),a22) = 0.

Finally, for states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

∆w((2,1,1),a12) = ∆w((2,1,2),a12) = ∆w((2,1,1),a21) = ∆w((2,2,1),a21) =
γ2(γ1 − 4cγ1 − 2cγ2)

γ1 + γ2
,

∆w((2,1,2),a21) = ∆w((2,2,1),a12) =
γ1γ2(1− 2c)

γ1 + γ2
.

These quantities are also nonnegative when c, γ1, and γ2 satisfy the assumptions above (note that

γ2
2γ1+4γ2

≤ γ1
4γ1+2γ2

because γ1 ≥ γ2). Hence we have shown that the inequality (9) is satisfied

for all nonbasic variables. We can conclude that D is an optimal basis for the LP (8), and

consequently π = (d)∞ is an optimal policy when 0 ≤ c ≤ γ2
2γ1+4γ2

. We see that the recurrent

states of Xπ are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy. In the transient states

(i.e., states in S \Sw∗), we can select any action that will take the process to one of the recurrent

states, and this shows that the policy described in the theorem is optimal when 0 ≤ c ≤ γ2
2γ1+4γ2

.

Next, let γ2
2γ1+4γ2

< c ≤ γ21
2γ21+2γ1γ2+2γ22

(which also implies that c ≤ 1
2), and consider the

decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}.

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), a12), ω((0, 2, 1), a21), ω((0, 2, 2), a12),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a22),

ω((2, 1, 1), a22), ω((2, 1, 2), a22), ω((2, 2, 1), a22)}.

As before, we will show that inequality (9) holds for every nonbasic variable. More specifically,

for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a11) = ∆w((0,2,1),a11) = ∆w((0,2,2),a11) =
γ1(2γ1 + γ2)(4cγ2 + 2cγ1 − γ2)

(γ1 + γ2)2
,

∆w((0,1,2),a21) = ∆w((0,2,1),a12) = 2cγ1, ∆w((0,2,2),a21) = 0.
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These quantities are nonnegative because c > γ2
2γ1+4γ2

. For state (1, 1, 1) we have

∆w((1,1,1),a02) = ∆w((1,1,1),a20) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,1,1),a11) =

γ1γ2(2cγ1 + 4cγ2 − γ2)

(γ1 + γ2)2
,

∆w((1,1,1),a21) = 0, ∆w((1,1,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) =
γ1γ2(1− 2c)

γ1 + γ2
, ∆w((1,1,2),a10) =

γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
,

∆w((1,1,2),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)

(γ1 + γ2)2
, ∆w((1,1,2),a21) = 2c(γ1 + γ2),

∆w((1,1,2),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
;

for state (1, 2, 1) we obtain

∆w((1,2,1),a01) =
γ1γ2(γ1 + 2cγ2)

(γ1 + γ2)2
, ∆w((1,2,1),a20) =

γ1γ2(1− 2c)

γ1 + γ2
,

∆w((1,2,1),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)

(γ1 + γ2)2
, ∆w((1,2,1),a12) = 2c(γ1 + γ2),

∆w((1,2,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2
;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) = ∆w((1,2,2),a10) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2
,

∆w((1,2,2),a11) =
γ1(6cγ1 + 8cγ2 − γ2)

(γ1 + γ2)2
, ∆w((1,2,2),a12) = ∆w((1,2,2),a21) =

γ1(2cγ1 + 4cγ2 − γ2)

2(γ1 + γ2)
.

Note that

γ2
2

4γ2
1 + 10γ1γ2 + 8γ2

2

≤ γ1γ2

10γ1γ2 + 8γ2
2

≤ γ1

10γ1 + 8γ2
≤ γ1

2γ1 + 4γ2
,

because γ1 ≥ γ2 ≥ 0. Therefore, the above quantities are all nonnegative because γ2
2γ1+4γ2

< c ≤
γ21

2γ21+2γ1γ2+2γ22
. Finally, for states (2, 1, 1), (2, 1, 2), and (2, 2, 1), we have

∆w((2,1,1),a12) = ∆w((2,1,2),a12) = ∆w((2,1,1),a21) = ∆w((2,2,1),a21) =
γ2(γ2

1 − 2cγ2
1 − 2cγ2

2 − 2cγ1γ2)

(γ1 + γ2)2
,

∆w((2,1,2),a21) = ∆w((2,2,1),a12) =
γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
.

These quantities are nonnegative because c ≤ γ21
2γ21+2γ1γ2+2γ22

. Hence, the policy π = (d)∞ is an

optimal policy and the recurrent states of Xπ under this policy are (0, 1, 2), (0, 2, 2), (1, 1, 2),

(1, 2, 2), and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗), we can select any action

that will take the process to one of the recurrent states, and this shows that the policy described

in the theorem is optimal when γ2
2γ1+4γ2

< c ≤ γ21
2γ21+2γ1γ2+2γ22

.
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Finally, let c >
γ21

2γ21+2γ1γ2+2γ22
, and consider the decision rule d, where d(x) is defined as

follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 1)}.

The basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), a12), ω((0, 2, 1), a21), ω((0, 2, 2), a12),

ω((1, 1, 1), a12), ω((1, 1, 2), a12), ω((1, 2, 1), a21), ω((1, 2, 2), a22),

ω((2, 1, 1), a12), ω((2, 1, 2), a12), ω((2, 2, 1), a22)}.

As before, we will show that inequality (9) holds for every nonbasic variable. More specifically,

for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have

∆w((0,1,2),a11) = ∆w((0,2,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((0,1,2),a21) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

, ∆w((0,2,1),a11) =
γ1(γ1 − γ2)(2γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

∆w((0,2,1),a12) =
γ3

1

γ2
1 + 2γ1γ2 + γ2

2

, ∆w((0,2,2),a21) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2)

γ2
1 + γ1γ2 + γ2

2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ21

2γ21+2γ1γ2+2γ22
. Note that 2γ2

1 ≥

γ2
1 + γ1γ2, and hence

γ21
2γ21+2γ1γ2+2γ22

≥ γ21+γ1γ1
4γ21+4γ1γ2+4γ22

. For state (1, 1, 1) we have

∆w((1,1,1),a02) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,1,1),a20) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,1,1),a11) =
γ1γ2(γ1 − γ2)

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,1,1),a21) =
(γ1 + γ2)(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,1,1),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

;

for state (1, 1, 2) we obtain

∆w((1,1,2),a02) =
γ1γ

2
2

γ2
1 + 2γ1γ2 + γ2

2

, ∆w((1,1,2),a10) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − 2γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,1,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

2)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,1,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,1,2),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

(γ1 + γ2)2
;

for state (1, 2, 1) we obtain

∆w((1,2,1),a01) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,1),a20) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

,
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∆w((1,2,1),a11) =
γ1(γ1 + γ2(2γ1 − γ2))

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,1),a12) =
γ2

1(γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,2,1),a22) =
γ1γ2(γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

;

and for state (1, 2, 2) we have

∆w((1,2,2),a01) =
γ1(8cγ2

1 + 8cγ2
2 + 8cγ1γ2 + γ1γ2 − 3γ2

1)

(γ1 + γ2)2
,

∆w((1,2,2),a10) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((1,2,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ2

1 − γ2
2)

γ2
1 + γ1γ2 + γ2

2

, ∆w((1,2,2),a12) =
γ1(γ1 − γ2)(γ1 + γ2)

2γ2
1 + 2γ1γ2 + 2γ2

2

,

∆w((1,2,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)

2γ2
1 + 2γ1γ2 + 2γ2

2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ21

2γ21+2γ1γ2+2γ22
≥ γ21+γ1γ1

4γ21+4γ1γ2+4γ22
.

Finally, for states (2, 1, 1), (2, 1, 2), and (2, 2, 1) we have

∆w((2,1,1),a21) =
γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((2,1,1),a22) = ∆w((2,1,2),a22) =
2γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

∆w((2,1,2),a21) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

2γ2
1 + 2γ1γ2 + 2γ2

2

,

∆w((2,2,1),a12) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

, ∆w((2,2,1),a21) = 0.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ21

2γ21+2γ1γ2+2γ22
. Hence, the policy

π = (d)∞ is an optimal policy and the recurrent states under this policy are (0, 1, 2), (1, 1, 2),

and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗), we can select any action that will

take the process to one of the recurrent states, and this shows that the policy described in the

theorem is optimal when c >
γ21

2γ21+2γ1γ2+2γ22
. Hence the proof is complete. �

C Proofs of Propositions 4.1, 4.2, and 4.3

Proof of Proposition 4.1: First, assume that µ1γ1 6= µ2γ2. Let π0 = (d0)∞ be as described

in Section 4. It is not difficult to show that

Pπ0
=

(µ1 + µ2)γ1γ2

γ1 + γ2
−

2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)
(

(µ1γ1)B+1 + (µ2γ2)B+1
)

(γ1 + γ2)
(

(µ1γ1)B+2 − (µ2γ2)B+2
) .

Now define the policies π̂ = (d̂)∞ and π̄ = (d̄)∞ such that d̂(1, 1, 1) = d̄(1, 1, 1) = a11, d̄(B +

1, 2, 2) = a22, d̂(x) = d0(x) for x ∈ S \ {(1, 1, 1)}, and d̄(x) = d0(x) for x ∈ S \ {(1, 1, 1), (B +

1, 2, 2)}. In other words, π̂ is a multiple threshold policy that delays switchovers at the beginning
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of the line, and π̄ is a multiple threshold policy that delays switchovers at both ends of the line.

One can show that

Pπ̂ =
(µ1 + µ2)γ1γ2

γ1 + γ2
−

2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)
(

(µ1γ1)B+1 + µ2γ2

(
(µ1γ1)B + (µ2γ2)B

))
(γ1 + γ2)

(
(µ1γ1)B+2 + µ2γ2(µ1γ1)B+1 − 2(µ2γ2)B+2

) ,

Pπ̄ =
(µ1 + µ2)γ1γ2

γ1 + γ2
−
c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)

(
(µ1γ1)B + (µ2γ2)B

)
(γ1 + γ2)

(
(µ1γ1)B+1 − (µ2γ2)B+1

) .

Some algebra shows that Pπ̂ − Pπ0 = ε1
ε2

and Pπ̄ − Pπ̂ = ε3
ε4

, where

ε1 = 2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)(µ2γ2)B+3
(

(µ1γ1)B − (µ2γ2)B
)
,

ε2 = (γ1 + γ2)
(

(µ1γ1)B+2 − (µ2γ2)B+2
)[(

(µ1γ1)B+2 − (µ2γ2)B+2
)

+µ2γ2

(
(µ1γ1)B+1 − (µ2γ2)B+1

)]
,

ε3 = c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)(µ1γ1 + µ2γ2)(µ1γ1)B+1
(

(µ1γ1)B − (µ2γ2)B
)
,

ε4 = (γ1 + γ2)
(

(µ1γ1)B+1 − (µ2γ2)B+1
)(

(µ1γ1)B+2 + µ2γ2(µ1γ1)B+1 − 2(µ2γ2)B+2
))
.

It is easy to see that ε1
ε2
> 0 and ε3

ε4
> 0. Hence, π̂ is a better policy than π0 and π̄ is a

better policy than π̂. Note that if d̃ is such that d̃(B + 1, 2, 2) = a22 and d̃(x) = d(x) for

x ∈ S \ {(B + 1, 2, 2)}, then the proof of Lemma 3.2 and the above calculations imply that the

long-run average profit under policy π̃ satisfies Pπ0 < Pπ̃ < Pπ̄, and hence π̃ is superior to π0

but inferior to π̄.

When µ1γ1 = µ2γ2, we can show that

Pπ0 =
µ1γ1(2 +B − 4c)

2 +B
,Pπ̂ = Pπ̃ =

µ1γ1(3 + 2B − 6c)

3 + 2B
,Pπ̄ =

µ1γ1(1 +B − 2c)

1 +B
.

Then Pπ̂ − Pπ0 = 2cBµ1γ1
6+7B+2B2 and Pπ̄ − Pπ̂ = 2cBµ1γ1

3+5B+2B2 . Note that these quantities are strictly

positive for B > 0. Consequently, when c > 0, the policies π0, π̂, and π̃ are never optimal. �

Proof of Proposition 4.2: First assume that γ1 > γ2. Let πl = (dl)
∞ be a Type 1 policy with

t1(2, 2) = l, where l ∈ {0, . . . , B}. It is not difficult to show that

Pπl =
2γ2((B+2−l−2c)γB+l+4

1 −(B+2−l−4c)γB+l+3
1 γ2−2cγB+l+2

1 γ22−γ
B+2
1 γl+2

2 +γl1γ
B+4
2 )

(B+2−l)γB+l+4
1 −(B+2−l)γB+l+2

1 γ22−2γB+2
1 γl+2

2 +2γl1γ
B+4
2

.

Some algebra shows that for l ∈ {0, . . . , B − 1}, Pπl − Pπl+1
= (−αl,1 + cαl,2)/αl,3, where

αl,1 = 2(γ1 − γ2)2γB+l+2
1 γ3

2

(
(B + 1− l)γB+2

1 γl2 − (B + 2− l)γB+1
1 γl+1

2 + γl1γ
B+2
2

)
,

αl,2 = 4(γ1 − γ2)3γ2B+l+3
1 γ2(γl+2

1 + γl+1
1 γ2 − 2γl+2

2 ),

αl,3 =
(

(B + 2− l)γB+l+4
1 − (B + 2− l)γB+l+2

1 γ2
2 − 2γB+2

1 γl+2
2 + 2γl1γ

B+4
2

)
×
(

(B + 1− l)γB+l+4
1 − (B + 1− l)γB+l+2

1 γ2
2 − 2γB+1

1 γl+3
2 + 2γl1γ

B+4
2

)
.
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The first term in αl,3 is positive for all l ∈ {0, . . . , B − 1}, because it can be rewritten as

(B + 2− l)γB+2+l
1 (γ2

1 − γ2
2)− 2γl1γ

l+2
2 (γB+2−l

1 − γB+2−l
2 )

= (γ1 − γ2)
(

(B + 2− l)γB+2+l
1 (γ1 + γ2)− 2γl1γ

B+3
2

B+1−l∑
i=0

(
γ1

γ2
)i
)

> 2(γ1 − γ2)
(

(B + 2− l)γB+2+l
1 γ2 − γl1γB+3

2

B+1−l∑
i=0

(
γ1

γ2
)i
)
> 0,

where the last inequality follows because γl1γ
B+3
2 (γ1/γ2)i < γB+2+l

1 γ2 for all i ∈ {0, . . . , B+1−l}.

Similar calculations show that the second term in αl,3 is also positive, because it can be rewritten

as

(B + 1− l)γB+2+l
1 (γ2

1 − γ2
2)− 2γl1γ

l+3
2 (γB+1−l

1 − γB+1−l
2 )

> 2(γ1 − γ2)
(

(B + 1− l)γB+2+l
1 γ2 − γl1γB+3

2

B−l∑
i=0

(
γ1

γ2
)i
)
> 0.

Thus we have shown that αl,3 > 0 for l ∈ {0, . . . , B−1}. Moreover, αl,2 > 0 trivially. This shows

that Pπl > Pπl+1
for c ≥ cl, where cl = αl,1/αl,2. Some algebra shows that for l ∈ {0, . . . , B−1},

cl ≥ cl+1 ⇔ (B + 1− l)γB+2
1 (γ1 + γ2) ≥ 2γB+3

2

B−l∑
k=0

(
γ1

γ2
)k.

The last inequality follows because γ1 ≥ γ2, and hence the threshold decreases as the holding

cost increases.

Next assume that γ1 = γ2 = ρ. Some algebra shows that for l ∈ {0, . . . , B − 1},

Pπl − Pπl+1
=

ρ
(
− 2− (B − l)2 − 3(B − l) + 4c(3 + 2l)

)
(1 +B − l)(2 +B − l)(4 +B + l)(5 +B + l)

. (10)

This expression is positive for l ∈ {0, . . . , B − 1} and c ≥ cl, where cl = 2+(B−l)2+3(B−l)
4(3+2l) . Some

algebra shows that

cl ≥ cl+1 ⇔ 4 + 2(B − l)2 + 6(B − l) + 2(3 + 2l)(B + 1− l) ≥ 0. (11)

The last inequality holds trivially for l ∈ {0, . . . , B − 1}, and this completes the proof. �

Proof of Proposition 4.3: First assume that µ1 > µ2. Let πl = (dl)
∞ be a Type 1 policy

with t1(2, 2) = l, where l ∈ {0, . . . , B}. It is not difficult to show that

Pπl =
(µ1+µ2)((B+2−l−2c)µB+l+4

1 −(B+2−l−4c)µB+l+3
1 µ2−2cµB+l+2

1 µ22−µ
B+2
1 µl+2

2 +µl1µ
B+4
2 )

2(B+2−l)µB+l+4
1 −2(B+2−l)µB+l+3

1 µ2−µB+3
1 µl+1

2 −µB+2
1 µl+2

2 +µl+1
1 µB+3

2 +µl1µ
B+4
2

.

Some algebra shows that Pπl − Pπl+1
= (−βl,1 + cβl,2)/βl,3 for l ∈ {0, . . . , B − 1}, where

βl,1 = (µ1 − µ2)2(µ1 + µ2)µB+l+3
1 µ2

(
(B + 1− l)µB+2

1 µl2 − (B + 2− l)µB+1
1 µl+1

2 + µl1µ
B+2
2

)
,

βl,2 = 2(µ1 − µ2)3(µ1 + µ2)µ2B+l+3
1 (2µl+2

1 − µ1µ
l+1
2 − µl+2

2 ),

βl,3 =
(

2(B + 2− l)µB+l+4
1 − 2(B + 2− l)µB+l+3

1 µ2 − µB+3
1 µl+1

2 − µB+2
1 µl+2

2 + µl+1
1 µB+3

2 + µl1µ
B+4
2

)
×
(

2(B + 1− l)µB+l+4
1 − 2(B + 1− l)µB+l+3

1 µ2 − µB+2
1 µl+2

2 − µB+1
1 µl+3

2 + µl+1
1 µB+3

2 + µl1µ
B+4
2

)
.
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The first term in βl,3 is positive for all l ∈ {0, . . . , B − 1}, because it can be rewritten as

2(B + 2− l)µB+3+l
1 (µ1 − µ2)− µl1µl+1

2 (µ1 + µ2)(µB+2−l
1 − µB+2−l

2 )

= (µ1 − µ2)
(

2(B + 2− l)µB+3+l
1 − µl1µB+2

2 (µ1 + µ2)
B+1−l∑
i=0

(
µ1

µ2
)i
)

> 2(µ1 − µ2)
(

(B + 2− l)µB+3+l
1 − µl+1

1 µB+2
2

B+1−l∑
i=0

(
µ1

µ2
)i
)
> 0,

where the last inequality follows because µl+1
1 µB+2

2 (µ1/µ2)i < µB+3+l
1 for all i ∈ {0, . . . , B+1−l}.

Similar calculations show that the second term in βl,3 is also positive, because it can be rewritten

as

2(B + 1− l)µB+3+l
1 (µ1 − µ2)− µl1µl+2

2 (µ1 + µ2)(µB+1−l
1 − µB+1−l

2 )

> 2(µ1 − µ2)
(

(B + 1− l)µB+3+l
1 − µl+1

1 µB+2
2

B−l∑
i=0

(
µ1

µ2
)i
)
> 0.

Thus we have shown that βl,3 > 0 for l ∈ {0, . . . , B−1}. Moreover, βl,2 > 0 trivially. This shows

that Pπl > Pπl+1
for c ≥ cl, where cl = βl,1/βl,2. Some algebra shows that for l ∈ {0, . . . , B− 1},

cl ≥ cl+1 ⇔ 2(B + 1− l)µB+3
1 ≥ µB+2

2 (µ1 + µ2)

B−l∑
k=0

(
µ1

µ2
)k.

The last inequality follows because µ1 ≥ µ2, and hence the threshold decreases as the holding

cost increases.

Next assume that µ1 = µ2 = ρ. Some algebra shows that for l ∈ {0, . . . , B − 1}, Pπl − Pπl+1

is as in Equation (10). Hence, Pπl > Pπl+1
for l ∈ {0, . . . , B − 1} and c ≥ cl. We observe that

cl ≥ cl+1 because of (11). This completes the proof. �
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