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1 Proofs of the results in the paper
1.1 Proof of Lemma 1

Conditionally on x, all p} (u) are non-negative i.i.d. random variables. Hence,
by the (conditional) law of large numbers, ), (u) converges a.s. to the con-
ditional expectation of p} (u) given x. By using equation (6) in the main text,
we obtain that this conditional expectation is a.s. finite.

1.2 Proof of Theorem 1

A p-thinning of X is again stationary with intensity pp. By Daley and Vere-
Jones (2008, Expression (11.3.2)),

Go,x,() =G, x),() =Go,x(p-+1—p) =Gx(p-+1-p) = Gx,(-), veES,

where Gx(+) is the generating functional of X. Using Last (2010, Corollary
8.7) we immediately obtain that

E[ﬁV(WvaS)}
p

pp

E[pY . (u)] = = E[1/|{cell of X, containing u}|]/p = " =p.

p,m

1.3 Proof of Theorem 2

We denote by x,(X) € X the centre of the Voronoi cell Cy(X), the cell
containing u € R% Let ¢ > 0, 4 = p, and p_ = min,ep(y,e) P(v), such
that p(v)/2 < p(v) — pe < p— < p(v) on B(u,e). Let X_ be obtained by
independently removing/adding points at rate p_ — p(v), v € R?. Note that
X_ is a homogeneous Poisson process with intensity p— and X_ C X on
B(u,¢) a.s..

We call Voronoi neighbours in some configuration x the centres of cells
of x which are neighbours of C,(x). Denote by R(x) the maximal Euclidean
distance between x,,(x) and its Voronoi neighbours. Remark that if R(x) < ¢,
then C,(x) C B(u,&). One can find a finite number of balls such that if
any such ball contains a point of x, then R(x) < 1. Hence, using the void
probabilities of X, we have at the scale € for X that

P(R(X) >e) < Cyecar—="

for some Cy, cq > 0.
Now, let {2 be the event that X and X_ coincide on B(u,e) and R(X) < e.
Conditionally on 2, C,(X) = C,(X_) C B(u,e). We obtain

1{Q°} < 1{R(X)>€} + Z 1{1 eliminated at thinning}s
z€X_NB(u,e)

P(02°) < P(R(X) > ¢) +/ pedz < CgeaP—=" 4eedye,
B(u,e)
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Let further k' = (1 — k~1)~! < d + 1. By Hélder’s inequality and Theorem 1
we have that

E [p" (uw)] — pu)| < ‘E [1{9} |Cu(1X)J —p(u)| +E [1{Qc}|Cu(1X)J
<& {1001 ey )|+ w0 erey
1 1
<E [Cu(X_)I - P] e e oy T lp(u) = p-|

=0
+ m(cdusds +Cy e_cdpfed)l/“/

<pie + 2m(cqpe’e + Cye—car—="Y1/

Setting € = pil/d log(p_)?/? and recalling that p(u)/2 < p_, using that &’ <

d + 1, proves the result for the original Voronoi intensity estimator.
As a p-thinning X,,, p € (0,1], of X is a Poisson process with intensity
pp(+), we finally note that

PIE[Dy ()] = p(w)| = |E [ (u; Xp, RY)] — pp(u)|
< up~le 4 2m(cqup~tele + Cy e*cdpp(“)ad)l/“,,

since E|C,(X,)| " < E|C,(X)|".

1.4 Proof of Theorem 3

Note first that

né __ 3 ar(pY (u 1 ov(pY (u), pY (u
Vs 70 = oy 3 Va1 + s 37 ol . 7 ) 1)
= — Var(pY ()/p) + "= Cov(Y )/, 7Y (1))
1+ (m — 1)Corr(@Y (w), 7Y (1)

= Var(p}, (w) = ,

where Cov and Corr denote covariance and correlation, respectively. Since
the variance is non-negative, by (1) we must have that Corr(p} (u), py (u)) >
—1/(m — 1) for every single m > 1. Hence, the correlation must be non-
negative, whereby Var(py ,(u))/m < Var(p,,,(u)) < Var(py,(u)); this is
obtained by setting Corr(p} (u),py (u)) = 0,1 in expression (1). Also, let-
ting m — oo in (1), the limit of (1) is given by Cov(pY (u),py (u))/p? since
Var(pY (u)) < oo.

Regarding the variance tending to 0, it is sufficient to show it for m = 1
since Var(py ,,(u)) < Var(py , (u)).
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Let (Xp)pe(0,1) be a coupling such that X, is non-increasing in terms of
inclusion: assign independent U (0, 1)-distributed labels to the points of X and
generate X, by keeping all points with labels smaller than p. For a bounded
W there is a.s. some py € (0,1) such that X, = () for all p € (0, po). Hence,
Py 1 (u) = p¥(u; Xp, W) /p = 0/p = 0 (by definition) for such p, which means
that the limit ) (u) | 0 is deterministic. Since there are p € (0,1] such
that E[p); (u)?] < oo, by the dominated convergence theorem it follows that
Var(py 1 (u)) = 0 as p — 0.

Consider a sequence of windows (W},),e (0,17 Which increases (in terms of
inclusion) as p decreases and satisfies E[N (X, N W,)] = ppr p(u)du — 0
as p — 0. This implies that P(X, N W, # ) — 0 and writing p) ,(u) =
Py (u; Xp, Wp), we obtain that P(p), (u) # 0) = P(X, N W, # 0) — 0. Since
py1(u) < pY1(u) = pY(u) a.s., which has finite variance by assumption, and
since ﬁXl (u) is a.s. decreasing as p — 0 (even with changing study region), the
monotone convergence theorem yields that ﬁ;{l(u) —L% 0 as p — 0, whereby
Var(py ,(u)) = 0 as p — 0.

1.5 Proof of Lemma 2

Recall that X, is a homogeneous Poisson process with intensity pp. For a typ-
ical point of X, let A_ and A, be the distances to the point’s nearest neigh-
bours to the left and to the right, respectively; they are independent and expo-
nentially distributed with mean pp. Since A_ /2 and A, /2 are independent and
exponentially distributed with mean 2pp, the typical cell size, A_/2 + A, /2,
follows an Erlang/Gamma distribution with shape parameter 2 and rate 2pp,
whereby the density of Py, (x,) () is given by fjy,(x,)(t) = (2pp)*te2rrt,
Through equation (6) in the paper, we now obtain

~ <1 _ <
E[py1(u)’] = gE[l/IVo(Xp)H = %/0 ~(2pp)*tert dt=4pp3/0 e Pt at
_ At _ s

2pp
i.e., Var(py . (u)) < Var(py 1 (u)) = 2p* — p* = p* by Theorem 3.

)
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2 Estimation error plots

This section provides plots of the estimated bias and variance for py,, (u),
for each of the models described in Section 4 of the paper, when m = 400
and p = 0.01,0.1,0.3,0.5,0.7,1. The estimates are generated by means of
500 realisations of each model. Also, box plots of average, average absolute,
minimum, and maximum point-wise errors for each model are presented. We
additionally provide the above for kernel intensity estimates, with bandwidths
selected by means of Poisson likelihood cross-validation (Baddeley et al., 2015;
Loader, 1999), hereinafter ppl, and the method of Cronie and Van Lieshout
(2018), hereinafter CvL.
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Fig. 1 Estimated bias for ﬁz‘;m(u), u € W = [0,1]2, m = 400, and kernel estimators, based
on 500 realisations of a homogeneous Poisson process X C W = [0, 1] with intensity p = 60.
From top-left to bottom-right: ﬁxm(u) with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel estimators
with bandwidths selected using ppl (left) CvL (right) are on the last row.
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Fig. 2 Estimated variance for ﬁ;f,m(u), uw € W = [0,1]2, m = 400, and kernel estimators,
based on 500 realisations of a homogeneous Poisson process X C W = [0, 1]2 with intensity
p = 60. From top-left to bottom-right: ﬁXm(“) with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel esti-
mators with bandwidths selected using ppl (left) CvL (right) are on the last row. Logarithmic
colour map.
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Fig. 3 Box plots for point-wise errors of ﬁz‘,/:m(u), w € W = [0,1)2, m = 400, and
kernel estimates, based on 500 realisations of a homogeneous Poisson process X C
W = [0,1)®> with intensity p = 60. From top-left to bottom-right: average; aver-
age absolute; minimum and maximum. x-axis labels from left to right: ppl, CvL, p =
0.01,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.
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Fig. 4 Estimated bias for ﬁxm(u), u € W = 2, m = 400, and kernel estima-
tors, based on 500 realisations of an inhomogeneous P01sson process X C W = [0,1]?
with intensity p(z,y) = |10 4+ 90sin(16z)|. From top-left to bottom-right: ﬁxm(u) with
p =0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using ppl (left) CvL
(right) are on the last row.
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Fig. 5 Estimated bias for ﬁz‘,/,m(u)7 u € W = [0,1)2, m = 200, and kernel estima-
tors, based on 500 realisations of an inhomogeneous Poisson process X C W = [0,1]2
with intensity p(z,y) = |10 + 90sin(16zx)|. From top-left to bottom-right: ﬁXm(u) with
p =0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using ppl (left) CvL
(right) are on the last row. Logarithmic colour map.
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Fig. 6 Box plots for point-wise errors of Z)\;f’m(u)7 ueW =
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[0,1]2, m = 400, and kernel

estimators, based on 500 realisations of an inhomogeneous Poisson process X C W =

[0,1)?

with intensity p(z,y) = |10 + 90sin(16z)|. From top-left to bottom-right: average;

average absolute; minimum and maximum. x-axis labels from left to right: ppl, CvL, p =
0.01,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.
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Fig. 7 Estimated bias for ), (u), v € W = [0,1]?, m = 400, and kernel estimators,
based on 500 realisations of a log-Gaussian Cox process X C W = [0, 1)? where the driving
Gaussian random field has mean function (z,y) — log(40|sin(20xz)|) and covariance func-
tion ((z1,y1), (®2,92)) — 2exp{—||(z1,y1) — (z2,y2)||/0.1}. From top-left to bottom-right:
ﬁX m(u) with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using
ppl (left) CvL (right) are on the last row.
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Fig. 8 Estimated variance for p, pp m(@), u € W =1[0,1]2, m = 400, and kernel estimators,
based on 500 realisations of a log-Gaussian Cox process X C W = [0, 1]2 where the driving
Gaussian random field has mean function (z,y) — log(40|sin(20z)|) and covariance func-
tion ((z1,y1), (x2,y2)) — 2exp{—||(z1,y1) — (2,y2)||/0.1}. From top-left to bottom-right:
ﬁl‘,{m(u) with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using
ppl (left) CvL (right) are on the last row. Logarithmic colour map.
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the driving Gaussian random field has mean function (z,y) — log(40|sin(20z)|) and co-
variance function ((z1,y1), (z2,y2)) — 2exp{—||(z1,y1) — (z2,y2)||/0.1}. From top-left to
bottom-right: average; average absolute; minimum and maximum. x-axis labels from left to
right: ppl, CvL, p = 0.01,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.
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Fig. 10 Estimated bias for ﬁ;,/:m(u), w € W = [0,1]2, m = 400, and kernel estimators,
based on 500 realisations of an independently thinned simple sequential inhibition process
in W = [0, 1] with intensity p(z,y) = 450p(z,v), p(z,y) = 1{z < 1/3}|z —0.02| +1{1/3 <
x < 2/3}z —0.5| + 1{z > 2/3}|x — 0.95|, =,y € W. From top-left to bottom-right: py ,, (u)
with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using ppl (left)
CvL (right) are on the last row.
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Fig. 11 Estimated variance for p, Voa(w), uew =1[0,1]2 = 400, and kernel estimators,
based on 500 realisations of an independently thinned sunple sequential inhibition process
in W = [0, 1] with intensity p(z,y) = 450p(z,y), p(z,y) = 1{z < 1/3}|x —0.02| +1{1/3 <
x < 2/3}z —0.5| + 1{z > 2/3}|x — 0.95|, =,y € W. From top-left to bottom-right: py ,, (u)
with p = 0.01,0.1,0.3,0.5,0.7, 1; kernel estimators with bandwidths selected using ppl (left)
CvL (right) are on the last row. Logarithmic colour map.
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Fig. 12 Box plots for point-wise errors of ﬁz‘{m(u), u € W = [0,1]2, m = 400, and ker-
nel estimators, based on 500 realisations of an independently thinned simple sequential
inhibition process in W = [0,1]? with intensity p(z,y) = 450p(z,y), p(z,y) = 1{z <
1/3}z —0.02| +1{1/3 <z < 2/3}|x — 0.5| + 1{z > 2/3}|z — 0.95|, z,y € W. From top-left
to bottom-right: average; average absolute; minimum and maximum. x-axis labels from left

to right: ppl, CvL, p = 0.01,0.03,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.
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