Electronic Supplementary Material to the paper Resample-smoothing of Voronoi intensity estimators

M. Mehdi Moradi · Ottmar Cronie · Ege Rubak · Raphael Lachieze-Rey · Jorge Mateu · Adrian Baddeley

Received: date / Accepted: date

M. Mehdi Moradi Institute of New Imaging Technologies (INIT), University Jaume I, Castellón, Spain ORCID: 0000-0003-3905-4498

Ottmar Cronie (Corresponding author) Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden E-mail: ottmar.cronie@umu.se Tel.: +46-90-7865742 ORCID: 0000-0002-6721-8608

Ege Rubak Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark ORCID: 0000-0002-6675-533X

Raphael Lachieze-Rey Université Paris Descartes, Sorbonne Paris Cité, Paris, France

Jorge Mateu Department of Mathematics, University Jaume I, Castellón, Spain ORCID: 0000-0002-2868-7604

Adrian Baddeley Department of Mathematics & Statistics, Curtin University, Perth, Australia ORCID: 0000-0001-9499-8382

1 Proofs of the results in the paper

1.1 Proof of Lemma 1

Conditionally on **x**, all $\hat{\rho}_i^V(u)$ are non-negative i.i.d. random variables. Hence, by the (conditional) law of large numbers, $\hat{\rho}_{p,m}^{V}(u)$ converges a.s. to the con-
ditional convertion of $\hat{\alpha}_{p,m}^{V}(u)$ given as Pressure constitute (c) in the majn test ditional expectation of $\hat{\rho}_i^V(u)$ given **x**. By using equation (6) in the main text, we obtain that this conditional expectation is a.s. finite.

1.2 Proof of Theorem 1

A p-thinning of X is again stationary with intensity $p\rho$. By Daley and Vere-Jones (2008, Expression (11.3.2)),

$$
G_{\theta_v X_p}(\cdot) = G_{(\theta_v X)_p}(\cdot) = G_{\theta_v X}(p \cdot (1-p) = G_X(p \cdot (1-p)) = G_{X_p}(\cdot), \quad v \in S,
$$

where $G_X(\cdot)$ is the generating functional of X. Using Last (2010, Corollary 8.7) we immediately obtain that

$$
\mathbb{E}[\widehat{\rho}_{p,m}^{V}(u)] = \frac{\mathbb{E}[\widehat{\rho}^{V}(u;X_p,S)]}{p} = \mathbb{E}[1/|\{\text{cell of } X_p \text{ containing } u\} |]/p = \frac{p\rho}{p} = \rho.
$$

1.3 Proof of Theorem 2

We denote by $x_u(X) \in X$ the centre of the Voronoi cell $C_u(X)$, the cell containing $u \in \mathbb{R}^d$. Let $\varepsilon > 0$, $\mu = \mu_u$ and $\rho_- = \min_{v \in B(u,\varepsilon)} \rho(v)$, such that $\rho(v)/2 \leq \rho(v) - \mu \varepsilon \leq \rho_- \leq \rho(v)$ on $B(u, \varepsilon)$. Let X_{-} be obtained by independently removing/adding points at rate $\rho_- - \rho(v)$, $v \in \mathbb{R}^d$. Note that $X_$ is a homogeneous Poisson process with intensity $ρ_$ and $X_$ ⊆ X on $B(u,\varepsilon)$ a.s..

We call Voronoi neighbours in some configuration x the centres of cells of x which are neighbours of $C_u(\mathbf{x})$. Denote by $R(\mathbf{x})$ the maximal Euclidean distance between $x_u(\mathbf{x})$ and its Voronoi neighbours. Remark that if $R(\mathbf{x}) \leq \varepsilon$, then $C_u(\mathbf{x}) \subseteq B(u,\varepsilon)$. One can find a finite number of balls such that if any such ball contains a point of x, then $R(x) \leq 1$. Hence, using the void probabilities of X, we have at the scale ε for X that

$$
\mathbb{P}(R(X) \ge \varepsilon) \le C_d e^{-c_d \rho_- \varepsilon^d}
$$

for some C_d , $c_d > 0$.

Now, let Ω be the event that X and X₋ coincide on $B(u, \varepsilon)$ and $R(X) \leq \varepsilon$. Conditionally on Ω , $C_u(X) = C_u(X_-) \subseteq B(u, \varepsilon)$. We obtain

$$
\mathbf{1}_{\{\Omega^c\}} \leq \mathbf{1}_{\{R(X) > \varepsilon\}} + \sum_{x \in X - \cap B(u, \varepsilon)} \mathbf{1}_{\{x \text{ eliminated at thinning}\}},
$$

$$
\mathbb{P}(\Omega^c) \leq \mathbb{P}(R(X) > \varepsilon) + \int_{B(u, \varepsilon)} \mu \varepsilon dx \leq C_d e^{-c_d \rho - \varepsilon^d} + c \varepsilon^d \mu \varepsilon.
$$

Let further $\kappa' = (1 - \kappa^{-1})^{-1} \leq d + 1$. By Hölder's inequality and Theorem 1 we have that

$$
\left| \mathbb{E} \left[\hat{\rho}^V(u) \right] - \rho(u) \right| \le \left| \mathbb{E} \left[\mathbf{1}_{\{\Omega\}} \frac{1}{|C_u(X)|} \right] - \rho(u) \right| + \mathbb{E} \left[\mathbf{1}_{\{\Omega^c\}} \frac{1}{|C_u(X)|} \right]
$$

\n
$$
\le \left| \mathbb{E} \left[\mathbf{1}_{\{\Omega\}} \frac{1}{|C_u(X)|} - \rho(u) \right] \right| + \left(\mathbb{E} |C_u(X)|^{-\kappa} \right)^{1/\kappa} \mathbb{P}(\Omega^c)^{1/\kappa'}
$$

\n
$$
\le \underbrace{\mathbb{E} \left[\frac{1}{|C_u(X)|} - \rho_{-} \right]}_{=0} + \mathbf{1}_{\{\Omega^c\}} \frac{1}{|C_u(X)|} + |\rho(u) - \rho_{-}|
$$

\n
$$
+ m(c_d \mu \varepsilon^d \varepsilon + C_d e^{-c_d \rho_{-} \varepsilon^d})^{1/\kappa'}
$$

\n
$$
\le \mu \varepsilon + 2m(c_d \mu \varepsilon^d \varepsilon + C_d e^{-c_d \rho_{-} \varepsilon^d})^{1/\kappa'}.
$$

Setting $\varepsilon = \rho_-^{-1/d} \log(\rho_-)^{2/d}$ and recalling that $\rho(u)/2 \leq \rho_-$, using that $\kappa' \leq$ $d+1$, proves the result for the original Voronoi intensity estimator.

As a p-thinning X_p , $p \in (0,1]$, of X is a Poisson process with intensity $p\rho(\cdot)$, we finally note that

$$
p|\mathbb{E}[\widehat{\rho}_{p,m}^V(u)] - \rho(u)| = |\mathbb{E}[\widehat{\rho}^V(u; X_p, \mathbb{R}^d)] - p\rho(u)|
$$

$$
\leq \mu p^{-1} \varepsilon + 2m(c_d \mu p^{-1} \varepsilon^d \varepsilon + C_d e^{-c_d p\rho(u)\varepsilon^d})^{1/\kappa'},
$$

since $\mathbb{E}|C_u(X_p)|^{-\kappa} \leq \mathbb{E}|C_u(X)|^{-\kappa}$.

1.4 Proof of Theorem 3

Note first that

$$
Var(\hat{\rho}_{p,m}^V(u)) = \frac{1}{(mp)^2} \sum_{i=1}^m Var(\hat{\rho}_1^V(u)) + \frac{1}{(mp)^2} \sum_{i \neq j} Cov(\hat{\rho}_i^V(u), \hat{\rho}_j^V(u)) \quad (1)
$$

= $\frac{1}{m} Var(\hat{\rho}_1^V(u)/p) + \frac{m-1}{m} Cov(\hat{\rho}_1^V(u)/p, \hat{\rho}_2^V(u)/p)$
= $Var(\hat{\rho}_{p,1}^V(u)) \frac{1 + (m-1)Corr(\hat{\rho}_1^V(u), \hat{\rho}_2^V(u))}{m},$

where Cov and Corr denote covariance and correlation, respectively. Since the variance is non-negative, by (1) we must have that $Corr(\hat{\rho}_1^V(u), \hat{\rho}_2^V(u)) \ge -1/(m-1)$ for every single $m \ge 1$. Hence, the correlation must be non- $\hat{\rho}_1^V(u), \hat{\rho}_2^V(u)) \geq$ negative, whereby $\text{Var}(\widehat{\rho}_{p,1}^V(u))/m \leq \text{Var}(\widehat{\rho}_{p,m}^V(u)) \leq \text{Var}(\widehat{\rho}_{p,1}^V(u));$ this is obtained by setting $Corr(\hat{\rho}_1^V(u), \hat{\rho}_2^V(u)) = 0, 1$ in expression (1). Also, let-
ting $m \to \infty$ in (1), the limit of (1) is given by $Cov(\hat{\alpha}^V(u), \hat{\alpha}^V(u))/n^2$ since ting $m \to \infty$ in (1), the limit of (1) is given by $Cov(\hat{\rho}_1^V(u), \hat{\rho}_2^V(u))/p^2$ since $\text{Var}(\widehat{\rho}_1^V(u)) < \infty.$
Becausing the

Regarding the variance tending to 0, it is sufficient to show it for $m = 1$ since $\text{Var}(\widehat{\rho}_{p,m}^V(u)) \leq \text{Var}(\widehat{\rho}_{p,1}^V(u)).$

Let $(X_p)_{p\in(0,1]}$ be a coupling such that X_p is non-increasing in terms of inclusion: assign independent $U(0, 1)$ -distributed labels to the points of X and generate X_p by keeping all points with labels smaller than p. For a bounded W there is a.s. some $p_0 \in (0,1)$ such that $X_p = \emptyset$ for all $p \in (0,p_0)$. Hence, $\widehat{\rho}_{p,1}^V(u) = \widehat{\rho}^V(u; X_p, W)/p = 0/p = 0$ (by definition) for such p, which means that the limit $\hat{\rho}_{p,1}^{V}(u) \downarrow 0$ is deterministic. Since there are $p \in (0,1]$ such that $\mathbb{E}[\hat{\alpha}_{p}^{V}(u)]_{\alpha}$ are by the deminated convergence theorem it follows that that $\mathbb{E}[\hat{\rho}_{p,1}^V(u)^2] < \infty$, by the dominated convergence theorem it follows that $\text{Var}(\widehat{\rho}_{p,1}^V(u)) \to 0 \text{ as } p \to 0.$
Consider a sequence of

Consider a sequence of windows $(W_p)_{p\in(0,1]}$ which increases (in terms of inclusion) as p decreases and satisfies $\mathbb{E}[N(X_p \cap W_p)] = p \int_{W_p} \rho(u) \mathrm{d}u \to 0$ as $p \to 0$. This implies that $\mathbb{P}(X_p \cap W_p \neq \emptyset) \to 0$ and writing $\hat{\rho}_{p,1}^V(u) = \hat{\rho}_{p,1}^V(u)$ we also that $\mathbb{P}(\hat{\alpha}^V(u) \neq 0)$. $\mathbb{P}(X \cap W \neq \emptyset)$, 0 Since $\widehat{\rho}_{p,1}^V(u; X_p, W_p)$, we obtain that $\mathbb{P}(\widehat{\rho}_{p,1}^V(u) \neq 0) = \mathbb{P}(X_p \cap W_p \neq \emptyset) \to 0$. Since $\widehat{\rho}_{p,1}^V(u) \leq \widehat{\rho}_{1,1}^V(u) = \widehat{\rho}^V(u)$ a.s., which has finite variance by assumption, and since $\hat{\rho}_{p,1}^V(u)$ is a.s. decreasing as $p \to 0$ (even with changing study region), the monotone convergence theorem yields that $\hat{\rho}_{p,1}^{V}(u) \to^{L^2} 0$ as $p \to 0$, whereby $\text{Var}(\widehat{\rho}_{p,1}^V(u)) \to 0 \text{ as } p \to 0.$

1.5 Proof of Lemma 2

Recall that X_p is a homogeneous Poisson process with intensity $p\rho$. For a typical point of X_p , let $\Delta_-\$ and Δ_+ be the distances to the point's nearest neighbours to the left and to the right, respectively; they are independent and exponentially distributed with mean pρ. Since $\Delta_-/2$ and $\Delta_+/2$ are independent and exponentially distributed with mean 2p ρ , the typical cell size, $\Delta_-/2 + \Delta_+/2$, follows an Erlang/Gamma distribution with shape parameter 2 and rate $2p\rho$, whereby the density of $P_{|\mathcal{V}_o(X_p)|}(\cdot)$ is given by $f_{|\mathcal{V}_o(X_p)|}(t) = (2p\rho)^2 t e^{-2p\rho t}$. Through equation (6) in the paper, we now obtain

$$
\mathbb{E}[\hat{\rho}_{p,1}^V(u)^2] = \frac{\rho}{p} \mathbb{E}[1/|\mathcal{V}_o(X_p)|] = \frac{\rho}{p} \int_0^\infty \frac{1}{t} (2p\rho)^2 t e^{-2p\rho t} dt = 4p\rho^3 \int_0^\infty e^{-2p\rho t} dt
$$

= $\frac{4p\rho^3}{2p\rho} = 2\rho^2$,

i.e., $\text{Var}(\hat{\rho}_{p,m}^V(u)) \leq \text{Var}(\hat{\rho}_{p,1}^V(u)) = 2\rho^2 - \rho^2 = \rho^2$ by Theorem 3.

2 Estimation error plots

This section provides plots of the estimated bias and variance for $\hat{\rho}_{p,m}^{V}(u)$,
for each of the models described in Section 4 of the paper, when $m = 400$ for each of the models described in Section 4 of the paper, when $m = 400$ and $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$. The estimates are generated by means of 500 realisations of each model. Also, box plots of average, average absolute, minimum, and maximum point-wise errors for each model are presented. We additionally provide the above for kernel intensity estimates, with bandwidths selected by means of Poisson likelihood cross-validation (Baddeley et al., 2015; Loader, 1999), hereinafter ppl, and the method of Cronie and Van Lieshout (2018), hereinafter CvL.

Fig. 1 Estimated bias for $\hat{\rho}_{p,m}^V(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of a homogeneous Poisson process $X \subset W = [0, 1]^2$ with intensity $\rho = 60$. From top-left to bottom-right: $\hat{\rho}_{p,m}^V(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row.

Fig. 2 Estimated variance for $\hat{\rho}_{p,m}^V(u)$, $u \in W = [0, 1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of a homogeneous Poisson process $X \subset W = [0, 1]^2$ with intensity $\rho = 60$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel esti-
mators with bandwidths selected using ppl (left) CvL (right) are on the last row. Logarithmic colour map.

Fig. 3 Box plots for point-wise errors of $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and learnal estimates, based on 500 realisations of a homogeneous Poisson process Y kernel estimates, based on 500 realisations of a homogeneous Poisson process X ⊂ $W = [0, 1]^2$ with intensity $\rho = 60$. From top-left to bottom-right: average; average absolute; minimum and maximum. x-axis labels from left to right: ppl, Cvl , $p =$ 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Fig. 4 Estimated bias for $\hat{\rho}_{p,m}^V(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of an inhomogeneous Poisson process $X \subset W = [0, 1]^2$ with intensity $\rho(x, y) = |10 + 90 \sin(16x)|$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row.

Fig. 5 Estimated bias for $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 200$, and kernel estimators, based on 500 realisations of an inhomogeneous Poisson process $X \subset W = [0, 1]^2$ with intensity $\rho(x, y) = |10 + 90 \sin(16x)|$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row. Logarithmic colour map.

Fig. 6 Box plots for point-wise errors of $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of an inhomogeneous Poisson process $Y \subset W$ estimators, based on 500 realisations of an inhomogeneous Poisson process $X \subset W$ = $[0, 1]^2$ with intensity $\rho(x, y) = |10 + 90 \sin(16x)|$. From top-left to bottom-right: average; average absolute; minimum and maximum. x-axis labels from left to right: ppl, CvL , $p =$ $0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.$

Fig. 7 Estimated bias for $\hat{\rho}_{p,m}^V(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of a log-Gaussian Cox process $X \subset W = [0, 1]^2$ where the driving Gaussian random field has mean function $(x, y) \mapsto \log(40|\sin(20x))$ and covariance function $((x_1, y_1), (x_2, y_2)) \mapsto 2 \exp\{-\|(x_1, y_1) - (x_2, y_2)\|/0.1\}$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row.

Fig. 8 Estimated variance for $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of a log-Gaussian Cox process $X \subset W = [0, 1]^2$ where the driving Gaussian random field has mean function $(x, y) \mapsto \log(40|\sin(20x))$ and covariance function $((x_1, y_1), (x_2, y_2)) \mapsto 2 \exp\{-\|(x_1, y_1) - (x_2, y_2)\|/0.1\}$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using
npl (loft) Cyl (right) are on the last row Logarithmic selection map ppl (left) CvL (right) are on the last row. Logarithmic colour map.

Fig. 9 Box plots for point-wise errors of $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, based on 500 realisations of a log-Gaussian Cox process $X \subset W = [0, 1]^2$ where the driving Gaussian random field has mean function $(x, y) \mapsto \log(40|\sin(20x))$ and covariance function $((x_1, y_1), (x_2, y_2)) \mapsto 2 \exp\{-\|(x_1, y_1) - (x_2, y_2)\|/0.1\}$. From top-left to bottom-right: average; average absolute; minimum and maximum. x-axis labels from left to right: ppl, CvL, $p = 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.$

Fig. 10 Estimated bias for $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, hasod on 500 realisations of an independently thinned simple equantial inhibition process based on 500 realisations of an independently thinned simple sequential inhibition process in $W = [0, 1]^2$ with intensity $\rho(x, y) = 450p(x, y), p(x, y) = 1\{x < 1/3\}|x - 0.02| + 1\{1/3 \le x\}|x - 0.02| + 1\{1/3\}|x - 0.02| +$ $x < 2/3$] $|x - 0.5| + 1\{x \ge 2/3\}|x - 0.95|$, $x, y \in W$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row.

Fig. 11 Estimated variance for $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and kernel estimators, hasod on 500 realisations of an independently thinned simple equantial inhibition process based on 500 realisations of an independently thinned simple sequential inhibition process in $W = [0, 1]^2$ with intensity $\rho(x, y) = 450p(x, y), p(x, y) = 1\{x < 1/3\}|x - 0.02| + 1\{1/3 \le x\}|x - 0.02| + 1\{1/3\}|x - 0.02| +$ $x < 2/3$] $|x - 0.5| + 1\{x \ge 2/3\}|x - 0.95|$, $x, y \in W$. From top-left to bottom-right: $\hat{\rho}_{p,m}^{V}(u)$ with $p = 0.01, 0.1, 0.3, 0.5, 0.7, 1$; kernel estimators with bandwidths selected using ppl (left) CvL (right) are on the last row. Logarithmic colour map.

Fig. 12 Box plots for point-wise errors of $\hat{\rho}_{p,m}^{V}(u)$, $u \in W = [0,1]^2$, $m = 400$, and ker-
rel estimators, based on 500 realisations of an independently thinned simple sequential nel estimators, based on 500 realisations of an independently thinned simple sequential inhibition process in $W = [0, 1]^2$ with intensity $\rho(x, y) = 450p(x, y), p(x, y) = 1\{x \leq y\}$ $1/3$ | $x - 0.02$ | + 1{ $1/3 \le x < 2/3$ | $x - 0.5$ | + 1{ $x \ge 2/3$ }| $x - 0.95$ |, $x, y \in W$. From top-left to bottom-right: average; average absolute; minimum and maximum. x-axis labels from left to right: ppl, CvL, $p = 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.$

References

- Baddeley A, Rubak E, Turner R (2015) Spatial Point Patterns: Methodology and Applications with R. CRC Press
- Cronie O, Van Lieshout M (2018) A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika 105(2):455–462
- Daley DJ, Vere-Jones D (2008) An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure, 2nd edn. Springer-Verlag New York
- Last G (2010) Stationary random measures on homogeneous spaces. Journal of Theoretical Probability 23(2):478–497

Loader C (1999) Local Regression and Likelihood. Springer, New York