
Online supplementary material
All equations, lemmas, tables, etc in the main paper are referred to as equation

(1), lemma 1, table 1, etc, and in this supplement they are referred to as equation
(S1), lemma S1 and table S1, etc.

S1 Some further technical results for the Gumbel

and Clayton copulas

S1.1 The Gumbel copula

The J-dimensional Gumbel copula is another popular example of Archimedean cop-
ulas. Its cdf C (u) and density c (u) are
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The dependence parameter θ is defined on [1,∞), where a value of 1 represents the
independence case. The Gumbel copula is an appropriate choice if the data exhibit
weak correlation at lower values and strong correlation at higher values.

If some of the aj are zero, then directly estimating the integral (3) is computa-
tionally inefficient for the same reasons as given in section 2.2 for the Clayton copula.
It can be readily checked that
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Then, we can rewrite the integral as

ˆ b1

a1

...

ˆ bK

aK

D (u1:K , bK+1:J) du1:K =
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j=1

(bj − aj)

×
ˆ 1

0

...
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0

D ((b1 − a1) v1 + a1, ..., (bK − aK) vK + aK , bK+1:J) dv1:K .

S1.2 The VBIL approximation distribution

For the Clayton copula, the VB approximation to the posterior of θ is the inverse
gamma density

qλ (θ) =
ab

Γ (a)
(θ)−1−a exp (−b/θ) , θ > 0,

and for the Gumbel copula

qλ (θ) =
ab

Γ (a)
(θ − 1)−1−a exp (−b/ (θ − 1)) , θ > 1,

with the natural parameters a and b. The Fisher information matrix for the inverse
gamma is

IF (a, b) =

(
∇aa [log Γ (a)] −1/b
−1/b a/b2

)
with gradient

∇a [log qλ (θ)] = − log (θ) + log (b)−∇a [log Γ (a)] and ∇b [log qλ (θ)] = −1

θ
+
a

b
.

S2 Further description and analysis of the well-

being and life-shock events dataset

This section gives further details of the of the well-being and life-shock events dataset
(abbreviated to ‘well-being dataset’) described in section 5.1. The health data used in
this paper is obtained from the SF-36 data collected by the HILDA survey. The SF-
36 (Medical Outcome Trust, Boston, MA) is a multipurpose and short form health
survey with 36 items. Each item provides multiple choice answers for respondents
to select from in regard to different aspects of their health. SF-36 is one of the most
widely used generic measures of health-related quality of life (HRQoL) in clinical
research and general population health. It is a standardised questionnaire used to
assess patient health across eight attributes (Ware et al., 1993). These are physical
functioning (PF, items 3 to 12), role-physical (RP, items 13 to 16), bodily pain (BP,
items 21 and 22), general health (GH, items 1, 2, 33-36), vitality (VT, items 28-31),
social functioning (SF, items 20 and 32), role-emotional (RE, items 17 to 19), and
mental health (MH, items 23-27). The details of the survey questions can be found
in Ware et al. (1993).
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S3 Details of the data augmentation approach

This section gives further details of Algorithm 3. The conditional distribution of
p
(
u(j)|θ,u(k 6=j),x

)
is given by

p
(
u(j)|θ,u(k 6=j),x

)
∝ p (x|θ,u) p

(
u(j)|θ,u(k 6=j)

)
∝

n∏
i=1

I (ai,j ≤ ui,j < bi,j) c (ui;θ)

∝
n∏
i=1

I (ai,j ≤ ui,j < bi,j) cj|k 6=j (ui,j|ui,k 6=j;θ)

The latents ui,j are generated from the conditional densities cj|k 6=j constrained
to [ai,j, bi,j) and an iterate of u(j) obtained. In this sampling scheme, the copula
parameter θ is generated conditional on u from

p (θ|u,x) = p (θ|u) ∝
n∏
i=1

c (ui;θ) p (θ)

The following algorithm is used to generate the latent variables one margin at a
time.

For j = 1, ..., J and for i = 1, ..., n

• Compute
Aij = Cj|{1,...,J}\j (ai,j| {ui1, ..., uiJ} \ uij,θ)

and
Bij = Cj|{1,...,J}\j (bi,j| {ui1, ..., uiJ} \ uij,θ)

• Generate wi,j ∼ Uniform (Ai,j, Bi,j)

• Compute ui,j = C−1
j|{1,...,J}\j (wi,j| {ui1, ..., uiJ} \ uij,θ)
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