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Marcos O. Prates

Department of Statistics, Universidade Federal de Minas Gerais
Dipak K. Dey

Department of Statistics, University of Connecticut
and

H̊avard Rue
Computer, Electrical and Mathematical Science and Engineering Division,

King Abdullah University of Science and Technology

A. Proofs of main results

Proof of Proposition 1. If π(wS) is a valid multivariate joint density, π(wbk |wN(bk))

is also proper, and we have that
∫
π(wbk |wN(bk))dwbk = 1,∀k = 1, . . . ,M. From the

definitions of G and Gb there exists a set of nodes in block ∆(b1), s∆(b1) ∈ G, such that

“the last node” from a DAG Gb belongs to s∆(b1). Then the nodes in s∆(b1) do not have

any directed edge originating from them. As a consequence, any node in block ∆(b1) can

not belong to the set of nodes of any other block. So the term in (2) where all locations

of ∆(b1) appear is π(w∆(b1)|wN(∆(b1))). From Fubini’s theorem, we can interchange the
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product and integral, thus∫
π(wS)dwS =

∫
· · ·

∫ M∏
i=1

π(w∆(bi)|wN(∆(bi)))dw∆(i)

=

∫
· · ·

∫ M∏
i=2

π(w∆(bi)|wN(∆(bi)))dw∆(i).

Then, removing every node of ∆(b1) from G and Gb, we have the chain graph G′ and

DAG G′
b, respectively. There exists another set of nodes s∆(b2) in G′, such that “the last

node” from a DAG G′
b belongs to s∆(b2). Then the nodes s∆(b2) do not have any directed

edge originating from them. As consequence, any node in block ∆(b2) can not belong to

the set of nodes of any other block. So the term in (2) where all locations of ∆(b2) appear

is π(w∆(b2)|wN(∆(b2))). Applying the Fubini’s theorem again,∫
π(wS)dwS =

∫
· · ·

∫ M∏
i=3

π(w∆(bi)|wN(∆(bi)))dw∆(i).

In a similar way, we find s∆(b3), . . . , s∆(M), such that,∫
π(wS)dwS =

∫ ∏M
i=1 π(w∆(bi)|wN(∆(bi)))dw∆(i) = 1.

Proof of Lemma 1. We need to prove that the finite dimensional distributions in (6) are

consistent with a stochastic process. The Kolmogorov consistency conditions are checked

as follows:

Symmetry under permutation: Let ∆1, . . . ,∆n be any permutation of 1, . . . , n,

note that S is fixed, then it is clear that π̃(w(v1), . . . , w(vn)) = π̃(w(v∆1), . . . , w(v∆n)) if

and only if the same holds for the distribution of ui|N(ui). Since wU |wS follows a l-

multivariate normal distribution, then the symmetry condition is satisfied by π(wU |wS),

and it holds that the next condition π̃(w(u1), . . . , w(ul)|wS) = π̃(w(u∆1), . . . , w(u∆l
)|wS)

is necessary and sufficient to prove the symmetry condition of π̃(wV ). To prove this we

define the next pdfs,

π̃(w(u1), . . . , w(ul)|wS) = |2πFU |−1/2 exp

{
−1

2
(wU −BUwS)

TFU
−1(wU −BUwS)

}
= |2πFU |−1/2 exp {Q(wU)} ,
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and

p̃(w(u∆1), . . . , w(u∆l
)|wS) = |2πΣ′|−1/2 exp

{
−1

2
(wU∆ −m′)TΣ′−1

(wU∆ −m′)

}
= |2πΣ′|−1/2 exp {Q(wU∆)} .

Following Abrahamsen (1997), we also define a permutation matrix P such that (∆1, . . . ,∆l)
T =

P (1, . . . , l)T . Then PwU = P (w(u1), . . . , w(ul))
T = (w(u∆1), . . . , w(u∆l

))T = wU∆. And

the mean and covariance matrix of wU∆|wS are m′ = PBUwS and Σ′ = PFUP
′. Since

P−1 = P T it follows that |P | = ±1 which implies that |Σ′| = |FU |. Using this we have,

Q(wU∆) = (PwU − m′)TΣ′−1
(PwU − m′)

= (PwU − PBUwS)
T (PFUP

′)−1(PwU − PBUwS)

= (wU −BUwS)
TP T (P TFU

−1P T )P (wU −BUwS)

= (wU −BUwS)
TP TΣ′−1

P (wU −BUwS)

= (wU −BUwS)
TFU

−1(wU −BUwS) = Q(wU).

Since both |FU | and Q(wU) are invariant under permutations, π̃(w(u1), . . . , w(ul)|wS) =

π̃(w(u∆1), . . . , w(u∆l
)|wS) and hence the symmetry condition is satisfied.

Dimensional consistency: We also assume that S is fixed, so, this proof does not

differ from the one found in Datta et al. (2016) although π̃(wS) has a different definition.

Let V1 = V ∪{v0} then V1 = S′∪{v0}∪U . We need to verify π̃(wV ) =
∫
π̃(wV1)d(w(v0)).

So, we have two cases:

Case 1: If v0 ∈ S. By definition π̃(wV1) =
∫
π̃(wV1|S|wS)p̃(wS)

∏
si∈S|V1

d(wsi), where

V1|S denotes V1 without S and S|V1 denotes S without V1. Then∫
π̃(wV1)d(w(v0)) =

∫
π̃(wV1|S|wS)π̃(wS)

∏
si∈S|V1

d(w(si))d(w(v0)).

If v0 ∈ S, and V = S′∪U then v0 ∈ (S′)c, and
∏

si∈S|V1
d(w(si)d(w(v0)) =

∏
si∈(S′)c d(w(si),

and ∫
π̃(wV1)d(w(v0)) =

∫
π̃(wV1|S|wS)π̃(wS)

∏
si∈(S′)c

d(wsi).
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Also, V1|S = U since v0 ∈ S, then∫
π̃(wV1)d(w(v0)) =

∫
π̃(wU |wS)π̃(wS)

∏
si∈(S′)c

d(wsi) = π̃(wV ).

Case 2: If v0 /∈ S, then V1|S = U ∪ {v0}, π̃(wV1|S|wS) = π̃(wU |S|wS)π̃(w(v0)|wS) and

S|V1 = (S′)c. Now,

π̃(wV1) =

∫
π̃(wV1|S|wS)π̃(wS)

∏
si∈S|V1

d(wsi)

=

∫
π̃(wU |wS)π̃(w(v0)|wS)π̃(wS)

∏
si∈(S′)c

d(wsi).

Hence,∫
π̃(wV1)d(w(v0)) =

∫
π̃(wU |wS)π̃(w(v0)|wS)π̃(wS)

∏
si∈(S′)c

d(wsi)d(w(v0))

=

∫
π̃(wS)π̃(wU |wS)[π̃(w(v0)|wS)d(w(v0))]

∏
si∈(S′)c

d(wsi),

where
∫
π̃(w(v0)|wS)d(w(v0)) = 1, since w(v0) does not appear in any other term. Finally,∫

π̃(wV1)d(w(v0)) =

∫
π̃(wS)π̃(wU |wS)

∏
si∈(S′)c

d(wsi) = π̃(wV ).

Proof of Theorem 1. To verify that π̃(wV ) is the pdf of the finite dimensional distribu-

tion of a Gaussian process, we only need to prove that π̃(wV ) is the pdf of a multivariate

normal distribution. Since wU |wS follows a l-multivariate normal distribution and wS

follows a n-multivariate normal distribution, the product of these densities is also a multi-

variate normal distribution.

Let C̃m,n be an element of C̃S. The cross-covariance is computed for the next possible

cases:

Case 1: If v1 ∈ S and v2 ∈ S, that is, v1 = si and v2 = sj, then cov(w(v1), w(v2)|θ)) =

C̃si,sj .

Case 2: If v1 ∈ U and v2 ∈ S, we may suppose also that v2 ∈ bl. Using the law of total

covariance,

cov(w(v1), w(v2)|θ)) = E(cov(w(v1), w(v2)|wS)|θ) + cov(E(w(v1)|wS),E(w(v2)|wS)|θ).
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From our definition w(v1)|wS⊥w(bl)|wS and v2 ∈ bl, then we have that w(v1)|wS⊥w(v2)|wS

and cov(w(v1)|wS, w(v2)|wS) = 0. Further, E(w(v1)|wS) = Bv1wN(v1) and using the next

property, E(g(X)|X) = g(X), E(w(v2)|wS) = w(v2). It follows that,

cov(w(v1), w(v2)|θ)) = E(0|θ)+cov(Bv1wN(v1), w(v2)|θ) = Bv1C̃N(v1),w(v2) = Bv1C̃N(v1),w(sj).

Case 3: If v1 ∈ U and v2 ∈ U . This part of the proof follows from (Datta et al., 2016). We

have E(w(v1)|wS) = Bv1wN(v1) and E(w(v2)|wS) = Bv2wN(v2). Then,

cov(E(w(v1)|wS),E(w(v2)|wS)|θ) = cov(Bv1wN(v1),Bv2wN(v2))

= Bv1cov(wN(v1),wN(v2))B
T
v2
.

Observe that if v1 ̸= v2, then w(v1)|wS⊥w(v2)|wS and cov(w(v1), w(v2)|wS) = 0.

Conversely, if v1 = v2 now cov(w(v1), w(v2)|wS) = var(w(v1)|wS) = Fv1 . Then,

cov(w(v1), w(v2)|wS) = δ(v1 = v2)Fv1 , and E(δ(v1 = v2)Fv1|θ) = δ(v1 = v2)Fv1 .

Hence,

cov(w(v1), w(v2)|θ)) = δ(v1 = v2)Fv1 +Bv1C̃N(v1),N(v2)Bv2

T .

B. Bayesian inference through full-MCMC and collpased MCMC

The LGM is also a hierarchical model, thus, in a Bayesian framework, inference can also be

performed using simulation-based techniques, such as MCMC methods. Here we describe

in detail how to achieve Bayesian inference for a Gaussian geostatistical model using the

block-NNGP. This approach can also be extended for non-Gaussian families.

Let Y = (Y(s1), . . . ,Y(sn))
T be a realization of a spatial process defined for all si ∈

D ⊂ ℜ2, i = 1, . . . , n. The basic geostatistical Gaussian model is of the form

Y (si) = XT (si)β + w(si) + ϵ(si), (1)

where β is a coefficient vector (or regression parameter), XT (si) is a vector of covariates,

w(si) is a spatial structured random effect, thus w = (w(s1), . . . , w(sn))
T captures the

spatial association, and ϵ(si) ∼ N(0, τ 2) models the measurement error.
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We assigned priors to β, w, τ , and hyperparameters. The usual Gaussian process prior

for w ∼ N(0,C(θ1)), where C(.) is some specific covariance function which depends on

θ1 = (ϕ, σ2). Instead of this prior we assume that w ∼ block-NNGP(0, C̃). We assumed

β ∼ N(µβ,Vβ) and θ = (ϕ, σ2, τ 2) ∼ ∆(θ).

The joint posterior distribution for the model in (1) is given by

∆(θ,β,w|y) ∝ ∆(θ)×∆G(β|µβ,Σβ)×∆G(w|0, C̃)×∆G(y|Xβ +w,D), (2)

where ∆G(|., .) denotes the Gaussian density, and D is a diagonal matrix with entries τ 2.

The parameters θ,β,w are updated in a Gibbs sampler within Metropolis random-walk

step (full-MCMC) through the following algorithm:

(i) Block updating of θ through Metropolis Random walk. The target log-density is

log(∆(θ⋆|y,w,β)) ∝ log∆(θ)− 1

2
log |D| − 1

2
log |C̃|−

1

2
(y −Xβ −w)TD−1(y −Xβ −w)− 1

2
wT Q̃w,

where Q̃ = C̃
−1
;

(ii) Gibbs sampler that updates β from the full conditional β|y,w,θ ∼ N(Bb,B), where

B = (Σ−1
β +XTD−1X)−1 and b = Σβ

−1µβ +XTD−1y −XTD−1w;

(iii) Gibbs sampler that updates w from the full conditional w|y,β,θ⋆ ∼ N(Ff ,F ),

where F = (Q̃+D−1)−1 and f = D−1(y −Xβ). Repeat step i).

In general it is fast to compute Q̃ and log |C̃| using properties of block matrices and

Cholesky decomposition. Nevertheless, although Q̃ is an sparse precision matrix and (Q̃+

D−1) has the same sparsity, the inverse of this last expression is not sparse, therefore

subsequent computations are performed using this huge dense matrix, and the cost to

sample θ,β,w through this approach is still too costly.

An alternative method for simulation from the conditional posterior ∆(θ,β,w|y) is to

use the collapsed MCMC sampling (Liu, 1994). The collapsed MCMC for the Gaussian

block-NNGP model follows the next steps:
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(i) Block updating of θ through a Metropolis random walk. The target log-density is

log(∆(θ|y)) ∝ log∆(θ)− 1

2
log |Σy|β,θ| −

1

2
(y −Xβ −w)TΣ−1

y|β,θ(y −Xβ −w),

where Σy|β,θ = C̃ +D and Σ−1
y|β,θ = D−1 −D−1(Q̃+D−1)−1D−1.

(ii) Gibbs sampler that updates β from β|y ∼ N(Bb,B), whereB = (Σ−1
β +XTΣy|β,θX)−1

and b = Σ−1
β µβ +XTΣ−1

y|β,θy. Repeat step i) and ii) until convergence;

(iii) Post-MCMC sampling: Use all the posterior samples of θ and β to estimate w from

w|β,θ,y ∼ N(Ff ,F ), where F = (Q̃+D−1)−1 and f = D−1(y −Xβ).

We recall that this scheme also has the same dense matrix F = (Q̃+D−1)−1, however

the main advantage of the composite MCMC approach is to draw samples of θ and β, and

then use these samples to recover w. Further, Finley et al. (2019) argued that the blocking

and sampling schemes of the composite sampling result in good convergence properties.

C. Supplementary simulation results

In this section more results on simulations are presented. Figure S1 and Figure S2 show

the criteria assessment and time requirements for scenarios SIM I (ϕ = 12) and SIM II

(ϕ = 6). In general, NNGP models with nb = 4 or nb = 6 neighbor blocks show a better

performance in terms of computational cost and goodness of fit. Almost all the models run

in less than an hour, and in the best scenarios, they run in less than 1000 seconds, showing

the great advantage of running the block-NNGP models through INLA. It is observed that

the computing times requirements for the block-NNGP models decreases as the number of

neighbor blocks increases. While for the NNGP models, the computational cost increases

as the number of neighbor increases. The LPML for all block-NNGP models with nb = 4

or nb = 6 neighbor blocks did not significantly change. A similar pattern is presented for

NNGP-models with nb = 20 or higher. The WAIC for block-NNGP models with regular

blocks, nb = 4 or nb = 6 neighbor blocks are quite similar, while for irregular blocks, it

tend to increase its value when the number of neighbor blocks increases.
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Figure S1: SIM I (ϕ = 12). INLA results. Criteria assessment: Running times (first row),

LPML (second row) and WAIC (third row), under block-NNGP models using regular blocks

(left column), irregular blocks (middle column) and NNGP models (right column).
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Figure S2: SIM II (ϕ = 6). INLA results. Criteria assessment: Running times (first row),

LPML (second row) and WAIC (third row), under block-NNGP models using regular blocks (left

column), irregular blocks (middle column) and NNGP models (right column).
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The posterior mean estimation of wS for scenarios SIM I (ϕ = 12) and SIM II (ϕ = 6)

are displayed in Figure S3 and Figure S4, respectively. These results confirm that the

NNGP and block-NNGP models show a very good performance when the range is not too

large and, as the range increases, the larger the credible intervals of the spatial effects.

Figure S3: SIM I (ϕ = 12). INLA results. Mean posterior estimates of spatial effects for

different NNGP (upper panel) and block-NNGP models (lower panel).

Parameter estimates for specific models under SIM III (ϕ = 3) are provided in Table S1.

In general, the posterior mean estimates for all the models fitted are close to the true

parameter values which are included within credible intervals, but the posterior mean

estimates of β0 for the NNGP are far away from the true values.
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Figure S4: SIM II (ϕ = 6). INLA results. Mean posterior estimates of spatial effects for

different NNGP (upper panel) and block-NNGP models (lower panel).

Figure S5 displays the posterior mean estimates of the spatial random effects inter-

polated over the domain for SIM III (ϕ = 3). The block-NNGP models show better

approximations than the NNGP models. We can observe that the NNGP model with 10

neighbors did not approximate well the spatial process, it overestimate the spatial effects,

specially in the south region. Indeed, the NNGP has proven to be successful in capturing

local/small-scale variation of spatial processes, however, it might have one disadvantage:

inaccuracy in representing global/large scale dependencies. This might happen because

the NNGP built the DAG based on observations, adversely, the block-NNGP built a chain

graph based on blocks of observations, which captures both small and large dependence.

The previous result for large r is magnified when the spatial process is smoother.
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Table S1: SIM III (ϕ = 3). INLA results. Summary of posterior mean parameter estimates,

parameter posterior summary credible intervals (2.5, 97.5) and criteria assessment.

NNGP NNGP (R)M=49 (R)M=64 (I)M=32 (I)M=64
(10) (20) nb=4 nb=4 nb=4 nb=4

β0 1 0.283 0.412 0.594 0.585 0.592 0.622
(-0.653,1.053) (-0.500,1.203) (-0.321,1.501) (-0.300,1.459) (-0.237,1.504) (-0.249,1.523)

β1 5 4.994 4.994 4.994 4.994 4.994 4.994
(4.977,5.011) (4.977,5.011) (4.977,5.011) (4.977,5.011) (4.977,5.011) (4.977,5.011)

σ2 1 1.081 1.044 1.053 1.045 1.019 1.036
(0.845,1.250) (0.813,1.208) (0.829,1.216) (0.815,1.209) (0.775,1.183) (0.804,1.200)

ϕ 3 3.168 3.278 3.240 3.286 3.437 3.322
(2.473,3.717) (2.560,3.851) (2.559,3.780) (2.578,3.852) (2.652,4.084) (2.597,3.907)

τ2 0.1 0.092 0.092 0.092 0.092 0.091 0.092
(0.088,0.096) (0.088,0.096) (0.088,0.095) (0.088,0.095) (0.087,0.095) (0.088,0.095)

Time (sec) 240.515 171.927 496.271 359.056 687.980 335.161
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Figure S5: SIM III (ϕ = 3). True spatial random effects w, and their posterior mean

estimates for NNGP models (upper panel) with nb = 10, 20, 30 neighbors, and different

block-NNGP models (lower panel) with regular blocks (R) and irregular blocks (I), using

INLA.
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The root of mean square prediction error (RMSP) for all the fitted models, under SIM

III, is shown in Figure S6. For block-NNGP models, as expected the prediction metric

increases when the number of blocks is increased, being lower for a higher number of

neighbor blocks. This result is a little bit more evident for irregular blocks. For NNGP

models, the RMSP is higher when the number of neighbors is small.

Figure S6: SIM III (ϕ = 3). INLA results. Root mean square prediction error under

block-NNGP models using regular blocks (left column), irregular blocks (middle column)

and NNGP models (right column).

We also simulate data from the model in Eq. (9) but setting ν = 1.5. We computed

the approximate posterior marginals for the fixed effects (Figure S7). The block-NNGP

models give more accurate results than the NNGP models. For block-NNGP models, the

posterior marginals for β0 and β1 with different number of blocks are overlaid. A different

result is obtained for NNGP models, where the posterior marginals for β0 with different

number of neighbors dramatically change.
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Figure S7: INLA results for simulation of GP with Matérn covariance function (ν = 1.5,

ϕ = 3.5, σ2 = 1 and τ 2 = 0.1). Posterior marginal densities of regression coefficient effects

for NNGP models (upper panel)with nb = 10, 20, 30, 50, 100 neighbors and block-NNGP

models (lower panel) with M = 25, 36, 64 regular blocks and nb = 6 neighbor blocks. The

solid vertical blue lines represent the true parameter values.

Fig. S8 shows the posterior mean spatial effect estimates compared to the simulated

ones for block-NNGP models and NNGP models. This result shows the inaccuracy of

NNGP models when the number of neighbors is small.

Finally, we also computed the theoretical Matérn covariance function (black line) and

the empirical covariance function for the NNGP models and block-NNGP models (blue

dots) in Figure S9 for this scenario. In general, the match between the theorical and

empirical covariance is better for block-NNGP models, specially when the number of blocks

is smaller. We further note that for NNGP models when the number of neighbors is
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Figure S8: INLA results for simulation of GP with Matérn covariance function(ν = 1.5,

ϕ = 3.5, σ2 = 1 and τ 2 = 0.1). Mean posterior estimates of spatial effects for different

NNGP (upper panel) and block-NNGP models using regular blocks (lower panel).

small and the range is large, the theoretical covariance function is far away from the true

covariance function.
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Figure S9: True Matérn covariance function (ν = 1.5, ϕ = 3.5, σ2 = 1 and τ 2 = 0.1) of

GP against distance (black lines) and empirical approximated covariance of block-NNGP

(Regular blocks) against distance (blue dots) for different NNGP (upper panel) and block-

NNGP models (lower panel).
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D. Supplementary application results

Fig. S10 shows an example of DAGs, built using one location for each block, for the mining

and precipitation data used in applications.

Figure S10: DAG of blocks for mining data (left) using M = 32 blocks and nb = 2

neighbor blocks. DAG of blocks for precipitation data (right) using M = 64 blocks and

nb = 6 neighbor blocks.

Figure S11 shows maps of interpolated posterior mean estimates of joint-frequency data.

We see little difference between these models.

Table S2 presents the selection criteria of the fitted models. This result shows that it is

quite difficult to choose the number of neighbors, because there is not a clear pattern that

the more neighbors, the better the model. While the best block-NNGP model is the one

with M = 64 and nb = 4 neighbor blocks, followed by the model with M = 64 and nb = 6

neighbor blocks. Overall, the results are more stable for less blocks and more neighbor

blocks. Table S2 also presents the total running time for each model.
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Figure S11: Original joint-frequency data (left upper plot). INLA results. Mean posterior of

joint-frequency data using NNGP models with nb = 10, 20 neighbors (upper panel). Mean

posterior of joint-frequency data using block-NNGP models with regular blocks (M=450

and M=280) and irregular blocks (M=128), and nb=1 neighbor block (lower panel).

Table S2: Precipitation data. INLA results. Criteria assessment and time requirements.

M nb LPML WAIC RSME RSMP time (sec)

10 -18407.420 -11705.390 0.0052 0.523 1535.664
20 -18863.340 -11750.800 0.0051 0.467 2588.953

NNGP 30 -19167.690 -11666.300 0.0051 0.626 1356.085
50 -19228.520 -11680.250 0.0051 0.561 1745.064
100 -18875.250 -11783.170 0.0050 0.508 5019.320

64 2 -19533.230 -11642.630 0.0050 0.598 7191.660
64 4 -19141.680 -11736.000 0.0050 0.680 13587.350

block-NNGP (I) 64 6 -19436.940 -11708.210 0.0050 0.645 19992.250
128 2 -19661.130 -11595.540 0.0049 0.645 2740.382
128 4 -19483.990 -11625.660 0.0051 0.595 5434.684
128 6 -19381.560 -11680.610 0.0050 0.742 5092.628
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