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1 Post hoc adjustment toy example

Shaby (2014) proposes an adjustment method that is able to properly recover the cor-

rect frequency properties of the posterior distribution when the model is misspecified.

The method proposed is a post hoc adjustment of MCMC samples. Here, we show

that a simular method also works for adjusting model fits from R-INLA. We do so by

examining posterior frequency properties of the parameters of a spatial Gaussian ran-

dom field. The misspecification in our example consists in approximating the Gaussian

field with an SPDE approximation of too low rank.

Inside the spatial domain S = [0, 25]× [0, 25] we sample n independent realisations

of a spatial Gaussian random field with a Matérn covariance function, which we observe

at 400 random locations. The Matérn covariance function is

Cov(Z(s), Z(s′)) =
σ2

2ν−1Γ(ν)
(κ∥s− s′∥)νKν(κ∥s− s′∥), (1)

where σ2 is the marginal variance, ν > 0 is the smoothness parameter and ρ =
√
8ν/κ

is the range parameter of Z(s). Furthermore, Kν is the modified Bessel function of the

second kind and order ν. Our spatial Gaussian random field has variance parameter

σ2 = 1, range parameter ρ = 12 and known smoothness parameter ν = 1.5. We also

add a Gaussian nugget effect with precision τ = 100 to the random field. Parameter

estimation is then performed using an SPDE approximation of low rank, i.e., based

on a coarse triangulated mesh used to discretise the spatial domain. Such low-rank

approximations are typically unable to capture all the variability in the data, which

means that the nugget effect has to explain a large percentage of the variance, lead-

ing to underestimation of the precision τ . Thus, we expect the asymptotic maximum

likelihood estimator θ∗ to be different from the true parameters θ = (τ, ρ, σ)T . To

estimate θ∗, we simulate n = 104 realisations of the Gaussian Matérn field and com-

pute the maximum likelihood estimator for the misspecified SPDE model. This gives
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Table 1: Coverage percentages for unad-
justed and adjusted credible intervals using
the SPDE approach with a coarse mesh.

Aim τ τadj ρ ρadj σ σadj

90% 48% 93% 91% 90% 90% 90%
95% 55% 97% 95% 95% 95% 96%
99% 69% 99% 99% 98% 100% 99%

θ∗ = (τ∗, ρ∗, σ∗) ≈ (13.0, 14.5, 1.2)T . As expected, τ is severely underestimated, while

ρ and σ are slightly overestimated.

For examination of frequency properties, we then sample n = 200 new realisations

of the spatial field, and perform Bayesian inference using R-INLA. We assign τ a

gamma prior with shape 1 and scale 2× 104, while ρ and σ are given a joint penalised

complexity (PC) prior (Fuglstad, Simpson, Lindgren, & Rue, 2019; Simpson, Rue,

Riebler, Martins, & Sørbye, 2017), setting P(ρ < 12) = 0.5 and P(σ > 1) = 0.5.

Inference is performed, the posterior distribution is adjusted as described in Section 4

of the main paper, and credible intervals are created for both the adjusted and the

unadjusted model fits. For this simple toy example, we do not focus on adjusting the

prior distribution as described in Section 4.1. We repeat this procedure 300 times, each

time sampling n = 200 new realisations which we observe at the same 400 locations.

Coverage frequencies can then be evaluated by examining how many of the 300 credible

intervals include θ∗.

Table 1 displays the estimated coverage probabilities detailing how often the

parameters of θ∗ are included in their respective credible intervals. The adjustment

of the posterior yields a considerable improvement for τ . The unadjusted frequency

properties of ρ and σ, however, are already good, and our adjustment method does

not deteriorate the credible intervals for these parameters.
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2 Simulation study

We now conduct a more complex simulation study to demonstrate our proposed

workflow for modelling spatial extremes on synthetic data. Given a set of extreme

realisations from simulated data we show how to compute relevant statistics of the

data and how to use these for making an informed decision about the appropriate

models for the standardising functions a(s; s0, y0) and b(s; s0, y0). Then, we discuss

details on how to define the SPDE mesh and on performing inference with R-INLA

and the composite likelihood. Finally, we adjust the posterior distribution for possible

misspecification and we evaluate the performance of the model fit.

We sample n = 104 realisations of a spatial Gaussian random field Y = {Yi(s) :

i = 1, . . . , n, s ∈ S}, observed on a regular grid S with resolution 1 × 1 and size

100×100. The spatial Gaussian random field has a Matérn covariance function (1) with

parameters σ2 = 1, ν = 1 and ρ = 40, and an additional nugget effect with variance

0.12. All the samples are created using an SPDE approximation. In order to model

threshold exceedances with the spatial conditional extremes model, we transform the

observations to have Laplace marginals using the probability integral transform. We

then choose a threshold t equal to the 99.9% quantile of the Laplace distribution.

As a first step, we examine extremal dependence in the available data. Similarly

to the case study in the main paper, we here (correctly) assume stationarity and

isotropy, and we denote the extremal correlation coefficient as χp(s1, s2) ≡ χp(d),

where d = ∥s1−s2∥. We estimate χp(d) empirically using a sliding window approach,

i.e., for any value of d, we iterate over all location pairs (s, s′) ∈ S2 satisfying |d −

∥s − s′∥| < δ, for some small tolerance δ > 0, and then we count the number of

times that Y (s) > F−1(p) given that Y (s′) > F−1(p), where F−1(·) is the quantile

function of the Laplace distribution. We here choose δ = 0.5. Estimators for χp(d) are

displayed in the top-left subplot of Figure 1. Since the data have a Gaussian copula,

we know that χ(d) = 0 for all d > 0, meaning that χp(d) is far away from its limit
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Fig. 1: Empirical estimators of χp(d), µ(d; y0) and ζ(d; y0) (top to bottom) from three
different data sources. The leftmost column displays empirical estimators using the
original data, while the two rightmost columns displays empirical estimators using
data simulated from the adjusted and the unadjusted model fits, respectively.

χ(d) at small distances. Even if χ(d) is unknown in practice, we can here observe a

clear trend of weakening dependence at increasing threshold levels, implying that the

limit has not yet been reached. This demonstrates the need for a model that allows

for flexible modelling of sub-asymptotic dependence, such as the spatial conditional

extremes model.

To perform inference with the spatial conditional extremes model we must decide

upon models for a(s; s0, y0) and b(s; s0, y0). The limiting forms of these functions as

t → ∞ are already known for a spatial Gaussian random field (Wadsworth & Tawn,

2022). However, we here assume that the distribution of the data is unknown. Addi-

tionally, since we have chosen a finite threshold t where χp(d) is far away from its limit

χ(d), other models for a(·) and b(·) may fit the data better than the known limiting
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forms. To examine the shape of the standardising functions, we (correctly) assume

stationarity in the sense that all model parameters are independent of the choice of

conditioning sites, and we assume that a(s; s0, y0) and b(s; s0, y0) only depend on

the distance d = ∥s − s0∥ and threshold exceedance y0, meaning that we can define

the standardising functions as a(d; y0) and b(d; y0) analogously. With these assump-

tions, we can visualise the forms of a(d; y0) and b(d; y0) by empirically computing

conditional means and variances of the data. In our model, all random variables with

distance d from s0 have conditional mean µ(d; y0) = a(d; y0) and conditional variance

ζ2(d; y0) = σ2(d)b2(d; y0) + τ−1, where σ2(d) is the variance of the residual field at

distance d from the conditioning site, and τ is the precision of the nugget effect. Simi-

larly to χ̂p(d), the empirical conditional moments of the data can be computed using a

sliding window approach. However, this time, the window must slide over both values

of d and y0. We choose a rectangular window with a width of 1 in the d-direction and

a width of 0.1 in the y0-direction. The conditional moment estimators are displayed

in the leftmost column of Figure 1. The conditional mean, µ̂(d; y0), is equal to y0 at

d = 0, and then seems to decay exponentially towards zero as d increases. This fits

well with the proposed model by Wadsworth and Tawn (2022),

a(s; s0, y0) = y0α(∥s− s0∥) = y0 exp {− [max(0, ∥s− s0∥ −∆)/λa]
κa} , (2)

where we set ∆ = 0. The conditional variance is zero at d = 0, and then it increases as

we move away from the conditioning site and towards “the edge of the storm”. Here,

ζ(d; y0) is at its largest, as it is uncertain if observations are “inside the storm”, i.e.,

extreme, or “outside the storm”, i.e., non-extreme. This is also where ζ(d; y0) varies

the most as a function of y0. Moving further away from the conditioning site, ζ(d; y0)

decreases to a constant, as we are certainly “outside the storm”, so the variance should

not depend on y0 anymore. This fits well together with a model where b(d; y0) = y
β(d)
0
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Fig. 2: Given a conditioning site s0 (displayed with (▲)), locations used for inference
are displayed as big black dots (•) and locations in S that are not used for inference
are displayed as small dots (·). The SPDE mesh is displayed using black lines.

and where β(d) decays to zero as the distance increases. We choose to follow Richards,

Tawn, and Brown (2022) in assuming that β(d) = β0 exp(−(d/λb)
κb), with 0 < β0 < 1

and λb, κb > 0.

As seen in Figure 1, the largest changes in µ(d; ·) and ζ(d; ·) seem to occur when

d is small. However, the majority of locations in S are located far away from s0. To

account for this and give more weight to close-by locations, we discard some of the

observations far away from s0 during inference, which also leads to increased inference

speed. Figure 2 shows an example of the locations used to perform inference for one

specific conditioning site. We stress that these locations can vary for each conditioning

site used during inference.

The SPDE approach for modelling Zb(·) requires that we define a triangulated

mesh. Our proposed constraining method from Section 3 of the main paper requires

that a mesh node is located at each conditioning site used for inference. Furthermore,
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Table 2: Prior distributions for all model parameters. N (µ, σ2) denotes the Gaussian
distribution with mean µ and variance σ2. We give τ a penalised complexity (PC) prior
such that P(τ−1/2 > 1) = 0.95. Additionally, ρ and σ are given the joint PC prior of
Fuglstad et al. (2019) such that P(ρ < 60) = 0.95 and P(σ > 4) = 0.05.

τ ∼ PC(1, 0.95), log(λ) ∼ N (3, 42), log(κ) ∼ N (0, 32),

σ ∼ PC(4, 0.05), ρ ∼ PC(60, 0.95), log( β0
1−β0

) ∼ N (0, 22),

log(λb) ∼ N (3, 42), log(κb) ∼ N (0, 32),

the mesh should be quite dense close to the conditioning sites to correctly capture the

changes in b(·). Therefore, we define the mesh so that a mesh node is placed at each

location used for inference. This can be problematic when performing inference with

a composite likelihood that depends on multiple conditioning sites, meaning that the

mesh has to be dense “everywhere” in S, which leads to computationally demanding

inference. Consequently, we choose to model Zb(·) with a different mesh for each

conditioning site used in the composite likelihood. Modelling different realisations of

a random field with different mesh designs is not a readily available option in R-INLA,

but this can be easily implemented using the rgeneric/cgeneric framework. An

example of a mesh design for one specific conditioning site is displayed in Figure 2.

Our chosen models for a(·) and b(·) are implemented using the cgeneric frame-

work, and inference is performed with R-INLA. The chosen priors for all the model

parameters are described in Table 2. The priors are weakly informative, but with quite

large variances. Using all locations in S as conditioning sites in the composite likeli-

hood is computationally demanding, so we define a regular sub-grid S0 with resolution

6×6 and build the composite likelihood using these |S0| = 256 conditioning locations.

The post-hoc adjustment method is then applied to robustify the model fit. Due to

the large amount of available data we do not find it necessary to also adjust the prior

distribution.

Figure 3 displays the adjusted and unadjusted posterior distributions of all model

parameters. We see that the working assumption of independence in the composite

likelihood leads to overconfidence and too focused posterior distributions, and that the
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Fig. 3: Posterior distributions for all model parameters from the adjusted (solid) and
the unadjusted (dashed) model fits.

adjustment method therefore increases the posterior variance to account for this mis-

specification. To examine the performance of our model fits, we simulate 105 extreme

spatial fields from each fitted model, and compute χ̂p(d), µ̂(d; y0) and ζ̂(d; y0) using

the simulated extremes. The estimators are displayed in the two rightmost columns

of Figure 1. The properties of the model fits are similar to those of the original data.

There are some noticeable differences in the estimated conditional variance, which

probably stems from a too simple model for b(d; y0). However, tailoring the perfect

model choice for b(d; y0) is not the focus of this simulation study. Although adjusting

posteriors plays a big role in properly quantifying posterior uncertainty, there are no

clear differences between the point estimates from the two model fits in Figure 1. This

is not very surprising, as these estimators are different types of sample means, that

might be less affected by changes in the posterior variances.

Finally, we wish to quantitatively compare the adjusted model fit with the unad-

justed model fit, to find out which one performs best. We choose not to compare the fits

by evaluating frequency properties, as in the toy example in Section 1, because accurate
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estimation of θ∗ and the repetition of the high-dimensional simulation study hundreds

of times is too computationally demanding with our computational resources. Addi-

tionally, such comparisons are impossible to perform for most real-life applications

with finite amounts of available data. Instead, we choose to compare the model fits by

computing log-scores (e.g., Gneiting & Raftery, 2007) for a test data set that has not

been used during inference. Marginal composite likelihoods may be estimated using

Monte Carlo estimation: given ns samples θ1, . . .θns
from the posterior distribution

π(θ | Y), the marginal composite likelihood for a new set of observations Y0 is esti-

mated as L̂c(Y0) =
1
ns

∑ns

i=1 Lc(θi;Y0), where Lc(·) is the composite likelihood for the

spatial conditional extremes model. We then denote log(L̂c(Y0)) as the estimated log-

score. We sample 5× 104 new realisations of data from the true model and locate all

threshold exceedances from the 256 conditioning sites used for performing inference.

Log-scores are then estimated using ns = 1000 posterior samples. This results in a log-

score of −2502219 for the adjusted model fit, and −2504558 for the unadjusted model

fit, meaning that the adjusted model fit attains the highest log-score, with a difference

of 2338. Nonparametric bootstrapping of the 5× 104 realisations of the spatial Gaus-

sian random field is performed to examine if the difference in log-score is significant.

Using 5000 bootstrap samples, we find that the adjusted log-score always is larger than

the unadjusted log-score, with a difference between 1000 and 4500. We conclude that

the adjusted posterior performs better than the unadjusted posterior, even though

they both provide good point estimates and reasonable fits to the simulated data.

3 Case study prerequisites

In order to perform inference with the conditional extremes model for a random process

X(s), one must first standardise it to a random process Y (s) with Laplace margins.

This is performed using the probability integral transform (Keef, Papastathopoulos,
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& Tawn, 2013):

Y (s) =





log
{
2FX(s)(X(s))

}
, X(s) < FX(s)(1/2)

− log
{
2
[
1− FX(s)(X(s))

]}
, X(s) ≥ FX(s)(1/2),

where FX(s) is the marginal distribution function of the random variable X(s). We

estimate the marginal distribution functions as the site-wise empirical distribution

function of X(s). However, independent standardisation of data at each location can

lead to an unrealistic lack of smoothness in the transformed process Y (s). Therefore,

we apply a sliding window approach for computing the empirical distribution function,

where the distribution at location s is estimated as the empirical distribution function

of pooled data from all locations s′ such that ∥s − s′∥ ≤ r for some radius r. Based

on exploratory analysis we find r = 5 km to yield a realistic degree of smoothness in

the estimated marginal distributions of X(s) (results not shown).

A problem when modelling precipitation is that the empirical distribution has a

point mass at zero. This leads to Y (s) having a truncated Laplace distribution with

a point mass, which can cause problems during inference. In order for Y (s) to follow

a non-truncated Laplace distribution, we choose to remove all zeros from the process

X(s) and only focus on positive precipitation. This makes us unable to model the

absence of precipitation, which can lead to a slight overestimation of return levels for

spatially aggregated precipitation. However, applying the fitted model for estimating

properties of the untransformed process X(s) is outside the scope of this paper. We

believe that our choice of removing all zeros and estimating marginals using empirical

distribution functions of the positive precipitation values is acceptable given the aim

of our paper. In future research, we plan to properly model precipitation intermittence

by appropriately accounting for the point mass at zero.
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Similarly to the simulation study in Section 2, we examine extremal correlation

coefficients and empirical conditional moments of the data in order to propose a good

model for the extremes. The spatial domain in the case study is small enough that we

can assume stationarity in the data, meaning that we can employ the same estimation

methods as in the simulation study. Empirical conditional moments of the data are

displayed in Figure 4. These estimators imply that the threshold tmust be chosen quite

large for performing successful modelling with the spatial conditional extremes model.

If the threshold is chosen too low, we experience crossing in the conditional mean, i.e.,

for y1 ̸= y2, µ̂(d; y1) is both smaller and larger than µ̂(d; y2) depending on the value of

d. This means that a model for a(·) on the form a(d; y0) = α(d)y0 becomes unsuitable.

Furthermore, there is a clear change in the shape of the conditional variance as y0

increases, and the spread in variance at “the edge of the storm” is so large that a model

on the form b(d; y0) = y
β(d)
0 would require β(d) ≈ 2 for small distances d. However,

β(d) > 1 leads to an ill-defined model (Wadsworth & Tawn, 2022). A more flexible

model of the form a(d; y0) = α(d, y0)y0, that allows crossing, and b(d; y0) = y
β(d,y0)
0 ,

that allows β(d, y0) > 1 for small values of y0, would probably fit well to the data,

and could easily be implemented within the rgeneric/cgeneric framework. However,

developing complex new variants of the spatial conditional extremes model is outside

the scope of this paper. Consequently, we instead choose a large threshold t equal

to the 99.97% threshold of the Laplace distribution, which removes the problems of

crossing and excessively large values of β(d). As we have approximately 4000 positive

observations at each location, this corresponds to a mean of 1.2 threshold exceedances

at each conditioning site. In practice, it yields between 0 and 5 threshold exceedances

at each conditioning site.
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