
Irregular alignment of arbitrarily long DNA sequences
using GPUs

Supplementary Material

Esteban Pérez-Wohlfeil1,2, Oswaldo Trelles2 and Nicolás Guil2

1. Dynatrace Research, Linz, Austria
2. Computer Architecture Department, University of Málaga, Málaga, Spain.

From words to alignments 1

Probability of splitting HSPs 2

Custom memory allocator in MGPU mergesort 5

Reference numbers of the sample dataset 6

All-vs-all chromosome comparison 8

All-vs-all chromosome comparison employing seed-skipping policies 11

Seed-skipping policies 15

State-of-the-art comparison employing seed-skipping policies 16

Comparison between the sequential GECKO and GPUGECKO 17

References 19

From words to alignments
Figure 1 shows the processing flow of GECKO from words to seeds and alignments. The
filtering of seeds is not shown, but as explained in the manuscript, it is performed by removing

1

those seeds which are in the same diagonal (i.e.) and whose separation is less than𝑑 = 𝑥
𝑞

− 𝑦
𝑟

twice the size of the seed.

Figure 1. Seed-and-extend algorithm in GECKO. Note that the filtering of close and repetitive
seeds is not shown.

Probability of splitting HSPs
In order to find the probability of a random HSP falling within the boundaries of a subsequence,
we ran a Monte Carlo simulation using the following parameters as obtained from a Homo
sapiens chr. X versus Mus musculus chr. X comparison:

1. We generated HSPs as detected by GPUGECKO using a minimum of𝑛 = 15, 199, 400
64 bp of length.

2. The position of the HSPs followed a uniform distribution.
3. The length of the HSPs followed an exponential distribution as obtained from the

comparison (see Figure 2).
4. The 2-D cartesian map of the comparison was split along the x and y axis every

21,538,133 base pairs, which is the default boundary size for subsequences for a GPU
device with 4 GB using a factor of 0.125.

Each HSP was then placed randomly according to the uniform distribution in the comparison of
size 151,099,878 by 163,484,862 base pairs.

2

Figure 2. Distribution of the length of HSPs in the comparison between Homo sapiens chr. X
and Mus musculus chr. X. Notice that the y-axis is in log10 scale.

Length Count

0-50 221,316,314

50-100 14,804,333

100-150 256,911

150-200 67,192

200-250 3,424

250-300 2,003

300-350 353

350-400 407

400-450 230

More than 450 430

Table 1. Exact values of HSP count in the Homo sapiens chr. X and Mus musculus chr. X
comparison.

We used the following formula to calculate the quadrant at which an HSP begins (the same
formula applies in the case of the ending quadrant but changing and to and𝑥

𝑠𝑡𝑎𝑟𝑡
𝑦

𝑠𝑡𝑎𝑟𝑡
𝑥

𝑒𝑛𝑑
𝑦

𝑒𝑛𝑑

):

3

𝑡𝑜𝑡𝑎𝑙
𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠

 = 𝑥
𝑙𝑒𝑛

 / 𝑤𝑖𝑛𝑑𝑜𝑤
𝑠𝑖𝑧𝑒

𝑥
𝑠𝑙𝑖𝑐𝑒

 = 𝑥
𝑠𝑡𝑎𝑟𝑡

 / 𝑤𝑖𝑛𝑑𝑜𝑤
𝑠𝑖𝑧𝑒

𝑦
𝑠𝑙𝑖𝑐𝑒

 = 𝑦
𝑠𝑡𝑎𝑟𝑡

 / 𝑤𝑖𝑛𝑑𝑜𝑤
𝑠𝑖𝑧𝑒

𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 = 𝑡𝑜𝑡𝑎𝑙
𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠

 * 𝑥
𝑠𝑙𝑖𝑐𝑒

* 𝑦
𝑠𝑙𝑖𝑐𝑒

This formula indexes quadrants by columns, i.e. the quadrants of the first column are numbered
from to , the ones in the second are numbered from to , etc. We ran ten simulations to0 𝑛 𝑛 2𝑛
average the proportion of HSPs being split in half (Table 2).

Execution number Split HSPs Total Percentage (%)

1 179 15,199,400 0.00117767806 %

2 168 15,199,400 0.00110530678 %

3 166 15,199,400 0.00109214837 %

4 202 15,199,400 0.00132899982 %

5 179 15,199,400 0.00117767806 %

6 166 15,199,400 0.00109214837 %

7 181 15,199,400 0.00119083648 %

8 156 15,199,400 0.00102635630 %

9 178 15,199,400 0.00117109885 %

10 164 15,199,400 0.00107898996 %

Average 173.9 (174) 15,199,400 0.00114478203 %

Table 2. Ten executions of the Monte Carlo simulation of the probability of HSPs overlapping the
boundaries of subsequences in a GPUGECKO execution.

As we can see, the average percentage of HSPs that are split in half is 0.00114478203 %.
While it cannot be generalized to all other sequence comparisons (in fact it should be taken into
account if sequences are more or less related), we believe this value is small enough in order to
ignore split HSPs especially when, if needed, these split HSPs can be merged back (with a
single linear pass in the size of the HSPs) into one since they are in the same diagonal and
have a distance between them of a maximum of 64 bp.

4

A table containing two examples of split HSPs is shown below in Table 3. These were extracted
from the Monte Carlo simulation.

xStart yStart xEnd yEnd Start
quadrant

End quadrant

48,622 43,076,209 48,750 43,076,337 7 * 0 + 1 = 1 7 * 0 + 2 = 2

129,228,761 39,444,015 129,228,889 39,444,143 7 * 5 + 1 = 36 7 * 6 + 1 = 43

Table 3. Calculation of subsequence quadrants in example HSPs.

Custom memory allocator in MGPU mergesort
The following listing shows the changes performed to the mergesort algorithm of MGPU:

#include <inttypes.h>

typedef struct mem_pool{

char * mem_ptr;
uint64_t address;
uint64_t limit;

} Mem_pool;

virtual void* alloc(size_t size, memory_space_t space) {
void* p = nullptr;
if(size) {
cudaError_t result;
if(memory_space_device == space)
{
if(mptr != NULL)
{
uint64_t new_address = mptr->address + 32 - (mptr->address % 32);
if(new_address + (uint64_t) size >= mptr->limit) { fprintf(stderr, "Not enough memory in

pool\n"); exit(-1); }
uint64_t t_occupied = (new_address + (uint64_t) size) - mptr->address;
allocs.push(t_occupied);
p = (void *) (mptr->mem_ptr + new_address);
mptr->address += t_occupied;
result = cudaSuccess;
}
else
result = cudaMalloc(&p, size);
}

5

else
result = cudaMallocHost(&p, size);

if(cudaSuccess != result) throw cuda_exception_t(result);
}
return p;

}

virtual void free(void* p, memory_space_t space) {
if(p) {
cudaError_t result;
if(memory_space_device == space)
{
if(mptr != NULL)
{
uint64_t last_size = allocs.top();
allocs.pop();
mptr->address -= last_size;
result = cudaSuccess;
}
else
result = cudaFree(p);
}
else
result = cudaFreeHost(p);
if(cudaSuccess != result) throw cuda_exception_t(result);
}

}

Listing 1. Custom memory allocator in MGPU mergesort.

Reference numbers of the sample dataset
Table 4 includes the reference identifier number for each sequence employed in the sample
dataset along with the species name and the database from which it was obtained.

Species name Database Reference number

Mycoplasma
hyopneumoniae 232

RefSeq gi|54019969|ref|NC_006360.1|

Mycoplasma
hyopneumoniae 7422

RefSeq gi|525903163|ref|NC_021831.1|

Escherichia coli B RefSeq NZ_CP014268.2 Escherichia coli B

6

strain C2566, complete genome

Escherichia coli K12 RefSeq NZ_CP009789.1 Escherichia coli K-12
strain ER3413, complete genome

Gallus gallus 18 Ensembl 18 dna:chromosome
chromosome:WASHUC2:18:1:10925261:1

REF

Meleagris gallopavo 20 Ensembl 20 dna:chromosome
chromosome:UMD2:20:1:11078015:1 REF

Oryzias latipes 6 Ensembl 6 dna:chromosome
chromosome:MEDAKA1:6:1:26576615:1

REF

Danio rerio 25 Ensembl 25 dna:chromosome
chromosome:GRCz11:25:1:37502051:1

REF

Sus scrofa 11 Ensembl 11 dna:chromosome
chromosome:Sscrofa11.1:11:1:7916997

8:1 REF

Bos taurus 12 Ensembl 12 dna:chromosome
chromosome:UMD3.1:12:1:91163125:1

REF

Homo sapiens X Ensembl X dna:chromosome
chromosome:GRCh37:X:1:155270560:1

REF

Mus musculus X Ensembl X dna:chromosome
chromosome:GRCm38:X:1:171031299:1

REF

Homo sapiens 1 Ensembl 1 dna:chromosome
chromosome:GRCh37:1:1:249250621:1

REF

Gorilla gorilla 1 Ensembl 1 dna:chromosome
chromosome:gorGor3.1:1:1:229507203:

1 REF

Table 4. Access reference numbers for each sequence in the sample dataset.

7

All-vs-all chromosome comparison
As described in the main manuscript, one of the capabilities of GPUGECKO is to perform
massive all-vs-all chromosome comparisons. For demonstration purposes, we show two cases
here, namely (1) Homo sapiens vs Mus musculus and (2) Homo sapiens vs Gorilla gorilla.
Figure 1 shows the heatmap for the Homo sapiens vs Mus musculus comparison. Notice that
coverage is computed only for the query, i.e. how much of the query can be found in the
reference, and it is calculated as the number of shared bases in the alignments (with a minimum
length of 128 and 512 for both sequences, respectively) and divided by the length of the query.
Coverage is a well-known metric to estimate how similar two sequences are [1].

The exhaustive comparison of Homo sapiens vs Mus musculus took 3 hours and 39 minutes
whereas the Homo sapiens vs Gorilla gorilla took 4 hours and 18 minutes. The increase in
runtime is due to the much larger number of alignments found between primates, as can be
seen in an increase in coverage (see Figure 2). On the contrary, the executions including
seed-skipping policies took 1 hour and 50 minutes and 2 hours and 24 minutes, respectively. In
both cases, the speedup is approximately up to ~4x without sacrificing coverage significantly
(see the differences in coverage in section “All-vs-all chromosome comparison employing
seed-skipping policies” later on).

8

Figure 3. Coverage heatmap of the all-vs-all chromosome comparison between Homo sapiens
and Mus musculus. The coverage is in the range . The last row is the sum of the[0, 100]
coverage per each human chromosome which is not in the range but rather[0, 100]

where is the number of chromosomes of Mus musculus.[0, 𝑛 * 100] 𝑛

The same comparison is performed exhaustively for Homo sapiens and Gorilla gorilla, see
Figure 4 below.

9

Figure 4. Coverage heatmap of the all-vs-all chromosome comparison between Homo sapiens
and Gorilla gorilla. The coverage is in the range . The last row is the sum of the[0, 100]
coverage per each human chromosome which is not in the range but rather[0, 100]

where is the number of chromosomes of Gorilla gorilla.[0, 𝑛 * 100] 𝑛

As can be seen, less evolutionary rearrangements have occurred between Homo sapiens vs
Gorilla gorilla compared to Homo sapiens and Mus musculus, as expected given previous
phylogenies. Notice that to run the whole species comparison, the following executions between
chromosomes required fine-tuning of the seeds factor parameter (due to the massive number of
repetitions found): h4-g4 (), h10-g4 (), h21-g4 (), hY-g4 (𝑓 = 0. 0085 𝑓 = 0. 04 𝑓 = 0. 06 𝑓 = 0. 02

10

), where h stands for Homo sapiens and g stands for Gorilla gorilla. Notice that all comparisons
involved the chromosome 4 of Gorilla gorilla.

All-vs-all chromosome comparison employing seed-skipping policies
In this section, we compare the differences in coverage between the full signal analysis and the
seed-skipping policy. Figure 5 shows the Homo sapiens vs Mus musculus comparison
performed in less than two hours (110 minutes) with the seed-skipping policy. As can be seen, it
is highly similar to the original comparison. To make the analysis easier, the same heatmap is
used to plot the differences in coverage between the full and seed-skipping comparison, shown
in Figure 6. As can be observed, the differences are in the range of 0.01 to 0.1 of signal lost
(from 0% to 50% of the original signal). While the relative value of 50% might seem to be a lot of
signal lost, these values are in fact nearly constant and can be credited to the amount of
repeating regions lost rather than the main syntenies.

11

Figure 5. Coverage heatmap of the all-vs-all chromosome comparison between Homo sapiens
and Mus musculus employing seed-skipping policies corresponding to the fast mode in
GPUGECKO. The coverage is in the range . The last row is the sum of the coverage per[0, 100]
each human chromosome which is not in the range but rather where is[0, 100] [0, 𝑛 * 100] 𝑛
the number of chromosomes of Mus musculus.

12

Figure 6. Differences in coverage of the full comparison and the seed-skipping policy in the
all-vs-all chromosome comparison between Homo sapiens and Mus musculus. The coverage is
in the range . The last row is the sum of the coverage per each human chromosome[0, 100]
which is not in the range but rather where is the number of[0, 100] [0, 𝑛 * 100] 𝑛
chromosomes of Mus musculus.

In the case of Homo sapiens vs Gorilla gorilla, GPUGECKO takes 2 hours and 24 minutes while
using the seed-skipping policy (as opposed to 9 hours and 6 minutes for the exhaustive
comparison). Figure 7 shows the seed-skipping comparison and Figure 8 shows the differences
in coverage.

13

Figure 7. Coverage heatmap of the all-vs-all chromosome comparison between Homo sapiens
and Gorilla gorilla using seed-skipping policies. The coverage is in the range . The last[0, 100]
row is the sum of the coverage per each human chromosome which is not in the range [0, 100]
but rather where is the number of chromosomes of Gorilla gorilla.[0, 𝑛 * 100] 𝑛

Notice how the achieved coverage is nearly the same as in the exhaustive comparison while
reducing runtime an additional ~4x. In fact, the differences (see Figure 4) are relatively smaller
compared to the differences of Homo sapiens and Mus musculus, where up to 50% differences
in coverage were achieved. In the case of Homo sapiens vs Gorilla gorilla, there are enough
seeds (and final alignments are long enough) to make seed-skipping policy select, in most
cases, a seed that yields the best alignment.

14

Figure 8. Differences in coverage of the full comparison and the seed-skipping policy in the
all-vs-all chromosome comparison between Homo sapiens and Gorilla gorilla. The coverage is
in the range . The last row is the sum of the coverage per each human chromosome[0, 100]
which is not in the range but rather where is the number of[0, 100] [0, 𝑛 * 100] 𝑛
chromosomes of Gorilla gorilla.

Seed-skipping policies
Both GECKO and BLASTN (and GBLASTN as well) employ seed-skipping policies by default.
These are aimed at removing highly repetitive seeds that do not contribute to conserved
syntenies, but rather to repetitions. In the case of GECKO, highly-repetitive seeds (above a
fixed threshold) are processed by selecting evenly spaced seeds following a uniform
distribution. In the case of BLASTN, low-complexity regions are removed with the DUST
program [2]. While GPUGECKO does not filter any repetitive seed by default (as this can lead to
false beliefs regarding the comparison of two sequences), an option is also available for the

15

case in which additional speed is desired and there is no interest in repeating regions. In this
line, GPUGECKO implements two filtering modes based on one assumption: a seed which
appears more than once can be considered a repetition (see [3]) and single seeds are
considered as belonging to the conserved syntenies. The filtering modes proceed in two
different ways:

1. A uniform selection of seeds based on the relative number of seeds (no threshold).
Given a word that appears and times in each sequence (which in sensitive mode𝑥 𝑦
would result in seeds, quadratic complexity), the square root is taken for both so𝑥 * 𝑦
that the number of seeds is , which keeps the amount of seeds in the same𝑥 * 𝑦
order of magnitude as the number of words. This means that the step in which words are
skipped is the square root of the number of appearances of the particular word in each
sequence, which enables to select them in an evenly-spaced fashion. For instance,
consider the same word being repeated 10 and 20 times, respectively. While the original
number of spawned seeds would rise to , the suggested policy only10 * 20 = 200
requires . This number is furtherly reduced by dividing by a constant10 * 20 ≈ 14
factor which was empirically determined. Overall, the equation of the number of seeds
for the fast mode is shown below:

𝑠 = 𝑥 * 𝑦() ÷ 2

This working mode is able to reduce runtimes by 5x while only losing from 1 to 15% of
coverage. This policy corresponds to the “--fast” parameter.

2. An only-first seed policy. This policy simply matches the query and reference words
once, i.e. no word can be used twice. This working mode corresponds to the
“--hyperfast” parameter, and should only be used to find the main syntenies.

State-of-the-art comparison employing seed-skipping policies
The comparison between GECKO, GBLASTN and GPUGECKO depicted in the main
manuscript is now repeated employing the seed-skipping policies from each algorithm. Table 5
shows the runtime and coverage values.

Comparison GECKO GECKO GBLASTN GBLASTN GPUGECKO GPUGECKO

HYO-HYO 2.69 / 2.10 90.10 0.90 / 0.82 92.22 3.59 / 1.10 94.91

B-K12 10.01 / 1.85 93.14 2.61 / 1.51 91.06 3.75 / 1.12 94.65

GAL-MEL 13.90 / 2.22 49.82 44.79 / 1.15 58.23 4.01 / 1.07 59.29

ORY-DAN 39.44 / 3.98 0.21 11.09 / IND 0.15 4.72 / 1.93 0.22

SUS-BOS 98.18 / 2.47 5.48 67.78 / IND 5.59 8.29 / 1.66 5.00

HOM-MUS 179.10 / 7.66 0.96 57.88 / IND 0.87 16.58 / 3.65 0.98

16

HOM-GOR 2098.03 / 4.87 66.29 DNF DNF 41.52 / 4.68 69.66

Table 5. Sequence comparison between GECKO, GBLASTN and GPUGECKO. The first column
comprises the abbreviation of the sequence comparison. The following three column pairs
represent the runtime (along with the speedup in regards to the full comparison) as well as the
coverage of the reported alignments for each of the programs. The abbreviation “DNF” stands
for “Did Not Finish”, whereas “IND” stands for “Indeterminate”.

There are several comments to be made on Table 5. In particular:

1. GBLASTN is still incapable of handling large comparisons and thus does not finish the
Homo sapiens chr 1 vs Gorilla gorilla chr 1 comparison.

2. GPUGECKO is still the fastest except for small sequences (bacterial).
3. GPUGECKO achieves the highest coverage in most of the comparisons (4/6).

Finally, regarding speedup, GPUGECKO achieves the highest in long sequences when using
seed-skipping policies, whereas GBLASTN achieves the highest for shorter sequences.

Comparison between the sequential GECKO and GPUGECKO
In this section, the speedup between the sequential CPU algorithm is compared against the
proposed parallel GPU implementation. The per-kernel speedup is measured for each stage of
the algorithm.

It can be observed from Table 6 and 7 that GPUGECKO achieves speedup in every kernel,
ranging from around ~6x to ~300x, and averaging approximately an overall ~99x speedup
(times include data transfers from host to device and vice versa). On one hand, the smallest
speedup is obtained from the reverse complement kernel, which is expected, since the kernel
requires virtually no work but the acceleration still needs to compensate for the host to device
transfer.

Comparison M. hyopneumoniae 232 - 7442 E. coli B12 - K

Kernel CPU GPU µ
𝑠

CPU GPU µ
𝑠

Reverse
complement

0.087 0.0078 11.17 0.344 0.045 7.59

Words
Dictionary

1.162 0.0085 136.76 4.248 0.014 297.30

Words Sorting 0.891 0.0041 216.14 3.668 0.023 157.55

Seeds
Generation

1.621 0.0223 72.75 5.989 0.039 154.44

17

Seeds Sorting 0.187 0.0006 330.05 1.350 0.006 235.85

Seeds
Filtering

0.020 0.0008 24.87 0.158 0.008 18.70

Seeds
Extension

0.330 0.0019 176.70 0.514 0.021 24.25

Table 6. Per-kernel speedup comparison between GECKO and the proposed implementation
GPUGECKO for the first two sequences of the sample dataset. Each multi-column represents a
comparison and is further divided in 3 columns, namely (1) CPU time, (2) GPU time and (3)
average speedup .µ

𝑠

On the other hand, the sorting of both words and seeds, the extension of seeds and the
generation of word dictionaries attain the highest acceleration (on average around ~160x and
~270x for the words and seed sorting, ~260x for the dictionary generation and ~140x for the
seed extension). The sorting is expected to achieve such speedup (as it is a well-studied
subject); particularly in the case of seeds where enough data is available (since the number of
seeds is generally quadratic in terms of the number of words). Moreover, the custom memory
allocator increases the acceleration which otherwise would be reduced by almost 10% due to
the allocation calls caused by repetitive subsequence batching. The creation of the dictionary
benefits not only from balanced and homogeneous computation but also from the fact that in the
original CPU algorithm the complete dictionary must be written to disk. In the case of seed
extension, the speedup is due to nearly-optimal coalescence of the kernel and the lockstep
computation of warps. Lastly, the Escherichia coli case sees less speedup due to the amount of
repetitive seeds that result in duplicate HSPs, since parallel threads can not communicate with
others to check for overlapping HSPs. The static partitioning mitigates this effect partially and
raises the speedup from an initial ~4x to up to ~24x in such cases.

Comparison G. gallus 18 - M. gallo. 20 O. latipes 6 - D. rerio 25

Kernel CPU GPU µ
𝑠

CPU GPU µ
𝑠

Reverse
complement

0.728 0.102 7.16 1.914 0.284 6.74

Words
Dictionary

8.613 0.025 349.40 22.929 0.082 280.33

Words Sorting 7.889 0.060 132.28 24.159 0.177 136.54

Seeds
Generation

8.606 0.057 151.26 24.264 0.409 59.39

18

Seeds Sorting 0.266 0.001 331.26 22.303 0.123 181.72

Seeds
Filtering

0.034 0.001 25.92 2.167 0.158 13.68

Seeds
Extension

0.661 0.003 237.80 7.055 0.056 125.04

Table 7. Per-kernel speedup comparison between GECKO and the proposed implementation
GPUGECKO for the second two sequences of the sample dataset. Each multi-column
represents a comparison and is further divided in 3 columns, namely (1) CPU time, (2) GPU
time and (3) average speedup .µ

𝑠

References

1. Dewey C.N. (2019) Whole-Genome Alignment. In: Anisimova M. (eds) Evolutionary
Genomics. Methods in Molecular Biology, vol 1910. Humana, New York, NY

2. Kuzio, J., R. Tatusov, and D. J. Lipman. "Dust." Unpublished but briefly described in:
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A Fast and Symmetric DUST
Implementation to Mask Low-Complexity DNA Sequences. Journal of Computational
Biology 13, no. 5 (2006): 1028-1040.

3. Pérez-Wohlfeil, Esteban, Sergio Diaz-del-Pino, and Oswaldo Trelles. "Ultra-fast genome
comparison for large-scale genomic experiments." Scientific reports 9, no. 1 (2019):
1-10.

4. Official CUB repository. Revision c3cceac. https://github.com/NVlabs/cub
5. Official ModernGPU repository. Revision 2b39855 on master branch.

https://github.com/moderngpu/moderngpu

19

https://github.com/NVlabs/cub
https://github.com/moderngpu/moderngpu

