Population genetic structure of *Picea engelmannii*, *P. glauca* and their previously unrecognized hybrids in the central Rocky Mountains

Supplemental material

focal	l and	
) and	agona	
EMB	he diá	
AZ, 1	ove t]	
vii (E	n ab	
mann	show	
engel	s are	
), <i>P</i> .	value	
NON	ls. p-	bold
AK, 1	latior	ed in
H, W.	ndod	nlight
(WBI	3HC)	l higl
auca	HS, E	5 leve
P. gl	OI, B.	=0.0
alics	L, SI	the α
in its	L, SS	ns at
ntal (B, SL	ulatio
pare	, GSI	ndod
sween	VSN	iated
n bet	YSE,	ferent
tiatic	ζSC,	ly dif
fferer	LN,	ficant
ise di	C, Č	signii
Pairw	S, GT	with
S1:]	GTS	elow,
Table	MLP,	F_{ST} b
L .	\sim	-

	NOM	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.004	I
	WAK	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	Ι	0.037
	WBH	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	I	0.045	0.045
	BHC	0.001	0.168	0.476	0.461	0.103	0.511	0.057	0.016	0.506	0.103	0.134	0.011	0.003	0.589	I	0.080	0.128	0.110
	BHS	0.001	0.003	0.001	0.079	0.008	0.576	0.016	0.001	0.001	0.021	0.013	0.001	0.001	Ι	-0.002	0.079	0.112	0.098
	SDI	0.001	0.001	0.001	0.001	0.001	0.012	0.001	0.001	0.001	0.001	0.005	0.001	Ι	0.052	0.042	0.110	0.143	0.116
	SSL	0.001	0.001	0.001	0.001	0.001	0.028	0.001	0.001	0.003	0.001	0.293	I	0.054	0.021	0.019	0.053	0.067	0.079
	SLL	0.001	0.001	0.001	0.011	0.001	0.036	0.002	0.001	0.083	0.004	Ι	0.004	0.054	0.024	0.010	0.066	0.099	0.080
	GSB	0.001	0.466	0.344	0.566	0.576	0.419	0.220	0.054	0.021	I	0.058	0.058	0.061	0.023	0.014	0.154	0.221	0.203
alues	$_{\rm VSN}$	0.001	0.027	0.014	0.021	0.001	0.100	0.001	0.001	Ι	0.024	0.012	0.015	0.031	0.012	0.000	0.065	0.098	0.090
b-va	YSE	0.001	0.254	0.015	0.585	0.290	0.144	0.157	Ι	0.038	0.025	0.076	0.082	0.082	0.042	0.026	0.170	0.233	0.201
	YSC	0.001	0.231	0.024	0.914	0.350	0.957	I	0.009	0.022	0.007	0.037	0.040	0.070	0.011	0.012	0.129	0.170	0.162
	GTN	0.006	0.406	0.209	0.887	0.756	I	-0.023	0.020	0.018	0.003	0.035	0.036	0.067	-0.004	-0.002	0.140	0.197	0.162
	GTC	0.001	0.750	0.235	0.935	Ι	-0.013	0.002	0.005	0.038	-0.004	0.067	0.067	0.078	0.022	0.012	0.158	0.223	0.194
	GTS	0.009	0.958	0.186	Ι	-0.016	-0.025	-0.011	-0.004	0.015	-0.003	0.035	0.046	0.061	0.010	0.000	0.143	0.193	0.177
	MLP	0.014	0.717	Ι	0.008	0.006	0.011	0.017	0.024	0.013	0.003	0.051	0.045	0.052	0.021	0.000	0.118	0.176	0.164
	EMB	0.003	Ι	-0.004	-0.016	-0.007	0.003	0.004	0.007	0.012	0.001	0.050	0.049	0.063	0.020	0.006	0.129	0.192	0.181
	EAZ	I	0.028	0.020	0.032	0.058	0.061	0.052	0.054	0.039	0.048	0.083	0.101	0.080	0.056	0.043	0.167	0.223	0.201
	Pop	EAZ	EMB	MLP	GTS	GTC	GTN	YSC	YSE	$_{\rm VSN}$	GSB	SLL	SSL	SDI	BHS	BHC	WBH	WAK	MOM
										F_{ST}									

Table S2: Estimates of average linkage disequilibrium (LD; Δ) in 18 populations of parental *P. glauca* (WBH, WAK, WON), *P. engelmannii* (EAZ, EMB) and focal (MLP, GTS, GTC, GTN, YSC, YSE, YSN, GSB, SLL, SSL, SDI, BHS, BHC) populations.

Population	Mean	Max	90% quantile
EAZ	0.00460	0.0651	0.0105
EMB	0.00516	0.0378	0.0131
MLP	0.00594	0.0346	0.0118
GTS	0.00778	0.0473	0.0178
GTC	0.00516	0.0231	0.0124
GTN	0.00761	0.0600	0.0199
YSC	0.00631	0.0325	0.0137
YSE	0.01030	0.1100	0.0249
YSN	0.00523	0.0179	0.0098
GSB	0.00764	0.0469	0.0156
SLL	0.00807	0.0450	0.0199
SSL	0.00455	0.0300	0.0108
SDI	0.00624	0.0496	0.0138
BHS	0.00511	0.0204	0.0086
BHC	0.00886	0.0311	0.0161
WBH	0.00394	0.0311	0.0089
WAK	0.00338	0.0260	0.0081
WON	0.00517	0.0286	0.0146

A. Estimate of K based on L(K)

B. Estimate of K based on ΔK

Figure S1: Estimates of ln(K |data) in *structure*. A. Mean estimates of K ranging from 1–10 including standard error bars from 10 replicate runs of MCMC. B. Estimates of K based on Δ K (Evanno et al. 2005).

Figure S2: Genetic ancestry (q) versus average interspecific heterozygosity (H_I) for 336 individuals of parental *Picea engelmannii* and *P. glauca*, and focal individuals. Symbols represent each individual's genetic ancestry (q) detected using microsatellites during the course of this study: crosses (*P. engelmannii* ancestry), $q \leq 0.10$; dark grey circles, $0.11 \leq q \leq 0.39$; grey circles, $0.40 \leq q \leq 0.59$; light grey circles, $0.60 \leq q \leq 0.89$; triangles (*P. glauca* ancestry), $q \geq 0.90$.

Figure S3: Average population genetic ancestry (q) versus average pairwise linkage disequilibrium (LD; Δ) of parental *P. glauca* (WBH, WAK, WON), *P. engelmannii* (EAZ, EMB) and focal (MLP, GTS, GTC, GTN, YSC, YSE, YSN, GSB, SLL, SSL, SDI, BHS, BHC) individuals. Symbols represent mean genetic ancestry (q) for each population detected using microsatellites during the course of this study: crosses (*P. engelmannii* ancestry), $q \leq 0.10$; dark grey circles, $0.11 \leq q \leq 0.39$; grey circles, $0.40 \leq q \leq 0.59$; light grey circles, $0.60 \leq q \leq 0.89$; triangles (*P. glauca* ancestry), $q \geq 0.90$.

References

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14(8):2611–2620